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Abstract 16 
The slipper limpet Crepidula fornicata is an invasive, non-native, marine species found 17 

throughout the coastal waters of southern England and Wales, UK. These limpets are 18 

considered to blight commercial shellfish banks, notably oysters, yet little is known 19 

about their disease-carrying capacity or their immunobiology. To address the latter, 20 

we isolated haemolymph (blood) from limpets and tested for the presence of the 21 

immune-enzyme phenoloxidase. Invertebrate phenoloxidases produce melanic 22 

polymers from simple phenolic substrates, which are deployed in the presence of 23 

pathogens because of their potent microbicidal and microbiostatic properties. We used 24 

a series of established substrates (e.g., tyrosine, hydroquinone) and inhibitors (e.g., 25 

4-hexylresorcinol, benzoic acid) to target three distinct enzymes: laccase (para-26 

diphenoloxidase), catecholoxidase (ortho-diphenoloxidase) and tyrosinase 27 

(monophenoloxidase). We confirmed laccase and catecholoxidase activities and 28 

characterised their kinetic properties across temperature and pH gradients (5 – 70oC 29 

and 5 – 10, respectively). Crucially, we demonstrated that products derived from such 30 

laccase and catecholoxidase activities reduced significantly the numbers of colony-31 

forming units of both Gram-positive and Gram-negative bacteria in vitro. We further 32 

screened limpet tissues for signs of melanin using wax histology, and found cells 33 

replete with eumelanin-like pigments and lipofuscin in the digestive gland, connective 34 

tissues, barrier epithelia and gills. Our data represent the first account of enzyme-35 

based antibacterial defences, notably laccase, in C. fornicata.  36 
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Phenylenediamine; PTU, phenylthiourea; Syringaldazine, 4-Hydroxy-3,5-46 
dimethoxybenzaldehyde azine; TY, tyrosinase 47 
 48 
 49 
 50 
1. Introduction  51 

An indispensable innate immune defence strategy of invertebrates is the use of 52 

phenoloxidase (PO) enzymes in the haemolymph and solid tissues to trigger melanin 53 

synthesis (Smith and Soderhall, 1991; Cerenius et al., 2008). The catalytic steps 54 

involved in converting simple phenolic substrates (e.g., tyrosine, dopamine) into 55 

pigment precursors (quinones), and ultimately melanin, generate antimicrobial by-56 

products in the form of reactive oxygen/nitrogen species as well as semi-quinone 57 

intermediates (Zhao et al., 2007 and 2011; Cerenius et al., 2010a; Xing et al., 2012; 58 

Coates and Talbot, 2018). Often, the term phenoloxidase (PO) is used 59 

interchangeably to represent several distinct copper-containing enzymes: tyrosinase 60 

(EC 1.14.18.1), catecholoxidase (EC 1.10.3.1) and laccase (EC 1.10.3.2). Substrate 61 

and inhibitor specificities can be employed to discriminate between these 62 

phenoloxidases (POs). Tyrosinase catalyses the ortho-hydroxylation of monophenols 63 

(e.g., L-tyrosine) into ortho-diphenols (e.g., L-DOPA), and the two-electron oxidation of 64 

o-diphenols into o-quinones (e.g., DOPAchrome). Catecholoxidase performs the 65 

second reaction only, whereas laccase carries out the single-electron oxidation of both 66 

ortho and para-diphenols amongst other substrates (e.g., para-diamines; Reiss et al., 67 

2013; Whitten and Coates, 2017). The differences in catalysis can be attributed to their 68 

active sites; laccase contains a mononuclear (type1) copper site as well as a trinuclear 69 

copper cluster, whereas tyrosinase and catecholoxidase contain a dinucelar (type 3) 70 

copper site (Solomon et al., 2014). Such structural features of laccase facilitate its 71 

wide catalytic potential.  72 

 73 

Once pathogens breach the physical barriers of the exoskeleton or integument, they 74 

are recognised in the haemolymph by circulating haemocytes equipped with pathogen 75 

recognition receptors that stimulate the proteolytic, prophenoloxidase activation 76 
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cascade amongst other acute phase effectors (Cerenius et al., 2010b). Melanic 77 

polymers are generated and used to immobilise pathogens and facilitate their 78 

destruction – usually in concert with haemocyte encapsulation and nodulation. Beyond 79 

innate immunity, phenoloxidases contribute to developmental morphogenesis, cuticle 80 

hardening and sclerotization post-ecdysis, and assist in clot development at wound 81 

sites (haemostasis; Bidla et al., 2009; Eleftherianos and Revenis, 2011). Melanin-82 

mediated defences have been studied extensively in insects (reviewed by González-83 

Santoyo and Córdoba-Aguilar, 2012), crustaceans (reviewed by Cerenius et al., 2008), 84 

and to a lesser extent, bivalves (Zhou et al., 2012; reviewed by Luna-Acosta et al., 85 

2017). Conversely, such experimental evidence for a proPO cascade or tyrosinase is 86 

lacking for gastropods – an exception being the well-characterised (inducible) 87 

phenoloxidase activity of the oxygen-transport protein haemocyanin (Siddiqui et al., 88 

