
DESY 19-161

Measuring the net circular polarization of the

stochastic gravitational wave background with interferometers

Valerie Domcke

a
, Juan Garćıa-Bellido
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Abstract

Parity violating interactions in the early Universe can source a stochastic gravitational
wave background (SGWB) with a net circular polarization. In this paper, we study possible
ways to search for circular polarization of the SGWB with interferometers. Planar detectors
are unable to measure the net circular polarization of an isotropic SGWB. We discuss the
possibility of using the dipolar anisotropy kinematically induced by the motion of the solar
system with respect to the cosmic reference frame to measure the net circular polarization
of the SGWB with planar detectors. We apply this approach to LISA, re-assessing previous
analyses by means of a more detailed computation and using the most recent instrument
specifications, and to the Einstein Telescope (ET), estimating for the first time its sensitivity
to circular polarization. We find that both LISA and ET, despite operating at di↵erent
frequencies, could detect net circular polarization with a signal-to-noise ratio of order one in a
SGWB with amplitude h2⌦GW ' 10�11. We also investigate the case of a network of ground
based detectors. We present fully analytical, covariant formulas for the detector overlap
functions in the presence of circular polarization. Our formulas do not rely on particular
choices of reference frame, and can be applied to interferometers with arbitrary angles among
their arms.
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1 Introduction

A direct detection of the SGWB represents a major future target of gravitational wave (GW)
experiments working at interferometer scales. The characterization of the SGWB properties, and
the corresponding detection strategies, are essential for distinguishing between a cosmological
and an astrophysical origin of the signal. See e.g. [1–6] for comprehensive reviews on theoretical
and experimental aspects of the physics of SGWBs. Among the properties that can characterize
a SGWB is an intrinsic circular polarization, associated with an asymmetry in the amplitude of
GWs of left and right polarizations.

The astrophysical SGWB is a combination of several independent signals from uncorrelated
sources. Therefore, we do not expect the astrophysical SGWB to carry a net polarization. On
the other hand, cosmological SGWBs can be produced coherently (for example, the SGWB
from inflation): if this coherence is accompanied by interactions that violate parity, then a cos-
mological SGWB with net circular polarization can be generated. In fact, a sizable degree of
polarization can be generated in well-motivated models of inflation with spontaneous parity vio-
lation, manifesting itself e.g. in Chern-Simons couplings between the inflaton � and curvature (as
�R R̃, [7–10]) or gauge fields (as �F F̃ , see e.g. [11–16]). Such a scenario, and its consequences
for CMB polarization experiments, is the subject of active research, see e.g. [17–20] for reviews.
Interestingly, recent numerical analysis [21] show that post-inflationary physics associated with
magnetohydrodynamic turbulence, in the presence of helical initial magnetic fields, can also give
rise to net circular polarization of a SGWB potentially detectable with LISA. In this work, we will
study the prospects for detecting a net circular polarization in the SGWB in GW interferometry
experiments. A positive detection would provide a smoking gun for parity violating e↵ects and
for a cosmological origin of the SGWB signal.

It has been proven [22–24] that parity violating e↵ects in an isotropic SGWB can not be
detected by correlating a system of coplanar detectors. A planar interferometer responds in the
same way to a left-handed GW of wave vector ~k and to a right-handed GW of the same amplitude
and of wave vector ~kp, obtained from ~k by changing sign of the component of ~k perpendicular
to the plane of the detector. In particular, this is the case for LISA and ET, which are planar
instruments. A way out of this argument is provided by an anisotropic SGWB [25, 26], since in
this case the GW arriving from the direction ~k have a di↵erent amplitude than those from the
~kp direction. Moreover, this problem is not present when one correlates signals from di↵erent
GW detectors which do not lie on the same plane [22, 23, 27], as is the case for a network of
ground-based interferometers.

In this work, we start from the consideration that a SGWB that is (statistically) isotropic in
one frame O is not (statistically) isotropic in any other frame that is boosted with respect to O.
This is true for any stochastic background, and this is for example the origin of the CMB dipole,
which is induced kinematically by the motion of the solar system frame with respect to the cosmic
reference frame. The latter is defined to be the one in which the CMB is statistically isotropic,
and it is the rest frame of the cosmic fluid. It is reasonable to assume that this is also the frame
in which the SGWB is isotropic. 1 The fact that measurements of parity odd SGWB anisotropies
allows the detection of circular polarization was already noticed and developed in [25, 26]. In
the present work, we present a more detailed computation for the LISA instrument, discussing

1In fact, the analysis described in this paper will allow us to test this hypothesis, if the SGWB has a net circular
polarization.
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in full extent the properties of the instrument response functions under parity symmetry in the
presence of a dipolar anisotropy, and clarifying the relation between these properties and the
SGWB circular polarization. Using the most up-to-date LISA instrument specifications, and
taking into account the full frequency band of the instrument, we re-assess the evaluation of
the magnitude of the signal-to-noise ratio associated with measurements of the SGWB circular
polarization, obtaining a result about one order of magnitude greater that that of [25].

This analysis can be readily extended to the the proposed ground-based Einstein Telescope
(ET). 2 A single third-generation telescope of this type features a planar configuration similar
to that of LISA. Using also in this case the kinematically induced dipole, we estimate for the
first time the signal-to-noise ratio (SNR) for this measurement at ET. We find that both LISA
and ET, despite operating at di↵erent frequencies, could detect net circular polarization with a
signal-to-noise ratio of order one in a SGWB with amplitude h2⌦

GW

' 10�11.
We then consider correlations of ground-based interferometers. In this case, as mentioned

above, a net circular polarization can already be measured from the SGWB monopole (namely,
from its statistically isotropic component), since a network of two or more detectors is generically
not coplanar. Such an analysis was already performed in [27] for the second and third generation
ground-based interferometers. 3 While in [27] a numerical evaluation of the parity-dependent
overlap functions was employed, in this paper we compute, for the first time, the full analytic form
of these functions (the overlap functions for parity even backgrounds were computed analytically
in [30]). We present ‘covariant’ analytic formulas for overlap functions describing correlations
among ground based interferometers in the small antenna limit (which applies to all existing
ground-based interferometers), also including the kinematically induced dipolar anisotropy. Our
expressions are valid for any amount of polarization of the SGWB (namely, we provide separate
formulas for the left-handed and the right-handed GW), they do not rely on any special choices
of frame (this is why we call them covariant), and they hold for arbitrary detector shape (namely,
they are not limited to interferometers with orthogonal arms). While the angular integrals
necessary to obtain the overlap functions can be also computed numerically [27], evaluating the
analytic formulae given here is significantly faster, and we hope that it might speed up such
analyses.

The structure of the paper is the following: in Section 2 we compute the GW two-point
function for a detector which is boosted with respect to a frame in which the SGWB is isotropic;
in Section 3 we present the dipole response functions for measuring the net circular polarization of
the SGWB with LISA. We turn to ground-based detectors in Section 4, considering both the case
of cross-correlations among a network of (not coplanar) interferometers, for which already the
monopole overlap function is sensitive to chirality, as well as the proposed Einstein Telescope,
which can measure chirality upon taking into account the kinematic dipole. We conclude in

2ET will be a ground-based interferometer with a triangular shape, like LISA, with the di↵erence that the
arm length is L = 10 km. It will be an observatory of the third generation aiming to reach a sensitivity for GW
signals emitted by astrophysical and cosmological sources about a factor of 10 better than the advanced detectors
currently operating. It will be formed by three detectors, each in turn composed of two interferometers (xylophone
configuration) [28, 29].

3To detect chirality, we need to measure PL and PR separately, so at least three interferometers are needed.
Two interferometers are enough if one assumes as an input the spectral form of the signal, as in this case the
measurements at di↵erent frequencies can be combined together [27]. For planar interferometers such as LISA
and ET, the needed plurality of measurements is guaranteed by the di↵erent time-delay-interferometers at their
vertices.
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Section 5. Four appendices provide further technical details. In App. A, we specify the GW
polarization operators employed in this work. App. B compares our findings with those of ref. [25]
for the measurement of the SGWB circular polarization with LISA. App. C lists the position of
the ground-based detectors considered, and App. D contains the derivation of the analytical
expressions for the monopole and dipole overlap functions for ground-based detectors.

2 Dipolar anisotropy of a cosmological SGWB

Let us assume that there exists a frame in which the SGWB is (statistically) isotropic. It is
natural to associate this frame to the cosmological frame, in which the CMB is isotropic. The
peculiar motion of the solar system in this frame will kinematically make the observed SGWB
anisotropic, as is this the case for the CMB, where it is found that our local system is moving
with speed v = 1.23 ⇥ 10�3 in a direction (�E , ✓E) = (172�, �11�) in ecliptic coordinates (see
e.g. [31]). The possibility to detect a kinematically-induced dipolar anisotropy with ground based
experiments was first quantitatively explored in [32], and more recently re-assessed in [33] for the
space-based experiment DECIGO. In this Section, we derive general formulas describing how a
dipolar anisotropy is induced on an otherwise isotropic SGWB. In Section 3, we use these results
to study how such dipolar anisotropy can enable the detection of the net circular polarization of
a SGWB with the LISA instrument.

We compute the GW two-point function seen by an observer who is moving with a constant
velocity ~v with respect to a frame in which the SGWB is isotropic. The motion with velocity ~v of
the observer generates a dipole in the observed GW power spectrum at order v, a quadrupole at
order v2 and so on. Under the assumption that v ⌧ 1 (as it is the case if the isotropic frame of
the SGWB and of the CMB coincide), we only focus on the dipole component, considering terms
up to O(v).

