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Abstract 

Phase-field models have become popular to simulate cohesive failure problems because of 

their capability of predicting crack initiation and propagation without additional criteria. In this 

paper, new phase-field damage model coupled with general softening law for cohesive fracture is 

proposed based on the unified phase-field theory. The commonly used quadratic geometric 

function in the classical phase-field model is implemented in the proposed model. The modified 

degradation function related to the failure strength and length scale is used to obtain the length 

scale insensitive model. Based on the analytical solution of a 1-D case, general softening laws in 

cohesive zone models can be considered. Parameters in the degradation function can be calibrated 

according to different softening curves and material properties. Numerical examples show that the 

results obtained by the proposed model have a good agreement with experimental results and the 

length scale has a negligible influence on the load-displacement curves in most cases, which 

cannot be observed in classical phase-field model. 

Keywords: Phase-field model; general softening law; length scale; cohesive fracture; unified 

phase-field theory. 

 

1. Introduction 

The prediction of crack initiation and propagation is a major challenge in solid mechanics. 

The most known theories or models for fracture mechanics in solids include Griffith’s theory [1], 

linear elastic fracture mechanics (LEFM) [2], and the cohesive zone model (CZM) [3]. These 

models have been implemented in many numerical methods, such as the finite element method 

(FEM) [4], the extended finite element method (XFEM) [5, 6], the boundary element method 

(BEM) [7], the meshless methods [8], the peridynamics [9, 10], the cracking particle method 

(CPM) [11, 12], the screened Poisson equation [13, 14] and the cellular automaton method [15, 



16]. However, some of these methods are not sufficiently efficient to model crack nucleation and 

propagation, since additional criteria or re-meshing may be needed. 

Recently, phase-field models for fracture in solid have attracted attention due to the 

advantage that the crack initiation and propagation can be predicted automatically. In phase-field 

models, a new unknown variable, namely the crack phase-field, is introduced to regularize the 

crack surfaces. The discontinuity caused by the crack surfaces is smoothed and the singularity at 

the crack tip is avoided. The crack propagation or failure can be indicated by the value of the 

phase-field variable directly without any additional criteria in the whole process. Fixed meshes 

can be used if the element sizes are fairly small in the zone where the crack is expected to 

propagate. These advantages make the phase-field models to be easily extended to 3-D models and 

complex crack patterns like branching, merging and even fragmentation can be handled much 

more easily than many other methods. 

The phase-field models are developed in physics and mechanics communities [17] 

independently. In physics communities, the models are based on the Landau-Ginzburg phase 

transition and mainly applied in dynamic analysis [18-23]. In contrast, models proposed in 

mechanics communities [24, 25] are based on the variational formulation [26] and its regularized 

form [27] of brittle fracture stems from Griffith’s theory. To distinguish between fracture behavior 

in tension and compression, decomposition methods of the elastic energy density [24, 28, 29] have 

been proposed to avoid cracking in compression. The initial formulation of phase-field models is 

for quasi-static problems and can be extended to dynamic analysis [30-36].  

The phase-field models have been applied in many areas, such as fractures in thin shells and 

[37, 38], fracture in heterogeneous structure [39] and hydraulic fracturing [40]. However, most of 

the models are mainly applied to brittle fracture and only a few models for quasi-brittle [41] or 

cohesive fracture [42-47] have been proposed. Most of these models cannot consider general 

softening laws in cohesive zone models. Recently, Wu [41, 48, 49] proposed a unified phase-field 

theory for quasi-brittle and brittle fracture [50] in solid. In this unified theory, the general 

softening laws in cohesive zone models can be reproduced accurately by parameter calibration. 

The classical phase-field model [28] for brittle fracture is a special case of the unified phase-field 

theory. Besides, the length scale has a negligible influence on the global responses in failure 

processes [50, 51], which is a very important advantage compared with some other phase-field 

models since the global responses are highly sensitive to the length scale [52, 53] in these models. 



The length scale can be considered as a material parameter [32, 54] in these models, and thus it 

cannot be chosen arbitrarily; however, a diffusive crack path may be obtained because the length 

scale is not small enough, while the peak force will be overestimated if a smaller one is chosen 

[55].  