2006; Dolashki et al., 2011; Raynova et al., 2013; Coates and Nairn, 2014; Coates 89 

and Costa-Paiva, 2020). Like the vast majority of invertebrates studied thus far, the 90 

gastropod innate immune repertoire consists of physical barriers (exoskeleton), 91 

cellular (haemocyte) and humoral (soluble) defences (Loker, 2010). To the best of our 92 

knowledge, in-depth biochemical characterisations of gastropod phenoloxidase(s) 93 

have been performed on the commercially important abalone genus Haliotis (Le Bris 94 

et al., 2014) and medically important snail genus Biomphalaria (Le Clec’h et al., 2016). 95 

In both instances, laccase-type phenoloxidase was the dominant form of activity 96 

recorded.   97 

The slipper limpet Crepidula fornicata (Linnaeus, 1758) is an invasive, non-native, 98 

marine gastropod in the Calyptraeidae family. It is native to the east coast of the United 99 

States of America but is now a pertinent example of an introduced species that can 100 

influence its non-native range (Orton, 1926; Cole and Baird, 1953; McNeill et al., 2010; 101 

Bohn et al., 2012). Slipper limpets were introduced accidently to European coastal 102 

waters at the end of the 19th century, most likely with shipments of Crassostrea 103 

virginica being imported for the establishment of aquaculture (Blanchard, 1997). These 104 

limpets can be found in large numbers in most oyster production areas in England and 105 

Wales, and are implicated in having a major negative impact on native bivalves, 106 

especially the European flat oyster Ostrea edulis (Hayer et al., 2019).  In shallow bays, 107 

C. fornicata can smother the sediment forming beds with several thousand individuals 108 

per m2. Dense populations of C. fornicata can trap suspended silt, faeces and pseudo-109 
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faeces altering the composition and structure of the seabed (Chauvaud et al., 2000). 110 

Despite the sizeable volume of literature dedicated to the ecology of slipper limpets 111 

and their interactions with shellfish of commercial value, there remains a paucity of 112 

knowledge on their disease profiles, immunobiology or haemolymph biochemistry.  113 

To address the current knowledge gap, the overall aim of this study was to examine 114 

the haemolymph of C. fornicata for the presence of the immune enzyme, 115 

phenoloxidase. First, we used a combination of general and specific substrates and 116 

inhibitors to discriminate between putative phenoloxidases (monophenolase, para- 117 

and ortho-diphenolase). Second, we assessed the antiseptic properties of enzyme-118 

catalysed reaction products toward Gram-positive/negative bacteria, and third, we 119 

inspected limpet tissues for evidence of melanin using a histological approach.   120 

 121 

 122 

2. Materials and Methods 123 

All chemicals/reagents used were of the highest purity available from Sigma-Aldrich 124 

(Dorset, UK) at the time of purchase.  125 

 126 

2.1  Experimental animals  127 

Field sampling and collection of live adult C. fornicata stacks (Figure 1A) took place in 128 

the low intertidal zone (~0.8-1.5m above chart datum) at Mumbles Beach, Swansea, 129 

South Wales, UK (51.571882, -3.987040). Samples were returned to the laboratory 130 

and processed immediately. Individuals were separated from stacks and cleaned of 131 

epibionts.    132 

 133 

2.2  Isolation and preparation of haemolymph  134 

Haemolymph was isolated from the animals by first removing the tissue mass from the 135 

shell using a blunt-ended probe and allowing the haemolymph to pool in the shell 136 

cavity (Figure 1B). The haemolymph was collected using a 22-gauge hypodermic 137 

needle fitted to a 1 mL sterile syringe. Haemolymph samples were combined from 3 138 

to 5 limpets per replicate and centrifuged at 1000 x g for 5 min at 4oC to separate the 139 

haemocyte fraction. The cell-free supernatant was retained, stored at 4oC, and used 140 

in enzyme assays within 1 – 2 days (no deterioration was observed for this duration).   141 
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 142 

2.3  Protein determination of the haemolymph  143 

The total protein content of the C. fornicata acellular fraction of haemolymph was 144 

quantitated by the Biuret method (Gornall et al., 1949), using egg albumin (0 – 20 mg 145 

mL-1) as a protein standard.  146 

 147 

2.4  Assay for phenoloxidase-like activities  148 

Phenoloxidase activities were assayed spectrophometrically in 96-well microplates 149 

(Greiner 96-F-bottom) or 1 mL cuvettes using a BMG LABTECH SPECTROstar Nano 150 

equipped with a cuvette port and microplate reader. Each assay consisted of 100 mM 151 

sodium phosphate (NaPi) buffer pH7.4 and 1 mgmL-1 haemolymph protein (pre-152 

incubated at room temperature (~20oC) for 5 minutes). Substrates were added at 153 

varying concentrations (listed in Table 1) to initiate the reaction and run for 10 minutes 154 

(initial assays with representatives from all substrate types were run for 40 minutes, 155 

but rates of product accumulation slowed after 10 minutes). All assays were performed 156 

in triplicate (three technical replicates per biological replicate) at 20oC. Results were 157 

systematically corrected for non-enzymatic autoxidation of each substrate in the 158 

absence of cell-free haemolymph. Enzymatic activities were recorded and converted 159 

to units [U: μmol per minute per mg (protein)] using the following absorption 160 

coefficients and wavelengths: 36,000 M-1 cm-1 for ABTS+ (oxidised ABTS, A420 nm), 161 

65,000 M-1 cm-1 for syringaldazine+ (oxidised syringaldazine, A525 nm),  1,370 M-1 cm-162 
1 for benzoquinone (oxidised hydroquinone, A390 nm), 1,910 M-1 cm-1 for PPD+ 163 