We start the computation by considering a frame {t, ~x} in which the SGWB is isotropic.
In this frame, we decompose the tensor field into modes of definite circular polarization, with
� = ±1 denoting right- and left-handed modes, respectively,

hij(t, ~x) =

Z

d3k e�2⇡i~k·~x
X

�

eij,�(k̂)h
�(t,~k) , (1)

where the GW polarization operators in the chiral basis eab,�(k̂) are introduced in Appendix
A. The mode momentum-space operators of definite helicity satisfy the condition h�(t,~k) =
h�(t,�~k)⇤ which, together with the property (A3), ensures that the expression (1) is real. This
expression satisfies the wave equation for a massless particle, which is solved by

h�(t,~k) = A�
~k
cos(2⇡k t) +B�

~k
sin(2⇡k t) , (2)

where A�
~k
= (A�

�~k
)⇤ and B�

~k
= (B�

�~k
)⇤ are stochastic variables that obey

hA�
~k
A�0
~k0
i = hB�

~k
B�0
~k0
i = P�(k)

4⇡k3
���0�(~k + ~k0) , hA�

~k
B�0
~k0
i = 0 , (3)

where P�(k) is the GW helicity-� power spectrum, depending only on the absolute value k due to
statistical isotropy. We note that, with our 2⇡ convention, k = |~k| is the frequency of the mode.
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Moreover, we have

no net circular polarization , PR (k) = PL (k) ,
X

�

�P� (k) = 0 . (4)

Equations (3) derive from the requirement that the equal time correlator takes the time-independent
form4

hh�(t,~k)h�0
(t,~k0)i ⌘ P�(k)

4⇡k3
���0�(~k + ~k0) . (5)

The gravitational wave correlator at arbitrary times then reads

hhij(~x, t)hi0j0(~x 0, t0)i =
X

�

Z

d3k

4⇡k3
e�2⇡i~k·(~x�~x 0

) eij,�(k̂)ei0j0,�(�k̂)P �(k) cos(2⇡k(t� t0))

=
1

2

X

�

Z

d3k

4⇡k3
e�2⇡i~k·(~x�~x 0

)+2⇡ik(t�t0) eij,�(k̂)ei0j0,�(�k̂)P �(k)

+
1

2

X

�

Z

d3k

4⇡k3
e�2⇡i~k·(~x�~x 0

)�2⇡ik(t�t0) eij,�(k̂)ei0j0,�(�k̂)P �(k) . (6)

We now perform a boost to a frame {⌧, ~y} that is moving with constant velocity ~v, directed
along the first coordinate, with respect to the {t, ~x} frame

t = �(⌧ � v y
1

) , x
1

= �(y
1

� v ⌧) , x
2

= y
2

, x
3

= y
3

, (7)

where � ⌘ 1/
p
1� v2. Being a rank-2 tensor, hij transforms as

hij(x1, x2, x3, t) = hab(�(y1 � v ⌧), y
2

, y
3

, �(⌧ � v y
1

))
@ya
@xi

@yb
@xj

' hij(�(y1 � v ⌧), y
2

, y
3

, �(⌧ � v y
1

)) +O �v2� . (8)

Let us perform this transformation on the decomposition (6). To preserve the same plane wave
structure of the phase in the decomposition, we simultaneously perform a change in the integration
variable, which can be also thought of as a boost on the momenta, with opposite signs of the
boost parameter depending on whether we are in the negative (second line of eq. (6), ~k 7! ~q) or
positive (third line of eq. (6), ~k 7! ~p) frequency component of the unequal-time correlator,

second line of eq. (6) third line of eq. (6)
8

>

>

<

>

>

:

k
1

= �(q
1

� v q)
k
2

= q
2

k
3

= q
3

k = �(q � v q
1

)

,

8

>

>

<

>

>

:

k
1

= �(p
1

+ v p)
k
2

= p
2

k
3

= p
3

k = �(p+ v p
1

)

(9)

with q ⌘ |~q| and p ⌘ |~p|. Therefore, the unequal time correlator in the boosted frame can be
written as

hhij(~y, ⌧)hi0j0(~y 0, ⌧ 0)i =1

2

X

�

Z

d3k

4⇡k3
e�2⇡i~q·(~y�~y 0

)+2⇡iq(⌧�⌧ 0) eij,�(k̂)ei0j0,�(�k̂)P �(k)

4Here we are considering the present-day SGWB, evaluated at times relevant for the detection. When considering
cosmological time scales (e.g. when comparing with the primordial power spectrum), the expansion of the Universe
must be taken into account, encoded in the cosmic transfer function .
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+
1

2

X

�

Z

d3k

4⇡k3
e�2⇡i~p·(~y�~y 0

)�2⇡ip(⌧�⌧ 0)eij,�(k̂)ei0j0,�(�k̂)P �(k) , (10)

where the dependence on the velocity ~v is hidden in the relation between the variables ~q, ~p and
~k.

In the following, we perform explicit computations only on the first term on the right hand
side of eq. (10), since the second one is obtained from the first one with the replacements ~q ! ~p,
~v ! �~v, ⌧ $ ⌧ 0. We obtain the correlator for the variables of definite helicity in momentum
space

hh�(~l, ⌧)h�0
(~l 0, ⌧ 0)i ⌘ eij,�(�l̂)ei0j0,�0(�l̂0)

Z

d3y d3y0e2⇡i
~l·~y+2⇡i~l0·~y0hhij(~y, ⌧)hi0j0(~y0, ⌧ 0)i

= �(~l +~l 0)eij,�(�l̂)ei0j0,�0(l̂)

"

1

2

X

�

Z

d3k

4⇡ k3
e2⇡iq(⌧�⌧ 0) �(~q �~l) eij,�(k̂)ei0j0,�(�k̂)P �(k)

+ (~q ! ~p, ~v ! �~v, ⌧ $ ⌧ 0)

#

. (11)

Our task is then to eliminate ~k from the last equation, expressing it in terms of ~q only.
Firstly, from d3k = � (1� q̂ · ~v) d3q and k = � (q � ~q · ~v), we obtain

d3k

k3
= (1 + 2 q̂ · ~v) d

3q

q3
+O �v2� . (12)

Secondly, we decompose the product of the two polarization operators in eq. (11) in terms of
four 1-index quantities ei,� (see eq. (A1 )) and we use the identity (A4), that we can express as a
function of q̂ using the relation k̂ = q̂ � ~v + q̂ (q̂ · ~v) + O

�

v2
�

, with q̂ = l̂ as a consequence of the

Dirac delta in eq. (11). Using these relations and the property lieij,�(�l̂) = 0, we find that, to
first order in ~v, the part of eq. (11) that depends on the polarization operators does not receive
any correction at linear order in v:

eij,�(�l̂)ei0j0,�0(l̂) eij,�(k̂)ei0j0,�(�k̂) �(~q �~l) = eij,�(�l̂)ei0j0,�0(l̂) eij,�(l̂)ei0j0,�(�l̂) +O(v2)

= ������0 +O(v2) . (13)

Finally we expand P �(k) = P �(� (q � ~q · ~v)) = P �(q)� (~q · ~v)P �0(q) +O(v2).
Using these results, and accounting for both terms in the second line of eq. (10), we finally

obtain the correlator in the boosted frame

hh�(~l, ⌧)h�0
(~l 0, ⌧ 0)i =���0

�(3)(~l +~l 0)

4⇡ l3

(

P �(l) cos[2⇡l(⌧ � ⌧ 0)]

+ i(l̂ · ~v)
h

2P �(l)� l P �0(l)
i

sin[2⇡l(⌧ � ⌧ 0)]

)

+O(v2). (14)

It is worth noting that the dipole contribution vanishes in the equal-time case. This is because
hh�(~l, ⌧)h�(~l 0, ⌧ 0)i = hh�(~l 0, ⌧ 0)h�(~l, ⌧)i, which implies that the correlator is invariant under
~l $ ~l0 in the equal time case.
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3 Measuring the SGWB net circular polarization with LISA

We now discuss how the kinematically induced dipolar anisotropy can be used to measure the
net circular polarization of SGWBs with the planar interferometer LISA. This was first studied
in [25,26], where it was noticed that a measurement of parity odd SGWB anisotropies can be used
to detect parity violating e↵ects in gravitational interactions. Those works focus on the small
frequency limit of the detector response functions, and make use of the properties of the detector
in such regime, as discussed in [34, 35]. In our work, we first systematically discuss, in Section
3.1, the general properties of the instrument response functions under parity symmetry, clarifying
the relation between these properties and measurements of circular polarization. In Section 3.2,
using the most up-to-date LISA instrument specifications and performing an analysis over the
full LISA frequency band, we re-assess the evaluation of the signal-to-noise ratio associated with
measurements of the SGWB circular polarization.

3.1 LISA response functions

The space-based laser interferometer LISA [36] will be a constellation of three satellites placed
at the vertices (here placed at the positions {~x

1

, ~x
2

, ~x
3

}) of an (approximate) equilateral triangle
with side length L = 2.5 million kilometers. Each satellite is connected to the other two via laser
links, resulting in three virtual Michelson interferometers with an opening angle of 60 degrees,
labelled by their respective central node. A passing gravitational wave modifies the relative arm
lengths in each of these interferometers, inducing a di↵erence in the travel time of the laser light
performing a round trip in the two interferometer arms. This di↵erence in travel time corresponds
to a phase shift between the two laser beams returning to the central node, which can be detected
in the resulting interference pattern.

The time-delay induced by a gravitational wave in the i-th interferometer is obtained by
integrating along the photon geodesic taking into account the perturbation of the metric due to
the gravitational wave. The result can be expressed as a convolution of the gravitational wave
with the response function Qi containing the geometry of the detector [6, 37, 38],

�i (t) ⌘ �t

t
=

�t

2L
=
X

�

Z

d3k h�(~k, t� L) eab,�(k̂)Qi
ab(~xi,~k; {Ûj}) , (15)

with

Qi
ab(~xi,~k; {Ûj}) = 1

4
e�2⇡i~k·~xi

h

T (kL, k̂ · Ûi) Û
a
i Û

b
i � T (kL,�k̂ · Ûi+2

) Ûa
i+2

Û b
i+2

i

, (16)

where Ûi ⌘ ~xi+1�~xi

L is the unit vector in the direction of the arm that goes from the satellite ~xi
to the satellite ~xi+1

. All indices {i, i+ 1, . . . } in eq. (16) are understood to be modulo 3.
The detector transfer function T is given by

T (kL, k̂ · Ûi) ⌘ e�⇡ i k L[1+ˆk· ˆUi] sinc
h

⇡ k L
⇣

1� k̂ · Ûi

⌘i

+ e⇡ i k L[1�ˆk· ˆUi] sinc
h

⇡ k L
⇣

1 + k̂ · Ûi

⌘i

,

(17)

which reduces to T ' 2 for kL ⌧ 1.
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Performing linear combinations of the interferometers ~xi we can construct the Time Delay
Interferometry (TDI) LISA channels {A,E, T} [39]

⌃A ⌘ 1

3
(2�X � �Y � �Z) , ⌃E ⌘ 1p

3
(�Z � �Y ) , ⌃T ⌘ 1

3
(�X + �Y + �Z) . (18)

For an isotropic background, we can exploit the symmetry under the exchange of the vertices
of the equilateral triangle to see that all self correlators among �X , �Y , �Z are equal to each
other, as are all cross correlations. This in particular implies h⌃A⌃Ai = h⌃E⌃Ei, while the cross
correlations among ⌃A, ⌃E and ⌃T vanish. As we will see explicitly below, these statements do
not apply to anisotropic components of the SGWB.