The classical phase-field model with a quadratic geometric crack function 
2( )s s = , where 

s  is the crack phase-field, is a particular case of the unified phase-field model [41]. However, its 

implementation in quasi-brittle or cohesive fracture with general softening laws has not been 

proposed so far. This paper aims to propose new phase-field damage model coupled with general 

softening law for cohesive failure based on the unified phase-field theory [41]. In this work, the 

quadratic geometric crack function 
2( )s s =  is considered as in the commonly used classical 

phase-field model. Similar to the non-standard phase-field model proposed by Wu [41], the 

phase-field model to be presented below can also consider general softening laws in cohesive zone 

models, and the length scale also has a negligible influence on the global response in most cases. 

Although this geometric crack function results in a diffuse crack topology of infinite support, the 

variational inequality problem [53, 56] can be avoided and the boundedness condition of the 

phase-field can be ensured automatically, which allows the proposed model to be implemented 

easily.  

This paper is organized as follows. In Section 2, the phase-field model and the unified theory 

are introduced. Then new phase-field model for cohesive fracture failure are proposed in Section 3, 

followed by the numerical implementation within the FEM framework in Section 4. Finally, some 

numerical examples are given in Section 5 to validate the proposed model. 

 

2. The phase-field theory for mechanics of damage 

2.1 The governing equation of the phase-field model 

The regularized energy functional for fracture in the absence of body force can be defined as 

 ( , ) ( ( ))d ( )d dcs G s 
  

 = + −    u ε u t u  (1) 

with 

 
0( ( )) ( ) ( ( )),s  =ε u ε u  (2) 

where   is a bounded domain with boundary 
u t =  U , in which 

u  and 
t  

are the boundaries with prescribed displacement and surface traction, respectively. c   is 

the crack set, u  is the displacement field, t  is the surface traction, ε  is the strain tensor, cG  



is the material fracture toughness or energy, and 0  is the energy density function which can be 

written as 
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0

1
tr [ ] tr[ ],

2
  = +ε ε  (3) 

where   and   are the Lame constants. The scalar s  is the so called crack phase-field which 

is a variable to characterize the cracks, ( )s  is called the degradation function and ( )s  is the 

crack surface density function which satisfies 

 d ( )d .
c

c s
 

     (4) 

The crack initiation and propagation can be automatically tracked by the phase-field s . 

Different degradation functions ( )s  and crack surface density functions ( )s  can lead to 

different phase-field models. In this section, the unified phase-field theory proposed by Wu [41] is 

discussed and ( )s  is expressed as 
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where 
0l  is the length scale regularizing the crack; while the definitions of 0c  and ( )s  will 

be given in Section 2.2. 

Now the fracture problem becomes to obtain the displacement and phase-field by solving the 

minimization problem of energy functional. Based on the variation of functional (1) with respect 

to the displacement field and phase-field, one can obtain 
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where the divergence theorem is applied. The total energy functional satisfies the unilateral 

stationary condition [57], i.e., ( , ) 0s  =u  for 0s   and ( , ) 0s  u  for 0s = , 

which leads to the governing equation of the problem as [41, 57] 

 div on ,= σ 0  (7) 
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where the inequality becomes an equality when 0s   and 
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ε
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and the Neumann boundary conditions are 

 ( ) on ,t= σ u n t  (10) 

 0 on ,
s
= 

n
 (11) 

where n  is the unit outward normal of the boundary  . 

Equation (7) is the balance of linear momentum while Equation (8) is the dissipation 

inequality. 

To distinguish the fracture behavior between tension and compression, a modified energy 

density function [29] was proposed as follows 

 0 0( ( )) ( ) ( ( )) ( ( )),s   + −= +ε u ε u ε u  (12) 

where the elastic energy density is decomposed into a tensional part and a compressive part as 

 0 0 0( ( )) ( ( )) ( ( )).  + −= +ε u ε u ε u  (13) 

Some methods for the decomposition of the elastic energy density can be found in [24, 29, 58, 

59]. In this paper, the decomposition proposed by Miehe et al. [29] is used. 