(oxidised p-Phenylenediamine, A520 nm), and 3,600 M-1 cm-1 for DOPAchrome and 164 

its derivatives (oxidised L-DOPA, dopamine and caffeic acid, A492 nm).   165 

 166 
2.5  Inhibition of phenoloxidase-like activities 167 

Assays were prepared as described above; however, haemolymph protein (1 mgmL-168 
1) was pre-incubated with an inhibitor for 5 minutes prior to the addition of substrate, 169 

either hydroquinone (5 mM) or dopamine (5 mM).  The inhibitors benzoic acid, citric 170 

acid, cetrimonium bromide (CTAB), ethylenediaminetetraacetic acid (EDTA), 4-171 

hexylresorcinal (4-HR), and phenylthiourea (PTU) were used across the concentration 172 

range 0.1 – 1 mM. Each combination of substrate and inhibitor was carried out in 173 

triplicate on three independent occasions. Inhibition data are expressed as the 174 
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percentage reduction in enzymatic activity when compared to control values (i.e., 175 

substrate only).  176 

 177 

2.6  Influence of pH and temperature on phenoloxidase-like activities  178 

Assay mixtures were prepared as stated above (section 2.4), with 1 mgmL-1 protein, 5 179 

mM of substrate (ABTS, dopamine or hydroquinone) in NaPi pH7.4, and incubated at 180 

20oC for 10 minutes prior to product quantification (Table 1). To find the optimum 181 

temperature of all three enzyme-ligand combinations, reactions were run between 5oC 182 

and 70oC. To find the optimum pH, the NaPi buffer was adjusted to values ranging 183 

from 5 to 10 (in increments of 0.5). 184 

  185 

To gain insight into the haemolymph pH of C. fornicata in situ, 141 fresh limpets were 186 

collected in March 2019. Haemolymph was isolated from every animal (as described 187 

in section 2.2) and screened using Mquant® Universal pH indicator strips.  188 

 189 

2.7  Bacterial culture and antibacterial assays 190 

Laboratory strains of Gram-positive (Bacillus megaterium, B. subtilis, Micrococcus 191 

luteus) and Gram-negative (Escherichia coli K12, Pantoea agglomerans) bacteria 192 

were sourced from Blades Biological Ltd (Kent, UK). Single colonies were picked from 193 

nutrient agar (Thermo Scientific) and cultured overnight in liquid medium at 37oC, 194 

except P. agglomerans, which was grown at 30oC. Optical density values were 195 

recorded using a V-1200 spectrophotometer. Once bacterial suspensions reached an 196 

OD600 value of 1, cells were pelleted via centrifugation at 1000 x g for 5 min (room 197 

temperature), washed twice in NaPi pH 7.4, and diluted in the same buffer to yield 1 198 

x106 colony forming units (CFUs) per mL.    199 

 200 

Upon completion of phenoloxidase assays using 5 mM of substrate (L-DOPA, 201 

dopamine, hydroquinone), reaction volumes were centrifuged at 4000 x g for 5 minutes 202 

(room temperature) using Amicon Ultra Filter Units (Millipore) with a 10 kDa molecular 203 

weight cut-off to remove any potential laccase or catecholoxidase enzymes. Reaction 204 

filtrates (100 μL) were mixed with bacterial suspensions in a 1:1 ratio and incubated 205 

at room temperature for 1 hour. Following incubation, samples were diluted serially in 206 

NaPi pH 7.4 so that ~200 CFUs were spread onto nutrient agar and allowed to grow 207 
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at 30oC (P. agglomerans) or 37oC (all other bacteria) for <48 hours. Control assays in 208 

the absence of substrate, and in the presence of an inhibitor (1 mM PTU), were run to 209 

attribute antibacterial activity to laccase- and catecholoxidase-derived products only.   210 

 211 

2.8  Histology of Crepidula fornicata soft tissues  212 

Whole tissue histology of C. fornicata was used to screen a subset (n = 10) for signs 213 

of tissue pigmentation, namely melanin. Intact tissues were separated from limpet 214 

shells using a blunt-ended probe, submerged in Davidson’s seawater fixative 215 

(Hopwood, 1996) for 24 hours, and washed in dH2O prior to storage in 70% ethanol. 216 

Samples were dehydrated using an ethanol series, 70%, 80% and 90% for 1 hour 217 

each, followed by 3x 1 hour in 100% ethanol. These samples were washed twice in 218 

HistoClear/HistoChoice for 1 hour each prior to immersion in paraffin wax: HistoChoice 219 

(1:1) for 1 hour. Embedded samples were cut into sections 5 – 7 μm in thickness (using 220 

a Leica RM2245 microtome), adhered to glass slides using egg albumin (~1% w/v), 221 

and dried for 24 hours. Slides were stained using Cole’s haematoxylin and eosin. 222 

Stained slides were inspected and imaged using an Olympus BX41 microscope.  223 

 224 

2.9  Data handling  225 

All values reported here represent the mean ± standard error. Enzyme assays were 226 

performed in triplicate on three independent occasions. Michaelis-Menten non-linear 227 

regression and Lineweaver-Burk plots were used to calculate KM and Vmax values. 228 