The signal induced by a passing gravitational wave in the channels O = {A,E, T} is

⌃O(t) =
X

�

Z

d3k h�(~k, t� L) eab,�(k̂)QO
ab(~k; {x̂j}) , (19)

with QO
ab(

~k; {x̂j}) =
P

i c
O
i Qi

ab(~xi,
~k; {Ûj}), where the matrix c is given by

c =

0

B

@

2

3

�1

3

�1

3

0 � 1p
3

1p
3

1

3

1

3

1

3

1

C

A

. (20)

For more details on the derivation and notation, see Ref. [38].

3.1.1 Response function to the SGWB monopole and dipole components

Combining eq. (14) and (19) yields the two-point correlation function in the time domain,

⌦

⌃O(t)⌃O0(t0)
↵

=
1

4

X

�

Z

dk

k

h

M�
OO0(k)P�(k) cos

⇥

2⇡k(t� t0)
⇤

+ vD�
OO0

�

2P�(k)� kP 0
�(k)

�

sin
⇥

2⇡k(t� t0)
⇤

i

, (21)

where we have introduced the monopole and dipole response functions

M�
OO0 (k) ⌘ 4

Z

d⌦
ˆk

4⇡
eab,�(k̂)ea0b0,�(�k̂)QO

ab(~k)QO0
a0b0(�~k) , (22)

D�
OO0 (k, v̂ · n̂) ⌘ 4i

Z

d⌦
ˆk

4⇡
eab,�(k̂)ea0b0,�(�k̂)QO

ab(~k)QO0
a0b0(�~k) k̂ · v̂ , (23)

where n̂ is the normal to the plane of LISA, that, for definiteness, we take it to be oriented
upwards for an observer for whom the vertices labeled as ~x

1

, ~x
2

, ~x
3

follow one another in the
anti-clockwise direction.

The two response functions satisfy the following properties

1. M�
OO0 and D�

OO0 are real,

2. M�
OO0 does not depend on the orientation of the detector; D�

OO0 depends on the direction
of the detector only through the cosine of the angle between n̂ and v̂,

8



3. M�
OO0 ! M�

OO0 , D�
OO0 ! �D�

OO0 if ~v ! �~v,
4. MR

OO0 (k) = ML
OO0 (k) , DR

OO0 (k, v̂ · n̂) = �DL
OO0 (k, v̂ · n̂),

which we now prove.
The first property immediately follows from the fact that QO

ab(�~k) = (QO
ab(

~k))⇤, and identi-
cally for the GW polarization operators.

The second property is a consequence of statistical isotropy of the monopole, and of the
statistical isotropy of the dipole under rotations that preserve the direction of ~v. Let us verify
that the above relations ensure these properties. We start by noting that the transfer function
T depends on k̂ only through k̂ · Ûi. The argument in the exponential pre-factor in Qi can be
expressed as 2⇡ikk̂ · (~x

0

+(~xi�~x
0

)) with ~x
0

denoting the center of the equilateral triangle formed
by the three satellites. The factor exp(2⇡ikk̂ · ~x

0

) is thus universal to all Qi and drops out in the
dipole response function due to the property QO

ab(�~k) = (QO
ab(

~k))⇤. The remaining factor can
also be written as a scalar product between k̂ and the direction of the LISA arms. For instance,
for i = 1, we have

k̂ · (~x
1

� ~x
0

) = k̂ ·
✓

~x
1

� ~x
1

+ ~x
2

+ ~x
3

3

◆

=
k̂ ·
⇣

Û
3

� Û
2

⌘

3
. (24)

and analogously for i = 2, 3. Therefore,

QO
ab(~k)QO0

a0b0(�~k) = function of k̂ · Û
1

, k̂ · Û
2

, and of k̂ · Û
3

. (25)

As a consequence, any rotation of the LISA instrument (that for this discussion we consider as a
rigid equilateral triangle) can be “compensated” by a rotation of k̂. The rotation of k̂ does not
change the monopole response function (22), as this is just the integration variable. It follows that
every orientation of the instrument results in the same value for the monopole response function.
In the case of the dipole response function, any change of the orientation of the instrument can be
“compensated” by a rotation of k̂ and of ~v, (since also the last factor must be unchanged). Again,
since k̂ is simply an internal variable, it follows that the dipole response function does not change
if we rotate both the instrument and ~v. If we now consider a rotation around the direction of ~v,
we then see that the dipole response function (23) is unchanged for rotations of the instrument
that do not change the angle between ~v and the normal to the plane of the instrument. Therefore,
it depends on the orientation of the instrument and of the dipole only through the product v̂ · n̂.
More specifically, if we consider a coordinate system in which n̂ is directed along the z�axis, we
see that the last factor in eq. (23) factorizes a cosine of this angle.

The third property follows immediately from the properties that we just proved, and from
the definition of the response functions.

The fourth property will be essential for our aim of measuring the SGWB circular polarization.
To prove it, let us consider a mirror transformation with respect to the plane of the detector.
Under this transformation, the component of a vector along n̂ (that we denote as ?) changes sign,
while the component of the vector on the plane of the detector (that we denote as //) remains
invariant. Therefore, the product QO

ab(
~k)QO0

a0b0(�~k) is invariant under this symmetry, due to (25).
As seen from eq. (16), only the components of eab,� along the plane of the detector contribute
to the response functions. One can verify by direct inspection (by using the explicit form of
eq. (A2)) that these components are unchanged if we perform this mirror transformation and

9
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Figure 1: Monopole response function. It vanishes in the AE cross-correlation channel while is
identical in the AA and EE auto-correlation channels and is insensitive to the chirality of the
SGWB.

we simultaneously change the GW chirality. Namely, eab,�Qi
ab

�

k//, k?
�

= eab,��Qi
ab

�

k//, �k?
�

,
as we already proved in [38]. Under the mirror transformation, v? changes sign. Therefore, the
integrand of the monopole response function is unchanged if we perform this mirror symmetry,
and we flip the two helicities, while the integrand of the dipole response function changes sign
under the same transformations. The change of ~k can be then “undone” by a change of the
integration variable. This implies that the monopole response function is invariant when we flip
the two helicities, while the dipole response function changes sign.

Having proved the above properties, let us now consider a re-labeling of two satellites, say
~x
2

$ ~x
3

. We see from the definitions (18) that the ⌃A measurement is invariant under this
re-labeling, while ⌃E changes sign. Therefore, the self-correlators h⌃A⌃Ai and h⌃E⌃Ei are even
under the re-labeling, while the cross-correlator h⌃A⌃Ei is odd. The re-labeling has the e↵ect
of inverting the direction of the normal to the plane of the instrument, as we have defined it
below eq. (23). Due to the property (2.) demonstrated above, the monopole response function is
invariant under this inversion, while the dipole response function changes sign. Therefore

M�
AE = 0 , D�

AA = D�
EE = 0 . (26)

These relations can be immediately verified by a direct evaluation of eqs. (22) and (23).5 In
Figs. 1 and 2 we depict the monopole response functions for the AA and EE channel as well as
the dipole response function for the AE channel. We recall (property (4.) above) that the dipole
response function is odd under a flip of helicity, � 7! ��, again reflecting that the dipole response
function is parity odd. In particular, due the summation over helicity, the total two-point function
h⌃A⌃Ei will only be non-zero if the stochastic background is chiral, i.e. if P�(k) 6= P��(k).

An important consequence of this is that one should be careful in assuming that a nonvanishing
value for h⌃A⌃Ei would be due only to noise. As we proved above, this cross-correlator vanishes

5Similarly, re-labeling of the tensor indices in eq. (23) while simultaneously flipping k̂ 7! �k̂ yieldsD�
AE = �D�

EA.
Consequently, since h⌃A(t)⌃E(t

0)i = h⌃E(t
0)⌃A(t)i, we conclude that the dipole contribution to h⌃A(t)⌃E(t

0)i
must be odd under the exchange t $ t0, as reflected by the sine function in eq. (21). On the contrary, the
auto-correlations h⌃A(t)⌃A(t

0)i and h⌃E(t)⌃E(t
0)i trivially have to be even under t $ t0.
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Figure 2: Absolute value of the dipole response function. The dashed (solid) line indicates positive
(negative) values for DR

AE = �DL
AE. The angle ↵ denotes the angle between the orientation of

the dipole v̂ and the plane of the detector.

in presence of the monopole only, and one might be tempted to use any non-zero result as a
toll for noise characterization. We have shown that this quantity is actually non-vanishing if the
SGWB has a net polarization.

3.1.2 Dipole antenna pattern

As discussed above, the dipole response function (23) depends only on the angle between the
dipole and the normal vector of the detector plane, v̂ · n̂. The directional sensitivity of the
integrand of eq. (23) is more involved, encoding the geometrical sensitivity of the detector to
di↵erent sky regions, the so-called antenna pattern. The antenna pattern of the monopole re-
sponse function shows that GW interferometers are most sensitive to GWs arriving orthogonally
to the detector plane (see e.g. [37]). In Fig. 3 we depict the corresponding dipole antenna pat-
tern, taking into account that, due to the motion of the LISA-plane around the sun, the e↵ective
dipole will receive an annual modulation. See Section 3.2 for more details about the LISA orbit
parametrization.