2.2 The unified phase-field theory 

In the unified phase-field theory proposed by Wu [41], the degradation function ( )s  is 

defined as 

 
(1 ) 1 ( )

( ) , ( ) ,
(1 ) ( ) 1 ( ) (1 )

p
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in which 0p  , ( ) 0Q s   and 
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where 
ia  are coefficients calibrated from material properties. 

The crack surface density function ( )s  defined in Equation (5) is applied, in which ( )s  

and 0c   are given as 
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where 
0l  is the length scale regularizing the crack. From Equation (16), one can have (0) 0 =  

and (1) 1 = , which implies that 0s =  represents the undamaged area and that 1s =  

represents the totally broken area. Equation (17) makes sure that the regularized function (4) 

represents the crack surface itself. The following quadratic form ( )s  is usually used. 



 
2( ) (1 )s s s  = + −  (18) 

Then in the unified theory of the 1-D case, the failure strength 
tf  can be computed by 
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where E  is the Young’s modulus. From Equation (19), the parameter 
1a  can be obtained as 
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The parameters 
2a  and 

3a  are determined as 
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where 
0k  is the initial slope, and 

cw  is the ultimate crack opening. Both 
0k  and 

cw  can be 

determined by softening laws. 

Equations (20)-(22) are valid for (0,2]   and Wu [41] suggests to use 2 = .   cannot 

be zero since 0 =  will obtain a zero failure strength 
tf  from Equation (19). In Section 3, we 

will investigate the case 0 =  and obtain new phase-field model for cohesive fracture, in which 

the boundedness condition of the phase-field is ensured automatically. 

 

3. The new phase-field model for cohesive fracture failure 

In this section, new phase-field model for cohesive fracture failure are proposed based on the 

unified phase-field theory. The crack surface density function used in the classical phase-field 

model is applied. The 1-D problem is considered and an equivalent cohesive zone model with a 

general softening curve is used to determine the degradation function ( )s  for quasi-brittle 

failure. 

3.1 The degradation function and crack surface density function 

In the model proposed in this paper, ( )Q s  in the degradation function is defined as 

 
2

2( ) ( )Q s b s P s=  (23) 

with 
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In the crack surface density function, 
2( )s s =  is used, and 

0 2c =  can be obtained from 

Equation (8). The model will become the standard or classical phase-field model if 

2( ) 1 (1 )Q s s= − − . 

3.2 Equivalent cohesive zone model 

Consider a bar [ , ]x L L −  that is long enough such that the crack evolution is not affected 

by boundary effects. An increasing displacement 
*u  is imposed at both ends but along opposite 

directions to cause a tensile stress in the bar; and the crack initiation is assumed at point 0x = . 

From Equation (9), the strain can be evaluated by 

 ( )= [ ( ) 1].
( )

s s
E s E

 
 


= +  (25) 

Then Equation (8) can be written as [41] 
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or, equivalently, 
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Assuming 0s =  at the symmetric point 0x = , the stress can be computed as 
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where 
*s  is the maximum value of the phase-field at 0x = , and 

* 0s =  if the crack is just 

about to initiate at 0x = . 

The failure strength 
tf  is determined upon the instant of damage initiation, i.e.,  
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where 0 2c =  is used. Applying Equation (29), Equation (28) can be written as 
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The displacement 
*u  at the point x L=  can be evaluated by 
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where ( )w   is the apparent displacement jump expressed as 
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The above equation defines the equivalent cohesive zone model which yields identical global 

responses to the phase-field model and D  is the half bandwidth of the localization band [41]. 

Finally, Equation (32) can be written as 
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Then the ultimate crack opening 
cw  with the vanishing stress is determined as 
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or, equivalently, 
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Considering both (29) and (35), the parameters , 1ib i   can be determined as 
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Equations (30) and (33) indicate that both the stress and the apparent displacement jumps do 

not depend on the length scale, but depend on the failure strength tf  and the fracture energy cG . 

However, tf  and cG  are taken as input known material parameters in the proposed model. 

They do not depend on the length scale, and are used to compute the unknown parameter 2b  in 

Equation (36). Thus the length scale has no influence on the global response. 

3.3 General softening laws 

The parameters , 2ib i   can be obtained from softening laws. In this paper, the linear and 

Cornelissen’s laws are considered. As discussed above, the length scale 
0l  has no influence on 

the softening curves. 