Antibacterial assays were also performed in triplicate on three independent occasions, 229 

with data being analysed using 2-way ANOVA and Tukey’s multiple comparison (post-230 

hoc) tests. Statistical differences were considered significant when P < 0.05. Data 231 

analyses and visualisations were performed in GraphPad PRISM v7. Histology images 232 

were adjusted for contrast and colour balance only.   233 

 234 

3. Results 235 

3.1  Characterising phenoloxidase-like activities in the haemolymph of Crepidula 236 

fornicata  237 

Using a broad series of known phenoloxidase substrates, we confirmed enzymatic 238 

activity in the presence of three ortho-diphenols, one para-diphenol, two methoxy-239 
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containing phenols, and one non-phenolic para-diamine (Figure 2, Supplementary 240 

Figure 1). At concentrations <10 mM for caffeic acid, dopamine and L-DOPA, <15 mM 241 

for hydroquinone, <20 mM for ABTS and p-phenylenediamine, and <50 mM for 242 

syringaldazine, kinetic data were calculated using the Michaelis-Menten equation and 243 

Lineweaver-Burk intercepts (Table 2). Goodness of fit values (R2) for all regressions 244 

ranged from 0.74 – 0.96. The Michaelis constant KM for all three ortho-diphenols was 245 

<1.5 mM, with L-DOPA being the lowest at 0.26 mM, which suggests it is the preferred 246 

substrate in vivo. Hydroquinone (p-diphenol) had a similarly low KM value of 2.05 mM, 247 

however, its maximum velocity (Vmax) of ~4.4 U was 3-fold higher than L-DOPA and 248 

1.8-fold higher than dopamine (1.4 U and 2.5 U, respectively; Figure 2, Table 2). The 249 

highest Vmax value of 5.7 U was recorded for the exogenous substrate ABTS (a 250 

methoxy-containing phenol), but this was accompanied by the highest KM value of 21 251 

mM – indicating the enzyme-ligand complex is not stable. Under our experimental 252 

conditions, we did not observe any measurable activity in the presence of three 253 

common monophenols (4-hydroxyanisole, tyramine, L-tyrosine) or a single meta-254 

diphenol (DHPPA) using concentrations from 0.1 mM to >25 mM. Additionally, the use 255 

of sodium dodecyl sulphate (SDS) at concentrations in excess of critical micelle 256 

formation (~3.5 mM) did not enhance enzymatic activity of the haemolymph protein 257 

(data not presented).  258 

 259 

Enzyme-catalysed turnover of substrates was assessed further using a series of 260 

known phenoloxidase inhibitors (Table 3). Citric acid and benzoic acid are non-specific 261 

inhibitors of PO activity, and concentrations in excess of 0.1 mM thwarted product 262 

formation by 71 – 100%, regardless of the substrate used. As the active sites of POs 263 

use copper to facilitate catalysis, the metal chelator EDTA decreased dopamine 264 

oxidation by 86 – 100% and hydroquinone oxidation by 72 – 100% (Table 3). Using 265 

the laccase-specific inhibitor CTAB, and the laccase-specific substrate hydroquinone, 266 

activity diminished by 100%. However, using CTAB at the highest concentration of 1 267 

mM in the presence of dopamine, did not eliminate all enzyme activity (~10% left) – 268 

indicating the presence of a second phenoloxidase. Using the tyrosinase- and 269 

catecholoxidase-specific inhibitor 4-hexylresorcinol (at 0.5 and 1 mM), enzyme activity 270 

decreased by >80%. 4-Hexylresorcinol had little impact when hydroquinone replaced 271 

dopamine, with 90% of enzyme activity remaining intact (Table 3).  272 

 273 
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To gain insight into endogenous conditions, we collected fresh limpets, isolated the 274 

haemolymph, and measured the pH. Values ranged from 7 – 9 with an average pH of 275 

7.5 ± 0.15 (n = 141). Following this, we selected representatives of the three substrate 276 

classes with the highest Vmax values, ABTS (5.7 U), dopamine (2.5 U) and 277 

hydroquinone (4.4 U; Table 2), and determined activity across a pH (5 – 10) gradient 278 

in vitro (Figure 3A). Maximum levels of ABTS oxidation occurred at pH 5.5, whereas 279 

the enzymatic turnover of dopamine and hydroquinone (into dopaminechrome and 280 

benzoquinone) were highest at pH 7 and 8, respectively. Subjecting the haemolymph 281 

samples to increasing temperatures from 5 – 70oC, revealed temperature optima of 282 

35oC for dopamine and 45oC for hydroquinone (Figure 3B). Under these conditions, 283 

there were no substantial differences in product formation from hydroquinone between 284 

temperatures 35 and 50oC (89 – 100% inclusive).   285 

 286 

3.2  Antibacterial potency of enzymatic reaction products  287 

Using both ortho and para isomers of diphenols (dopamine, L-DOPA and 288 

hydroquinone) at a standardised concentration of 5 mM, we tested the antibacterial 289 

properties of their respective oxidised quinone (by)products (dopaminechrome, 290 

DOPAchrome, benzoquinone). Overall, the exposure of bacteria to these enzyme-291 

derived products led to significant reductions in CFUs; F(3, 40) = 254.7, P < 0.0001 292 

(Figure 4). The majority of variation within the data, 87%, can be attributed to the type 293 

of substrate used. Gram-negative bacteria were sensitive to all reaction products, in 294 

particular, oxidised hydroquinone (i.e., benzoquinone) was highly effective against P. 295 

agglomerans – reducing CFUs by 95%. Conversely, Gram-positive bacteria were less 296 

sensitive to reaction products, e.g., oxidised L-DOPA (i.e., DOPAchrome) led to the 297 

smallest decline of 24% when exposed to B. subtilis. With that said, microbial target 298 

was determined to be a significant factor (F(4, 40) = 7.03, P = 0.002) and accounts for 299 

