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Abstract 

A comprehensive vibrational analysis of bi-directional functionally graded (2D-FG) rotating 

nanobeams with porosities is studied for the first time. The beam is modeled based on general 

nonlocal theory (GNT) where the beam governing equations are derived depending on two 

different nonlocal parameters. Unlike Eringen’s conventional form of nonlocal theory, the 

general nonlocal theory can reveal both hardening and softening behaviors of the material. Here, 

the attenuation functions are altered in both transverse and longitudinal directions of 2D-FG 

nanobeam. This feature, which has a significant effect on the vibrational characteristics, has not 

been considered in previous studies. Moreover, to estimate the effects of the higher-order 

transverse shear strains on the vibration of the nanobeam, Reddy’s beam theory (RBT), which 

includes higher-order shear deformation, is employed.  The material properties of the 2D-FG 

rotating nanobeam vary both in the length and thickness directions according to a power law. 

The generalized differential quadrature method (GDQM) is used to predict the vibration 

response. Also, the effects of material variation along the length and thickness directions, the 

rotating velocity of the nanobeam, the porosity volume fraction and the length to thickness ratio 

of the rotating nanobeam are illustrated and discussed in detail. The investigations performed in 

this study expose new phenomena for the vibration of nanobeams.  
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1. Introduction 

Due to the outstanding mechanical, thermal and electrical properties of micro/nano structures, 

their applications in small-scale systems such as microsensors, micro-actuators and micro-

resonators have increased progressively over the past decade. In order to properly design these 

devices and to increase their reliability, the accurate evaluation of the mechanical behavior of 

nanostructures, such as bending, buckling, vibration and wave propagation, is essential. Due to 

the size dependency of the mechanical properties of nanostructures, the classical theories of 

continuum mechanics are incapable of predicting their mechanical behaviors. Therefore, 

scientists have proposed modified elasticity theories to resolve the problem and to extract the 

most accurate results, for example strain gradient elasticity, couple stress, Eringen’s nonlocal 

elasticity and general nonlocal elasticity [1-4]. In recent years, the static and dynamic analysis of 

micro/nano structures has been extensively investigated by many researchers [5-9]. Since beams 

are key elements of most micro/nano structures, the following literature review concentrates on 

investigations into the vibrational behavior of micro/nano beams based on different theories. 

Roque et al. [10] employed Eringen’s nonlocal theory (ENT) to determine the bending, 

buckling and vibrational behavior of nanobeams via Timoshenko beam theory (TBT), using an 

effective meshless method. Ansari et al. [11] studied free vibration of a functional graded 

material (FGM) Timoshenko microbeam based on strain gradient theory (SGT). They compared 

the results obtained via classical theory (CT), modified couple stress theory (MCST), and SGT. 

Thai et al. [12] presented the analysis of the bending, buckling, and vibration of a nanobeam 

based on Eringen’s theory and a shear deformation beam model. Their model is very similar to 

the nonlocal Euler–Bernoulli beam model and does not require a shear correction factor. Aranda-

Ruiz et al. [13] presented the free vibration of a rotating non-uniform nano-cantilever by 

applying ENT. They considered the effects of small-scale nonlocal phenomena and angular 

speed on the vibrational behavior of nanobeams. Sourki and Hosseini [14] considered the 

vibration analysis of a weakened Euler-Bernoulli nanobeam containing surface effects. They 

included nonlocal effects and employed MSCT for their model. Babaei and Rahmani [15] 
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investigated the lateral vibration of a microbeam under thermal stresses based on MCST and 

TBT. Khaniki [16, 17] applied mixed local/nonlocal Eringen elasticity to study the transverse 

vibration behavior of a rotating Euler-Bernoulli cantilever beam.  

Some papers in the literature have focused on rotating functionally graded micro/nano beams. 