These antenna patterns give allow for a qualitative understanding of the resolution of GW
detectors to higher order parity odd anisotropies. Moreover, as we will discuss in Sec. 3.2, the
expected annual modulation of the dipole response function can be used to optimize the signal-
to-noise ratio of this measurement. This is in particular true if the SGWB dipole coincides with
the (known) dipole of the CMB.

3.1.3 Small frequency limit of the response functions

In the small frequency limit, k L ⌧ 1, we can Taylor-expand the integrands of eqs. (22) and (23),
and then perform the integrals numerically. We obtain

M�
AA (k) = M�

EE (k) =
3

10
� 169⇡2

420
k2 L2 +O �k4L4

�

,
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Figure 3: Evolution of the dipole antenna pattern in ecliptic coordinates induced by the satellite
rotation. The plots show the real part of the integrand of DR

AE for f = 10�3Hz and every 1.5
months. The contour lines are at 0.04, 0.03, 0.02,�0.02,�0.03,�0.04 (red to blue). The green
star denotes the direction of the dipole (assumed to coincide with the CMB dipole), and the brown
dot the direction of the LISA normal.

M�
TT (k) =

⇡6

189
k6 L6 +O �k8L8

�

,

D�
AE (k) = � v̂ · n̂



1

5
� 253⇡2

840
k2 L2 +O �k4L4

�

�

. (27)

Obviously, these analytical expressions for the small kL expressions satisfy all the properties
of the correlators discussed in the previous subsection. We note that the M�

TT correlator vanishes
at small frequencies. For this reason this channel is sometimes denoted as the “null-channel”,
and it is expected to provide useful information for noise characterization [39].

For LISA, with

2⇡kL = 0.05

✓

k

10�3 Hz

◆✓

L

2.5⇥ 106 km

◆

, (28)

this Taylor expansion is only a good approximation for the lower part of the frequency band. In
the following, and in particular in Sec. 3.2, we will work with the full response functions, thereby
extending the work of Ref. [25]. On the other hand, when we turn to the Einstein Telescope in
Sec. 4.2, the small frequency limit will be fully su�cient.

3.1.4 Expressing the results in frequency domain

Performing a Fourier transform on eq. (21) yields the two-point function in the frequency domain,

⌦

⌃O(f)⌃O0(f 0)
↵

=
1

4

X

�

Z

dk

k



M�
OO0(k)P�(k)

Z

dt

Z

dt0e�2⇡i(tf+t0f 0
) cos

⇥

2⇡k(t� t0)
⇤

12



+ vD�
OO0

�

2P�(k)� kP 0
�(k)

�

Z

dt

Z

dt0e�2⇡i(tf+t0f 0
) sin

⇥

2⇡k(t� t0)
⇤

�

. (29)

Here f and f 0 can take both positive and negative values and the integration boundaries of the
time-integrals are t̄ � �T/2  t, t0  t̄ + �T/2 where t̄ denotes a reference time and �T the
typical length of the data streams in the time domain which for LISA is expected to be O(10
days). Since T is much longer than the inverse of the frequency range LISA is more sensitive to
(which is of the order of hours), we will set �T ! 1 from now on. We thus obtain

⌦

⌃O(f)⌃O0(f 0)
↵

=
1

4

X

�

Z 1

0

dk

2k
{M�

OO0(k)P�(k)
⇥

�(�f + k) �(f 0 + k) + �(f + k) �(�f 0 + k)
⇤

Z

dk

2k
� ivD�

OO0(k)
�

2P�(k)� kP 0
�(k)

� ⇥

�(�f + k) �(f 0 + k)� �(f + k)�(�f 0 + k)
⇤ 

.

(30)

We note that the dipole contribution is odd under f $ f 0, indicating that the corresponding
contribution to the two-point function must vanish for O = O0. This is an immediate consequence
of the sine function in eq. (14) which indicates that the dipole contribution has support only at
unequal times, t 6= t0.

3.2 The optimal signal-to-noise ratio for measuring circular polarization

Let s̃O(f) be the signal registered by LISA in the O = {A, E} channels, in frequency space. The
signal will be the sum of a physical signal ⌃O(f) = �t(f)/2L and of a noise ñO(f):

s̃O(f) = ⌃O(f) + ñO(f) . (31)

We define a frequency-dependent estimator

F̂(f
1

, f
2

) ⌘ WAE(f
1

, f
2

) s̃A(f1) s̃E(f2) , (32)

where the filter functionWAE(f
1

, f
2

) satisfies the reality conditionWAE(f
1

, f
2

)⇤ = WAE(�f
1

, �f
2

).
This implies that the frequency integrated estimator F̂ ⌘ R df

1

df
2

WAE(f
1

, f
2

) s̃A(f1) s̃E(f2) is
real, and has expectation value

hF̂i =
Z

df
1

df
2

WAE(f
1

, f
2

)hs̃A(f1) s̃E(f2)i = i

Z 1

�1
df

1

WAE(f
1

, �f
1

)Ss(f1) , (33)

where in the last step we have defined the AE correlator as

hs̃A(f1) s̃E(f2)i =
⌦

⌃A(f)⌃E(f
0)
↵

= i �(f
1

+ f
2

)Ss(f1) , (34)

with Ss(f) real, and where we have assumed that the noises in the A and in the E channels
are uncorrelated. Note that since M�

AE = 0, only the second line of eq. (30) contributes to this
expression, that implies that Ss(�f

1

) = �Ss(f1).
We next compute the variance of F̂ assuming that the signal is noise dominated, with

hnO(f1)nO0(f
2

)i = �OO0 Pn,O(f) �(f1 + f
2

), so that

hF̂2i =
Z 1

�1
df

1

df
2

df
3

df
4

WAE(f
1

, f
2

)WAE(f
3

, f
4

)hñA(f1) ñE(f2)ñA(f3) ñE(f4)i
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=

Z 1

�1
df

1

df
2

WAE(f
1

, f
2

)WAE(f
1

, f
2

)⇤ Pn,A(f1)Pn,E(f2) . (35)

The signal-to-noise ratio (SNR) is then given by hF̂i/
q

hF̂2i.
To determine the filter function WAE(f

1

, f
2

) we define a noise-weighted scalar product in
frequency space as

(A, B) =

Z 1

�1
df

1

df
2

A(f
1

, f
2

)B(f
1

, f
2

)⇤Pn,A(f1)Pn,E(f2) , (36)

so that the SNR

SNR =

⇣

WAE , �i�(f
1

+ f
2

) Ss(f1)
Pn,A(f1)Pn,E(f2)

⌘

p

(WAE , WAE)
, (37)

is maximized for WAE(f
1

, f
2

) / �i �(f
1

+ f
2

) Ss(f1)
Pn
A(f1)Pn

E(f2)
. For this optimal estimator, the SNR

is thus given by

SNR =



T

Z 1

�1
df

1

Ss(f1)2

Pn
A(f1)P

n
E(�f

1

)

�

1/2

=



2T

Z 1

0

df
Ss(|f |)2

Pn
A(|f |)Pn

E(|f |)
�

1/2

, (38)

where T is the total duration of the measurement.
Next, we write explicitly Ss(f) using the response function D�

AE(k) = �D(kL) cos↵, where
the functionD(x) is plotted in Figure 2. The quantityD�

AE(k) (and, consequently, the expectation
value for the signal Ss(f)) depends on time through the angle ↵ between the direction of the
motion of the solar system and the normal to LISA’s plane that rotates as the detector orbits the
Sun. As a consequence we will write the signal from now on as Ss(f, T ) / cos↵(T ) and, when
computing the SNR, we will replace the factor T in eq. (38) with an integral over dT , assuming
that the typical timescale on which Fourier transforms are computed is much shorter than the
month-long timescale on which ↵(T ) changes significantly.

We thus obtain

Ss(f, T ) =
3 v H2

0

2⇡2 f3

D(|f |L)
 

X

�

�⌦�
GW

!

cos↵(T ) , (39)

where we have used the relation P �(f) =
3H2

0
⇡2f2 ⌦�

GW , and where we assume, to have a measure

of the reach of this observable, that ⌦�
GW is does not depend on frequency within the LISA

bandwidth, which implies that the quantity 2P �(|f |)� |f |P �0(|f |) that appears in eq. (30) equals
12H2

0
⇡2f2 ⌦�

GW . It is worth reminding here that P �(f) is the gravitational wave power spectrum
evaluated at the time of detection, which is di↵erent from the primordial gravitational wave
power spectrum, and is related to it by the transfer function (see footnote 4).

In order to determine the noise spectral functions Pn,A(f) = Pn,E(f) ⌘ 2

3

Pn(f) we use the
formulae given in [40,41], that give

f Pn(f) ' 7⇥ 10�43

✓

f

f⇤

◆

 

1 + 10�4

✓

f⇤
f

◆

4

!
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+ 2.3⇥ 10�46 (1 + cos2(f/f⇤))

✓

f⇤
f

◆

3

 

1 + 4⇥ 10�4

✓

f⇤
f

◆

2

! 

1 + 39

✓

f

f⇤

◆

4

!

,

(40)

where f⇤ = (2⇡L)�1 ' .02Hz.
The final expression for the signal-to-noise ratio, for a scale invariant ⌦�

GW , is thus

SNR =
9H2

0

4⇡2

v

�

�

�

�

�

X

�

�⌦�
GW

�

�

�

�

�



2

Z

dT cos2 ↵(T )

Z 1

0

df

f4

D(fL)2

(f Pn(f))2

�

1/2

' 8.5⇥ 1013 v

�

�

�

�

�

X

�

�⌦�
GWh2

�

�

�

�

�

"

Z

T
1 year

0

cos2 ↵(x) dx

#

1/2

. (41)

Next, we have to estimate the integral
R

T
1 year

0

cos2 ↵(x) dx. LISA will be orbiting the Sun with its
normal vector at 30o with respect to the ecliptic plane, pointing south [36]. Placing the ecliptic
on the xy plane, and approximating that the orbit of the Earth with a circle, the unit vector
normal to LISA’s plane has components

n =

 p
3

2
cos

✓

2⇡
t

1 year

◆

,

p
3

2
sin

✓

2⇡
t

1 year

◆

,�1

2

!