3.2% of the variation within the data. The bactericidal potency of diphenols can be 300 

ranked hydroquinone>dopamine>L-DOPA, and after 1-hour incubation each one 301 

caused sufficient damage to prevent replication, immobilise and/or kill the microbes. 302 

Although the use of L-DOPA did lead to decreases in B. megaterium and B subtilis 303 

CFUs, neither were significantly different to the respective controls (P = 0.099 and P 304 

= 0.335; Supplementary Figure 2).  305 

 306 
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3.3 Histological observations of Crepidula fornicata tissues  307 

Using wax (H & E) histology, discrete brown/black pigmentation (eumelanin) was 308 

observed in the lining of the gill tissue, barrier epithelium, connective tissue, and 309 

border cells of the foot musculature (Figure 5).  These melanic-deposits accumulated 310 

at the apical surface of epithelial cells (Figure 5D), but did not appear pathologic (no 311 

signs of infection or trauma). The cellular arrangement is uniform and there is no clear 312 

sign of a host response, e.g., haemocyte infiltration or encapsulation, to accompany 313 

the melanisation (which can be found in compromised tissues of invertebrates). 314 

Interestingly, yellowish pigmentation reminiscent of the lysosomal degradation 315 

product, lipofuscin, was visible in the digestive gland intra- and inter-tubular structures 316 

(Figure 5B), as well as connective tissue (Figure 5E and 5F). Lipofuscin tends to 317 

accumulate close to the nuclei of cells, which is evident here, and can sometimes 318 

appear brown due to the high levels of melanin resulting from oxidoreductase activity 319 

(Figure 5B and 5F).  320 

 321 

4. Discussion 322 

Herein, we compile strong evidence that proteins present in the acellular haemolymph 323 

of C. fornicata display phenoloxidase-like activities. The haemolymph tested negative 324 

for tyrosinase (monophenolase) activity and also appeared incapable of oxidising the 325 

meta-diphenol DHPPA. The low Michaelis’ constant (KM) values for both laccase-type 326 

(para) and catecholoxidase-type (ortho) substrates suggested the enzyme-ligand 327 

interactions were stable (Table 2), except for the methoxy-containing phenols 328 

(syringaldazine and ABTS) with calculated values in excess of 20 mM. The oxidation 329 

of general o-diphenols (e.g., dopamine) and the more-specific p-diphenol 330 

(hydroquinone) were inhibited by the metal chelator EDTA, and in doing so, confirmed 331 

the activities to be derived from metalloenzymes – as seen in C. gigas (Luna-Acosta 332 

et al., 2010). In the presence of hydroquinone, the laccase specific inhibitor CTAB 333 

prevented all product formation. However, in the presence of dopamine, CTAB 334 

inhibited activity by a maximum of 91%. Moreover, the highest concentration of the 335 

tyrosinase/catecholoxidase-specific inhibitor 4-hexylresorcinol (1 mM) hindered 336 

activity by ~80% and ~10% in the presence of dopamine and hydroquinone, 337 

respectively (Table 3). These data endorse the presence of two independent 338 

diphenoloxidases within C. fornicata haemolymph, namely laccase and 339 
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catecholoxidase. Regarding the aromatic amine, p-phenylenediamine, we obtained a 340 

KM value of 2.01 mM, which is in line with those published for Biomphalaria sp., 1.19 341 

to 1.45 mM (Le Clec’h et al., 2016). Using similar assay conditions, Le Bris et al. (2014) 342 

reported a much higher KM value of 13.5 mM for Haliotis tuberculata, and Luna-Acosta 343 

et al. (2011) recorded the highest at 45 mM when studying C. gigas. We observed pH 344 

optima at 7 and 8, and temperature optima at 35oC and 45oC in vitro for dopamine and 345 

hydroquinone, respectively (Figure 3). The ex vivo pH of C. fornicata haemolymph 346 

varied between 7 and 9, which suggests it is more suited for hydroquinone oxidation 347 

(Figure 3). These data fall within the reported ranges for both laccase-type and 348 

catecholoxidase-type enzymes. For example, when using p-phenylenediamine, the 349 

pH maximum was 8.5 for Biomphalaria sp. (Le Clec’h et al., 2016), 8.2 for H. 350 

tuberculata (Le Bris et al., 2014), and 8.4 for Venerupis philippinarum (Le Bris et al., 351 

2013). When using an o-diphenol, optimal activity was achieved at pH 8 for Saccostrea 352 

glomerata (Aladaileh et al., 2007), pH 6 – 7.5 for C. virginica (Jordan and Deaton, 353 

2005) and Chlamys farreri (Sun and Li, 1999).  354 

  355 

Previously, Pires et al. (2000) detected three catecholamines – dopamine, L-DOPA 356 

and norepinephrine – in C. fornicata larvae and juveniles (using high performance 357 

liquid chromatography). Inhibition of tyrosine hydroxylase and dopamine-b-358 

hydroxylase using a-methyl-DL-m-tyrosine and diethyldithiocarbamate reduced levels 359 

of catecholamines by 20 – 50%, and interfered with morphogenesis. Herein, we 360 

calculated low KM values <1.5 mM for two of the catecholamines mentioned above 361 

