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1 Introduction

There has been a rising interest in the IO literature in types of competition where the

same competing �rms choose, within a speci�c market, di¤erent strategic variables.

A �rm�s choice of strategic variable is not solely determined by market attributes,

but it also depends on the characteristics of the individual production processes.

Kreps and Scheinkman (1983) has shown that when production precedes demand re-

alization a �rm chooses quantity as its strategic variable (i.e., the �rm is a Cournot

competitor). On the other hand, when production schedules can be easily changed,

a �rm chooses price as its strategic instrument (i.e., the �rm is a Bertrand com-

petitor). Therefore, it is conceivable that �rms operating in the same market but

characterized by signi�cantly di¤erent production processes might choose di¤erent

strategic instruments. Empirical observations con�rm the existence of this type of

oligopolies. Tremblay and Tremblay (2011) mentions the small car industry exam-

ple where Honda and Subaru dealers decide upon quantities while Scion and Saturn

dealers decide upon prices, whereas Sato (1996) is discussing the case of the Japanese

domestic market of electronics where Matsushita and Sanyo are acting as Cournot

and Bertrand rivals, respectively.

Oligopolies of this type have been theoretically explored in Singh and Vives

(1984)1 where the Cournot-Bertrand duopoly is analysed and compared against pure

Cournot and Bertrand models under the assumptions of constant marginal costs,

zero �xed costs, and no capacity limitations. These authors conclude that each �rm�s

dominant strategy is to compete à la Cournot. However, as pointed out in Tremblay

and Tremblay (2011) this conclusion rests on the assumption of zero �xed cost and the

choice of the strategic instrument might change should this assumption change. This

study explores the e¤ect product di¤erentiation has on the optimal decision making

under Cournot-Bertrand competition and argues that the equilibrium is stable for a

su¢ cient degree of product di¤erentiation and that the Cournot-Bertrand outcomes

can be optimal. A more recent study (Tremblay and Tremblay, 2017) investigates the

e¤ect an excise tax has on prices in pure Cournot, Bertrand, and Cournot-Bertrand

1See also Häckner (2000), Arya et al. (2008), and Tremblay et al. (2013).
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models, fully describing the conditions under which �rms can undershift or overshift

the tax onto the consumers. Furthermore, Naimzada and Tramontana (2012) focuses

on the dynamic case of the Cournot- Bertrand duopoly while Manasakis and Vlassis

(2014) presents a case of upstream-downstream pair-wise �rms where downstream

�rms compete in Cournot, Bertrand, and/or Cournot-Bertrand fashion. Similarly,

Rosanova (2017) studies equilibrium wholesale prices in vertically related �rms with

Cournot-Bertrand competition in the �nal product market. It concludes that �at

the downstream level the Bertrand-type competitor has a cost advantage over the

Cournot-type �rm.�

In earlier studies Matsumoto and Onozaki (2005) and Youse� and Szidarovszky

(2005) modeled the complex dynamics of mixed duopolies with nonlinear demands.

Wang and Ma (2013) consider a Cournot-Bertrand model with bounded rational-

ity expectations and explore equilibria and local stability under limited information.

Also, Ma and Pu (2013) explores the complex characteristics of a mixed Cournot-

Bertrand model using nonlinear dynamics theory. Matsumoto and Szidarovszky

(2010) investigate the continuous dynamics of mixed Cournot-Bertrand competition

without time delays, and with �xed and continuously distributed time lags. They

argue that �xed time lags have a larger destabilizing e¤ect on the dynamics than

continuously distributed time lags. Matsumoto and Szidarovszky (2011) focus on

N-�rm Cournot-Bertrand competition and conclude that �...[i]f the �rms can pre-

commit to quantity or price strategy, the dominant strategy depends on the average

quality ratio of the goods produced by the quantity-adjusting �rms and the goods pro-

duced by the price-adjusting �rms.�Szidarovszky and Molnar (1992) focus on the

general oligopoly Cournot-Bertrand model with nonlinear complementarity problem

and the existence and uniqueness of the Nash equilibrium. Chang et al. (2015) exam-

ines the case of the Cournot-Bertrand model under the existence of patent licensing

and di¤erentiated duopoly. Tremblay and Tremblay (2019) o¤ers a comprehensive

review of the related literature and examines the alternative market conditions under

which the Cournot-Bertrand model can emerge. It also discusses the welfare rank-

ing of Cournot-Bertrand oligopoly compared to pure Cournot and pure Bertrand

oligopolies. The authors propose the application of the Cournot�Bertrand model in
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areas of economics such as international economics, industrial organization, labor,

and public economics.