FGMs are typically composed of metal and ceramic and continuously alter their material 

composition from one surface to another to attain desirable characteristics. In recent decades, the 

applications of FGMs have increased dramatically and the mechanical behavior of FGM 

micro/nano structures, such as bending, buckling, vibration, and wave propagation, have been 

investigated by many scientists. Ebrahimi and Barati considered the vibration of FG nanobeams 

[18] and flexoelectric nanobeams [19]. Roque et al. [20] presented the influence of small-scale 

parameters on the vibrational behavior of Timoshenko FGM nanobeams. Shafiei and Lin [21] 

studied the vibrational behavior of bi-directional FG nano-tubes with thermal effects. They 

applied a nonlocal strain gradient approach based on higher order theory with GDQM to extract 

the model and the results. Pradhan and Murmu [22] studied the flap-wise bending and vibration 

behavior of a rotating clamped-free nanobeam based on Eringen’s model. Vibrational studies of 

rotating nanobeams, including the effects of an elastic foundation and the thermal environment 

was undertaken by Mohammadi et al. [23]. Ebrahimi and Shafei [24] modeled the vibrational 

behavior of rotating FG nano-beams via ENT. Shafiei et al. [25] investigated the vibrational 

behavior of bi-dimensional FG nanobeams by applying both couple stress and Eringen’s theory 

separately. They considered two different kinds of porous materials with various boundary 

conditions. Recently, Tang et al. [26-29] investigated the mechanical behavior of 2D-FG beams 

and nano-beams, such as nonlinear vibration, post buckling and nonlinear bending. Mirjavadi et 

al. [30] studied the effects of porosity and temperature on the vibrational behavior of bi-

directional FG microbeams; they used MCST and TBT. Ebrahimi and Barati [31] studied the 

vibrational behavior of higher-order FG nanobeams using a nonlocal MCST. Shafiei et al. [32] 

proposed flap-wise bending vibration analysis of a rotary tapered FG nanobeam in a thermal 

environment. They employed ENT and EBT models, utilized the differential quadrature method 

(DQM), and carefully imposed the cantilever boundary conditions.  

Fang et al. [33, 34] developed a three-dimensional model of rotating FG small scale beams, 

using MCST and Euler–Bernoulli beam models. They utilized Lagrange’s equations and the Ritz 

https://www.sciencedirect.com/topics/engineering/three-dimensional-models
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method to model and analyze the axial, chord-wise, and flap-wise motions. Talebitooti et al. [35] 

considered the semi-analytical vibration analysis of a rotating tapered axially FG nanobeam. 

They applied ENT and the differential transformation method to extract the numerical results. 

Bhattacharya and Das [36] investigated the free vibrational behavior of a bi-directional FG 

double-tapered rotating micro-beam. They developed the model on the basis of TBT and MSCT. 

Aria and Friswell [37] investigated a nonlocal FE model for buckling and free vibrational 

behaviors of  FG nanobeams based on a first-order shear deformation beam model. Khaniki [38] 

employed a modified two-phase Eringen’s model to determine the vibrational behavior of axially 

FG Euler-Bernoulli nanobeams. Atanasov and Stojanović [39] studied forced vibration analysis 

of a rotating nonlocal cantilever nano-beam. They utilized ENT and EBT to establish the model 

and applied the Galerkin method and standard modal analysis to extract the results. 

Based on the literature, the applications of rotating micro/nanostructures including micro/nano 

multiple gear systems, micro/nano gears, micro/nano turbines, micro/nano blades, micro/nano 

rotating rings and micro/nano robots have been developed extensively. For instance, cantilever 

nano beams have been employed in atomic microscopes and accelerometers, and clamped-

clamped beams are utilized in micro-mirror systems. Kiani and Soltani [40] investigated the 

longitudinal, flap-wise, and chord-wise vibrational behavior of rotary doubly coaxial/non-coaxial 

nano beams as nano motors. They developed the governing equations using nonlocal Rayleigh 

and Timoshenko beams. Yang et al. [41] presented the nonlinear bending, buckling and vibration 

of nano-beams. They employed a nonlocal Euler-Bernoulli beam model and von Karman 

geometric nonlinearity to establish the governing equation of motion, and utilized DQM to 

extract the results. 

Recently, Shaat [4, 42] confirmed that ENT has some serious limitations for materials with 

different nonlocal transverse and longitudinal behavior; hence they proposed the general 

nonlocal theory (GNT). The GNT is established on the basis of the difference between the shear 

and normal strains in the nonlocal fields. The transverse and the longitudinal acoustic dispersions 

of materials can be considered simultaneously in GNT. Also, GNT can model the effects of 

Poisson’s ratio on the mechanical behavior of different materials [43, 44]. 

