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Abstract

We model and investigate the response of a nonlinear cantilever beam under

principal parametric excitation. The design is initially assessed, optimized, and

tuned using three-dimensional finite element analysis (FEA) to ensure the pres-

ence of fundamental parametric resonance and the absence of other internal and

higher-order parametric resonances. The derived governing differential equation

represents a modified generalized parametrically excited dynamic system under

principal parametric excitation. The nonlinear dynamic system is developed

and presented in the context of resonators with extensive applications in de-

veloping sensors, filters, and switches. The quadratic and cubic nonlinearities

include second- and third-order deflection, velocity, acceleration terms describ-

ing stiffness, inertial, and damping nonlinearities. To explore and investigate the

corresponding generalized nonlinear Mathieu equation, the method of multiple-

scales along with the reconstitution method are used and modulation equations

are obtained and solved to obtain closed-form amplitude and phase equations.

The quadratic damping is modeled and approximated using a Fourier series and

analytical models are generated in both Cartesian and Polar frames. To fur-
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ther explore the dynamic system and its applications, a resonator is designed

to measure external acceleration and investigated for two cases. It is discussed

and shown how the external acceleration modifies the dynamic system, the cor-

responding reduced-order model, and the modulation equations. The external

acceleration affects the amplitude, phase, and frequency of oscillation providing

means to estimate the input. These results indicate that the proposed resonator

design (dynamic system) is able to significantly improve the dynamic range of

shock/acceleration sensors.

Keywords: Generalized parametric resonance, nonlinear dynamics, quadratic

damping, inertial and stiffness nonlinearity, bifurcation, sensors, FEA

1. Introduction

Varying the parameters of a system periodically, either stiffness or mass,

may result in stable or unstable system responses. Mathieu [1] and Hill [2] were

the pioneers who studied the phenomena and developed equations of motion for

parametrically excited dynamical systems. The amplitude and frequency of the

parameter variation at which the trivial equilibrium becomes unstable depends

on the ratio of the frequency to the natural frequency of the system and the en-

ergy dissipation during a cycle. Parametric resonance appears in various areas

of applied mechanics from surface wave propagation to the micro and nano-

electromechical systems (M/NEMS). The principal parametric resonance (PR)

occurs when the parameter varies two times faster than the natural frequency

of the system i.e. ω̂/ω̂n ≈ 2. Higher order PR occurs for ω̂/ω̂n ≈ 2/n where

n is a positive integer. Recently, various experimental studies have shown the

possibility of generating higher-order PR windows [3, 4, 5].

Given the wide range of applications and the importance of PR an exten-

sive literature has investigated the underlying mathematical physics of para-

metrically excited dynamical systems. Zavodney and Nayfeh [6] studied macro

uniform cantilevers under principal parametric excitation (PPE) and concluded

that PPE results in large amplitude vibration and specimen failure under low
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damping. They observed hardening behaviour under PPE and some discrepan-

cies between the numerical and experimental results. Balachandran and Nayfeh

[7] and Nayfeh and Balachandran [8], further studied the effect of quadratic

nonlinearities under various resonance conditions using perturbation analysis.

Anderson et al. [9] introduced quadratic damping into the mathematical model

and observed a better agreement between the single-mode perturbation method

and experimental results. Both studies showed the strength of the curvature

nonlinearity in the absence of any softening-type term in the equation of mo-

tion. Revisiting the mathematical model of Zavodney and Nayfeh, Meesala and

Hajj [10] studied the effect of statically varying mass and stiffness parameters

on the type of bifurcation and the number of limit cycles.

Ng and Rand studied a Mathieu equation with cubic nonlinearity using an-

alytical and continuation methods and provided a comprehensive picture of

bifurcation diagrams for principal PR [11]. Variations of the Mathieu-Hill equa-

tion (MHE), such as the forced MHE, have also been investigated. Li et al. [12]

studied a periodically forced MHE and verified the accuracy of using the method

of variation of parameters for the response analysis. PR can also be generated

and achieved through feedback loops [13, 14]. In both cases, a reduced-order sin-

gle mode model including quadratic damping was able to capture the dynamics

of the system.

Employing parametric excitation (PE) to develop novel resonators, sensors,

and energy harvesters is becoming increasingly common [15, 16, 17, 18, 19, 20].

Belhaq et al. [21] studied a time-delayed modified MHE and provided some re-

sults concerning the performance of such systems in relation to their application

in developing energy harvesting mechanisms. PR may also be activated through

modulating the intensity of an emitting light on a graphene membrane and the

consequent change in internal strain [22]. Modeling the membrane response with

a modified Matthieu equation shows good agreement with the experimental re-

sults at low level excitation. In nanomechanics, nonlocal nanobeams under PE

qualitatively show similar stability behaviour as local beams [23] with a more

pronounced size effect. Potential applications of PR in atomic force microscopy
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(AFM) and scanning probe microscopy (SPM) are discussed by Moreno-Moreno

et al. [13] and Prakash et al. [14].

There has been significant effort to develop energy harvesters benefiting from

PR, and especially PPR. The advantage of PE over direct excitation to develop

vibration energy harvesters is particularly evident in weakly nonlinear systems

where a larger bandwidth is generated using PE [24]. Using a perturbation

approach Daqaq et al. [25] analyzed a cantilever beam under base excitation and

presented parametric resonance as a viable option for energy harvesting. Auto-

parametric resonance, as well as parametric resonance, demonstrates promising

potential for energy harvesting in real applications [26]. Although parametric

resonance, in contrast to direct resonance, is not limited by linear damping,

its onset or activation is negatively affected by increasing linear damping [27].

There has also been some effort devoted to employing PR in developing inertial

sensors, particularly gyroscopes [28, 29, 17]. In the following we mostly focus

on developing a resonator to design a large-range accelerometer.

In this work, we develop a modified dynamic system including electrostatic

force and external acceleration for generalized parametric resonance. A T-shape

structure under PPE is considered and the corresponding single-mode Mathieu

equation is developed. A quadratic as well as linear dissipating term is included

in the equation of motion. Electrostatic, geometric and inertial nonlinearities

are included in our analysis. A Heaviside function is used to properly describe

the electrostatic moving side load. Once the single-mode Mathieu equation is

obtained, the method of multiple scales is used to compute and study the slow

dynamics of the system. To further show an application of the analysis an

acceleration/shock/impact sensor is developed and studied based on analytical

and numerical results. It is shown that the proposed dynamic system can be used

to fabricate a robust design for an extremely wide dynamic range acceleration

sensor.

