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ABSTRACT

In the present study, fuzzy uncertainty and reliability analysis of aeroelastic aircraft wings are
investigated. The uncertain air speed and structural parameters are represented by fuzzy triangular
membership functions. These uncertainties are propagated through the wing model using a fuzzy
interval approach and the uncertain flutter speed is obtained as a fuzzy variable. Further, the
reliability of the wing flutter is based on the interference area in the pyramid shape defined by the

fuzzy flutter speed and air speed. The ratio between the safe region volume and the total volume
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of the pyramid gives the reliability value. Two different examples are considered, a typical wing
section and a clean wing, and the results are given for various wind speed conditions. The results
show that the approach considered is a low-cost but suitable method to estimate the reliability of
the wing flutter speed in the presence of uncertainties.

Keywords: Reliability; Uncertainty propagation; Fuzzy method; Aeroelastic aircraft; Wing
flutter

NOMENCLATURE

Amat State matrix

AC Aerodynamic center

b Mid-chord

Ca Aerodynamic damping matrix
Cs Structural damping matrix
Cro Lift curve slope

Cow Center of gravity
E Elastic modulus
EA Elastic axis

EI Bending rigidity
G Shear modulus

GJ Torsional rigidity

1 Wing cross-sectional moment of inertia

Ip Wing moment of inertia about P

J Wing torsion constant

Ka Aeroelastic stiffness matrix

Ks Structural stiffness matrix

L Aerodynamic lift

M Aerodynamic moment

Ma Apparent mass matrix due to non-circulatory forces
Ms Inertia matrix

Mo Aerodynamic moment



Reliability

S Flutter safety
Ur Flutter speed
U Air stream velocity
V Volume of interference region
Vy Failure Volume
Vs Safe Volume
ki Flexural stiffness
ko Torsional stiffness
) Wing length
Typical section mass
w Wing bending deflection
Xo Chord-wise offset of the center of mass from the reference point
X Possibility of each event
y Modal damping
A Eigenvalue
Ao Induced flow velocity
p Air density
0 Wing torsion deflection
) Modal frequency
g Uncertain fuzzy parameter
r Modal damping vector
A Eigenvalues vector
Q Modal frequency vector
y State vector
€ Generalized coordinate vector
4 Vector of uncertain fuzzy parameters
Subscripts
F Flutter
c crisp value — nominal value



f failure region

s safe region
min minimum value
max maximum value

1.0 INTRODUCTION

Flutter is an undesirable phenomenon which may take place in an aeroelastic wing. One way to
predict the flutter speed is via theoretical calculations based on experimentally obtained wing
parameters % 11495050 ‘Most of these parameters are physically uncertain due to manufacturing
and operational conditions. In general, uncertainties in flight vehicles are divided into two major
categories: internal and external sources. Structural and geometric uncertainties are examples of
internal uncertainties % 2% 39 and aerodynamic and gust loads are examples of external
uncertainties (131449,

Due to the lack of sufficient knowledge, the estimation of an appropriate model for the uncertain
parameters is very important to estimate the flutter speed. Moreover, a reliability analysis is needed
to determine the possibility of flutter failure; in this paper reliability is defined in terms of failure
due to the flutter instability. Probabilistic and non-probabilistic methods are generally the two main
approaches used for modeling uncertainties in structures. Probabilistic methods are based on
generating a lot of data which leads to high cost calculations. Another problem with these methods
is the lack of data that could be used to determine the statistical distribution of uncertain
parameters. Non-probabilistic methods have been preferred in recent years due to their low-cost
computations.