3.3.1 Linear softening law 



The linear softening law and the ultimate crack opening 
cw  are expressed as 

 
2

( ) max(1 ,0), .
2

t c
t c

c t

f G
w f w w

G f
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The exponent 2p =  should be taken since the value of the ultimate crack opening 
cw  is finite. 

Then Equation (37) becomes 

 
3 4 5 0.594715.b b b+ + + = −L  (39) 

    If only using one parameter 
3 0.594715b = − , the softening curve is not accurate (see 

Figure 1). However, one can improve the accuracy by using more parameters from data fitting (see 

Appendix A). Figure 1 shows that the softening curve using four parameters has a good agreement 

with the analytical one.  

 

Figure 1. Linear softening curve (ft=3.0MPa, Gc=0.12N/mm) 

3.3.2 Cornelissen’s softening law 

Cornelissen’s softening law [60] for concrete is frequently applied and the softening curve is 

given as 

 3 3 3

1 2 1 2( ) [(1.0 )exp( ) (1.0 )exp( )], 5.1361 ,c
t c

t

G
w f r r r w

f
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where / cr w w=  and 
1 3.0 = , 

2 6.93 =  are used for regular concrete. The exponent 

2p =  and  

 3 4 5 1.6728.b b b+ + + =L  (41) 
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The softening curves for analytical and numerical results with different numbers of 

parameters are shown in Figure 2. The values of the parameters can be seen in Appendix A. 

 

Figure 2. Cornelissen’s softening curve (ft=3.0MPa, Gc=0.12N/mm) 

4. Numerical implementation 

The finite element method (FEM) is applied to solve the proposed phase-field model with 

Equations (7) and (8), or , 

 ( , ) Argmin{ ( ( ), )d ( )d d }.cs s G s 
  

= + −    u ε u t u  (42) 

In each load step, either monolithic or staggered algorithm can be employed to compute the 

unknowns. In this paper, the staggered algorithm described in [28] is applied and two 

sub-problems controlled by Equations (7) and (8), respectively, are solved alternately. Then the 

two sub-problems can also be written as two minimization problems by 

 Arg min{ ( ( ))d d },
 

= −   u
u ε u t u  (43) 
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where h  is a history-field variable parameter defined as 

 0max . +=h  (45) 

     In Equation (43), the displacement field is solved by fixing the phase-field, while the 

phase-field is solved in Equation (44) by fixing the displacement field. Iterations between 

Equations (43) and (44) are performed until the phase-field or displacement field satisfies the 

prescribed criteria, and this procedure is also known as the alternate minimization algorithm [27]. 
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The staggered algorithm can also be applied without iterations between Equations (43) and (44), 

and usually much smaller incremental step should be used to obtain accurate results. However, in 

the phase-field model proposed in this paper, it is found that the algorithm without iterations is 

normally much more efficient than the algorithm with iterations. Here we only compare the 

accuracy between these two algorithms in the numerical examples in Section 5, and the efficiency 

will be investigated systematically in the future. 

4.1 Discretization of Equation (7) 

Equation (7) or Equation (43) can be solved by the standard FEM and the discretization form 

is 
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where û  are the nodal displacements, uΦ  and 
uB  are expressed as 
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where N  is the total number of nodes, 
I  denotes the shape function associated with the I

th node, and 
, /I I

j jx =   . D  is the degraded constitutive matrix. In this paper, the hybrid 

model [17] is adopted if not specified otherwise and D  is computed as 

 ( ) ,s


= =


σ
D D

ε
 (49) 

where D  is the well-known constitutive matrix in traditional FEM for elasticity problems, and 

Equation (46) will be a linear system of equations. 

4.2. Discretization of the dissipation inequality 

The phase-field is solved by the dissipation inequality (8) or Equation (44). It should be 

noted again that there are no inequalities in Equation (8) in the proposed model. By introducing 

the history field (45), Equation (8) can be rewritten as 
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The degradation function ( )s  used in this paper satisfies (0) (1) 0  = = , i.e., there 

are two stationary points for ( )s , where 0s =  is the maximum point and  1s =  is the 



minimum point, and only the minimum point is admissible in the minimization problem. However, 

it indicates that the undamaged fracture field 0s =  is always a solution to Equation (50). To 

avoid the solution 0s =  for the damaged area, the problem can be reduced to a 

bound-constrained minimization problem with the bound constraint 0s   for the damaged area.  