The ultimate goal is to develop a shock/impact/motion/acceleration sensor

with an extremely wide (and adjustable) dynamic full-scale range. The objec-

tive is the ability to adjust the dynamic range of acceleration up to several

4



hundred thousand g, where g is the gravitational acceleration. The system may

be used to actuate another system or to generate a signal. The output of the

resonator is characterized and calibrated versus the (unknown) input accelera-

tion to detect and characterize the external shock/impact/momentum/motion.

Depending on the (unknown) input acceleration, the use of an amplitude-based

or a frequency-based measurement method is proposed. This allows very small

responses, even at the molecular level, to be directly transduced into a microme-

chanical response, which can be measured by the cantilever deflection and/or

its resonance-frequency shift.

2. Mathematical modeling: deriving the equation of motion

The ultimate goal is to generate parametric resonance, and therefore the

resonator may have any shape, in principle. However, from the authors’ past

experience, a cantilever placed on a base structure is a reliable yet simple choice.

At the micro scale the difficulty of the fabrication process would increase, re-

quiring more complex designs. Even including a large end-mass would increase

the probability of stiction, a common cause of failure in micro devices. In

principle, any design accommodating a principal parametric resonance can be

used. For example, Nitzan et al. (among others) discuss a disk gyroscope under

self-induced parametric resonance [30] and Lajimi et al. proposed the use of an

H-shaped structure to exploit parametric resonance [17]. However, these designs

are complicated in comparison to a simple cantilever-based design. Hence, the

T-shape oscillator shown in Fig. 1 is considered and the corresponding enhanced

Mathieu-Hill equation is derived. The structure includes a base (primary) res-

onator, a secondary (cantilever) resonator, and a pair of electrodes to detect the

induced motion. The frequency-tuning electrodes are placed far enough from

the tip of the cantilever resonator to keep the forcing area and the average bias

load constant as the resonator oscillates. The base (primary) resonator is used

to pump energy into the secondary resonator and excite its principal parametric

resonance, creating an auto-parametrically excited dynamic system.
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Figure 1: A cantilever beam under parametric base-excitation.

Considering Crespo da Silva and Glynn’s [31] mathematical model and fol-

lowing [32], the axial force is described by

p̂(ŝ, t̂) = −m̂(l̂ − ŝ)âb ω̂
2
b cos(ω̂b t̂) (1)

and is substituted into ∂

∂ŝ

[
p̂(ŝ, t̂)

∂v̂(ŝ, t̂)

∂ŝ

]
to generate the following term in

the equation of motion

m̂
[
(ŝ− l̂)v̂′′ + v̂′

]
âb ω̂

2
b cos(ω̂b t̂) (2)

where âb ω̂
2
b cos(ω̂b) indicates the dynamic applied acceleration. The linear mass

density is represented by m̂, the amplitude of base-excitation by âb , the fre-

quency of base excitation by ω̂b, the beam (resonator) length by l̂, the length

variable along the length of the resonator by ŝ, and the transverse of resonance
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by v̂ (dropping the length and time variables for clarity of notation, that is

v̂ ≡ v̂(ŝ, t̂)).

The fringing field affects the parallel-plate capacitor and therefore is included

in the force-model by implementing a first-order correction factor [33]. Thus,

adding together the force vectors for both electrodes, the transverse electrostatic

force (per unit length) is:

f̂es(ŝ, t̂) =
1

2
ϵ̂ ĥe

l̂e

l̂
V̂ (t̂)2

1 + 0.65
(d̂−v̂(ŝ,t̂))

ĥe(
d̂− v̂(ŝ, t̂)

)2 −
1 + 0.65

(d̂+v̂(ŝ,t̂))
ĥe(

d̂+ v̂(ŝ, t̂)
)2


×(H(ŝ− (l̂b + f̂b(t̂)))−H(ŝ− (l̂e + l̂b + f̂b(t̂)))) (3)

where l̂e is the length of side electrodes, l̂b is the distance from the electrode to

the base, d̂ is the gap between the side electrodes and the resonator, ĥe is the

width of the electrodes (perpendicular to the resonance direction), and ϵ̂ is the

permittivity. V̂ (t̂) is the supplied voltage to the side electrodes; in this paper

a DC bias-voltage will be assumed, i.e. V̂ (t̂) = V̂DC. H denotes the Heaviside

function that gives a nonzero electrostatic force only when the electrodes are

present. The positions of the ends of the electrodes are given by ŝ1(t̂) = l̂b+f̂b(t̂)

and ŝ2(t̂) = l̂e + l̂b + f̂b(t̂). Therefore, for a nonlinear beam with an axial force,

base-excitation, and including linear and quadratic damping, the equation of

motion is [34]:

Ê Î v̂′′′′ + m̂ ¨̂v + α̂ ˙̂v = F̂qd + F̂ns + F̂ni + F̂be + F̂es (4)

F̂qd = −β̂ ˙̂v| ˙̂v|

F̂ns = −Ê Î
(
v̂′2v̂′′′ + v̂′v̂′′2

)′
F̂ni = −1

2
m̂

v̂′ ∫ ŝ

l̂

[
∂2

∂t̂2

∫ ŝ

0

v̂′2 dŝ

]
dŝ

′

F̂be = −
[
m̂(ŝ− l̂)v̂′′ + m̂v̂′

]
âb ω̂

2
b cos(ω̂b t̂)
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F̂es =
1

2
ϵ̂ ĥ

l̂e

l̂
V̂ 2
DC

1 + 0.65
(v̂−d̂)

ĥ(
v̂ − d̂

)2 −
1 + 0.65

(v̂+d̂)
ĥ(

v̂ + d̂
)2

 (H(ŝ− ŝ1)−H(ŝ− ŝ2))

where ŝ1 = (l̂b + f̂b(t̂)), ŝ2 = (l̂e + l̂b + f̂b(t̂)), α̂ represents the linear damping

coefficient, β̂ the quadratic damping coefficient, Ê elastic modulus, Î second

moment of area, and the boundary conditions are given by

v̂(0, t̂) = 0, v̂(0, t̂)′ = 0, v̂(l̂, t̂)′′ = 0, v̂(l̂, t̂)′′′ = 0 (5)

F̂qd represents the nonlinear hydrodynamic or aerodynamic dissipative force

due to fluid-structure interaction. For high Reynolds numbers the corresponding

nonlinear damping force is proportional to the velocity squared [35]. In micro-

and nano-scale the structures move at high speed and therefore including the

quadratic damping in parametric resonance becomes important to improve the

efficacy of a single-mode approximation, e.g. see [13] and [14]. For analyti-

cal analysis using the method of multiple scales, the quadratic damping term

−β̂ ˙̂v| ˙̂v| may be replaced with averaged quadratic damping term for one cycle,

so that the parameter can be related to the equivalent viscous damping found

by equating the average energy dissipation [9, 35] and the force direction is

opposite to the velocity.