(Figure 2, Table 2). We posit that L-DOPA and dopamine are endogenous substrates 362 

of phenoloxidase(s) in C. fornicata adults.  363 

 364 

Whilst bioprospecting molluscs for antiseptic compounds, Defer et al. (2009) prepared 365 

some acidic extracts of C. fornicata tissues and recorded antibacterial activity against 366 

M. luteus (Gram-positive) and Listonella anguillarum (Gram-negative), and virustatic 367 

properties toward Herpes simplex virus type 1 (viral replication was reduced by 40% 368 

when compared to the control). We also describe anti-infective properties of C. 369 

fornicata haemolymph (Figure 4), yet importantly, our evidence implies the mechanism 370 

of action is of enzymatic origin. The following points contend that CFU declines were 371 

due to a combination of the noxious intermediates of laccase and/or catecholoxidase 372 
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reaction products: (1) in the absence of any substrate and in the presence of the 373 

phenoloxidase inhibitor PTU, CFU numbers were in line with controls (>97%); (2) in 374 

the absence of haemolymph protein, no measurable antibacterial activity was 375 

observed; (3) using a 10 kDa filter to remove potential phenoloxidase(s) from the 376 

reactions mixtures prior to microbial exposure reduced the likelihood of proteinaceous 377 

macromolecules interacting directly with the targets. The penultimate step of the 378 

eumelanin synthesis pathway is 5,6-Dihydroxyindole (DHI) formation, which can 379 

happen spontaneously or enzymatically from DOPA-derivatives, and is known to have 380 

direct antimicrobial activity (Zhao et al., 2007). DOPAchromes themselves are 381 

unstable, as are the cytotoxic oxidising and nitrosative radicals produced during 382 

phenol oxidation (Coates and Nairn, 2014).  383 

 384 

Traditionally, laccases have not been considered part of the invertebrate innate 385 

immune system, despite their capacity to metabolise melanin precursors, i.e., phenols. 386 

First, Luna-Acosta et al. (2011) noted restricted growth (>30%) of the marine 387 

pathogens Vibrio splendidus LGP32 and Vibrio aestuarianus 02/41 after treatment 388 

with C. gigas haemocyte lysate supernatant and two substrates, p-phenylenediamine 389 

and L-DOPA. The anti-vibrio properties were thwarted by the addition of the 390 

phenoloxidase inhibitor, PTU. Our data complement these earlier observations. The 391 

reaction products derived from hydroquinone and dopamine oxidation were highly 392 

effective against all microbes tested (Figure 4) but were indistinguishable from controls 393 

when PTU was added. In contrast, L-DOPA oxidised (by)products were not as effective 394 

against Gram-positive bacteria, notably Bacillus sp. Similar measurements were taken 395 

with regards the relatively weak antimicrobial activity of crayfish phenoloxidase and 396 

horseshoe crab haemocyanin-derived phenoloxidase when L-DOPA was used 397 

compared to other diphenols (e.g., 4-tert-butylcatechol) at the same concentration 398 

(Cerenius et al., 2010a, Coates and Talbot, 2018). Recently, Shi et al. (2017) 399 

challenged Pacific white shrimp P. vannamei with Vibrio parahaemolyticus, M. 400 

lysodeikticus and white spot syndrome virus (WSSV) and noted increased expression 401 

of laccase-specific mRNAs. In a separate experiment, the authors silenced the laccase 402 

gene using dsRNA, which increased shrimp susceptibility to both bacterial types, and 403 

caused >20% higher mortality. In a subsequent study, Chen et al. (2020) identified a 404 

second laccase gene (LvLac2) from P. vannamei within the epidermal layers of the 405 

carapace that was also linked to immune activity. Injection of shrimp with WSSV or V. 406 
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alginolyticus led to increased expression of the LvLac2 gene, and the oxidative stress-407 

associated transcription factor NF-E2. Additionally, injection of dsRNA for LvLac2 408 

reduced the survivorship of shrimp when challenged with WSSV. A notable side-effect 409 

of eliminating laccase gene expression was an increase in tissue damage found in the 410 

hepatopancreas of shrimp immune-stimulated with b-glucans. The authors concluded 411 

that it was caused by oxidative damage in the absence of laccase, and that laccase 412 

likely has multiple functions.  413 

 414 

Phenoloxidases are distributed widely amongst metazoans, microbes and plants. 415 

Their roles differ depending on the organism, for example: plant polyphenoloxidases 416 

and arthropod tyrosinases are involved in host counter-responses to disease-causing 417 

agents, while fungal laccases act as enzymatic antioxidants/detoxicants and assist in 418 

lignocellulose degradation (Baldrian, 2006; Cerenius et al., 2008; Janusz et al., 2020). 419 