. (42)

Parametrizing the velocity vector as v = v(cos ✓
v

sin�
v

, cos ✓
v

cos�
v

, sin ✓
v

), we have

cos↵ = n · v =

p
3

2
sin

✓

2⇡
t

1 year
+ �

v

◆

cos ✓
v

� sin ✓
v

2
. (43)

The integral of cos2 ↵ over 1 year gives the result



Z

1

0

cos2 ↵(x) dx

�

1/2

=

p

5 + cos(2✓
v

)

4
, (44)

that, depending on the value of cos ✓
v

, ranges between .5 and .61. The value of the integral over
the total time T of observation, which appears in eq (41), can then be found multiplying the
result of eq (44) by

p

T/(1 year).

Thus, approximating
h

R

1

0

cos2 ↵(x) dx
i

1/2 ' .5, the total SNR turns out to be given approxi-

mately by

SNR '
⇣ v

10�3

⌘

�

�

�

�

P

� �⌦�
GWh2

1.4 · 10�11

�

�

�

�

s

T

3 years
. (45)

This is one order of magnitude larger than the estimate obtained in [25].
For definiteness, given that we use a di↵erent notation, we present in Appendix B a detailed

comparison among our computation and Seto’s results of [25]. On the other hand, we stress that
for our analysis we use the most up-to-date LISA instrument specifications, and more complete
formulas valid for the entire frequency band of the interferometer.
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4 Measuring the SGWB net circular polarization with ground-

based interferometers

We now apply the formulas and techniques of the previous section to the case of ground-based
interferometers. We develop fully analytical, ‘covariant’ formulas for overlap functions, describing
correlations among ground based interferometers in the small antenna limit (condition (46) below)
6. Our formulas include the possibility that the SGWB is circularly polarized, do not rely
on special choices of frame (this is why we call them covariant), and apply to any detector
shape (not limited to interferometers with orthogonal arms). When correlating distinct ground
based interferometers, it is well known that the SGWB monopole is already sensitive to circular
polarization (see e.g. [22, 23, 27]). We demonstrate this fact in terms of our analytic formulas,
discuss the most convenient detector locations for maximizing sensitivity to circular polarization,
and also include the kinematically induced dipole in our analysis. In the final part of this section
we turn to the future ground-based Einstein Telescope. A single instrument of this type will
be planar, and hence measuring the chirality of the SGWB requires taking into accoung the
kinematic dipole, as in the analysis for LISA.

Our starting point is given by relations (22) and (23), which apply also to pairs of ground-
based interferometers (we actually choose a di↵erent overall normalization, as we discuss below).
In these cases, the fact that the peak sensitivity of these detectors is at a frequency which is
small compared to their inverse arm length, results in a crucial simplification, allowing us to
obtain fully analytical expressions for the overlap functions. Covariant, analytical formulas for
the unpolarized overlap function to the SGWB monopole MR (k)+ML (k) can already be found
in the literature [30, 42]. Here for the first time we provide covariant, analytic expressions for
the ��dependent terms (contrary to LISA, these terms do not generally vanish, since pairs of
detectors located in di↵erent locations on the Earth are generally not coplanar). Moreover, for
the first time we provide a covariant, analytic expressions for the overlap function to the SGWB
dipole.

For ground-based detectors, the crucial simplification arises from the fact that their sensitivity
region satisfies the “short arm condition” (referred to as “small kL limit” in Sec. 3.1.3)

2⇡k L ' 0.0084
k

100Hz

L

4 km
⌧ 1 , (46)

where we have normalized the frequency k to the region of best sensitivity for the existing and
forthcoming detectors, and where we recall that the arms of the two LIGO sites are L = 4
km long, while those of Virgo and KAGRA are L = 3 km long. In this limit, the quantity T
indroduced in eq. (17) evaluates to T ! 2. Using this value, eq. (15) assumes the simpler form

�i (t) ⌘ �t

t
= Dab

i

X

�

Z

d3k h�
⇣

~k, t� L
⌘

eab,�(k̂) e
�2⇡i~k·~xi , Dab

i ⌘ Ûa
i Û

b
i � V̂ a

i V̂
b
i

2
, (47)

where now Ûi and V̂i are the orientations of the arms of the i�th detector, that start from the
common point located at ~xi. In the following, we refer to this point as to the “position of the
detector” for brevity. The vectors ~xi, Ûi, and V̂i for the two LIGO detectors, for Virgo, and for
KAGRA are given in Appendix C.

6As customary in the literature, we call overlap functions the response functions for GW experiments that
correlate distinct detectors.
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Using eq. (14) for the GW correlator, we then obtain an expression identical to (21), namely

⌦

⌃i(t)⌃j(t
0)
↵

=
X

�

Z

dk

k

h

M�
ij(k)P�(k) cos

⇥

2⇡k(t� t0)
⇤

� vD�
ij

�

2P�(k)� kP 0
�(k)

�

sin
⇥

2⇡k(t� t0)
⇤

i

, (48)

with 7

M�
ij (k) = Dab

i Dcd
j

Z

d⌦k

4⇡
e�2⇡i~k·(~xi�~xj) eab,�(k̂)ecd,�(�k̂)

D�
ij (k, v̂) = iDab

i Dcd
j

Z

d⌦k

4⇡
e�2⇡i~k·(~xi�~xj) eab,�(k̂)ecd,�(�k̂) k̂ · v̂ . (49)

In Appendix D we compute these expression analytically. Parameterizing the positions of the
di↵erent detectors as

 ⌘ 2⇡k|~xi � ~xj | , ŝij ⌘ ~xj � ~xi
|~xi � ~xj | , (50)

and introducing the functions

fA () ⌘ j
1

()

2
+

1� 2

22
j
2

() , fB () ⌘ j
1

()


� 5� 2

2
j
2

() ,

fC () ⌘ �7j
1

()

4
+

35� 2

42
j
2

() ,

fD () ⌘ j
1

()

2
� j

2

()

2
, fE () ⌘ �j

1

()

2
+ 5

j
2

()

2
, (51)

(where j` are spherical Bessel functions) the overlap function for the SGWB monopole is

M�
ij (k) = fA () tr [DiDj ] + fB () (Diŝij)

a (Dj ŝij)
a + fC () (Diŝij ŝij) (Dj ŝij ŝij)

+ � fD () [DiDj ]
ab ✏abcŝ

c
ij + � fE () (Diŝij)

a (Dj ŝij)
b ✏abcŝ

c
ij , (52)

while that to the SGWB dipole is

D�
ij (k, v̂) = f 0

A () v̂eŝe (DiDj)
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+



f 0
B ()� 2
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(DiDj)

ab ✏abcv̂c

+ �



f 0
E ()� 3

fE ()



�

v̂eŝe (Diŝ)
a (Dj ŝ)

b ✏abcŝc

+ �
fE ()



nh

(Div̂)
a (Dj ŝ)

b + (Diŝ)
a (Dj v̂)

b
i

✏abcŝc + (Diŝ)
a (Dj ŝ)

b ✏abcv̂c
o

. (53)

7We use a di↵erent normalization for the overlap function for ground-based interferometers with respect to the
one used for LISA in Sec. 3, to respect the literature.
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In these expressions, we have used the combinations

(Div̂)
a ⌘ Dab

i v̂b , (Div̂ŝ) ⌘ Dab
i v̂b ŝa , (DiDj)

ab ⌘ Dac
i Dcb

i , . . . (54)

As we mentioned, these expressions are valid in the regime in which the product between the
frequency and the arm lengths is much smaller than one, but do not assume that the product
between the frequency and the separation distance between the two detectors, is also small
(namely,  does not need to be ⌧ 1). When this is also true, our results simplify further into

lim
!0

M�
ij =

(DiDj)
aa

5
, lim

!0

D�
ij (v̂) =

2� (DiDj)
ab

15
✏abcv̂c . (55)

The analytic expressions (52) and (53) can be readily evaluated for any pair of detectors. In
Table 1 in Appendix C we provide the explicit expressions for the vectors ~si, Ûi, V̂i for the two
LIGO, the Virgo, and the KAGRA detectors. As an example, in Figure 4 we show the overlap
functions for the pair of LIGO detectors (first row) and for the Virgo-KAGRA pair (second
row). The figure confirms the correctness of the covariant, analytical expressions (52) and (53),
obtained using both the analytical expressions given above and numerical evaluations. We have
verified that the agreement between the analytic and numerical results persists for other generic
directions of v̂, beyond the particular choice in Fig. 4. For the case of the monopole, equivalent
formulas, but not covariant since they make use of a particular reference frame, can be found
in [22,23]. Our general results identify clearly the ‘parity-violating’ contributions proportional to
the Levi-Civita tensor ✏abc, and do not make any hypothesis on the shape of the detector (whose
arms can form angles di↵erent than 90 degrees).

4.1 Comments about the chiral contributions to the two-point overlap func-

tion M
The last two contributions to the monopole overlap function (52), proportional to fD and fE ,
distinguish between the two di↵erent GW polarizations and depend on the separation between
interferometers as well as their orientations. We note that they vanish in the limit of coincident
instruments (see eq. (55)) or when the detector arms are oriented such that the quantity Dac

i Dbd
j

is symmetric under the a $ b exchange. The former condition can be easily understood: by
measuring the GW at one location, one cannot determine how its profile changes as it propagates,
and hence left- and right-handed GWs cannot be distinguished. A geometrical interpretation for
the latter condition will be given below.