While the speci�c characteristics of the Cournot-Bertrand model have been an-

alyzed in the literature there is still little research done on how �rms, engaging in

this type of competition, respond to environmental policies. This paper investigates

the choice of abatement technology in a static Cournot-Bertrand duopoly and its

e¤ect on quantities, prices, pro�ts, and emissions. We argue that, for a reasonably

wide range of demand and cost parameters, the Cournot �rm will choose a �greener�

technology compared to its Bertrand rival. At the same time, it will produce more,

charge less and yield higher pro�ts compared to the Bertrand �rm. This is because

investing in abatement technology e¤ectively lowers the per unit of production e­ u-

ent tax for the �rm making it more aggressive in the product market competition.

Furthermore, starting from the same level of anti-pollution technology an identical

improvement in the abatement technology increases the supply of the Cournot �rm

by more than the increase in the supply of its Bertrand rival, hence making the

Cournot �rm relatively more aggressive than the Bertrand �rm.

Moreover, we show that when a range of abatement technologies is available to

the �rms the total output in the market will increase while total emissions decrease,

thus increasing consumer welfare. This result is also con�rmed in pure Cournot and

pure Bertrand oligopolies. Finally, we show that �rms choose a greener technology

when engage in quantity competition (i.e., pure Cournot) than in price competition

(i.e., pure Bertrand). In Section 2 we develop the Cournot-Bertrand model in the

presence of emission taxes and abatement technology choice, and we derive the rele-

vant results. In Section 3 we conduct the same analysis for the pure Cournot and pure

Bertrand oligopolies and we extend our �ndings on the connection between abate-

ment technology choice and the type of competition. In addition, we provide some

numerical results on welfare comparisons between the di¤erent types of oligopolies.

Finally, Section 4 concludes.
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2 The model

Following Tremblay and Tremblay (2011), we consider a Cournot-Bertrand oligopoly

market where two �rms i = 1; 2 produce a di¤erentiated product. Without loss of

generality, we assume that �rm 1�s strategic variable is quantity facing an inverse

demand

p1 = (1� d) a�
�
1� d2

�
q1 + dp2 (1)

while �rm 2�s strategic variable is price facing a demand

q2 = a� p2 � dq1 (2)

where a > 0 represents the size of the market and d 2 (0; 1) represents the degree of
product di¤erentiation.2

Both �rms� costs are assumed equal to zero, without loss of generality. The

production process generates emissions ei at a rate of one emissions unit for each

unit of output. The regulator taxes emissions at a rate t > 0 thus creating an

additional cost T = tei to each �rm. Both �rms have access to a technology allowing

the reduction of the emissions rate per unit of output from 1 to ki 2 [0; 1] at a cost
CAi = 
 (1� ki)2, where 
 > 0 is a scale parameter. This cost represents diminishing
returns to investment in environmental technology.3 The closer to unit the value of

technology ki is, the lower the adoption cost and the more polluting the technology

will be (see also Asproudis and Gil Molto, 2014 and 2015, and Asproudis et al. 2018).

Hence, there is a trade-o¤ between the cost of adapting greener technology and the

reduced amount of the environmental tax. Furthermore, the actual emissions of �rm

i are ei = kiqi. In this set up �rm i�s total cost function is given by

Ci = 
(1� ki)2 + tkiqi (3)

2We are not considering the trivial case of two independent monopolies, i.e. d = 0. Also excluded
from our analysis is the case of a homogeneous product, i.e. d = 1.

3In our case the technological choice is irrelevant (at least directly) to the production process.
For example, the anti-pollution technology could be the number of the �lters in the pipe or the
catalysts in the exhaust for the restraint of the particulate matters or carbon emissions.
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and the corresponding pro�t function is

�i = piqi � 
 (1� ki)2 � tkiqi (4)

Competition in this model can be described as a two-stage game. Prior to the

�rst stage, the regulator chooses ad-hoc the environmental tax. At the �rst stage,

�rms choose their anti-pollution technologies. At the second stage, given the observ-

able choices made in the �rst stage, �rms compete in the output market. For the

remainder of Section 2 we are adopting the following restrictions:


 > b
 = 2t2

4� 3d2

and

a > ba = 4� d (2 + 2d� 2d2 � d3)
(1� d2)(2� 2d+ d2) t > 2t

The former is su¢ cient to ensure positivity of the market outcomes and the lat-

ter non-negativity of the technological indexes. We are adopting these constraints

throughout Section 2 of this paper.