The literature demonstrates that the existing investigations on the vibrational behavior of FG 

small-scale beams are based on ENT, SGT and MCST. But GNT has not yet been considered for 

https://www.sciencedirect.com/topics/engineering/first-order-shear-deformation-theory
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the analysis of the vibrational behavior of micro/nano-beams in any contribution. Furthermore, a 

comprehensive study including the higher-order-shear deformation beam model, 2D FGM 

materials, a rotating nano-beam with CC boundary conditions, and general nonlocal elasticity has 

not been developed.  

In this study, a comprehensive vibrational analysis of 2D-FG rotating nanobeams with 

porosities is developed based on GNT and RBT for the first time. For this purpose, a novel 

hybrid model considering the long-range interatomic, as well as the 2D-FG porous model, is 

developed. The interatomic reaction problem is included in the modeling of size-dependent 

structures via GNT. The 2D-FG porous material model is considered due to the porosity of the 

material, which includes the effects via power indices of the FG along both the thickness (nz) 

and length (nx) directions. GDQM is used to obtain the numerical solutions; GDQM is preferred 

over finite element analysis due to its faster convergence and reduced computational 

requirements. Moreover, a parametric investigation is used to indicate the effects of different 

nonlocal parameters, and the 2D-FG power indices (nx and nz), on the vibration of 2D porous 

rotating nanobeams. 

 

2- Governing Equations of Motion 
 

2.1. 2D-FG Material 

As shown in Fig. 1, the nano blades are considered to be 2D-FG rotating nanobeams and 

composed of ceramic and metal whose volume fraction changes in both the z and x directions; 

therefore, the material configuration alters along both the axial and thickness directions. Hence, 

the mechanical properties of the nanobeams, such as Lame’s constants, alter along the 

longitudinal (x-axis) and thickness directions (z-axis).  
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Fig 1. Schematic of the 2D-FG nanobeam rotating with angular velocity     

 

The porous 2D-FG nanobeam is assumed to have either even or uneven porosity distributions 

across thickness of the beam. For a 2D-FG nanobeam with an even diffusion of porosities, 

Lame’s constants and mass density are expressed as: 
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The     and     subscripts are the metal and ceramic properties respectively,    and    

denote the power law indices and   is the porosity volume fraction. If    ,      and    

 , the nano beam is constructed from pure ceramic. 

The displacement field at point (x, z) of the nanobeam is stated based on RBT as: 
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where   ,    and   represent the longitudinal displacement, the transverse displacement and the 

rotation of the cross section at x point, respectively. The strains in the Reddy beam model are 

defined as: 

 

           
      

  
  

     

  
 

 

   
   

     

  
 

      

        
   

     
   

      
   

 

           
     

  
      

 

  
        

     

  
     

   
      

   
 

(3) 

 

Hamilton’s principle is employed to establish the governing equations, expressed by: 
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where   and   denote the kinetic energy and strain energy respectively, and   indicates the 

work done by the external forces. The variation of the strain energy can be computed as: 
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Substituting Eq. (3) into Eq. (5) and, after some simplification, yields: 
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The work one by the external forces,   , can be evaluated as: 
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Here,      is the external applied force due to the centrifugal loads due to rotation, and   and   

indicate the axial and transverse loads.      is calculated as: 
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where       and     are the mass density, the breadth of the beam cross section, the hub radius, 

and the rotating speed, respectively.  

The variation of the virtual kinetic energy for the homogeneous nanobeam is defined as: 
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where                and    are calculated as: 
 

                                            
 

   (12) 

 

Substituting Eqs. (7), (9) and (11) into Eq. (4) and setting the coefficients of    ,    and    to 

zero, the equations of motion are obtained as:  
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with boundary conditions 
 

                        

                      
(14) 
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where        
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2-2. GNT Review  

A novel nonlocal theory named GNT was developed by Shaat [4, 42], which is based on the 

difference between the shear and normal strains in the nonlocal fields. Unlike ENT, GNT utilizes 

two different nonlocal factors. Based on GNT [4, 42], the nonlocal stress field at each point in 

the equilibrium equation can be expressed in the following form: 

 

                                                       

 

 (15) 

 

where      indicates the nonlocal stress field that is expressed based on the two different nonlocal 

factors,      
      and      

     . Also,     
 

 
            defines the nonlocal strain 

field, and   and   are the Lame constants of the material, given in Eq. (1). The equilibrium 

equations of GNT and classical theory are the same. However, the stress field relevant to GNT is 

constructed based on the interatomic interactions. 