To obtain a more explicit expression for the overlap function, we place and orient the detectors
at the following coordinates (this choice can always be done with no loss of generality),

x̂
1

= (1, 0, 0) ,

Û
1

= (0, sin↵, cos↵) , V̂
1

= (0, cos↵, � sin↵) ,

x̂
2

= (cos�, sin�, 0) ,

Û
2

= (� sin� sin�, cos� sin�, cos�) , V̂
2

= (� sin� cos�, cos� cos�, � sin�) , (56)

where 0  �  ⇡, and 0  ↵, �  2⇡. The angles ↵ and � give the orientation of the Û�arm in
terms of the angle from the north toward the east direction (where these directions are expressed
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Figure 4: First row: monopole and dipole overlap functions for the LIGO Hanford (LH) and
LIGO Livingston (LL) pair. Second row: monopole and dipole overlap functions for the Virgo
(V) and KAGRA (K) pair. In the dipole case, v̂ = (0, 0, 1) (in the coordinate system introduced in
Appendix C) has been chosen for illustrative purposes. The solid lines are the analytic expressions
(52) and (53). The dotted black lines at small frequency are the asymptotic values (55). The dots
are obtained from a numerical evaluation.

at the location of each detector). With this choice, the unit vector going from the first to the
second detector is

ŝ =
1

p

2 (1� cos�)
(�1 + cos�, sin�, 0) , (57)

and the ��dependent terms in the monopole overlap function (52) give rise to

�M ⌘ M+

ij �M�
ij

=
2 (�3 + cos�) j

0

() +
⇥

3
�

7� 2
�

+
�

9 + 2
�

cos�
⇤

j
2

()

24
sin

✓

�

2

◆

sin [2 (↵+ �)] ,

(58)

where we note that � is the angle (centered in the center of the Earth) between the two detectors,
while ↵ and � express, respectively, the orientations of the U�arm of the two detectors. We notice
that eq. (58) always vanishes when � = 0 (the two detectors are coplanar) and when the sum
(↵ + �) is equal to zero or ⇡/2. If this condition occurs, indeed, the combination Dac

i Dbd
j is

symmetric in the indexes (a, b): as we have discussed above, this implies null sensitivity to
parity violating e↵ects. This result can also interpreted geometrically as follows. If ↵ = ��, the
system of detectors is symmetric about the plane through the maximal circle on Earth that passes
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Figure 5: The location of all existing detectors on Earth, together with a LIGO-India detector in
Maharashtra, and a hypothetical optimal-for-chiral-SGWB detector in Perth. We also show the
antipodes of the LIGO-Livingston detector (green dot), which is not far from the Perth detector.
We note that the Figure shows the point of view of an observer at a specific location in space,
who sees less than half of the Earth. Lighter lines (red dots) are used to indicate continents
(interferometers) that are not seen by this observer.

halfway between the two detectors. As a consequence, a right-handed gravitational wave coming
from one side of this plane is indistinguishable from a left-handed one coming from the opposite
direction, so that the system, after selecting the isotropic monopole contribution, is insensitive to
chirality. This argument is analogous to, and generalizes, that given in [24], where it was shown
that coplanar detectors are insensitive to chirality (in that case, the symmetry plane coincided
with the plane of the two detectors).

In particular, if the detectors are located at the antipodes (� = ⇡), the absolute value of
eq. (58) is maximized and reduces to

�M
antipodes

=
�2 j

0

() +
�

3� 2
�

j
2

()

6
sin [2 (↵+ �)] . (59)

In what comes next, using our formulas we discuss more quantitatively the best choices of location
for antipodal ground based detectors in order to detect parity violating e↵ects in the SGWB.
Similar considerations can also be found in [22,23].

Choice of Earth location for optimal detection of a chiral SGWB

If we search for the antipodes of the four known detectors (Hanford, Livingston, Virgo, KAGRA),
we see that all of them fall in the Ocean (Pacific, Atlantic and Indian). The antipode of LIGO-
Livingston (L) falls in the Indian Ocean near Australia. The closest large city to it is Perth
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(P). Let us compute the optimal overlap function for this pair of detectors. Recall that, in our
coordinate system, defined in App. C, LIGO-Livingston (L) is located at

~x
L

= R (�0.011, �0.860, 0.508) , (60)

with R denoting the radius of the earth, and its arms are directed along

û
L

= (�0.953, �0.144, �0.266) , v̂
L

= (0.302, �0.488, �0.819) . (61)

Moreover, in our coordinate system, P is located at

~x
P

= R (�0.370, 0.763, �0.529) , (62)

which gives a distance

s = |~xp � ~xL| ' 1.96R )  ' f

24Hz
. (63)

Therefore the two detectors are nearly opposite, as can be seen in Fig. 5.
We now place the arm ûP at the angle ↵ from the north direction towards east (from the

point of view of an observer at P), while v̂P is at the angle ⇡
2

+ ↵. We then have

û
P

= cos↵ (�0.230, 0.476, 0.848) + sin↵ (�0.899,�0.436, 0) ,

v̂
P

= � sin↵ (�0.230, 0.476, 0.849) + cos↵ (�0.899,�0.436, 0) . (64)

The di↵erence in the overlap function �M for the L-P pair gives

�M =

�

1� 0.312
�

cos+
��1 + 0.642

�

sin

4
[�0.22 cos (2↵) + 1.5 sin (2↵)] .

(65)

We then have for:

antipodes , ↵
best

=
⇡

4
) �M = 1.5


��1 + 2/3

�

cos+
�

1� 22/3
�

sin

4

with  =
f

23.5Hz
,

L� P , ↵
best

= 2.43 ) �M = 1.56

��1 + 0.312

�

cos+
�

1� 0.642
�

sin

4

with  =
f

24Hz
. (66)

At small frequencies  ⌧ 1 this yields

�M
antipodes

(↵
best

) ' � f

177Hz
, �M

L�P

(↵
best

) ' � f

191Hz
. (67)

Consequently, an additional GW detector close to Perth, Australia, rotated clockwise by 2.43
radiants from the local north direction, is essentially an optimal choice to measure parity with a
network of ground-based detectors.

The expressions (58) and (67) can be employed to determine the SNR of detecting a net
polarization in the SGWB. The di↵erence in the frequency dependence of the response functions
M+ and M� can be utilized to distinguish a chiral from a non-chiral SGWB. This analysis
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Figure 6: The function �M, sensitive to parity violation (di↵erence of the overlap functions of
opposite chirality, see eq. (59)) of two ideal detectors at the antipodes, and of LIGO-Livingston
with a detector at Perth, Australia. By expanding the  dependent part of eq. (59) for large , we
find that the zeros of this function occur at the frequencies f ' ⇡

d

�

1

2

+ n
�

, where d is the diameter
of the Earth and n is an integer number. By comparing with the figure, one can see that this
relation works well already at n = 1.

(using numerically evaluated response functions) was performed in Ref. [27] for the Hanford and
Livingston LIGO, VIRGO and KAGRA detectors and for a power-law signal. In the specific
case of a frequency-independent SGWB, it was found that maximal chirality can be detected or
excluded for an amplitude up to ⌦GW & 10�8. It would be interesting to extend this analysis to
include an antipodal detector with the optimal orientation ↵

best

, but this is beyond the scope of
the present paper.

4.2 SNR for the Einstein Telescope

The Einstein Telescope is a proposal for a ground-based interferometer with a triangular shape
with arm length L = 10 km. It will be an observatory of the third generation aiming to reach
a sensitivity for GW signals emitted by astrophysical and cosmological sources about a factor
of ten better than the currently operating ground based detectors. It will be formed by three
detectors, each in turn composed of two interferometers (xylophone configuration) [28, 29]. The
triangular planar configuration of ET, similar to LISA, allows to use the same approach developed
in Section 3 to compute the SNR for measuring the circular polarization. For the computation
we use eq. (41), where we consider the noise power spectrum PET

n (f) for a third-generation
gravitational wave interferometer [43]. The expression for the SNR, for a scale invariant ⌦�

GW ,
in this case is
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. (68)

where for the dipole response function D(fL) we have used the value at small frequency given
by eq. (27).
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Comparing the sensitivity to circular polarization for operating ground-based detectors, de-
rived in Ref. [27], with ET, we note that the improved sensitivity of the Einstein Telescope, in
particular at low frequencies, enables to out-perform the current LIGO configuration, taking into
account the expected magnitude of the kinematic dipole of v ⇠ 10�3. This nicely demonstrates
the important interplay between detector sensitivity, location and co-planarity for ground-based
detectors. With two copies of the Einstein Telescope (or of the Cosmic Explorer [44]), one could
of course benefit from increased sensitivity and the elimination of the dipole factor v since the
monopole is already sensitive to chirality.

5 Conclusions

The detection of the SGWB is a major goal for GW interferometers, which is expected to be
achieved in the coming years. On the other hand, the amplitude and properties of the cosmological
SGWB are highly model dependent. Any detection or constraint on this cosmological SGWB will
contain valuable information about the early Universe. In this situation, it is crucial to extract
and characterize all properties of any SGWB detected. In this paper we focus on the ability of
ground- and space-based detectors to measure the net polarization of the SGWB, which could
be a smoking gun for parity violating interactions in the early Universe.

For an isotropic SGWB, a system of coplanar detectors is insensitive to the polarization of
the SGWB [22–24]. Making the symmetries of the response functions of ground- and space-based
detectors explicit, we provide a transparent demonstration of this result as well as of the two
possibilities to circumvent it: (i) for planar detectors (such as LISA or ET), we make use of
the kinematic dipolar anisotropy induced by the motion of the solar system with respect to the
cosmic rest frame [25, 32, 33] and (ii) for a network of ground-based detector, the curvature of
the earth breaks co-planarity [22, 23, 27]. In the present work we reconsider previous results by
taking into account the full response functions and noise curves in the entire frequency band
(for planar detectors). Moreover, we provide fully analytical and covariant expressions for the
(parity-sensitive) response functions of a ground-based detector network.

We find that LISA and ET, despite operating at very di↵erent frequencies, will have a similar
sensitivity to a scale-invariant SGWB, and could detect an O(1) net polarization in a SGWB
with a magnitude of ⌦GWh2 ' 10�11 with an SNR of order one. We emphasize that these two
instruments should be seen as complementary probes, since the SGWB may vary significantly
between the LISA and ET frequency bands. For both LISA and ET, the auto-correlation channels
are blind to chirality and the entire sensitivity stems from cross-correlating the two TDI channels.

For a network of ground-based detectors we provide fully covariant analytical expressions for
the monopole and dipole response functions. It is much more rapid to evaluate these analytic
expressions than to compute numerically the angular integrals that are needed to obtain the
response functions numerically, and therefore we hope that these analytic relations can be used
to speed up future studies of the SGWB polarization. Since the sensitivity to net polarization of
the (dominant) monopole contribution to the SGWB arises from the departure from co-planarity,
the detector location and orientation plays a crucial role.