Our histological screen of C. fornicata solid tissues revealed the presence of melanin 420 

and lipofuscin-like pigments across diverse tissue types. In previous work by Tiley et 421 

al. (2018 and 2019), brown inclusion bodies – bulbous or conical in shape – were 422 

characterised in the digestive gland of another gastropod, the queen conch Lobatus 423 

gigas. Using a combination of techniques, including histochemical staining and 424 

electron microscopy, these were confirmed to be aggregates of melanin, iron, 425 

glycoproteins and mucopolysaccharides. In line with our observations of slipper limpet 426 

tissues, Tiely et al. (2018, 2019) did not find any evidence of damage, inflammation or 427 

infection (e.g., apicomplexan parasites), however, they did observe such pigmented 428 

deposits in several other areas, including ganglia. These studies may go some way to 429 

explain the presence of lipofuscin – a lysosomal degradation product in the digestive 430 

gland and connective tissues of C. fornicata (Figure 5). Lipochrome in the form of small 431 

yellow aggregates can be considered stage 1 lipofuscin, which can go on to form 432 

immature (stage 2) brown bodies. These brown bodies are often associated with 433 

pathogen clearance, mineral storage and cellular senescence, and the darker 434 

pigmentation can be attributed to melanin accumulation form oxidation reactions 435 

(Valembois et al., 1994).  436 

  437 

The published genomes of several bivalves, C. gigas (Zhang et al., 2012), C. farreri 438 

(Li et al., 2017) and Pinctada fucata martensii (Du et al., 2017), revealed major gene 439 
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expansion (sub/neo-functionalisation) events for phenoloxidases, notably tyrosinases 440 

and laccases. Moreover, expression of laccase and tyrosinase-like protein mRNAs 441 

were up-regulated in regions such as the mantle and digestive gland, which further 442 

implies multiple roles in development, detoxification and defence. Interestingly, the 443 

expression of at least two laccase genes has been recorded in the epithelium, muscle, 444 

intestine, stomach, hepatopancreas, gill, haemocytes, nerve tissue and heart of 445 

penaeid shrimp (Shi et al., 2017; Chen et al., 2020).    446 

 447 

5. Conclusion 448 

We establish that enzymes present in the haemolymph of the invasive gastropod C. 449 

fornicata can accept diphenolic substrates and convert them into quinones (melanin 450 

precursors) in a manner similar to laccases (EC 1.10.3.2) and/or catecholoxidases 451 

(EC 1.10.3.1). The resulting (by)products are cytotoxic and possess broad-spectrum 452 

antibacterial properties. The capacity of this gastropod to generate melanin is 453 

evidenced further by the distribution of this pigment across many tissues. Taken 454 

together, we form the opinion that two constitutive phenoloxidases contribute to 455 

biological defences in C. fornicata. 456 
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Table 1 Substrate parameters used to discriminate between phenoloxidase activities 669 
Specificity Substrate Molecular 

weight  
Concentration  
range (mM) 

Wavelength 
[product detection] 

Laccase PPD 108.14 0.1 - 10 520 
 Syringaldazine 360.36 0.05 - 50 525 
 ABTS 548.58 0.01 - 20  420 
 Hydroquinone 110.11 0.1 - 15 390 
Non-specific Caffeic acid 180.16 1 - 10 492 
 L-DOPA 197.19 0.1 - 5 492 
 DHPPA 182.17 0.25 - 80 492 
 Dopamine 189.64 0.1 - 10 492 
Tyrosinase L-Tyrosine 181.19 0.01 - 25 492 
 4-HA 124.14 0.1 - 30 492 
 Tyramine 137.18 0.1 - 30 492 

 670 
 671 
 672 
 673 
 674 
 675 
 676 
 677 
 678 
Table 2 Kinetic properties of laccase and catecholoxidase activities   679 
Substrate Substrate class Enzyme  KM 

 (mM)  
Vmax  
(μmol min-1 mg-1) 

R2   
 

ABTS methoxy-phenol Laccase 21.1 ± 4.82 5.71 ± 0.81 0.96 
Hydroquinone para-diphenol Laccase 2.05 ± 0.38 4.37 ± 0.26 0.79 
p-Phenylenediamine non-phenolic Laccase 2.01 ± 0.44 1.73 ± 0.13 0.93 
Syringaldazine methoxy-phenol Laccase 21.2 ± 8.3 4.51 ± 0.74 0.82 
      
Caffeic acid ortho-diphenol Non-specific 1.11 ± 0.43 1.63 ± 0.62 0.74 
DHPPA meta-diphenol Non-specific - - - 
L-DOPA ortho-diphenol Non-specific 0.26 ± 0.07 1.4 ± 0.08 0.82 
Dopamine ortho-diphenol Non-specific 1.21 ± 0.32 2.51 ± 0.18 0.85 
      
4-Hydroxyanisole mono-phenol Tyrosinase - - - 
Tyramine mono-phenol Tyrosinase - - - 
L-Tyrosine mono-phenol Tyrosinase - - - 

 680 
 681 
 682 
 683 
 684 
 685 
 686 
 687 
 688 
 689 
 690 
 691 
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Table 3 Inhibition of laccase and catecholoxidase activities   692 
Inhibitors Enzyme target Inhibitor 

conc. 
Inhibition (%) 

   Dopamine#  Hydroquinone# 
Benzoic acid Non-specific 0.1 mM 

0.5 mM 
1 mM 

95.9 
98.7 
100 

76.9 
84.1 
100 

Citric acid Non-specific 0.1 mM 
0.5 mM 
1 mM 

87.4 
88.9 
100 

71.3 
78.9 
100 

CTAB Laccase 0.1 mM 
0.5 mM 
1 mM 

67 
84 
90.7 

98 
100 
100 

EDTA Non-specific 0.1 mM 
0.5 mM 
1 mM 

85.6 
92.6 
100 

72.3 
97.6 
100 

4-hexylresorcinol Catecholoxidase 
 & Tyrosinase 

0.1 mM 
0.5 mM 
1 mM 

57 
84 
82.8 

- 
- 
10.3 

PTU Non-specific 0.1 mM 
0.5 mM 
1 mM 

84.1 
89.7 
90 

93.5 
98.7 
100 

#, substrates were used at a standard concentration of 5 mM for all inhibition assays 693 
 694 
 695 
 696 
 697 
 698 
 699 
 700 