Assuming 
2 0s =  when  0s = , one can obtain the critical failure history field 

ch   as 
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Then one can add the bound constraint 0s   only when ch h   and set 0s =  if ch h . 

In this paper, the Barrier method can be applied and Equation (44) can be changed to 

 Arg min{ ( ) d ( )d ( )},c
s

s s G s s  
 
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where ( )s  is a barrier function and one can choose 

 
1

( ) ln d ,s s
t




= −   (53) 

in which t  is a large scalar which should be chosen such that | ( ) |s  . In this paper, 

1210 −=  is applied. 

    Finally, Equation (52) will result in a non-linear system of equations as 
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where ŝ  are the nodal values of the phase-field and 

 
1 2 ,N

s
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Usually, an outer iteration is needed to obtain an appropriate t  to ensure that | ( ) |s   

holds, and then Newton’s method is applied in the inner iteration to solve the nonlinear equations. 

In our computation, the initial guess t  is obtained from the value used in the previous load step, 

and much time will be saved since the number of outer iterations is one in most load steps. The 

outer iteration will be restarted by choosing a smaller initial t  if some values of the phase-field 

cross the barrier function, i.e. 0s   in some iterations. Other methods rather than the Barrier 

method or other barrier functions can also be applied to solve this minimization problem. 



5. Numerical examples 

In this section, numerical examples are presented to validate the proposed model. If not 

specified, the plane stress state is assumed for all examples. Linear triangular elements are applied 

to discretize the domain and the mesh is refined in areas where the crack is expected to propagate. 

The staggered algorithms with and without iterations are applied to compare the results. No 

iteration is applied in the classical phase-field model [29]. 

5.1 Single edge notched pure shear test 

In this example, a squared plate with a horizontal notch shown in Figure 3 is tested. The 

length of the plate is 1.0mm and the vertical displacements on the left and right sides are fixed to 

zero. The material properties are [29, 50]: Young’s modulus 
3210 10E =  MPa, Poisson’s ratio 

0.3 = MPa, failure strength 2445.42tf = MPa, fracture energy 2.7cG = N/mm. The 

staggered algorithm without iterations is applied in this example and the displacement increment 

is set to 
50.5 10u − =  mm. In total, 159201 of uniform quadrilateral elements are used to 

discretize the model and the length scale 0 0.01l = mm is employed in this example. The linear 

softening law is used and both the non-hybrid model and the hybrid model [17] are tested.  
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Figure 3. Single edge notched square under pure shear (unit: mm) 

     

The crack-paths obtained by the proposed model with 1 parameter in the degradation 

function (see Appendix A) are shown in Figure 4. One can observe that the non-hybrid model and 

the hybrid model can obtain the similar crack path in this example. The load-displacement curves 



are shown in Figure 5. The results obtained by different numbers of parameters used in the 

degradation function are very close to each other. The peak forces obtained by the hybrid model 

are slightly lower than those obtained by the non-hybrid model, and the non-hybrid model yields a 

stiffer response in the last loading stage. 

(a) Non-hybrid model  (u=0.013mm) (b) Hybrid model  (u=0.012mm)  

Figure 4. Crack-paths of single edge notched square under shear (1 parameter used) 
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Figure 5. Load-displacement curves of single edge notched square under shear 

5.2 Three-point bending beam 

A three-point bending test on a concrete notched beam [61] is simulated in this example. The 

geometry and boundary conditions are shown in Figure 6(a). The material properties are: Young’s 

modulus 
42.0 10E =  MPa, Poisson’s ratio 0.2v = , failure strength 2.4tf = MPa, fracture 



energy 0.113cG = N/mm.  

The parameters corresponding to Cornelissen’s softening law are applied and the classical 

phase-field model [29] is also implemented to compare the results. The mesh size in the critical 

zone is 0.25h = mm (Figure 6(b)). Two length scales, i.e., 
0. 2.5l =  and 1.25 mm, are 

considered in the simulation. In the algorithm with iterations, the displacement increment of 

410u − = mm is applied while 
510u − = mm is used in the algorithm without iterations. 