In summary, in this paper we studied a specific feature that can contribute to the characteri-
zation of the SGWB: the possibility for measuring a circular polarization degree of a gravitational
wave background through a dipolar modulation induced by the motion of the reference frame with
respect to the cosmic frame. This could help single out specific cosmological mechanisms charac-
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terized by violation of parity in the early universe, and it is therefore an interesting observational
target for current and future interferometers. As future work, it would be interesting to apply
this approach to other GW detectors, which can be sensitive to the circular polarization using
this method. For example, the proposed Japanese space-based GW observatory DECIGO [45],
or to astrometric GW observations that aim to reveal e↵ects induced by a SGWB using data
from the Gaia mission [46].
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A GW polarization operators in the chiral basis

We follow the standard definition of the GW polarization operators, that we summarized in the
work [38]. It is straightforward to show that the opertors can be also introduced as

eab,�
⇣

k̂
⌘

= ea,�
⇣

k̂
⌘

eb,�
⇣

k̂
⌘

⌘
ûa
⇣

k̂
⌘

+ i� v̂a
⇣

k̂
⌘

p
2

ûb
⇣

k̂
⌘

+ i� v̂b
⇣

k̂
⌘

p
2

, (A1)

where we recall that � = +1 (respectively, � = �1) correspond to the right-handed (respectively,
the left-handed) helicity, 8 and where

û
⇣

k̂
⌘

⌘ k̂ ⇥ êz

|k̂ ⇥ êz|
, v̂

⇣

k̂
⌘

⌘ k̂ ⇥ û
⇣

k̂
⌘

=

⇣

k̂ · êz
⌘

k̂ � êz

|k̂ ⇥ êz|
, (A2)

where êz is the unit vector along the third-axis.
It immediately follows that

e⇤ab,�(k̂) = eab,�(�k̂) = eab,��(k̂) , e⇤ab,�(k̂) eab,�0(k̂) = ���0 . (A3)

Moreover, one can verify by direct inspection that

ei,�(k̂)ei0,�(�k̂) = �1

2

⇣

�ii0 � k̂i k̂i0 � i� ✏ii0j k̂j
⌘

. (A4)

8Another basis that is often chosen for the polarization operators is the {+,⇥} basis, related to the chiral basis

by eab,� =
e
(+)
ab +�ie

(⇥)
abp

2
.
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Combining this identity with eq. (A1), we can also write

eab,�
⇣
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1

4

h
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i h
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�bd � k̂bk̂d
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✏acek̂e
i

. (A5)

B Comparison with previous computation

This Appendix provides a detailed comparison betweeen our results of Section 3.2 and the findings
of Seto in [25] for the magnitude of the signal-to-noise ratio associated with measurements of the
SGWB circular polarization with LISA. The comparison is made di�cult by the di↵erent notation
used in the two works. Our aim is to carry on all the steps that allow us to re-write the results
of [25] using the notation implemented in our paper. Our conclusion will be that our findings for
the magnitude of the signal-to-noise ratio is a factor of 10 larger than [25]. We use a superscript
(S) to denote quantities in Seto’s work [25].

We start from our decomposition for tensor fluctuations,

hij(~x, t) =

Z

d3ke�2⇡i~k·~x
X

P

eij,P (k̂)
h

e2⇡ikthP (k, k̂) + e�2⇡ikth⇤P (k,�k̂)
i

, (B1)

where we decompose in P = +, ⇥ polarizations instead of L, R. In [25] the notation is

hij(~x, t) =

Z 1

�1
df d2n̂ e2⇡if(t�ˆ
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P

(S)eij,P (n̂)
(S)hP (f, n̂) , (B2)

where (S)eij,P (n̂) =
p
2 eij,P (n̂).

To proceed with our comparison, we separate our expressions for hij into (we use n̂ = k̂)
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where in the last step we have changed n̂ ! �n̂ in the second integral.
To compare with [25], we can make the identification

p
2 (S)hP (f, n̂) = f2

⇢

hP (f, n̂) f > 0
(�1)Ph⇤P (�f, n̂) f < 0

(B4)

where (�1)P is +1 for P = + and �1 for P = ⇥ . In order to prove this fact, we follow [25], and
write

n̂ = (sin ✓ cos�, sin ✓ sin�, cos ✓) , (B5)

and

e✓ = @✓n̂ = (cos ✓ cos�, cos ✓ sin�, � sin ✓) ,

e� = @�n̂ = (� sin ✓ sin�, sin ✓ cos�, 0) . (B6)

We have the relations e+ = e✓ e✓ � e� e�, e⇥ = e✓ e� + e� e✓. On the other hand, n̂ ! �n̂ is
equivalent to ✓ ! ⇡ � ✓, � ! �+ ⇡. This means that

e✓ ! ((� cos ✓) (� cos�), (� cos ✓) (� sin�), � sin ✓) = e✓ ,

e� ! (� sin ✓ (� sin�), sin ✓ (� cos�), 0) = �e� , (B7)

which then implies e+ ! e+, but e⇥ ! �e⇥. The work [25] defines

i

2
h(S)h

+

(f, n̂)(S)h⇤⇥(f
0, n̂0)� (S)h⇤

+

(f, n̂)(S)h⇥(f
0, n̂0)i = �(f � f 0)

�(n̂� n̂0)

4⇡
V (f, n̂) . (B8)

We now translate this expression in our notation

ihh
+

(f, n̂)h⇤⇥(f
0, n̂0)� h⇤

+

(f, n̂)h⇥(f
0, n̂0)i = 2

�(f � f 0)

f4

�(n̂� n̂0)

2⇡
V (f, n̂) f > 0 ,

ihh⇤
+

(�f, n̂)h⇥(�f 0, n̂0)� h
+

(�f, n̂)h⇤⇥(�f 0, n̂0)i = �2
�(f � f 0)

f4

�(n̂� n̂0)

2⇡
V (f, n̂) f < 0 ,

(B9)

where these two expressions are actually one the complex conjugate of the other.

We now proceed to compute expressions in terms hL,R modes. We have

h+ =
1p
2
(hR + hL) , h⇥ =

ip
2
(hR � hL) , (B10)

so that

i
�

h
+

h⇤⇥ � h⇤
+

h⇥
�

= |hR|2 � |hL|2 . (B11)

The two point function found in eq. (14) reads

hh�(~k, ⌧)h�0
(~k0, ⌧ 0)i = ���0

�(3)(~k + ~k0)

4⇡ k3

⇥
n

P �(k) cos[2⇡k(⌧ � ⌧ 0)]� i(k̂ · ~v) ⇥2P �(k)� k P � 0(k)
⇤

sin[2⇡k(⌧ � ⌧ 0)]
o

,
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(B12)

with

h�(~k, ⌧) = e2⇡ikth�(k, k̂) + e�2⇡ikth⇤�(k,�k̂) , (B13)

Then the LHS of equation (B12) rewrites

h
h

e2⇡ik⌧h�(k, k̂) + e�2⇡ik⌧h⇤�(k,�k̂)
i h

e2⇡ik
0⌧ 0h�(k

0, k̂0) + e�2⇡ik0⌧ 0h⇤�(k
0,�k̂0)

i

i
= he2⇡i(k⌧+k0⌧ 0)h�(k, k̂)h�(k

0, k̂0) + e�2⇡i(k⌧+k0⌧ 0)h⇤�(k,�k̂)h⇤�(k
0,�k̂0)

+ e2⇡i(k⌧�k0⌧ 0)h�(k, k̂)h
⇤
�(k

0,�k̂0) + e�2⇡i(k⌧�k0⌧ 0)h⇤�(k,�k̂)h�(k
0, k̂0)i . (B14)

Now we note that this quantity must be a linear combination of sin[2⇡k(⌧ � ⌧ 0)] and cos[2⇡k(⌧ �
⌧ 0)]. This implies that

hh�(k, k̂)h�(k0, k̂0)i = hh⇤�(k,�k̂)h⇤�(k
0,�k̂0)i = 0 , (B15)

since these terms multiply cosines and sines of 2⇡k(⌧ + ⌧ 0), and

hcos[2⇡i(k⌧ � k0⌧ 0)]
h

h�(k, k̂)h
⇤
�(k

0,�k̂0) + h⇤�(k,�k̂)h�(k
0, k̂0)

i

+ i sin[2⇡i(k⌧ � k0⌧ 0)]
h

h�(k, k̂)h
⇤
�(k

0,�k̂0)� h⇤�(k,�k̂)h�(k
0, k̂0)

i

i

=
�(3)(~k + ~k0)

4⇡ k3

n

P �(k) cos[2⇡k(⌧ � ⌧ 0)]� i(k̂ · v) ⇥2P �(k)� k P � 0(k)
⇤

sin[2⇡k(⌧ � ⌧ 0)]
o

(B16)

where we note in passing that the quantity in the second square bracket does not vanish.
By comparing the time dependent parts we thus get the time-independent correlators

hh�(k, k̂)h⇤�(k0,�k̂0) + h⇤�(k,�k̂)h�(k
0, k̂0)i = �(3)(~k + ~k0)

4⇡ k3
P �(k)

hh�(k, k̂)h⇤�(k0,�k̂0)� h⇤�(k,�k̂)h�(k
0, k̂0)i = ��(3)(~k + ~k0)

4⇡ k3
(k̂ · ~v) ⇥2P �(k)� k P � 0(k)

⇤

. (B17)

We can then conclude that

hh�(k, k̂)h⇤�(k0, k̂0)i =
�(3)(~k � ~k0)

8⇡ k3

n

P �(k)� (k̂ · ~v) ⇥2P �(k)� k P � 0(k)
⇤

o

. (B18)

Let now compute h|hR|2 � |hL|2i as

hhR(k, k̂)h⇤R(k0, k̂0)� hL(k, k̂)h
⇤
L(k

0, k̂0)i = �(3)(~k � ~k0)

8⇡ k3

n

�P �(k)� (k̂ · ~v) ⇥2�P �(k)� k �P � 0(k)
⇤

o

(B19)

(where �P � = PR �PL), and compare with [25]. First, �(~k�~k0) = �(k�k0)
k2 �(2)(n̂� n̂0) where we

define

�(2)(n̂� n̂0) =
�(✓ � ✓0) �(�� �0)

sin ✓0
, (B20)
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so that
Z

d3k �(3)(~k � ~k0) =

Z

dk sin ✓ d✓ d� �(k � k0)�(2)(n̂� n̂0) . (B21)

Then we can write

hhR(k, n̂)h⇤R(k0, n̂0)� hL(k, n̂)h
⇤
L(k

0, n̂0)i =
�(k � k0) �(2)(n̂� n̂0)

8⇡ k5

⇥
n

�P �(k)� (n̂ · ~v) ⇥2�P �(k)� k �P � 0(k)
⇤

o

.