In GNT, to establish the differential form of the constitutive equations of the nonlocal theory, 

two differential operators are applied as follows [4]:  

 

                        and        
                (16) 

 

where   is the Dirac-delta function and    and    are the differential operators [4]: 
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where    is the Laplacian gradient operator      
  

    . In Eqs. (17) and (18),    and    denote 

the constant nonlocal coefficients, which are constrained by              and         

    , where   is a lattice constant that depends on the crystal structure of the material. The 

differential equation of the general nonlocal model is then represented by: 
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         (19) 

 

According to the constitutive equations represented by Eq. (19), the transverse and the 

longitudinal acoustic dispersions of the material can be considered simultaneously in GNT and 

this demonstrates the superiority of GNT over Eringen’s nonlocal theory [4]. On the basis of 

GNT presented in Eq. (19), the nonlocal constitutive relations can be expressed as: 
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To establish the governing equations of motion for rotating nanobeams, the force strain,    , 

and the moment strain,    , are first defined in terms of the displacements, using Eq. (4), as:  

 

      
        

   

       
      

  

  
      

 

   
    

  

  
 

 

   
   

   

   
 

             
  

  

  
       

 

   
     

  

  
 

 

   
    

   

   
  

      
        

   

       
      

  

  
      

 

   
    

  

  
 

 

   
   

   

   
 

               

  

  
       

 

   
     

  

  
 

 

   
    

   

   
  

      
        

   

       
      

  

  
      

 

   
    

  

  
 

 

   
   

   

   
 

               

  

  
       

 

   
     

  

  
 

 

   
    

   

   
  

      
        

           
       

 

  
       

  

  
  

      
        

           
       

 

  
       

  

  
  

 

 

 

 

(21-a) 

 

 

 

(21-b) 

 

 

 

(21-c) 

 

 

(21-d) 

 

(21-e) 

 

where 

 

                                                      
 

  (22) 
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Based on the definition in Eq. (10),    and    can be obtained by combining Eqs. (21-b) and 

(21-c) and (21-d) and (21-e) respectively as follows:  
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Then, by multiplying Eq. (14) by       
        

   and utilizing Eqs. (21) and (23), the 

governing equations of motion of the rotating nonlocal beam are obtained in terms of the 

displacements as:  
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Equations (25) to (27) can be rewritten as: 
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(30) 

where 

             

  
     

       
  

             

 

   
  

                      (31) 

It should be noted that in a 2D-FG nano beam, the material configuration alters along both the 

longitudinal and the thickness directions. The nonlocal parameters    and    also alter along 

longitudinal (x-axis) and thickness (z-axis) directions, similarly to the other mechanical 

properties, as: 

                            
 

 
 

 

 
 

  

 
 

 
 

  

 
 

 
                   (32a) 

                            
 

 
 

 

 
 

  

 
 

 
 

  

 
 

 
                   (32b) 



 1 
 2 
 3 
 4 
 5 
 6 
 7 
 8 
 9 
10 
11 
12 
13 
14 
15 
16 
17 
18 
19 
20 
21 
22 
23 
24 
25 
26 
27 
28 
29 
30 
31 
32 
33 
34 
35 
36 
37 
38 
39 
40 
41 
42 
43 
44 
45 
46 
47 
48 
49 
50 
51 
52 
53 
54 
55 
56 
57 
58 
59 
60 
61 
62 
63 
64 
65 

 15 

where the     and     subscripts denote the metal and ceramic properties respectively.  

 

3. Solution Procedure 

3.1. Generalized Differential Quadrature Method 

The GDQM is an efficient and robust numerical solution technique, and hence is adopted to 

solve the equations of motion of the 2D-FG rotating nanobeam and to extract the results. Based 

on GDQM, the domain of the nanobeam is discretized into    mesh points in the x direction. The 

mesh points are generated by the Chebyshev–Gauss–Lobatto distribution to give: 

   
 

 
       

   

    
                     (33) 

To implement the GDQM, all of the derivatives of      at each mesh point ix  are defined via a 

linear weighted sum as: 

      

   
           

    
     

  
            (34) 

 

where           and    
    

 are weighting coefficients corresponding to the     order 

derivative with respect to x. The weighting coefficients for the first order derivative are: 

  

   
    

 

 
 
 

 
 

     

            
           

     
    

           
  
   
   

         (35) 

where       are the Lagrangian polynomials given by: 

              
  
   
   

         (36) 

The weighting coefficients for higher order derivatives can be calculated as [45]: 

   
   

     
     

   
     

             (37) 

The solution of the equations of motion are assumed to be of the form: 

                     

                             (38) 

                     

where   is the natural frequency and      . Using GDQM principles, the governing 

equations of motion (Eqs. (28) to (30)) are discretized to give the following equations: 
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            (41) 

 

where         ,          and         . 