2.1 Stage 2: Firms compete in the output market

Given their anti-pollution technology, �rms maximize their pro�ts, as expressed by

(4), by optimally choosing the level of output q1 (�rm 1) and price p2 (�rm 2). The

�rst order conditions (FOCs)4 of the pro�t maximization problems yield the following

reaction functions:

qRF1 =
a(1� d) + dp2 � tk1

2(1� d2) (5)

pRF2 =
1

2
(a� dq1 + tk2) (6)

Interestingly, di¤erentiating the above reaction functions with respect to the re-

4The Second Order Conditions (SOCs) are satis�ed since @2�i
@q2i

= 2(d2 � 1) < 0,8d 2 (0; 1).
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spective technologies yields @qRF1 =@k1 = �t= (2(1� d2)) < 0 and @pRF2 =@k2 = t=2 >

05 which implies the fact that by adopting a "greener" technology a �rm becomes

more aggressive, i.e., increase the quantity willing to o¤er in the market for any given

choice of its rival.6 Furthermore, since
��@qRF1 =@k1

�� > ���@q2=@pRF2 � �
@pRF2 =@k2

���,
starting from the same level of anti-pollution technology an equal reduction in k in-

creases the supply of �rm 1 by more than the increase in the supply of �rm 2, hence

making �rm 1 relatively more aggressive than �rm 2.

Solving simultaneously the system of the reaction functions (5), (6) we obtain

q1 =
a(2� d)� (2k1 � dk2)t

4� 3d2 (7)

p2 =
a(2� d� d2) + (2(1� d2)k2 + dk1)t

4� 3d2 (8)

Substituting the above in (1), (2), and (4) we get

p1 =
a(2� d� 2d2 + d3) + ((2� d2)k1 + d(1� d2)k2)t

4� 3d2 (9)

q2 =
a(2� d� d2) + (dk1 � (2� d2)k2)t

4� 3d2 (10)

�1 =
�
1� d2

��a(2� d)� (2k1 � dk2)t
4� 3d2

�2
� 
 (1� k1)2 (11)

�2 =

�
a(2� d2 � d) + (dk1 � (2� d2)k2)t

4� 3d2

�2
� 
 (1� k2)2 (12)

Replacing k1 = k2 = 1 in the above expressions yields the respective quantities,

prices, and pro�ts if no anti-pollution technology is adopted, namely qoi , p
o
i , and

�oi , i = 1; 2. Moreover, it is straightforward to con�rm that in the absence of anti-

pollution technology qo1 > q
o
2, p

o
1 < p

o
2, and �

o
1 > �

o
2, i.e., the Cournot �rm produces

more, charges less and obtains higher pro�ts compared to its Bertrand rival.

5From the demand function of �rm 2 we get
�
@q2=@p

RF
2

�
= 1. Therefore, @q2=@k2 =�

@q2=@p
RF
2

� �
@pRF2 =@k2

�
= �t=2 < 0.

6The reader should be reminded here that lower ki implies greener technology.
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2.2 Stage 1: Firms choose technology

In stage 1 �rms 1 and 2 are maximizing their pro�ts, expressed by equations (11)

and (12), by optimally choosing their respective technological parameter, ki. Pro�t

maximization yields the following reaction functions

kRF1 =

 (4� 3d2)2 � 2t(1� d2)(2a� ad+ dtk2)


 (4� 3d2)2 � 4t2 (1� d2)
(13)

kRF2 =

 (4� 3d2)2 � t(2� d2)(a(2� d� d2) + dtk1)


 (4� 3d2)2 � t2 (2� d2)2
(14)

Under the assumption that 
 > b
 both reaction functions are negatively sloped
implying that k1 and k2 are strategic substitutes to each other. Solving simultane-

ously the reaction functions system in (13), (14) we obtain

k�1 = 1�
2 (1� d2) ((2� d) (4� 3d2) 
 � (2� d2) t2) (a� t) t

(4� 3d2)
�
(4� 3d2)2 
2 � (8� 8d2 + d4)
t2

�
+ 2 (2� 3d2 + d2) t4

(15)

k�2 = 1�
(1� d) (2� d2) ((2 + d) (4� 3d2) 
 � 2 (1 + d) t2) (a� t)t

(4� 3d2)
�
(4� 3d2)2 
2 � (8� 8d2 + d4)
t2

�
+ 2 (2� 3d2 + d2) t4

(16)

Substituting k�1 and k
�
2 in equations (7), (8), (9), (10), (11) and (12) we can get

the output level, the price and the pro�ts of each �rm, respectively.

2.3 Results

In this section we �rst explore the �rms�choices of anti-pollution technologies as well

as their resulting levels of production, prices, and pro�ts. We state the following

Proposition 1 Let d 2 (0; 1), t > 0, a > ba > 2t, and 
 > b
. Then the Cournot
�rm is choosing a greener anti-pollution technology, producing more, charging less

and earning higher pro�ts compared to its Bertrand rival, i.e.,
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(a) k�1 � k�2 < 0,

(b) q�1 � q�2 > 0,

(c) p�1 � p�2 < 0, and

(d) ��1 � ��2 > 0.