We can compare with eq. (B9) that can be written as

hhR(f, n̂)h⇤R(f 0, n̂0)� h⇤L(f, n̂)hL(f
0, n̂0)i = �(f � f 0)

f4

�(n̂� n̂0)

⇡
V (f, n̂) f > 0 (B22)

so that

V (f, n̂) =
1

8f

n

�P �(|f |)� (n̂ · ~v) ⇥2�P �(|f |)� |f |�P � 0(|f |)⇤
o

. (B23)

Decomposing the quantity V in spherical harmonics, by choosing the direction of ~v as the z
axis, we find

V
00

=
1

8f
�P �(|f |) ,

V
10

= � v

8f

⇥

2�P �(|f |)� |f |�P � 0(|f |)⇤ . (B24)

The work [25] defines the quantity p that in our case, where we consider only the dipole contri-
bution, reads

p =
|V

10

|
It

. (B25)

Here It is the total intensity, that in our regime is well approximated by |I
00

|, while [25] defines
I as

1

2
h(S)h

+

(f, n̂) (S)h⇤
+

(f 0, n̂0) + (S)h⇥(f, n̂)
(S)h⇤⇥(f

0, n̂0)i = �(f � f 0)
�(n̂� n̂0)

4⇡
I(f) ,

=
f4

4
hhR(f, n̂)h⇤R(f 0, n̂0) + hL(f, n̂)h

⇤
L(f

0, n̂0)i ' f4

4

�(k � k0) �(n̂� n̂0)

8⇡ k5

X

�

P �(k) , (B26)

where we only keep the monopole contribution from eq. (B18). So we get

I(f) =
1

8f

X

�

P �(|f |) , (B27)

and finally

p = v
|2�P �(|f |)� |f |�P � 0(|f |)|

P

� P
�(|f |) . (B28)
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Then using P � / ⌦�/f2 with ⌦� =constant, we obtain

p = 4 v
|P� �⌦�|
P

� ⌦�
. (B29)

The final result of [25], using
P

� ⌦� = ⌦GW , can then be re-expressed as

(S)SNR = 4⇥ 1012 v

�

�

�

�

�

X

�

�⌦�

�

�

�

�

�

s

T

3 years
. (B30)

To compare with our findings, we rewrite our result of eq. (45) as

SNR ' 7.4⇥ 1013 v

�

�

�

�

�
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�

�

�
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�

�

�

�

�
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�

�⌦�

�

�

�

�

�

s

T

3 years
, (B31)

To conclude, our result of eq. (B31) is a factor of 10 larger than the result of [25] in eq (B30).

C Location and orientation of existing and forthcoming ground-

based interferometers

We take the Earth to be a perfect sphere of radius R = 6.371 · 103km. We consider a Cartesian
coordinate system with the origin located at the center of the Earth, and with the z�axis going
in the direction of the North Pole. The x�axis goes in the direction of the point connecting
the Earth Equator (latitude 0) and the Greenwich Meridian (longitude 0). The y�axis is then
determined by êy = êz⇥ êx, and it is directed toward the point on the Equator at 90�E longitude.

In Table 1 we provide the Cartesian coordinates (in the system that we have just defined) for
a set of three unit vectors for each detector. The first unit vector is the position ~xi of the i�th
detector divided by R (in practice, it is the unit-vector starting from the center of the Earth
and pointing toward the center of the detector; by center we mean the point common to the two
arms). The other two unit-vectors are the directions of each arm of the detector. Therefore,
they are unit-vectors starting from the center of the interferometer, and lying on a plane that is
tangent to the Earth at the point ~xi (ignoring the curvature of the Earth on the scales of the
interferometer arms).

Ref. [47] provides the location (latitude and longitude) of the LIGO Hanford, the LIGO
Livingston, and the Virgo detectors, together with the direction that the arms of these detectors
form with the North-South and East-West directions at that point on Earth. The same values
for the KAGRA detector can be found in Ref. [48]. The values in Table 1 are obtained from these
data using basic trigonometry, and they are more convenient for us, since the unit-vectors in the
Table can be directly employed in our computations of Section 4.

D Analytics for ground-based interferometer overlap functions

In this Appendix we derive the analytic results (52) and (53) given in the main text. Let us start
from the monopole response function (49), that we rewrite as

M�
ij (k) = Dab

i Dcd
j ⇥ �ab,cd,� (, ŝij) , �M

ab,cd,� (, ŝ) ⌘
Z

d⌦k

4⇡
ei

ˆk·ŝ eab,�(k̂)ecd,�(�k̂) . (D1)
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LIGO Hanford
Central location {�0.338, �0.600, 0.725}

First Arm {�0.224, 0.799, 0.557}
Second Arm {�0.914, 0.0261,�0.405}

LIGO Livingston
Central location {�0.0116, �0.861, 0.508}

First Arm {�0.953, �0.144, �0.266}
Second Arm {0.302, �0.488, �0.819}

Virgo
Central location {0.712, 0.132, 0.690}

First Arm {�0.701, 0.201, 0.684}
Second Arm {�0.0485, �0.971, 0.236}

KAGRA
Central location {�0.591, 0.546, 0.594}

First Arm {�0.390, �0.838, 0.382}
Second Arm {0.706, �0.00580, 0.709}

Table 1: Cartesian coordinates of the unit-vectors specifying the positions of the interferometers
and the direction of their arms, in the coordinate system described in this Appendix. For each
detector, the distinction between the “first” and “second” arm is purely arbitrary, and plays no
relevance in any computation.

The function � must be a rank 4 tensor, that is (separately) symmetric under the a $ b and the
c $ d interchange, as well as under ab $ cd. These symmetries enforce the structure

�M
abcd,� (, ŝ) = A� () �ab�cd +B� () (�ac�bd + �ad�bc)

+ C� () (�abŝcŝd + �cdŝaŝb)

+ D� () (�acŝbŝd + �adŝbŝc + �bcŝaŝd + �bdŝaŝc)

+ E� () ŝaŝbŝcŝd

+ F� () (�ac✏bdeŝe + �ad✏bceŝe + �bc✏adeŝe + �bd✏aceŝe)

+ G� () (ŝaŝc✏bdeŝe + ŝaŝd✏bceŝe + ŝbŝc✏adeŝe + ŝbŝd✏aceŝe) , (D2)

where our goal is to find the scalar functions A� () , . . . , G� (). To obtain these functions, we
consider a set of independent contractions under which the angular integral of eq. (D1) becomes
the integral of a scalar quantity, that can be immediately performed. Specifically, we perform
the following contractions on the left hand side of eq. (D2),

p� () ⌘ �abcd,��ab�cd = 0 ,

q� () ⌘ �abcd,� (�ac�bd + �ad�bc) = 2j
0

() ,

r� () ⌘ �abcd,� (�abŝcŝd + �cdŝaŝb) = 0 ,

ŝ� () ⌘ �abcd,� (�acŝbŝd + �adŝbŝc + �bcŝaŝd + �bdŝaŝc) =
4


j
1

() ,

t� () ⌘ �abcd,�ŝaŝbŝcŝd =
2

2
j
2

() ,

w� () ⌘ �abcd,� (�ac✏bdeŝe + �ad✏bceŝe + �bc✏adeŝe + �bd✏aceŝe) = 4�j
1

() ,

z� () ⌘ �abcd,� (ŝaŝc✏bdeŝe + ŝaŝd✏bceŝe + ŝbŝc✏adeŝe + ŝbŝd✏aceŝe) =
4�


j
2

() , (D3)

where we have also given the result of the integration in terms of spherical Bessel functions.
Performing the same contractions on the right hand side of eq. (D2), and equating the results to
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the expressions that we have just found, we then obtain the system
0
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This linear system is solved by
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. (D5)

We have thus fully obtain the analytic expression for (D2). Once we contract with the detector
functions Dab

i Dab
j , the terms proportional to A () and C () do not contribute to the response

function (D1) due to the fact that these operators are traceless. The remaining terms give rise to
the expression (52), upon the relabelling 2B� ! fA, 4D� ! fB, E� ! fC , 4F� ! � fD, 4G� !
� fE .

Let us now move to the dipole response function (49), that we rewrite as

D�
ij (k) = Dab

i Dcd
j ⇥ �D

ab,cd,� (, ŝij) , �D
ab,cd,� (, ŝ, v̂) ⌘ iv̂ ·

Z

d⌦k

4⇡
ei

ˆk·ŝ eab,�(k̂)ecd,�(�k̂) .

(D6)
A direct comparison between eqs. (D1) and (D6) shows that the function �D can be obtained
from a derivative of the function �M that we just computed

�D
ab,cd,� (, ŝ, v̂) =



1


v̂i

@

@si
�̃M
ab,cd,� (, ~s)

�

�

�

�

s=1

(D7)

Before di↵erentiating, we need to promote the expression in eq. (D2) to be a function of a
vector ~s of arbitrary magnitude. This can be immediately done from the result we obtained by
noting (from the definition in eq. (D1)) that the magnitude can be absorbed in . Therefore, for
example, the term proportional to C becomes

�̃M
ab,cd,� (, ~s) = · · ·+ C� ( s)

✓

�ab ~sc ~sd + �cd ~sa ~sb
s2

◆

+ . . . . (D8)

Taking this into account, inserting the result (D2) - (D5) in eq. (D7) leads to the analytic
expression for �D

ab,cd,� (, ŝ, v̂). This expression, once contracted with Dab
i Dcd

j leads to the result
(53).
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