Equations (39) and (41) can be rewritten as: 

 

                     (42) 

where 

     
 
 
 

           (43) 

and the    element of the vectors U, W and  are   ,    and   , respectively. Also, M and K are 

the equivalent mass and stiffness matrices obtained by properly arranging the elements from Eqs. 

(39) to (41).  
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For eigenvalue analysis, Eq. (42) and the boundary conditions should be satisfied 

simultaneously. Based on GDQM, the boundary conditions can be written as constraints on the 

degrees of freedom as: 

  
      (44) 

where R1 is matrix that depends on the type of boundary conditions. Boundary conditions 

involving derivatives can be defined in the form of Eq. (44) by using Eq. (34). For example, the 

clamped-clamped boundary conditions are given by: 

            
    

    
   

  
    

    
     

     

     

          (45) 

The boundary conditions may be rewritten using the DQM approximation as follows: 

               

 
  
 

  
 

          

   

  
 
   

     
   

    
  
   

   

  
 
   

     
   

    
  
   

   

  
 
   

     
   

    
  
   

       (46a) 

 

                

 
  
 

  
 

   
    

    
  

   

  
 
    

      
   

    
  
   

   

  
 
    

      
   

    
  
   

   

  
 
    

      
   

    
  
   

       (46b) 

These constraint equations are all linear expressions in   ,    and   , and hence R1 in Eq. (44) is 

readily determined. For other boundary conditions, such as simply supported or free, we can 

easily determine the matrix R1 using a similar approach.   

 

The boundary conditions can be enforced by defining a transformation T1, which is 

orthogonal to R1, i.e.   
     , and where the matrix  [ R1 T1]  is square and non-singular. One 

convenient option is to choose the correct number of boundary degrees of freedom (i.e. equal to 

the number of boundary conditions) and reorder     as     
   

   

 , so that R1 becomes 

   
                   (47) 

where    is square and non-singular. A suitable transformation is then  
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 ,         (48) 

which eliminates the boundary degrees of freedom since 

     
   

   

                (49) 

 

The mass and stiffness matrices are then rearranged to match the ordering given in Eq. (47), 

and the transformed mass and stiffness matrices are 

      
       and        

           (50) 

The eigenvalue problem then becomes 

                        (51) 

 

 

4. Numerical Results and Discussion 

The numerical results for the vibration analysis of a 2D-FG rotating nanobeam with CC 

boundary conditions are now computed and discussed by varying five parameters: 

             . Thus, the effects of the power law indexes,      , the porosity volume 

fraction,  , the dimensionless beam rotating velocity,  , and the ratio of length to thickness of 

the nanobeam,    , are shown. For each parameter, the remaining four parameters are fixed to 

their baseline values and the parameter of interest is then varied. The effects of clamped-simply 

supported (CS) and simply supported (SS) are also considered. The material properties of the 2D 

nanobeam are given in Table 1. 

 

Table 1: Material Properties [4] 
 

Material                                              

Pure Metal (Cu) 25 78               0.3597 8960 

Pure Ceramic (Bao) 48.1 38.8                0.5537 5720 

 

4.1. Model Validation 

To validate the present model and for verification of the accuracy of the results, the numerical 

results from the present model are compared to the numerical results in Ref. [25]. For this 

purpose, we reduced our proposed beam model to the Eringen / Timoshenko beam model by 
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assuming           and      which was used in Ref. [25]. In addition, the results in 

Table 2 are shown for the Eringen / Reddy beam model by considering    
  

   
  . The 

comparison of the results in Table 2 shows good agreement based for the Eringen / Timoshenko 

beam model and exact agreement for the Eringen / Reddy beam model, which demonstrates the 

accuracy of the proposed model. 