In equation (4), F̂ns and F̂ni represent the stiffness (geometric) and inertia

nonlinearities. The nonlinear stiffness force accounts for nonlinearity in curva-

ture and the nonlinear inertia term provides the necessary constraint force for

inextensibility, i.e. for the neutral axis of the beam to remain inextensible.

The equation of motion is non-dimensionalised by introducing

v̂ = v d̂, ŝ = s l̂, t̂ = t κ̂, l̂e = le l̂, d̂ = d l̂ (6)

The equation of motion is then recast as

v′′′′ + v̈ =− α v̇ − β v̇|v̇| − d2
(
4v′v′′v′′′ +

(
v′′

3
+ v′

2
v′′′′
))
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− abω
2
b cos (ωb t)

(
v′ − (1− s)v′′

)
− 1

2
d2

v′ ∫ s

1

[
∂2

∂t2

∫ s

0

v′
2
ds

]
ds

′

+ V̂ (t̂)2

(
ν + νf (1− v)

(1− v)
2 − ν + νf (1 + v)

(1 + v)
2

)
He(s, t) (7)

Note that the length and time variables are dropped for clarity of notation,

that is v ≡ v(s, t). Also the prime and dot now represent differentiation with

respect to non-dimensional position and time. The non-dimensional parameters

are given by

κ̂ =

√
m̂ l̂4

Ê Î
, α̂ =

Ê Î κ̂

l̂4
α, β̂ =

Ê Î κ̂2

l̂4 d̂
β,

âb =
Ê Î κ̂2

m̂ l̂3 ω̂2
b

ab, ϵ̂ =
2d̂3ÊÎ

ĥe l̂3 l̂e
ν, ϵ̂f =

2d̂2ÊÎ

l̂3 l̂e
νf . (8)

The coefficient He(s, t) = H(s− s1(t))−H(s− s2(t)) determines if the electro-

static force Fes(s, t) due to side electrodes is active.

3. Reduced-order model

In this work, the principal parametric resonance of a vibrational structure

is investigated. In the presence of damping all modes other than directly or

indirectly excited modes would be significantly damped in the steady-state re-

sponse [36, 37, 38]. Hence for a carefully designed (symmetric) cantilever the

modal interactions are not as strong as those for a clamped-clamped beam where

internal resonance would be expected. There are various references in the lit-

erature where the experimental results of systems with a similar reduced-order

model under parametric excitation are compared to the single-mode approxi-

mation, e.g. see [39], [9], [40], [14], and [41]. The results show good to excellent

agreement between the single-mode analysis and experimental results (for the

fundamental parametric resonance). In the examples used in this paper we have

ensured, through a detailed three-dimensional finite element analysis, that the

second natural frequency of the structure is sufficiently far from the first natural

9



frequency and twice this frequency (i.e. the modes are widely spaced). Further-

more, we have made sure the ratio of the higher resonant frequencies to the

fundamental frequency and its double are not integers to reduce the possibility

of modal interactions.

To derive a single-mode representation of the response of the dynamic system

(7) around the initial equilibrium (v(s, 0) = 0), the response v(s, t) is expressed

in the form

v(s, t) = ϕ(s)p(t) (9)

where ϕ(s) and p(t) indicate the mode shape and the generalized coordinate

(modal coordinate) of the vibrating structure. Expanding the electrostatic force

term on the right-hand side of (7) around v = 0 using Taylor’s expansion,

keeping terms up to fifth-order, and substituting (9) into the result, one obtains

fes(s, t) =

2V̂ 2
DCp(t)ϕ(s)

(
νf + 2ν +

(
νf + 6ν

)
p(t)4ϕ(s)4 +

(
νf + 4ν

)
p(t)2ϕ(s)2

)
(10)

To arrive at a single-mode approximation of the dynamic system, we use

Galerkin’s method and insert equation (9) (and (10)) into (7), multiply through

by the mode shape ϕ(s), and integrate the resulting equation term-by-term from

0 to 1, to obtain

p̈(t)

∫ 1

0

ϕ(s)ϕ(s) ds+ p(t)

∫ 1

0

ϕ(s)ϕ(4)(s) ds = −αṗ(t)

∫ 1

0

ϕ(s)ϕ(s) ds

− βṗ(t)
∣∣ṗ(t)∣∣ ∫ 1

0

ϕ(s)ϕ(s)ϕ(s) ds+

∫ 1

0

ϕ(s)fes(s, t)He(s, t) ds

− abp(t) (cosωbt)

∫ 1

0

ϕ(s)
(
(s− 1)ϕ′′(s) + ϕ′(s)

)
ds

− 1

2
d2p(t)

((
p(t)p̈(t) + ṗ(t)2

)∫ 1

0

ϕ(s)ϕ′(s)

(∫ s

0

2ϕ′(s)2 ds

)
ds

+
(
p(t)p̈(t) + ṗ(t)2

) ∫ 1

0

ϕ(s)ϕ′′(s)

(∫ s

1

(∫ s

0

2ϕ′(s)2ds

)
ds

)
ds
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+2p(t)2
∫ 1

0

ϕ(s)ϕ′′(s)
(
ϕ′′(s)2 + 4ϕ(3)(s)ϕ′(s)

)
ds

+2p(t)2
∫ 1

0

ϕ(s)ϕ(4)(s)ϕ′(s)2 ds

)
(11)

Employing the modes are orthonormal and grouping similar terms yields the

corresponding Mathieu Hill equation for this dynamical system as

p̈(t) + ω2
ep(t) =−Π1abω

2
b cos (ωb t) p(t)− αṗ(t)− βΓ7ṗ(t)|ṗ(t)|

+ 2V̂ 2
DC

(
H6(t)

(
νf + 6ν

)
p(t)2 +H4(t)