The crack paths predicted by the phase-field are shown in Figure 7. As expected, the smaller 

length scale 
0l  results in a narrower band of the crack path. The load-displacement curves 

computed by the classical model and the proposed model with 5 parameters in the degradation 

function (see Appendix A) are compared in Figure 8. It can be observed that the length scale has 

little influence on the load-displacement curve in the proposed model, and the results obtained by 

the algorithms with and without iterations are close to each other. The results obtained by the 

classical model are highly dependent on the value of the length scale and the peak loads are much 

higher than those obtained by the proposed model. The load-displacement curves obtained by the 

length scale 
0 =1.25l mm with different calibrated parameters are shown in Figure 9. A good 

agreement can be observed between the proposed model and the experiments. Figure 9 also 

indicates that at least 3 parameters should be used in the model for Cornelissen’s softening law to 

obtain accurate results. 

450 mm

5 mm

50 mm

100 mm
Thickness:100 mm

225 mm
u

(a)

(b)  

Figure 6. Geometry, boundary conditions and mesh for three-point bending beam: (a) geometry and 

boundary conditions; (b) mesh 



(a) Length scale =1.25mm

(b) Length scale =2.5mm
 

Figure 7. Crack-paths predicted by the proposed phase-field model (plane stress state, 1 parameter 

used) 
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Figure 8. Load-displacement curves of the three-point bending beam (plane stress state, 1 parameter 

used) 
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Figure 9. Load-displacement curves of the three-point bending beam (plane stress state, compared with 

the experimental results) 

 

The plane strain state is also assumed and tested in this example. The crack paths are shown 

in Figure 10, which are similar to those obtained for the plane stress state. The comparison of the 

load-displacement curves between the plane stress state and the plane strain state is shown in 

Figure 11, and the peak forces obtained by the plane strain state are slightly higher than those 

obtained by the plane stress state. Figure 12 shows that the load-displacement curves obtained by 

the plane strain state also have a good agreement with the experimental data. 



(a) Length scale =1.25mm

(b) Length scale =2.5mm

 

Figure 10. Crack-paths predicted by the proposed phase-field model (plane strain state, 1 parameter 

used) 
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Figure 11. Load-displacement curves of the three-point bending beam (plane stress state and plane 

strain state, 1 parameter used) 
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Figure 12. Load-displacement curves of the three-point bending beam (plane strain state, compared 

with the experimental results) 

5.3 Wedge-splitting test 

The wedge-splitting test [62] is simulated by the proposed model in this example. The 

geometry and boundary conditions are shown in Figure 13. The material parameters are: Young’s 

modulus 
42.83 10E =  MPa, Poisson’s ratio 0.18v = , failure strength 2.12tf = MPa, and 

fracture energy 0.373cG = N/mm. Two mesh sizes in the critical zone are applied to mesh the 

domain, i.e., 1.0h =  and 0.5 mm. Two length scales with 
0 10l =  and 5 mm are implemented 

in both discretizations. In the algorithm with iterations, the displacement increment of 

20.5 10u − =  mm is used while 
30.5 10u − =  mm is applied in the algorithm without 

iterations.  

A linear softening law is applied in the simulation and the load-displacement curves obtained 

by the proposed model with 4 parameters (see Appendix A) are shown in Figure 14. Again, it can 

be observed that the results obtained by the algorithms with and without iterations are very close 

to each other. A slight difference can be observed from the results obtained by different length 

scales and mesh sizes, however, the difference is very small compared with the classical model 

(see Figure 15). In Figure 15, the results (without iterations) are compared with those obtained 

from the classical phase-field model. Again, it indicates that the proposed model has a much lower 

peak force and the length scale has a negligible influence on the load-displacement curve. 