Proof. See the appendix.
The result of Proposition 1 can be intuitively explained: investing in abatement

technology in the �st stage e¤ectively lowers the per unit of production e­ uent tax

for the �rm making it more aggressive in the product market competition. As ex-

plained earlier, �rm 1 becomes relatively more aggressive than �rm 2. This strategic

advantage of the Cournot �rm implies that it will invest more on abatement technol-

ogy and, consequently, produce more, charge less, and earn higher pro�ts compared

to its Bertrand rival.

While a full welfare analysis is analytically intractable we examine the implica-

tions from introducing abatement technologies on consumer welfare. We state the

following

Corollary 2 Let d 2 (0; 1), t > 0, a > ba > 2t, 
 > b
, and k�1 � k�2 < 0. Then the
availability of an abatement technology in the industry will result in (i) q�1 + q

�
2 >

qo1 + q
o
2, and (ii) e

�
1 + e

�
2 < e

o
1 + e

o
2.

The �rst part of Corollary 2 shows that the introduction of anti-pollution tech-

nologies increases the competition between the two �rms resulting in higher total

output in the market. The second part of Corollary 2 shows that the introduction of

anti-pollution technologies reduces total emissions despite its positive e¤ect in total

output. Higher output and lower emissions imply that consumer welfare increases

with the availability of anti-pollution technology.
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3 Cournot and Bertrand Oligopolies

In this section we consider the choice of abatement technology in case where (a) the

two �rms simultaneously choose quantities (i.e., pure Cournot), and (b) the two �rms

simultaneously choose prices (i.e., pure Bertrand). The demand and inverse demand

functions of the two �rms in the Bertrand and Cournot duopolies are, respectively:

qi =
(1� d) a� pi + dp�i

1� d2 ;

pi = a� qi � dq�i;

where i = 1; 2. As in the previous section the stage where the two �rms simulta-

neously choose abatement technologies precedes the stage of �nal product market

competition, whether the latter is a la Cournot or a la Bertrand. The following two

subsections summarize the analytical results.

3.1 Cournot

Solving for the Subgame Perfect Nash Equilibrium in the pure Cournot model yields

the optimal level of abatement technology for �rm i = 1; 27in Stage 1:

kC�i = 1� 2t (a� t)
(2� d)(2 + d)2
 � 2t2

Substituting kC�i into the relevant equations of Stage 2 yield the output level qC�i ,

the price pC�i , the emissions e
C�
i , and the pro�ts �

C�
i of each �rm. Let also qCoi , p

Co
i ,

eCoi , and �
Co
i indicate the quantity, the price, the emissions, and the pro�ts, respec-

tively, when no anti-pollution technology is available. Our �ndings are summarized

7Note that the pure Cournot oligopoly is symmetric.
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in Table 1.

Technology is available Technology is not available

kC�i = 1� 2t(a�t)
(2�d)(2+d)2
�2t2 kCoi = 1

qC�i = (4�d2)(a�t)

(2�d)(2+d)2
�2t2 qCoi = a�t

2+d

pC�i =
(4�d2)(a+(1+d)t)
�2at2

(2�d)(2+d)2
�2t2 pCoi = a+t+dt
2+d

�C�i =

(a�t)2

�
(�4+d2)

2

�4t2

�
((2�d)(2+d)2
�2t2)

2 �Coi =
�
a�t
2+d

�2
eC�i =

(4�d2)((2�d)(2+d)2
�2at)(a�t)

((2�d)(2+d)2
�2t2)2 eCoi = a�t

2+d

Table 1: pure Cournot outcomes

Note that second order condition of the pro�t maximization in Stage 1 requires


 > bb
 = 4t2= (4� d2)2.
3.2 Bertrand

Solving for the Subgame Perfect Nash Equilibrium in the pure Bertrand model yields

the optimal level of abatement technology for �rm i = 1; 28in Stage 1:

kB�i = 1� (2� d2) (a� t) t
(2� d)2(1 + d)(2 + d)
 � (2� d2)t2

Substituting kB�i into the relevant equations of Stage 2 yield the output level qB�i ,

the price pB�i , the emissions e
B�
i , and the pro�ts �

B�
i of each �rm. Let also qBoi , p

Bo
i ,

eBoi , and �
Bo
i indicate the quantity, the price, the emissions, and the pro�ts, respec-

tively, when no anti-pollution technology is available. Our �ndings are summarized

8Note that the pure Bertrand oligopoly is symmetric.
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in Table 2.