(
νf + 4ν

))
p(t)3

+Π2p(t)
3 −Π3p(t)ṗ(t)

2 −Π3p(t)
2p̈(t) (12)

where (assuming the fundamental mode is used in (9))

ω2
e =ω2

1 − 2H2(t)V̂
2

DC
(
νf + 2ν

)
(13)

Π1 =

∫ 1

0

ϕ1(s)ϕ
′
1(s) ds−

∫ 1

0

ϕ1(s)ϕ
′′
1(s) ds+

∫ 1

0

sϕ1(s)ϕ
′′
1(s) ds (14)

Π2 =− 4d2
∫ 1

0

ϕ1(s)ϕ1
(3)(s)ϕ′

1(s)ϕ
′′
1(s) ds− d2

∫ 1

0

ϕ1(s)ϕ1
(4)(s)ϕ′

1(s)
2 ds

− d2
∫ 1

0

ϕ1(s)ϕ
′′
1(s)

3 ds (15)

Π3 =d2
∫ 1

0

ϕ1(s)ϕ
′′
1(s)

(∫ s

1

(∫ s

0

ϕ′
1(s)

2 ds

)
ds

)
ds

+ d2
∫ 1

0

ϕ1(s)ϕ
′
1(s)

(∫ s

0

ϕ′
1(s)

2 ds

)
ds (16)

H2(t) =

∫ s2(t)

s1(t)

ϕ(s)fes(s, t) ds

=H2,0 +H2,1ab (cosωbt) +H2,2a
2
b (cosωbt)

2
+H2,3a

3
b (cosωbt)

3 (17)

H4(t) =

∫ s2(t)

s1(t)

ϕ(s)fes(s, t) ds

=H4,0 +H4,1ab (cosωbt) +H4,2a
2
b (cosωbt)

2
+H4,3a

3
b (cosωbt)

3 (18)

H6(t) =

∫ s2(t)

s1(t)

ϕ(s)fes(s, t) ds

=H6,0 +H6,1ab (cosωbt) +H6,2a
2
b (cosωbt)

2
+H6,3a

3
b (cosωbt)

3 (19)
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The Hi,j terms for i = 2, 4, 6, j = 0, 1, 2, 3 are lengthy expressions includ-

ing the system parameters and the fundamental vibrational mode shape of the

cantilever resonator. ω̂1 = (1.875)2 represents the fundamental free vibrational

frequency of the cantilever resonator.

The coefficients of equation (12) are evaluated using the fundamental mode-

shape of the cantilever beam. The nth mode shape is given by

ϕn = cn

(
sin (λ)− sinh (λ)

cosh (λ) + cos (λ)

(
sinh (λ s)− sin (λ s)

)
+ cosh (λ s)− cos (λ s)

)
(20)

where the λ’s are the eigenvalues of the cantilever beam found by computing the

roots of 1 + cos (λ) cosh (λ) = 0 and cn normalizes the eigenfunctions such that∫ 1

0
ϕm(s)ϕn(s) ds = δm,n where δm,n = 1 for m = n and δm,n = 0 for m ̸= n.

Here we use the first mode, and therefore have
∫ 1

0
ϕ2
1(s) ds = 1.

4. Perturbation analysis

We are interested in studying the behavior of the dynamic system when the

excitation frequency is near two-times the fundamental natural frequency of

system (ωb ≈ 2ωe). A uniform second-order approximation of the response is

defined using the method of multiple scales where the generalized coordinate is

expressed as a series of the form

p(t) = ϵ p1 (t0, t1, t2) + ϵ2p2 (t0, t1, t2) + ϵ3p3 (t0, t1, t2) (21)

where the time scales are defined as t0 = t, t1 = ϵ t, and t2 = ϵ2t. The

parameter ϵ does not indicate anything other than the order of terms [35, 42].

The base excitation amplitude, the linear damping coefficient, and the quadratic

damping coefficients will be scaled by ϵ, ϵ2, and ϵ respectively.

Inserting equation (21) into (12), collecting the coefficients of like powers of ϵ

up to the third-order, and neglecting higher order terms results in the following

sequence of equations:
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• O(ϵ1):

∂2
0p1 + ω2

ep1 =0 (22)

• O(ϵ2):

∂2
0p2 + ω2

ep2 = − 2∂1∂0p1 − 4abΠ1ω
2
e cos(ωbt)p1 (23)

• O(ϵ3):

∂2
0p3 + ω2

ep3 = − 2∂2∂0p1 − 2∂1∂0p2 − ∂2
1p1

− 4Π1abω
2
e cos (ωbt) p2 + 2H4,0V̂

2
DC
(
νf + 4ν

)
p31 +Π2p

3
1

− ∂0p1
(
α+ βΓ7 |∂0p1|

)
−Π3p1 ∂0p1

2 −Π3p
2
1 ∂

2
0p1 (24)

where ∂n
m indicates the nth derivative with respect to the mth time scale, that

is tm, for m = 0, 1, 2. The arguments of functions, (t0, t1, t2) and (t1, t2),

are removed for compactness of notation. Equation (22) represents a linear

eigenvalue problem admitting a solution in the exponential form

p1 (t0, t1, t2) =Ā (t1, t2) e
−it0ωe + A (t1, t2) e

it0ωe (25)

where A (t1, t2) and its complex conjugate Ā (t1, t2) are to be determined by

removing secular terms in computing the solutions of the second-order O(ϵ2)

and the third-order O(ϵ3) problems. Substituting equation (25) into (23) and

introducing ωb = 2ωe + 2σϵ, where σ represents the nearness of the two fre-

quencies, the solvability equations of the second-order are found by setting the

coefficients of the secular terms, e−it0ωe and eit0ωe , equal to zero:

iωe∂1A (t1, t2) + Π1abω
2
ee

2iσt1Ā (t1, t2) = 0 (26)

iωe∂1Ā (t1, t2)−Π1abω
2
ee

−2iσt1A (t1, t2) = 0 (27)

where the second equation is the complex conjugate of the first one and auto-

matically satisfied for the solution of the first one. Introducing (25) into (23),

and eliminating secular terms using (26)-(26), (23) is solved for the particular

solution

p2(t0, t1, t2) =
Π1ab
4

(
A (t1, t2) e

it0(ωb+ωe) + Ā (t1, t2) e
−it0(ωb+ωe)

)
(28)
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Substitution of equations (25) and (28) into the third-order problem O(ϵ3),

and collecting secular and small divisor terms results in the following solvability

equation:

∂2
1A(t1, t2) + 2iωe∂2A(t1, t2) =

− 1

2
a2bΠ

2
1ω

2
eA(t1, t2) + 4(6ν + νf )H4,0V̂

2
DCA(t1, t2)

2Ā(t1, t2)

+ 2Π3ω
2
eA(t1, t2)

2Ā(t1, t2) + 3Π2A(t1, t2)
2Ā(t1, t2)

− iαωeA(t1, t2)− βΓ7fd(A, Ā) (29)

where, to derive an analytical form of the quadratic damping term, the corre-

sponding term is expanded in a Fourier series as

∂0p1 |∂0p1| =
∞∑

n=−∞
fn(A, Ā)einωet0 . (30)

The first term generates the secular term:

∂0p1 |∂0p1| = fd(A, Ā)eiωet0 + f̄d(A, Ā)e−iωet0 (31)

where f1 and f−1 have been replaced with fd and f̄d. Note that the coefficients

of e−iωet0 produces the complex conjugate of (29) and is automatically satisfied

for solutions of (29). To further remove ∂2
1A(t1, t2) and simplify equation (29),

we differentiate (26) with respect to t1 and substitute into equation (29) along

with equation (27) to arrive at

2iωe∂2A(t1, t2) =3
(
Π2 + 2(4ν + νf )H4,0V̂

2
DC

)
A(t1, t2)

2Ā(t1, t2)

+ 2Π3ω
2
eA(t1, t2)

2Ā(t1, t2)− iαωeA(t1, t2)− βΓ7fd(A, Ā)

+ 2Π1σωeabe
2iσt1Ā(t1, t2)−

3

2
Π2

1ω
2
ea

2
bA(t1, t2) (32)

Equations (26) and (32) represent differentiating A(t1, t2) with respect to its

variables and may be combined using the method of reconstitution [43, 44] to

arrive at the following solvability condition

2iωeA
′(t) +A(t)

(
iαωe +

3

2
a2bΠ

2
1ω

2
e

)
− 2Π1abωee

2iσt (σ − ωe)

−A(t)2A(t)
(
6H4,0V̂

2
DC
(
νf + 4ν

)
+ 2Π3ω

2
e + 3Π2

)
+ βΓ7fd(A, Ā) = 0 (33)

14



To separate the solvability equation into two real equations we can either

assume

A(t) =
1

2
(Ar(t) + iAi(t))e

iσt, A(t) =
1

2

(
Ar(t)− iAi(t)

)
e−iσt (34)

to obtain the modulation equations in Cartesian form or

A(t) =
1

2
ap(t)e

iθp(t), A(t) =
1

2
ap(t)e

−iθp(t) (35)

to arrive at the modulation equations in polar coordinates. To derive an ana-

lytical form of quadratic damping, we compute fd, see equations (30) and (31),

using a Fourier series. To this end, note that

fd(A, Ā) =
1

2π

∫ 2π

0

e−iτ∂0p1 |∂0p1|dτ (36)

where τ = ωet0. Substituting (25), (34) and (35) into (36), and performing the

integration we compute the analytical form of the quadratic damping to be

fd(A, Ā) =
4iω2

e(Ar(t) + iAi(t))
√
Ai(t)2 +Ar(t)2e

iσt

3π
(37)

fd(A, Ā) =
4iβΓ7ϵ

2a2p(t)ω
2
e

3π
(38)

in Cartesian and polar coordinates, respectively. Substituting (34), (35), (37),

and (38) into (33), separating the real and imaginary terms, and setting each

group equal to zero results in modulation equations

A′
i(t) +Ar(t) (σ −Π1abωe) +Ar(t)

(
Π1σab −

3

4
Π2

1a
2
bωe

)
+Ai(t)

(
4βΓ7ωe

√
Ai(t)2 +Ar(t)2

3π
+

α

2

)
+

µ

ωe

(
Ai(t)

2Ar(t) +Ar(t)
3
)
= 0 (39)

A′
r(t)−Ai(t) (Π1abωe + σ) +Ai(t)

(
Π1σab +

3

4
Π2

1a
2
bωe

)
+Ar(t)

(
4βΓ7ωe

√
Ai(t)2 +Ar(t)2

3π
+

α

2

)
− µ

ωe

(
Ai(t)

3 −Ai(t)Ar(t)
2
)
= 0 (40)
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in Cartesian coordinates, and

ap(t)η
′
p(t) =

(
σ −Π1abωe cos

(
2ηp(t)

))
ap(t)

+

(
Π1σab cos

(
2ηp(t)

)
− 3

4
Π2

1a
2
bωe

)
ap(t) +

µ

ωe
ap(t)

3 (41)

a′p(t) =

(
Π1σab sin

(
2ηp(t)

)
− 4βΓ7ωeap(t)

3π
− α

2

)
ap(t)

−Π1abωe sin
(
2ηp(t)

)
ap(t) (42)

in polar coordinates. The constant µ = 1
8

(
6H4,0V̂

2
DC
(
νf + 4ν

)
+ 2Π3ω

2
e + 3Π2

)
.

The general solution for the modal coordinate is obtained by inserting equations

(25) and (28) into (21) (and setting the scaling parameter ϵ to 1)

p(t) = ap(t) cos

(
ωbt

2
− ηp(t)

)
+

1

4
Π1abap(t) cos

(
3ωbt

2
− ηp(t)

)
(43)

which is then projected back to the actual displacement space using equations

(9) and (6). The dynamic equilibrium solutions or steady-state response corre-

sponds to a′p(t) = 0 and η′p(t) = 0. Therefore, we compute the equilibrium solu-

tions and their stability and plot them on frequency-response and force-response

curves to investigate the dynamic system under the principal parametric exci-

tation (ωb ≈ 2ωe).