In this regard, the modeling of uncertain structures using a non-probabilistic interval method
was conducted by Rao and Berke “®. A non-traditional uncertainty treatment for mechanical
problems was investigated by Muhanna and Mullen ®¥. They introduced uncertainties as bounded
possible values. Moreover, they modeled uncertainty with interval arithmetic and applied this
method to beams and trusses. The numerical algorithms of non-probabilistic convex models and
an interval method for the static displacement of structures with uncertain parameters was
presented by Qiu “?. Qiu and Wang “* also investigated the non-probabilistic interval analysis

method for the dynamical response of structures with interval parameters. Manson @7 used affine
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and interval arithmetic to solve a two degrees of freedom eigenvalue problem. Qiu “? also used
an interval analysis method to predict the effect of uncertain-but-bounded parameters on the
buckling of composite structures. Moens and Vandepitte ®» gave a review on the emerging non-
probabilistic approaches for uncertainty treatment in finite element analysis. They discussed
general theoretical and practical aspects of both interval and fuzzy finite element analysis.
Muhanna et al. ®> combined the finite element method and interval analysis to analyze the system
response subject to stiffness and loading uncertainties. The influence of uncertainty parameters
using interval numbers on the flutter speed of a wing was conducted by Wang and Qiu ©%. They
used a first-order Taylor series expansion to predict the lower and upper bounds of flutter speed.
The problem of robust stability of a two dimensional nonlinear aeroelastic system with
uncertainties using the p-method was investigated by Yun and Hun ©®V. The effect of parametric
uncertainty on the stall flutter bifurcation behavior of a pitching airfoil was conducted by Sarkar
et al. “®, Khodaparast et al. ®¥ studied the problem of linear flutter analysis in the presence of
uncertainties. The use of eigenvalue stability to analyse very large dimension aeroelastic numerical
models arising from the exploitation of computational fluid dynamics has been reviewed by
Badcock et al. @. Yang et al. ®® presented a new interval-based method for the analysis of
uncertain structures using the Laplace transform. The upper and lower bounds of the natural
frequencies of structures with uncertain but bounded parameters were evaluated by Sofi et al. 47,
They also applied improved interval analysis via an extra unitary interval (EUI).

Wang et al.®? developed a sequential multidisciplinary design optimization and reliability
analysis method under non-probabilistic theory to decouple the reliability analysis from the
optimization. They also used an improved dimension-wise method for multidisciplinary interval
uncertainty analysis ¢

Mannini and Bartoli ®® proposed a method to approach flutter instability and calculated the
critical wind speed, starting from the probability distribution of the flutter derivatives. A
probabilistic flutter analysis utilizing a meta-modeling technique to evaluate the effect of
parameter uncertainty on the flutter speed was conducted by Abbas and Morgenthal (). Lokatt
approximated the aerodynamic model using a piece-wise continuous rational polynomial function.
They proposed this method for efficient flutter analysis of aeroelastic systems including modelling

uncertainties. Huan et al. ®® used the polynomial chaos expansion (PCE) method for uncertainty



quantification and showed that this method has less computational cost compared to Monte Carlo
simulation.

Several other methods have been investigated to propagate uncertainty in mechanical structures.
Friswell and Mottershead '® described various methods for parameter selection, error localization,
and sensitivity analysis and estimation, in mechanical structures. Also, many efforts were
conducted on model updating in uncertain mechanical structures 2% 2% 3 The fuzzy approach
has been used for uncertainty modeling and propagation, and this non-probabilistic method is
computationally low-cost compared to probabilistic methods “®. Chiang et al. ® modeled
structures with fuzzy and random uncertainties. They also studied the response of structures with
stiffness, damping and mass uncertainties. A fuzzy methodology to calculate the eigenvalues and
eigenvectors of an uncertain mechanical structure was proposed by Massa et al. >, They described
material and geometric parameters as imprecise fuzzy numbers. De Gersem et al. © proposed the
fuzzy finite element and interval methods to carry out frequency response and eigenvalue analysis
of structures with uncertain parameters. The flutter dynamic pressure of a semi-span super-sonic
wind-tunnel model was predicted by Tartaruga et al. ©V. They used probabilistic and non-

probabilistic approaches in their study. Khodaparast et al. ?%

presented the application of fuzzy
finite element model updating to the DLR AIRMOD structure. Rezaei et al. ¥ investigated the
flutter uncertainty analysis of an aircraft wing subjected to a thrust force using a fuzzy method.
They modeled the uncertain parameters as triangle and trapezium membership functions. The
eigenvalue problem with fuzzy input parameters was solved using the fuzzy Taylor expansion
method and a sensitivity analysis was performed. Also, the upper and lower bounds of the flutter
region at different a-cuts were extracted. Wang et al.®¥ proposed a new reliability estimation
model based on the level cut strategy and volume ratio theory.