Technology is available Technology is not available

kB�i = 1� (2�d2)(a�t)t
(2�d)2(1+d)(2+d)
�(2�d2)t2 kBoi = 1

qB�i = (4�d2)(a�t)

(2�d)2(1+d)(2+d)
�(2�d2)t2 qBoi = a�t

2+d�d2

pB�i =
(4�d2)(1+d)((1�d)a+t)
�a(2�d2)t2

(2�d)2(1+d)(2+d)
�(2�d2)t2 pBoi = a�ad+t
2�d

�B�i =

�
(4�d2)

2
(1�d2)
�(2�d2)

2
t2
�
(a�t)2


((2�d)2(1+d)(2+d)
�(2�d2)t2)
2 �Boi = (1�d)(a�t)2

(1+d)(2�d)2

eB�i =
(4�d2)((2�d)2(1+d)(2+d)
�a(2�d2)t)(a�t)


((2�d)(2+d)2
�2t2)2 eBoi = a�t
2+d�d2

Table 2: pure Bertrand outcomes

Note that second order condition of the pro�t maximization in Stage 1 requires


 > ee
 = (2� d2)2 t2=�(1� d2) (4� d2)2�.
3.3 Results

In this section we �rst explore the �rms�choices of anti-pollution technologies in pure

Cournot compared to pure Bertrand oligopoly. We state the following

Proposition 3 Let d 2 (0; 1), t > 0, a > 2t, and 
 > ee
 > bb
. Then the �rms in
a pure Cournot oligopoly are choosing a greener anti-pollution technology than in a

pure Bertrand oligopoly, i.e., kC�i � kB�i < 0.

Proof. See the appendix.
The intutive explanation of Proposition 3 is similar to that of proposition 1. Start-

ing from the same anti-pollution technology, an identical improvement in abatement

technology will increase the supplies of Cournot rivals by more than the increase in

supplies of Berttrand rivals,9 hence making Cournot �rms relatively more aggressive

than Bertrand �rms.
9It can be shown that in the second stage of pure Cournot and pure Bertrand oligopolies we

get we get @qCRFi =@ki = �t=2 < 0 and @pBRFi =@ki = t=2 > 0 )
�
@qi=@p

BRF
i

� �
@pBRFi =@ki

�
=

�
�
1� d2

�
t=2 < 0, correspondingly. Hence

��@qCRFi =@ki
�� > ���@qi=@pBRFi

� �
@pBRFi =@ki

���.
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Furthermore, we examine the implications from introducing abatement technolo-

gies on consumer welfare in Cournot and Bertrand oligopolies. We state the following

Corollary 4 Let d 2 (0; 1), t > 0 and a > 2t. Also, let 
 > 4t2

(4�d2)2 for the Cournot

Oligopoly (
 > (2�d2)t2

(1�d2)(4�d2)2 for the Bertrand oligopoly). Then the availability of an

abatement technology in the Cournot (Bertrand) industry will result in (i) qC�i > qCoi

(qB�i > qBoi ), and (ii) e
C�
i < eCoi (qB�i > qBoi ).

The �rst part of Corollary 4 shows that the introduction of anti-pollution tech-

nologies increases the competition between the two �rms in a pure oligopoly resulting

in higher total output in the market. The second part of Corollary 4 shows that,

for the optimal level of anti-pollution technology, the rate of abatement exceeds the

rate at which production increases. Hence, the overall pollution decreases. Similar

to the Cournot-Bertrand oligopoly, the availability of anti-pollution technology in

pure Cournot and pure Bertrand oligopolies increases consumer welfare.

We also compare

(i) the anti-pollution choice of the Cournot (Bertrand) �rm in the Cournot-Bertrand

oligopoly with that of a �rm in pure Cournot, and

(ii) the anti-pollution choice of the Bertrand �rm in the Cournot-Bertrand oligopoly

with that of a �rm in pure Bertrand.

We could not derive an analytical result with respect to (i). However, numerical

analysis shows that the lower the degree of product di¤erentiation is and the higher


 is, it is more likely that the Cournot �rm in pure Cournot oligopoly will choose

a greener abatement technology compared to the Cournot rival in the Cournot-

Bertrand oligopoly. This is illustrated in Figure 1 where the di¤erence k�1 � kC�i is

drawn as a function of d, for a = 1000, t = 2, and three di¤erent values of 
.

With respect to (ii) we state the following

Proposition 5 Let d 2 (0; 1), t > 0, a > 2t, and 
 > ee
 > bb
. Then a �rm in pure

Bertrand oligopoly is choosing a greener anti-pollution technology than a Bertrand

rival in the Cournot-Bertrand oligopoly, i.e., kB�i � k�2 < 0.
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Figure 1: Comparison on abatement technologies between the Cournot �rm in
Cournot-Bertrand and a �rm in pure Cournot: 
 = 8 (blue line), 
 = 10 (red
line) and 
 = 14 (green line).