Setting a′p(t) and η′p(t) equal to zero in equations (41)-(42), the resulting

equations are solved for cos
(
2ηp(t)

)
and sin

(
2ηp(t)

)
and combined using the

trigonometric identity, sin
(
2ηp(t)

)2
+cos

(
2ηp(t)

)2
= 1, to obtain the amplitude

equation:

γ1,1ap(t)
4 + γ1,2ap(t)

2 + γ1,3ap(t) + γ1,4 = 0 (44)

where

γ1,1 =9π2
(
6H4,0V̂

2
DC
(
νf + 4ν

)
+ 2Π3ω

2
e + 3Π3

)
2

γ1,2 =36π2ωe

(
4σ − 3Π2

1a
2
bωe

)(
6H4,0V̂

2
DC
(
νf + 4ν

)
+ 2Π3ω

2
e + 3Π2

)
+ 1024β2Γ2

7ω
4
e

γ1,3 =768παβΓ7ω
3
e

γ1,4 =144π2α2ω2
e − 36π2ω2

e

(
Π2

1a
2
b

(
ω2
e

(
16− 9Π2

2a
2
b

)
− 8σωe + 16σ2

)
− 16σ2

)
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For the phase equation, after setting a′p(t) = 0 and η′p(t) = 0, we solve

equation (42) for ap(t) and substitute the resulting expression into equation

(41) to obtain

γ2,1 sin
3(2η) + γ2,2 sin

2(2η) + γ2,3 sin(2η) + γ2,4 sin(2η) cos(2η)

+ γ2,5 cos(2η) + γ2,6 = 0 (45)

where

γ2,1 =
27

512
π3Π3

1a
3
b (σ − ωe)

3
(
6H4,0V̂

2
DC
(
νf + 4ν

)
+ 2Π3ω

2
e + 3Π2

)
γ2,2 =−

81π3αΠ2
1a

2
b (σ − ωe)

2
(
6H4,0V̂

2
DC
(
νf + 4ν

)
+ 2Π3ω

2
e + 3Π2

)
1024

γ2,3 =
3πΠ1ab (σ − ωe)

(
81π2α2Π2 + 128β2Γ2

7ω
3
e

(
4σ − 3Π2

1a
2
bωe

)
+ 54π2α2Π3ω

2
e

)
2048

+
3πΠ1ab (σ − ωe)

(
162π2α2H4,0V̂

2
DC
(
νf + 4ν

))
2048

γ2,4 =
3

4
πβ2Γ2

7Π
2
1a

2
bω

3
e (σ − ωe)

2

γ2,5 =
3

8
παβ2Γ2

7Π1abω
3
e (ωe − σ)

γ2,6 =− 3

512
πα

(
9

8
π2α2

(
6H4,0V̂

2
DC
(
νf + 4ν

)
+ 2Π3ω

2
e + 3Π2

))
+

3

512
πα
(
48β2Γ2

7Π
2
1a

2
bω

4
e − 64β2Γ2

7σω
3
e

)

To examine the stability of fixed points, we compute the Jacobian matrix

for (41)-(42) and its corresponding eigenvalues. For the unstable branch of

the frequency-response curve the eigenvalues are real and for the stable branch

the eigenvalues are complex with negative real parts. To obtain the instability

threshold for the trivial solution, that is the boundaries of the Arnold tongue, we

set η′p(t2) = 0, a′p(t2) = 0 obtaining (24) and ap(t2) = 0 for the trivial solution

in (44), and find the following relation between the detuning parameter σ and

17



the excitation amplitude ab:

4
(
α2 + 4σ2

)
+Π2

1a
2
b

(
ω2
e

(
9Π2

1a
2
b − 16

)
+ 8σωe − 16σ2

)
= 0 (46)

Plotting this parametric equation in the σ−ab plane indicates the boundaries

for the instability of the trivial solution. From (13)-(14) and (46) one notes that

the DC voltage, the mode-shape, and the linear damping α affect the instability

threshold. The area between the tongue and the horizontal frequency (the

detuning) axis represent the stable region.

5. Case study: a resonator

Parametric resonance offers characteristics other than the amplitude and

phase of the response where the frequency-response abruptly switches from the

trivial zero-equilibrium to a nontrivial non-zero response through a supercriti-

cal pitchfork bifurcation. Micro- and nano-electromechanical-systems (MEMS

and NEMS) offer significant value to developing new technologies for sensors,

switches, resonators, filters, and antennas. Following a commercialized SOI-

MUMPS process [45], a resonator is designed with the dimensions given in Table

1. One can employ a comb-drive or a parallel-plate actuator to excite the base

(primary) resonator, see Figure 1. The resonator’s motion is detected by the

two side electrodes creating a differential capacitor. The motion (displacement)

translates to an induced current going through a trans-impedance circuit con-

sisting a resistor (gain) to output the voltage [46]. Closed-form expressions are

available in the literature to compute the sense current from the displacement

for arbitrary large motions using parallel-plate capacitors. The non-dimensional

parameters are computed using relations (10) and limiting the base excitation

amplitude to less than 1µm (2% of electrode length) coefficients of electrostatic

pull forces are reasonably truncated to the their first-order constant approxima-

tions in (17)-(19).

Before discussing the non-linear response, to improve and optimize the de-

sign, identify modal frequencies, and minimize the effect of modal interaction, a
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Table 1: Dimensions and parameters of the resonator

l̂ t̂ ŵ d̂ Ê ρ̂

500µm 25µm 5µm 1µm 169GPa 2330 kg/m3

ϵ̂ ϵ̂f ĥ l̂e l̂b V̂DC

8.854× 10−12 F/m 0.65× 8.854× 10−12 F/m 25µm 400µm 100µm 1V

preliminary linear three-dimensional finite element analysis is performed. The

fundamental (first) mode of structure is the in-plane bending of the sense (can-

tilever) beam in the z direction and its modal frequency is 27.519 kHz, the

second mode is the in-plane bending of the base resonator in the x direction

with a modal frequency of 62.846 kHz, the third mode of the structure is the

out-of-plane bending of the sense (cantilever) beam in the y direction with a

modal frequency of 94.765 kHz, the fourth mode of the structure is the in-plane

bending of the sense (cantilever) beam in the z direction with a modal frequency

of 172.380 kHz (the second mode of the cantilever resonator), the fifth mode of

the structure is an out-of-plane mode, and the sixth mode is also an out-of-plane

mode. Also note that in this work we consider a PPR, however the design can

be optimized for auto-parametric resonance which has been shown to have other

advantages [47, 26].

It is common to use quality factor instead of damping among the M/NEMS

community. The linear damping coefficient α is related to the natural frequency

and quality factor through α = ω
QF

and the quadratic damping coefficient range

is in the same order of magnitude as examined in [14]. To start our analysis,

the linear damping parameter α is varied and the instability threshold (Arnold

Tongue) is computed and plotted in the ab−σ plane in Figures 3a-3b. Increasing

the damping pushes the curve up and expands the stable region under the curve,

however far from the principal parametric resonance condition damping plays

an insignificant role in changing the stability of the dynamic system.