 

Table 2: Model validation by comparison to the results of Ref. [25] for the FGM nanobeam 

              

 

 
          

nx=0 nx=1 nx=5 nx=0 nx=1 nx=5 

        

nz=0 

Present      21.2375 15.0436 12.4832 22.3012 15.0738 12.2033 

Present      21.3846 15.2570 12.5657 22.3200 15.2128 12.2875 

Ref. [25] 21.3846 15.2570 12.5657 22.3200 15.2128 12.2875 

nz=1 

Present      15.0735 13.2223 12.1179 15.2801 12.9821 11.7324 

Present      15.3286 13.3248 12.1382 15.3013 13.1017 11.8263 

Ref. [25] 15.3286 13.3248 12.1382 15.3013 13.1017 11.8263 

nz=5 

Present      13.0101 12.3084 11.8532 12.7321 12.0001 11.5073 

Present      13.0963 12.3806 11.9239 12.8608 12.0864 11.5955 

Ref. [25] 13.0963 12.3806 11.9239 12.8608 12.0864 11.5955 

       

      

nz=0 

Present      18.6636 13.2903 11.0601 19.5762 13.3258 10.7923 

Present      18.9388 13.4903 11.0739 19.7673 13.4461 10.8230 

Ref. [25]  18.9388 13.4903 11.0739 19.7673 13.4461 10.8230 

nz=1 

Present      13.5174 11.6252 10.6661 13.4925 11.5012 10.4321 

Present      13.5734 11.7965 10.7242 13.548 11.5981 10.4459 

Ref. [25] 13.5734 11.7965 10.7242 13.548 11.5981 10.4459 

nz=5 

Present      11.5073 10.9523 10.4210 11.3273 10.6891 10.2499 

Present      11.6006 10.9653 10.5499 11.3922 10.7048 10.2581 

Ref. [25] 11.6006 10.9653 10.5499 11.3922 10.7048 10.2581 
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4.2. The Effects of     and nz 

The effects of the power law indexes,            , on the natural frequency are illustrated in 

Fig. 2. The fundamental natural frequencies of perfect nanobeams are given for different values 

of power indexes    and   . Clearly, due to the decrease in the stiffness of the nanobeam, 

increasing    and    decreases the natural frequency. Also, for larger       (approximately 

more than 2) the frequency decreases much more slowly and converges to a constant value.  

 

Fig 2. The effects of nx and nz on the fundamental natural frequency. 

 

4.3. The Effects of    

The effect of the nanobeam dimensionless rotating velocity    on the natural frequency is now 

considered. The dimensionless beam rotating velocity is defined as: 

       
   

   
          (52) 

where          are the cross-section area, the rotating velocity, the length, and the second 

moment of cross-section area for the nanobeam, respectively. Also,    is the density and    is 

the Young's modulus for pure ceramic in the FGM. The effects of  , in combination with other 

values of parameters            , are given in Figs. 3 to 7.  

Figure 3 shows the fundamental natural frequency as   varies for different values of   , and 

for different values of nz, namely                    and     . Figure 3 shows that 

increasing   up to certain value, increases the fundamental natural frequency. However, after a 

certain value (which is named the corner rotating velocity,   ) increasing   has no significant 
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effect on the natural frequency and it becomes constant. The value of the corner rotating velocity 

depends on           ; increasing    and    decreases the corner rotating velocity. However, 

the effect of    on    is more significant than the effect of   .  

 

  
(a) (b) 

  
(c) (d) 

 

Fig 3. The effects of rotational velocity ( ) on the fundamental natural frequency by varying nx 

and nz.      (a) nz=0    (b) nz=0.5    (c) ns=1.5    (d) nz=5 
 

 

Figure 4 is similar to Fig. 3 but the roles of nx and nz are interchanged. The results are 

observed for different values of nx, namely                    and     . Similarly to 

Fig. 3, increasing   up to   , increases the value of the fundamental natural frequency,   , but 

for      the effect on    is only small.  
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(a) (b) 

 

  
(c) (d) 

Fig 4. The effects of rotational velocity ( ) on the fundamental natural frequency by varying nx 

and nz.    (a) nx=0    (b) nx=0.5    (c) nx=1.5    (d) nx=8  
 

 