Proof. See the appendix.
This section concludes with a numerical illustration of our �ndings. To include

welfare comparisons we assume that environmental damage is a quadratic function

of total emissions, i.e.,

ED = � (e1 + e2)
2

where � > 0 is a parameter of perceived environmental damage and ei = kiqi denotes

the actual emissions of a �rm. We set the parameter values as follows: a = 100,

t = 2, 
 = 60, d = 0:5, and � = 1. Table 3 summarizes the results for the three

di¤erent types of competition con�rming our �ndings.

14



Cournot Bertrand Cournot-Bertrand

k1 0.293057 0.312969 0.294021

k2 0.293057 0.312969 0.314113

q1 39.7656 44.1662 45.8886

q2 39.7656 44.1662 38.2137

p1 40.3517 33.7506 35.0045

p2 40.3517 33.7506 38.842

�1 1551.31 1434.67 1549.42

�2 1551.31 1434.67 1432.06

PS 3102.62 2869.34 2981.48

CS 2371.95 2925.99 2659.82

TR 46.6143 55.2907 50.9913

ED 543.222 764.267 650.028

W 4977.97 5086.36 5042.26

Table 3: Summary of results

It is worth to be noted that the three types of oligopoly cannot be welfare ranked

in the presence of quadratic environmental damages. Table 4 provides welfare results

for a = 100, t = 2, 
 = 60, d = 0:5, and di¤erent values of � and the repective welfare

rankings.

WC WB WCB Ranking

� = 1:0 4977.97 5086.36 5042.26 WB > WCB > WC

� = 1:5 4706.36 4704.22 4717.25 WCB > WC > WB

� = 2:0 4434.74 4322.09 4392.23 WC > WCB > WB

Table 4: Welfare result of the three oligopolies

4 Conclusions

The present paper analyses the abatement technology choice in a two-stage duopoly

with choice of technology at the �rst stage and three di¤erent types of competition

at the second stage, namely, Cournot-Bertrand, pure Cournot, and pure Bertrand.
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In the �rst stage the two �rms unilaterally decide upon adopting some anti-pollution

technology, e.g., the number of the catalysts or the �lters for the restraint of the

emissions and then they compete in the output market. Our analysis shows that

the Bertrand �rm chooses dirtier technology than its Cournot rival, while the latter

produces more, charges less and earns higher pro�ts. Furthermore, when competing

in quantities (Cournot) �rms choose greener technologies than when competing in

prices (Bertrand). This is because higher abatement rates make a �rm choosing

quantity relatively more aggressive than a �rm choosing price, irrespective of the

strategic variable of its rival.

Moreover, it is shown that the introduction of abatement technologies increases

total output in the market and decreases total emissions, thus increasing consumer

welfare. Full welfare analysis is analytically intractable in our model. However, using

numerical analysis we show that the three types of oligopolies cannot be welfare

ranked.

Our analysis in the present paper focuses only on environmental taxes. However,

we are currently investigating other environmental policy instruments (e.g., trade-

able emission permits, emission standards) and their e¤ect on the Cournot-Bertrand

competition in comparison with the pure Cournot and pure Bertrand respectively.
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Appendix

Proof of Proposition 1. We calculate the following di¤erence

k�1 � k�2 =
�A
td3 (a� t) (1� d)

B
(17)

where B = 
2 (4� 3d2)3 � 
 (4� 3d2) (8� 8d2 + d4) t2 + 2 (2� 3d2 + d4) t4. Given
d 2 (0; 1) and a > ba > 2t the numerator of the above di¤erence is negative. There-
fore, it su¢ ces to show that B > 0. We get B > �
t2 (4� 3d2) (8� 8d2 + d4) +

2 (4� 3d2)3 = 
 (4� 3d2)

�

 (4� 3d2)2 � t2 (8� 8d2 + d4)

�
. However, by assump-

tion 
 > 2t2

4�3d2 ) 
 (4� 3d2)
�

 (4� 3d2)2 � t2 (8� 8d2 + d4)

�
> 
 (4� 3d2) (2t2 (4� 3d2)� t2 (8� 8d2 + d4)) =


d2t2 (4� 3d2) (2� d2) > 0. Hence B > 0.
In addition, we calculate the following di¤erences

q�1 � q�2 =

Ad2(a�t)(
A�t2)

B
(18)

p�1 � p�2 =

d2A(1�d)(a�t)(t2�A
)

B
(19)

��1 � ��2 =

d3A(1�d)(a�t)2(t2�A
)((1+d)(8�4d�4d2+d3)t2�2A2
)

B2
(20)

As proven above the denominators in (18), (19), and (20) are positive. Moreover,

� the numerator in (18) is positive since a > t, and, by assumption, 
 > 2t2

4�3d2 )

A > 2t2 > t2. Therefore, q�1 � q�2 > 0.