The linear and nonlinear (quadratic) damping play considerable roles in

changing the quantitative and qualitative behaviour of system response. Setting
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(a) (b)

(c) (d)

(e) (f)

Figure 2: The (a) first, (b) second, (c) third, (d) fourth, (e) fifth, and (f) sixth modes of the

structure using three-dimensional finite element analysis.

β = 0.05 and ab = 0.001 and varying the linear damping, we compute and plot

the frequency-response curves for α = 0.001 and 0.005 in Figure 4a. The black

dashed-line represents the backbone curve and other dashed lines represent the

unstable branches of the response. The numerical solution of the reduced-order

model of (12) is computed using a fourth-order Runge-Kutta method and plot-

ted using meshed lines. The analytical (perturbation) solution agrees with the

model until the higher-order nonlinearities become significant. The nontrivial
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(a) (b)

Figure 3: The stability boundaries in the ab − σ plane (α = 0: blue curve, α = 0.005: green

curve, and α = 0.01: red curve). Plot (b) is a magnified representation of plot (a) for a smaller

range near zero.

stable response goes through a fold bifurcation and loses its stability at the far

right end. Once we are located on an unstable orbit, a small perturbation may

force the response to jump to the larger stable orbit or the trivial stable equilib-

rium. For the varying quadratic damping in Figure 4b, zero quadratic damping

(the blue line) produces two isolated stable and unstable response branches (for

the domain of interest) and for the largest β the nontrivial response is totally

stable and approaches a linear system response.

To further analyze the response for an excitation amplitude sweep (ab) and a

varying quadratic damping parameter, we consider two cases where the detun-

ing parameter is negative in Figure 5a, that is ωb − 2ωe = −0.02, and positive

in Figure 5b, ωb − 2ωe = 0.02. For the negative detuning parameter, the re-

sponse grows (nonlinearly) as the excitation amplitude becomes larger while

for a positive detuning parameter a small quadratic damping (the blue curve

β = 0) results in observing a pitchfork (from trivial to nontrivial equilibrium

points) and a saddle-node bifurcation (from nontrivial stable/unstable to un-

stable/stable fixed points). Note that both frequency and force-response curve

show that the numerical and analytical solutions are identical for p0 ≈ 0.025.
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(a) (b)

Figure 4: The frequency-response curves: (a) ab = 0.001, and β = 0.05 (α = 0.001: blue

curve, and α = 0.005: red curve). (b) ab = 0.001, and α = 0.002 (β = 0: blue curve,

and β = 0.1: red curve). The black-dashed lines indicate the unstable branches/equilibrium

points and the backbone curve. The (meshed) thin lines represent the numerical solution of

the reduced order model and the thick lines represent the perturbation solution.

(a) (b)

Figure 5: The frequency-response curves for α = 0.005 and (β = 0: blue curve and β = 0.05:

red curve). (a) ωb − 2ωe = −0.004 (b) ωb − 2ωe = 0.004. The meshed lines represent the

numerical solution of the reduced order model and the thick lines represent the perturbation

solution.

6. Acceleration/Shock/Impact measurement

Learning from our initial analysis we carefully design the parameters of the

system such that by limiting the response the resonator operates in the linear
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(a) (b)

Figure 6: (a) The frequency-response curves (the non-trivial fixed points) computed from

the reduced-order model and maximum amplitude (calibration) curve for increasing external

acceleration α = 0.005, β = 0.1 and ab = 0.0006 (âb = 300nm).

regime. Presenting the results in dimensional form, we provide tangible evidence

of the sensitivity of the inertial sensor. The base-excitation pushes the dynamic

system towards bifurcating and jumping to the nontrivial solution and the ex-

ternal excitation (the desired acceleration) further amplifies the response. For

an external acceleration with a high-frequency content and an external accel-

eration with a low-frequency content (which applies to most applications), the

maximum amplitude and the frequency-shift methods are used to characterize

the input.

6.1. High frequency external acceleration

A high frequency external acceleration modifies the amplitude of excitation,

and therefore modifying the equation of motion and the corresponding reduced-

order model as,

p̈(t) + ω2
ep(t) =−Π1(ae + 4abω

2
e) cos (ωb t) p(t)− αṗ(t)− βΓ7ṗ(t)|ṗ(t)|

+ 2V̂ 2
DC

(
H6(t)

(
νf + 6ν

)
p(t)2 +H4(t)

(
νf + 4ν

))
p(t)3

+Π2p(t)
3 −Π3p(t)ṗ(t)

2 −Π3p(t)
2p̈(t) (47)

Scaling the external acceleration with ϵ2ae, which is consistent with the fact

that the external acceleration is significantly smaller than the base-acceleration
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abω
2
b , the amplitude and phase equations in polar coordinates become:

ap(t)η
′
p(t) =

1

8ωe
ap(t)

3
(
6H4,0V̂

2
DC
(
νf + 4ν

)
+ 2Π3ω

2
e + 3Π2

)
− 1

4ωe
Π1

(
3Π1a

2
bω

2
e − 4σabωe cos

(
2ηp(t)

)
+ ae cos

(
2ηp(t)

))
ap(t)

+
(
σ −Π1abωe cos

(
2ηp(t)

))
ap(t) (48)

ωea
′
p(t) =− 1

2

(
αωe +

1

2
aeΠ1 sin

(
2ηp(t)

)
− 2Π1σ ab ωe sin

(
2ηp(t)

))
ap(t)

− 4Γ7ω
2
e β

3π
ap(t)

2 −Π1abω
2
e sin

(
2ηp(t)

)
ap(t) (49)

Setting a′p(t) and η′p(t) equal to zero (for a steady-state solution) in equations

(48)-(49), the resulting equations are solved for cos
(
2ηp(t)

)
and sin

(
2ηp(t)

)
and

combined using the trigonometric identity, sin
(
2ηp(t)

)2
+ cos

(
2ηp(t)

)2
= 1, to

obtain the amplitude equation:

γ1,1ap(t)
4 + γ1,2ap(t)

2 + γ1,3ap(t) + γ1,4 = 0 (50)

where

γ1,1 =9π2
(
6H4,0V̂

2
DC
(
νf + 4ν

)
+ 2Π3ω

2
e + 3Π2

)
2

γ1,2 =36π2ωe

(
4σ − 3Π2

1a
2
bωe

)(
6H4,0V̂

2
DC
(
νf + 4ν

)
+ 2Π3ω

2
e + 3Π2

)
+ 1024β2Γ2

7ω
4
e (51)