For the discretization with mesh size 1h = mm and length scale 0 5l = mm, the 



load-displacement curves obtained by both linear softening law and Cornelissen’s softening law 

with different numbers of parameters are shown in Figure 16 and Figure 17, respectively. It can be 

observed that the results from both softening laws are close to the experimental results if 

compared with the classical phase-field model. The peak forces obtained from the linear softening 

law are higher than those obtained from the Cornelissen’s softening law. The crack paths obtained 

by different softening laws and different length scales are shown in Figure 18, and similar results 

can be observed as in the first example. 
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Figure 13. Geometry and boundary conditions for wedge-splitting test 
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Figure 14. Load-displacement curves (algorithms with and without iterations) 
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Figure 15. Load-displacement curves (compared with classical model) 
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Figure 16. Load-displacement curves (linear softening law, compared with experimental results) 
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Figure 17. Load-displacement curves (Cornelissen’s softening law, compared with experimental 

results) 

(a) Linear softening law (length scale=0.5mm) (b) Linear softening law (length scale=1mm)

(c) Cornelissen’s softening law (length scale=0.5mm) (d) Cornelissen’s softening law (length scale=1mm)
 



Figure 18. Crack-paths obtained by different softening laws and different length scales 

5.4 L-shaped panel 

An L-shaped panel with mixed-mode failure test [63] shown in Figure 19 is simulated in this 

example. The material properties are: Young’s modulus 
42.585 10E =  MPa, Poisson’s ratio 

0.18v = , failure strength 2.7tf = MPa, fracture energy 0.09cG = N/mm. The proposed 

model is discretized with two mesh sizes, 1.0h =  and 0.5 mm in the critical zone. Two length 

scales 
0 10l =  and 5 mm are applied with the Cornelissen’s softening law in the proposed 

phase-field model. The displacement increment of 
310u − = mm is used in the algorithm with 

iterations and 
410u − = mm is used in the algorithm without iterations.  

The load-displacement curves obtained by the algorithms with and without iterations are 

shown in Figure 20, and Figure 21 compares the load-displacement curves between the proposed 

model and the classical model. 5 parameters are used in the degradation function in the proposed 

model with Cornelissen’s softening law (see Appendix A). Similar results can be observed as in 

the former examples: 1) the algorithm without iterations can also obtain accurate results as the 

algorithm with iterations; 2) the length scale has a negligible influence on the load-displacement 

curve in the proposed model; and 3) the peak forces obtained by the proposed model are much 

lower than those obtained from the classical model. The load-displacement curves obtained from 

the mesh size 1h = mm in the critical zone and the length scale 
0 5l = mm are compared with 

the experimental results in Figure 22, and a good agreement can be observed. The crack paths 

obtained by the proposed model with 5 parameters are shown in Figure 23. Smooth crack paths 

can be observed from both simulations and the crack path in the experiment shown in Figure 19 is 

well captured. 
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Figure 19. Geometry, boundary conditions and crack paths for L-shaped panel 
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Figure 20. Load-displacement curves for L-shaped panel (Algorithms with and without iterations) 
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Figure 21. Load-displacement curves for L-shaped panel (Compared with classical model) 



0.0 0.2 0.4 0.6 0.8 1.0

0

1

2

3

4

5

6

7

8

9

10

11

12

13

14

L
o

ad
 (

k
N

)

Displacement (mm)

 Experimental results

 This paper (1 parameter)

 This paper (2 parameters)

 This paper (3 parameters)

 This paper (4 parameters)

 This paper (5 parameters)

 Classical method

 

Figure 22. Load-displacement curves for L-shaped panel (Compared with experimental results) 

(a) Length scale =5mm (b) Length scale =10mm

 

Figure 23. Crack paths obtained by the proposed model (mesh size 1h = mm in the critical zone) 

5.5 Asymmetrically notched beam with three holes under three-point bending 

In this example, asymmetrically notched beam with three holes shown in Figure 24 is tested, 

where different 1e  and  2e  are considered as: Specimen (a): 1 6e = inches and 2 1e = inch; 

Specimen (b): 1 5.15e = inches and 2 1.5e = inches; Specimen (c): 1 4.75e = inches and 

2 1.5e = inches. 
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Figure 24. Asymmetrically notched beam under three-point bending (unit: inch): geometry and 

boundary conditions 

(a) Specimen (a): numerical crack (CMOD=0.0225 inches)                   experimental crack                            