� the numerator in (19) is negative since all the factors are positive except the last
one, where 
 > 2t2

4�3d2 ) 0 > 2t2 � 
A) 0 > t2 � 
A. Therefore, p�1 � p�2 < 0.

� the numerator in (20) is positive since (1� d) > 0, (a� t)2 > 0, t2 � 
A < 0,
and (1 + d)(8 � 4d � 4d2 + d3)t2 � 2A2
 < (8 � 4d � 4d2 + d3)t2 � 2A2
 <
4At2 � 2A2
 = 2A(2t2 � 
A) < 0. Therefore, ��1 � ��2 > 0.
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Proof of Corollary 2. (i) We get

(q�1 + q
�
2)� (qo1 + qo2) =

(2� k1 � k2) (2� d) t� d2(1� k2)t
(4� 3d2)

Note that, since 0 < d < 1, the denominator is positive. Therefore, the sign of this dif-

ference depends on the sign of the numerator. Wemust show that (2� k1 � k2) (2� d) t�
d2(1 � k2)t > 0 ) (2� k1 � k2) (2� d) � d2(1 � k2) > 0 ) (2� k1 � k2) (2� d) >
d2(1� k2)) (2�k1�k2)

(1�k2) > d2

(2�d) . However, due to k1 < k2 we get

(2� k1 � k2)
(1� k2)

>
2 (1� k2)
(1� k2)

>
d2

(2� d) )

(2� k1 � k2)
(1� k2)

> 2 >
d2

(2� d)

(ii) We get

(e�1 + e
�
2)� (eo1 + eo2) =

=
a(4�2d�d2�2k1�2k2+dk2+d2k2+dk1)�t(4�2d�d2�2k21+d2k22�2k22+2dk1k2)

3d2�4

Note that the denominator is negative. We denote M the numerator of the above

expression. Given that a > 2t and 4� 2d� d2� 2k1� 2k2+ dk1+ dk2+ d2k2 > 0 we
get

M > 2t
�
�2d� 2k1 � 2k2 + dk1 + dk2 + d2k2 � d2 + 4

�
+

+t
�
2d� d2k22 + 2k21 + 2k22 + d2 � 2dk1k2 � 4

�
=

= t
�
4� 2d� d2 � d2k22 � 2dk1k2 � 4k1 � 4k2 + 2dk1 + 2k21 + 2k22 + 2dk2 + 2d2k2

�
>

> t
�
2k1 + 4k2 � d2k22 � 2dk1 � 2dk2 + 2k21 + 2k22 � 2d2k2 � 2dk1k2

�
>

> t
�
2k21 + 2k

2
2 � 2dk1k2 � d2k22

�
+ 2t

�
2� d2 � d

�
k2 > 0

21



Proof of Proposition 3. We calculate the following di¤erence

kC�i � kB�i = � d3 (4� d2) 
 (a� t) t�
(2� d) (2 + d)2 
 � 2t2

�
� �

(21)

where � = (2 � d)2(1 + d)(2 + d)
 � (2 � d2)t2. Given d 2 (0; 1) and a > t the

numerator of the above di¤erence is positive. Therefore, it su¢ ces to show that the

denominator is also positive. Note that


 >
(2� d2)2 t2

(4� d2)2 (1� d2)

Hence,

� the left term in brackets in the denominator is positive since

2 (4� d2)2 (1� d2)
(2� d2)2


 =
2 (1� d2) (2� d)

(2� d2)2
(2� d) (2 + d)2 
 > 2t2

But

�2
�
d2 + 1

�
< d3 )

4� 2d� 4d2 � 2d3 < d4 � 4d2 + 4)

2
�
1� d2

�
(2� d) <

�
2� d2

�2 )
2 (1� d2) (2� d)

(2� d2)2
< 1

Therefore,

(2� d) (2 + d)2 
 > 2 (1� d2) (2� d)
(2� d2)2

(2� d) (2 + d)2 
 > 2t2 )

(2� d) (2 + d)2 
 � 2t2 > 0
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� � is positive since

(4� d2) (1� d2)
(2� d2) 
 =

(2 + d) (1� d)
(2� d2) (2� d)2 (2 + d) (1 + d) 
 >

�
2� d2

�
t2

But

d > 0) d2 + d� 2 > d2 � 2) � (2 + d) (1� d) > �
�
2� d2

�
)

(2 + d) (1� d)
(2� d2) < 1

Therefore,

(2� d)2 (2 + d) (1 + d) 
 > (2 + d) (1� d)
(2� d2) (2� d)2 (2 + d) (1 + d) 
 )

(2� d)2 (2 + d) (1 + d) 
 >
�
2� d2

�
t2

(2� d)2(1 + d)(2 + d)
 � (2� d2)t2

Proof of Corollary 4.