γ1,3 =768παβΓ7ω
3
e (52)

γ1,4 =144π2α2ω2
e − 36π2

(
Π1

(
abωe

(
ωe (4− 3Π1ab)− 4σ

)
+ ae

)
+ 4σωe

)
(
Π1

(
abωe

(
ωe (3Π1ab + 4)− 4σ

)
+ ae

)
− 4σωe

)
(53)

A similar procedure as for (45) can be followed to obtain the phase equa-

tion. Adjusting the base-excitation amplitude (that is the amplitude of PE) and

therefore the applied base-acceleration we can limit the response to the linear

response. In Figures 6a-6b, the frequency-response curves and the sensitivity

curve are plotted for an increasing external acceleration amplitude. Note that a
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300nm base-excitation amplitude results in ≈ 7 to ≈ 14nm response. Most com-

mercial silicon-based acceleration/shock sensors are limited in dynamic range to

less than ±24 g (where g indicates the gravitational acceleration) and/or cover

a limited higher range up to 500g [48]. Further adjusting the base-excitation

amplitude, we can detect larger external accelerations and essentially use the

same sensor for every application from the automotive industry, e.g. for airbags,

to the aerospace industry.

Limiting the base-excitation amplitude to 100nm, the external accelera-

tion/shock/impact is increased from 2000 g to 4000 g and the frequency-response

curves and the response amplitude are plotted in Figures 7a-7b. Not that

α = 0.005 damping corresponds to a quality factor of ≈ 700 which is not hard or

costly to achieve for M/NEMS devices by adjusting the internal pressure during

the packaging of the device.

6.2. Low frequency external acceleration

For most applications, the frequency content of the acceleration is signif-

icantly lower than the effective resonance (natural) frequency of the micro-

structure justifying the assumption of a constant force. The analytical natural

(a) (b)

Figure 7: (a) The frequency-response curves (the non-trivial fixed points) computed from

the reduced-order model and maximum amplitude (calibration) curve for increasing external

acceleration α = 0.005, β = 0.1 and ab = 0.0002 (âb = 100nm).
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Figure 8: The effective resonance (natural) frequency curve. The static pull-in voltage is equal

to 6.1915V.

frequency of the cantilever resonator is 27.1541 kHz (at VDC = 1V) and the DC

voltage (the softening force) brings it quickly to zero for its larger values, see

Figure 8. The static pull-in voltage is equal to 6.1915V. The dynamic pull-in

voltage can be up to 16% lower than the static pull-in voltage [49, 50], however

there are methods to further increase the operation range [50]. Introducing the

relatively constant external acceleration into the equation of motion, we obtain

the reduced-order model as,

p̈(t) + ω2
ep(t) =−Π1(ae + abω

2
b cos (ωb t))p(t)− αṗ(t)− βΓ7ṗ(t)|ṗ(t)|

+ 2V̂ 2
DC

(
H6(t)

(
νf + 6ν

)
p(t)2 +H4(t)

(
νf + 4ν

))
p(t)3

+Π2p(t)
3 −Π3p(t)ṗ(t)

2 −Π3p(t)
2p̈(t) (54)

Scaling the external acceleration with ϵ2ae, the modulation phase equation

in polar coordinates becomes

ap(t)η
′
p(t) =

1

8ωe
ap(t)

3
(
6H4,0V̂

2
DC
(
νf + 4ν

)
+ 2Π3ω

2
e + 3Π2

)
− 1

4
Π1

(
3Π1a

2
bωe − 4σab cos

(
2ηp(t)

)
+

2

ωe
ae

)
ap(t)

+
(
σ −Π1abωe cos

(
2ηp(t)

))
ap(t) (55)

The amplitude equation in (42) remains unchanged indicating the ampli-

tude may not be used to identify the external acceleration as it is not directly
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affected by the external acceleration. Following a similar method as outlined

earlier for equations (44), a′p(t) and η′p(t) are set to zero and the amplitude and

phase equations are obtained. Varying the base-acceleration, the frequency-

response curves and the characterization curve are plotted in Figures 9a-9b.

The characterization curve demonstrates the detuning parameter for the fre-

quency corresponding to the maximum amplitude versus the input acceleration.

Note that we can also use the bifurcation points where the nontrivial solution

appears and disappears or a combination of these features. It is also common

to characterize the response versus the zero-input acceleration and divide the

change in frequency by the initial natural frequency. Figures 10a-10b show sim-

ilar results as previous figures for a set of larger shocks/impacts. The sensor can

be used for even much larger values by adjusting the base-excitation amplitude,

the damping, and the DC voltage. In fact, the sensor is extremely robust for

the (practical case of) low-frequency external acceleration.

(a) (b)

Figure 9: The force-response curves (the non-trivial fixed points) and the frequency (corre-

sponding to the maximum amplitude) curve for increasing external acceleration α = 0.005,

β = 0.1 and ab = 0.0006 (âb = 300nm).

7. Conclusions

In this research, we have studied a modified generalized parametrically ex-

cited dynamic system. Including electrostatic nonlinearity into the system in-

27



(a) (b)

Figure 10: The force-response curves (the non-trivial fixed points) and maximum amplitude

curve for increasing external acceleration α = 0.005, β = 0.1 and ab = 0.0006 (âb = 300nm).

troduces additional nonlinearities into the equation of motion and affects the

backbone curve. Quadratic damping does affect the systems response and re-

duces/increases the number of bifurcation points. We have computed the in-

stability threshold (Arnold tongue) and bifurcation points. We then used the

dynamic system to develop an inertial measurement device. The introduction

of an external acceleration term further complicates the dynamic system and

its corresponding equilibrium equations. It is desired to develop linear sensors

and therefore limiting the forcing term. Note that the external acceleration

may be viewed as a forcing term. For PE, once the the instability threshold is

passed the response grows quickly and therefore it is desired to stay near the

threshold to protect the system from failure. For the parametrically excited

dynamic system in this work, the sensor can be used to measure a large range

of external accelerations/shock from below a hundred g to several thousand g’s

by adjusting the base excitation amplitude. Note that although we have not

studied the importance of damping to generate the desired response, it may be

used to adjust the bandwidth of the response through adjusting the internal

vacuum of the device during the packaging phase.
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