In Fig. 4, with increasing nx, the plots get to be closer to each other. For nx>0, the diagrams 

consist of three zones and there are 2 intersection points which are named the point of 

convergence and the corner point, respectively. Before the point of convergence, increasing nz 

causes the fundamental non-dimensional frequency to decrease. After the convergence point, the 

response of the fundamental non-dimensional frequency is reversed. The response also changes 

its behavior at the corner point. After the corner point, the variation of nz has no significant 

effect on the fundamental non-dimensional frequency. The reason is that when nz is low, the 

effect of the dimensionless beam rotating velocity is intense but as the nz increases, the effect of 

the rotating velocity dominates the effect of the power index. Thus, for low dimensionless beam 

rotating velocity, increasing nz decreases the fundamental non-dimensional frequency. However 

st1 intersection-point

nd2 intersection-point



 1 
 2 
 3 
 4 
 5 
 6 
 7 
 8 
 9 
10 
11 
12 
13 
14 
15 
16 
17 
18 
19 
20 
21 
22 
23 
24 
25 
26 
27 
28 
29 
30 
31 
32 
33 
34 
35 
36 
37 
38 
39 
40 
41 
42 
43 
44 
45 
46 
47 
48 
49 
50 
51 
52 
53 
54 
55 
56 
57 
58 
59 
60 
61 
62 
63 
64 
65 

 28 

when the dimensionless beam rotating velocity increases to above the point of convergence, nz 

acts inversely. 

 

  
(a) (b) 

Fig 5. The effects of rotational velocity ( ) on the fundamental natural frequency by varying 

 (a) nx=1; nz=0    (b) nx=1.5; nz=0.5      

 

Figure 5 shows the effect of   and   on the fundamental natural frequency, and the trends are 

similar to those in Fig. 4. According to Fig. 5, the variation of   has no significant effect on the 

corner rotating velocity.  

The effects of   on the fundamental natural frequency of the nanobeam due to the variation of 

the length to thickness ratio are shown in Fig. 6. The results are given for two different states, 

one for         and the other for                  . Clearly, increasing the ratio of 

length to thickness, not only decreases the natural frequency in the range     , but it also 

increases the corner rotating velocity. Also, the maximum fundamental natural frequency for all 

values of     is constant and is achieved at the corner rotating velocity.  
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(a) (b) 

  

Fig 6. The effects of   on the fundamental natural frequency for different length to thickness 

ratios.    (a)            (b)               
 

4.4. The Effects of     

Figure 7 shows the fundamental natural frequency of the nanobeam versus the power index in 

the x direction (nx) by considering the variation of   from 0 to 0.4 and 3 different values for nz. 

Increasing nx decreases the natural frequency    for constant  . In addition, the effect of   on 

   depends on the values of nz and nx. For     , increasing   has different trends for the 

fundamental natural frequency depending on nx. Thus, for nx below a specific value (here nx≈2 

for nz=0 and nx≈0.6 for nz=0.5) the natural frequency increases with increasing  . However, for 

larger nx,    decreases. In contrast, for      the fundamental natural frequency decreases with 

increasing   for all values of nx. 
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(a) (b) 

 

 

(c)  

Fig 7. The effects of   on the fundamental natural frequency, as nx varies.  

  (a) nz=0    (b) nz=0.5    (c) nz=1.5   

 
  

4.5. The Effects of     

Figure 8 shows the effects of varying the length to thickness ratio (   ) on the fundamental 

natural frequency. The results are plotted for natural frequency versus nx for different values of 

    and              . Clearly, increasing     causes the natural frequency to decrease. In 

addition, increasing nz and/or nx decreases the natural frequency for all values of    . 
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Fig 8. The effects of     on the fundamental natural frequency with varying nx 

 
To show the comprehensiveness of the developed model, we extract the results for the 

Timoshenko beam model and compare them to the results for the Reddy beam model in Fig. 9. 

The results show that using the TBT model reduces the accuracy and is the main reason that 

many researchers [46-49] have employed higher order beam theory to model nanobeams. Here, 

we considered the higher order beam theory in order to study comprehensive and more accurate 

vibration analysis. 
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(a) (b) 

 
 

 

(c) (d) 

Fig 9. Comparison between Timoshenko (TBT) and Reddy (RBT) beam models for varying 

 (a) nx    (b) nz    (c)      (d)  

 

 
4.6. The Effect of the Nonlocal Parameters          

Since, in a 2D-FG nano beam, the material configuration alters along both the longitudinal 

and the thickness directions, the constant nonlocal parameters    and    also alter along the 

longitudinal (x-axis) and thickness (z-axis) directions, similarly to the other mechanical 

properties, as follows: 
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where the     and     subscripts denote the metal and ceramic properties respectively.  