 701 
 702 
Figure 1. Typical stack formation of Crepidula fornicata (A) and accessibility of 703 
haemolymph after (solid) tissue removal (B). Black arrow points to pooled 704 
haemolymph at the aperture of the shell.   705 
 706 

 707 
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 708 
 709 
Figure 2. Laccase and catecholoxidase activities of Crepidula fornicata 710 
haemolymph protein in the presence of diverse substrates in vitro. Protein (1 mg 711 
mL-1) was incubated in the presence of each substrate for 10 minutes. Products 712 
derived from the enzymatic oxidation of substrate were observed across several 713 
wavelengths (listed in Table 1). Values represent the mean ± standard error (n = 3 714 
biological replicates made-up of 3 technical replicates each). Enzyme-substrate 715 
kinetics were calculated in GraphPad PRISM v7 using Michaelis-Menten non-linear 716 
regression. Each panel also contains the respective double-reciprocal (Lineweaver-717 
Burk) plot. Inset – chemical structures of ortho-diphenols (coloured black), para-718 
diphenol (coloured blue), phenols with methoxy groups (coloured grey), and a non-719 
phenolic substrate (coloured red).  720 
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 721 

 722 
 723 
Figure 3. Effect of pH and temperature on laccase and catecholoxidase activities 724 
in the haemolymph of Crepidula fornicata. Protein (1 mg mL-1) was incubated in 725 
the presence of either substrate for 10 minutes across the pH range 5 – 10 (A) and 726 
the temperature range 5 – 70oC (B). Activity (rate) was measured as the amount of 727 
product formed from the oxidation of dopamine (into dopachrome), hydroquinone (into 728 
benzoquinone), and ABTS (into ABTS+).  In (A), the pH range of fresh (ex vivo) limpet 729 
haemolymph (n = 141) is shaded blue. In (B), values are expressed as a percentage 730 
of the mean maximum value for dopamine (35oC) and hydroquinone (45oC).   731 
 732 
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 733 
 734 
Figure 4. Antibacterial effects of laccase- and catecholoxidase-derived reaction 735 
products in vitro.  Cell-free haemolymph protein (1 mg mL-1) from Crepidula fornicata 736 
was incubated with ortho-diphenolic (dopamine, L-DOPA) and para-diphenolic 737 
(hydroquinone) substrates for 10 minutes. Post-incubation, proteins were filtered (>10 738 
kDa cut-off) using centrifugation, and the subsequent reaction mixtures containing the 739 
oxidised products were incubated with Gram-positive (B. megaterium, B. subtilis, M. 740 
luteus) and Gram-negative (E. coli, P. agglomerans) bacteria. The heat map depicts 741 
the mean number of colony forming units for treated microbes (n = 3) and controls 742 
(substrates were omitted).   743 
 744 

 745 
 746 
 747 
 748 
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 749 
 750 
 751 
Figure 5. Tissue histology of Crepidula fornicata. Photomicrographs depict 752 
transverse sections of gill tissue (A), the digestive gland (B), the foot musculature (C), 753 
barrier epithelium (D), and connective tissues (E and F). In all images, arrows point to 754 
melanin deposits within a variety of cell types, and, each asterisk (*) indicates 755 
lipofuscin-like material. Ap, apical; Ba, basal; M, muscle; T, tubule. In (E), a hashtag 756 
(#) denotes the presence of a haemocyte.  757 
 758 
 759 
 760 
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 762 
Supplementary Figure 1 Catecholoxidase activity of Crepidula fornicata 763 
haemolymph protein in the presence of caffeic acid in vitro. Protein (1 mg mL-1) 764 
was incubated in the presence of substrate for 10 minutes. Products derived from the 765 
enzymatic oxidation of substrate were observed at 492 nm. Values represent the mean 766 
± standard error (n = 3 biological replicates made-up of 3 technical replicates each). 767 
Enzyme-substrate kinetics were calculated in GraphPad PRISM v7 using Michaelis-768 
Menten non-linear regression. The panel also contains the respective double 769 
reciprocal (Lineweaver-Burk) plot. Inset – chemical structure caffeic acid.  770 
Non-linear regression, R2 = 0.38.  771 
Double-reciprocal plot, R2 = 0.74.  772 
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 776 
 777 
Supplementary Figure 2 Antibacterial effects of laccase- and catecholoxidase-778 
derived reaction products in vitro.  Cell-free haemolymph protein (1 mg mL-1) from 779 
Crepidula fornicata was incubated with ortho-diphenolic (dopamine, L-DOPA) and 780 
para-diphenolic (hydroquinone) substrates for 10 minutes. Post-incubation, proteins 781 
were filtered (>10 KDa cut-off) using centrifugation, and the subsequent reaction 782 
mixtures containing the oxidised products were incubated with Gram-positive (B. 783 
megaterium, B. subtilis, M. luteus) and Gram-negative (E. coli, P. agglomerans) 784 
bacteria. Unshared letters represent significant differences (P < 0.05) – determined by 785 
Tukey’s multiple comparisons (post hoc).  786 
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