� Cournot oligopoly: (i) We get

qC�i � qCoi =
(a� t)2t2

(2� d)(2 + d)3
 � 2(2 + d)t2

Note that, since a > t the numerator is positive. Therefore, it su¢ ces to show

that the denominator is also positive. Note that


 >
4t2

(4� d2)2
)
�
4� d2

�2

 > 4t2 >

�
4� d2

�
t2 )

2 (2 + d)2 (2� d) 
 > 2 (2 + d) t2 ) 2

(2 + d)
(2 + d)3 (2� d) 
 > 2 (2 + d) t2
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But 2= (2 + d) < 1. Therefore,

(2� d)(2 + d)3
 > 2(2 + d)t2 ) (2� d)(2 + d)3
 � 2(2 + d)t2

(ii) We get

eC�i � eCoi = �
2 (a� t) t

�
(a� 2t) (2� d) (2 + d)2 
 + 2t3

�
(2 + d)

�
(2� d) (2 + d)2 
 � 2t2

�2
Note that the denominator is positive as a product of a square by a positive number.

Moreover, since a > 2t and d 2 (0; 1) all the terms of the numerator are positive.
Therefore, the ratio is negative due to the negative sign.

� Bertrand oligopoly: (i) We get

qB�i � qBoi =
(2� d2) (a� t) t2

(2� d) (1 + d)
�
(2� d)2 (2 + d) (1 + d) 
 � (2� d2) t2

�
Since a > t and d 2 (0; 1) the numerator is positive. Moreover, (2� d) (1 + d) >
0. Therefore, it su¢ ces to show that the term in brackets in the denominator

is also positive. Note that


 >
4t2

(4� d2)2
)
�
4� d2

�2

 > 4t2 >

�
4� d2

�
t2 )

(4� d2) (1� d2)
(2� d2) 
 =

(2 + d) (1� d)
(2� d2) (2� d)2 (2 + d) (1 + d) 
 >

�
2� d2

�
t2

But

d > 0) d2 + d� 2 > d2 � 2) � (2 + d) (1� d) > �
�
2� d2

�
)

(2 + d) (1� d)
(2� d2) < 1
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Therefore,

(2� d)2 (2 + d) (1 + d) 
 > (2 + d) (1� d)
(2� d2) (2� d)2 (2 + d) (1 + d) 
 )

(2� d)2 (2 + d) (1 + d) 
 >
�
2� d2

�
t2

(ii) We get

eB�i � eBoi = �
(2� d2)(a� t)t

�
(a� 2t) (2� d)2 (2 + d) (1 + d) 
 + (2� d2)t3)

�
(2� d) (1 + d)

�
(2� d)2 (2 + d)(1 + d)
 � (2� d2)t2

�2
Note that the denominator is positive as a product of a square by a positive number.

Moreover, since a > 2t and d 2 (0; 1) all the terms of the numerator are positive.
Therefore, the ratio is negative due to the negative sign.

Proof of Proposition 5. We calculate the following di¤erence

kB�i � k�2 = �
d4 (2� d2) 
 (a� t) t (d2 (4� 3d2) 
 + (2� d� 2d2) t2)

���

where � = (4� 3d2) 

�
(4� 3d2)2 
 � (8� 8d2 + d4)t2

�
+ 2 (2� 3d2 + d2) t4, and

� = (2� d)2(1+ d)(2+ d)
� (2� d2)t2. Note the all the terms in the numerator are
positive. Therefore, it su¢ ces to show that the denominator is also positive. In the

proof of proposition 3 it is shown that � > 0. Note that

� >
�
4� 3d2

�


��
4� 3d2

�2

 � (8� 8d2 + d4)t2

�
> 


��
4� 3d2

�2

 � (8� 8d2 + d4)t2

�
Therefore,

sign� = sign[
�
4� 3d2

�2

 � (8� 8d2 + d4)t2]

But

�
4� 3d2

�2

 � (8� 8d2 + d4)t2 >

��
4� 3d2

�2 � d6� 
 � (8� 8d2 + d4)t2 )�
4� 3d2

�2

 � (8� 8d2 + d4)t2 >

�
1� d2

� �
4� d2

�2

 � (8� 8d2 + d4)t2 )
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 >
(8� 8d2 + d4)t2

(1� d2) (4� d2)2
>

(2� d2)2 t2

(1� d2) (4� d2)2
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