 

  
(a) (b) 

  
(c) (d) 

 
(e) 

Fig 10. The effects of nonlocal parameters          on the fundamental natural frequency for 

varying            (b)      (c)      (d)     (e) L/h 
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To show the effect of the nonlocal parameters we assume that          and is constant 

along the length of the beam. Then, by altering the ratio of    to    from 0.25 to 3 in five 

separate steps, different values for     are obtained and consequently the natural frequencies 

were calculated. Figure 10 illustrates the effect of the nonlocal parameters on the fundamental 

natural frequency based on the variation of    ,   ,  ,   and L/h. Tthe fundamental natural 

frequency decreases as the ratio of    to    decreases while     is constant. For         the 

GNT reduces to conventional ENT. Hence, employing conventional ENT to materials with 

different    and    cannot properly estimate the vibrational behavior of these materials and this is 

the main advantage of GNT which is employed in current work. 

In previous works, the Eringen nonlocal parameter was assumed to be constant and did not 

change when the mechanical properties change. However, in this paper for the first time and for 

high accuracy, the constant nonlocal parameters    and    are considered to alter along 

longitudinal (x-axis) and thickness (z-axis) directions given by Eq. (36), in a similar way to the 

other mechanical properties. Figure 11 reports the comparison of the results which are extracted 

on the basis of the constant and varying values for    and   . 
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(a) (b) 

  
(c) (d) 

Fig 11. The effects of constant and varying nonlocal parameters          on the fundamental natural 

frequency with varying                                                  

 

Thus, using constant values for the nonlocal parameters          when the material properties 

change, leads to a considerable deviation in the results. Although, in Fig. 11(d), the deviation due 

to the nonlocal parameters is small in comparison to the variation due to L/h . 

 
4.7. The Effect of Boundary Conditions 

 

Figure 12 shows the fundamental natural frequency for clamped (CC), clamped-simply 

supported (CS) and simply supported (SS) boundary conditions with variations in   ,   ,  ,   

and L/h. The general behavior of the SS and CS nano-beams is the same as for the CC boundary 

conditions. Since the clamped boundary condition has one fewer degree of freedom than a 

simply supported bounry condition, the effectis to stiffen the beam; thus the natural frequencies 
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for the SS nano-beams are lower than those for the CS nano-beams, which in turn are lower than 

those for the CC nano-beams, as illustrated in Fig. 12. 

  
(a) (b) 

  
(c) (d) 

 
(e) 

Fig 12. The fundamental natural frequency for different boundary conditions.             (b) 

      (c)      (d)     (e) L/h 
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Conclusion 

The goal of this paper is to present a comprehensive mathematical model to investigate the 

vibrational behavior of a porous rotating 2D-FG nanobeam, which is a configuration that is 

novel. The general nonlocal model is applied for the first time to derive the mathematical model 

of the rotating nanobeam. Furthermore, to establish a comprehensive study, a higher order shear 

deformation beam model is employed to develop the equations of motion. To solve the 

governing equations and obtain the results and calculate the natural frequencies, GDQM is 

utilized. The effects of material variation along the thickness and length directions, the rotating 

velocity of the nanobeams, the porosity volume fraction and the length to thickness ratio of the 

rotating nanobeams are calculated and discussed in detail. The main important results are 

summarized as follows: 

1- Increasing nz and nx decreases the natural frequency. Also, for higher values of nz and 

nx, the frequencies approach a constant value. 

2- Increasing the nanobeam rotating velocity up to the corner velocity causes an increase in 

the fundamental natural frequency. However, increasing   over the corner rotating 

velocity    has no effect on the natural frequency and this is due to the CC boundary 

condition. 

3- The value of the corner rotating velocity depends on the value of nz and nx. 

4- The variation of   has no significant effect on the corner rotating velocity. 

5- The effects of   on the fundamental natural frequency depends on the values of nz and nx. 

For different values of nz and nx, the character of the variation of natural frequency with 

  can change.   

6- Increasing L/h, not only decreases the natural frequency for     , but also increases 

the corner rotating velocity. 

7- Increasing L/h causes the natural frequency to decrease. 

8- The fundamental natural frequencies decrease with a decrease in the ratio of    to    

when     is constant. 

9- For materials with different    and   , employing the conventional ENT cannot properly 

estimate the vibrational behavior. 
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10- For all situations, the non-dimensional frequencies of SS nano-beams are lower than 

those of CS nano-beams,which are lower than those of CC nano-beams. 
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