(b) Specimen (b): numerical crack (CMOD=0.0225 inches)                   experimental crack                            

(c) Specimen (c): numerical crack (CMOD=0.013 inches)                   experimental crack                            
 

Figure 25. Crack paths for asymmetrically notched beam with three holes under three-point 

bending 



The material properties are: Young’s modulus 
54.75 10E =  psi (

33.275 10 MPa), 

Poisson’s ratio 0.35v = , fracture energy 1.8cG = lfb/in (315J/m2) and the failure strength 

2500tf = psi (17.23MPa). The fine mesh size around the critical zone is 0.005h = inches and 

a length scale 
0 0.025l = inches is applied. Linear softening law with 4 parameters is used. The 

crack mouth opening displacement (CMOD) based indirect displacement control [49] is employed 

in this example and algorithms without iterations is applied, where the increments of CMOD is 

510u − = inches. The crack paths obtained by the proposed method have been shown Figure 25 

and they also have good agreement with the experimental results [64]. 

 

6. Conclusion 

New phase-field model coupled with general softening law has been proposed for cohesive 

fracture in this work. The commonly used quadratic geometric function 
2( )s s =  is applied in 

the proposed model. General softening laws in the cohesive fracture can be considered by 

calibrating parameters in the degradation function and an additional parameter, i.e., the failure 

strength, is used while calibrating. All the parameters (except for the length scale) can be obtained 

from the standard material properties. 

The numerical examples have been compared with those obtained from the classical 

phase-field model and experiments. It is indicated that the length scale has a negligible influence 

on the global response in most cases. This is an important advantage over many other phase-field 

models since the global responses are highly sensitive to the length scale in these models [52, 53]. 

In addition, the load-displacement curves obtained from the proposed model have a good 

agreement with those from experimental results, which cannot be observed from the classical 

phase-field model. This is because an additional parameter tf   is used and the proposed model 

can be calibrated to the special behaviour of concrete. 

The contour plot of the crack phase-field shown in most figures shows a non-constant 

interface thickness, and the thickness at the crack tip is smaller. This indicates that the crack 

resistance is not everywhere the same. The Barrier method is applied to solve the 

bound-constrained minimization problem in this paper. Other more efficient methods may be 

investigated in the future. The proposed method can be applied in dynamic analysis and 3-D cases 

easily.  
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Appendix A. Parameter calibration in the degradation function for general softening laws 

In this appendix, the parameters in the degradation function for general softening laws are 

calibrated by the least squares method. The minimization problem is defined as 

 
2

1

min{ [ ( ) ( )] }
N

i i

i

s w 
=

−  (57) 

where ( )is  is the numerical stress computed by Equation (30) at the ith phase-field [0,1]is  , 

and ( )iw  is the analytical stress computed by the softening laws in Equations (38) and (40) at 

the apparent displacement jump 
iw , where ( )i iw w s=  is computed from Equation (33). N  

is the number of samples and 1000N =  is used in this paper.  

By solving this minimization problem, the obtained parameters are shown in Table 1. One 

should note that for the linear and Cornelissen’s laws, the least squares method is not needed for 

the case with only one parameter 
3b . Other methods for data fitting may also be applied to obtain 

the parameters. 

Table 1. Parameters in degradation function for different softening laws 

Softening law 1 parameter 2 parameters 3 parameters 4 parameters 5 parameters 

Linear 

softening 
b3=-0.594715 

b3=-0.874311, 

b4=0.279595 

b3=-1.145932, 

b4=0.984587, 

b5=-0.433370 

b3=-1.267684, 

b4=1.606410, 

b5=-1.413509, 

b6=0.480067 

b3=-1.377677, 

b4=2.470444, 

b5=-3.728645, 

b6= 3.030202, 

b7= -0.989039 

Cornelissen’s 

softening 
b3=1.6728 

b3=-0.02810, 

b4=1.700900 

b3=-1.295829, 

b4=6.195769, 

b5=-3.227140 

b3=-0.236056, 

b4=-1.267581, 

b5=11.785838, 

b6=-8.609402 

b3=-0.868397, 

b4=5.499320, 

b5=-12.007010, 

b6= 24.216320, 

b7= -15.167433 
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