Although many researchers have studied uncertainty propagation and identification in
structures, there are limited works in the field of reliability. The reliability and free vibration of a
cantilever composite beam under structural uncertainty was conducted by Oh and Librescu ©%.
The structural uncertainty was propagated using Monte Carlo Simulation and the Stochastic
Rayleigh-Ritz method to find the reliability of the beam at different frequencies. Di Sciuva and
Lomario 19 applied reliability methods to an isotropic beam and a laminated composite plate.
Frangopoulos et al. 7 presented a review of life-cycle reliability optimization with an emphasis

(55)

on aerospace and civil structures. Wang and Qiu >’ proposed a method to calculate the reliability
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of an aeroelastic wing using an interval approach. Increasing the reliability of aircraft structures
subject to air loads was conducted by Bijl et al. ). They also conducted some aeroelastic analysis
and reliability studies to illustrate this key concept.

In this paper, uncertainty modeling is conducted using a possibility, rather than probability,
approach. Possibility means something happens but with different quality, while probability means
something happens or not. In conventional reliability, when the reliability of a system 1s 0.99, it
means that if we have 100 systems, one of them may have failed on the defined criterion. In fuzzy
reliability, when the reliability of a system is 0.99, it means that if we have 100 systems, none of
them fail under the defined crierion but all of them have a 1% imperfection. Thus, fuzzy reliability
speaks about the quality instead of quantity. The uncertain physical parameters are modeled as
triangular fuzzy membership functions, although other membership functions, such as trapezoidal
or Gaussian, may also be used. The uncertainty is then propagated through the aeroelastic wing
model; a flutter analysis is conducted, and a fuzzy region of flutter is obtained instead of a
deterministic flutter region. Furthermore, the reliability of the wing against flutter is determined
from a pyramid based on the flutter speed and the air speed interference area.

To the best of the authors’ knowledge, in the pertinent literature, the reliability of an aeroelastic
wing using this type of fuzzy approach has not yet been presented. This research intends to fill the
gap in knowledge related to this problem. In this paper, the stability region is presented as a three-
dimensional fuzzy pyramid-shape. Furthermore, modal damping and frequency diagrams at

different a-cuts are presented.

2.0 FLUTTER ANALYSIS OF A DETERMINISTIC WING MODEL

There are three general methods to estimate the wing flutter under unsteady aerodynamic loads,
namely the K, PK and P methods ?". The P method, including the finite state unsteady
aerodynamic loading of Peters et al. ®%), is most suited to the estimation of the flutter boundary (%
16) and hence is used in this paper. In this method, the aeroelastic equations are converted to the
state space form and the flutter boundary is obtained by solving an eigenvalue problem. The
complex eigen solutions contain real and imaginary parts; by interpreting these values at different
wind speeds, the flutter speed is determined from the stability of the eigenvalues.

The general discretized form of the wing aeroelastic governing equations can be expressed as:



(M, +M,)E(t)+(C, +C,) (1) +(K, +K,)&(¢) = {0}, (1)

where § is the generalized coordinates vector, Ms is the inertia matrix, Ma is the apparent mass
matrix due to non-circulatory aerodynamic forces, Cs is the structural damping matrix, Ca is the
aerodynamic damping matrix, Ks is the structural stiffness matrix and Ka is the aeroelastic stiffness
matrix due to circularity forces ¢%37). This second- order differential equation can be transformed

into a set of first-order differential equations in state space:
\ll(t) = Amat‘ll(t)’ (2)

where the state vector y(t) is defined as:
(1)
w(t)=|; | (3)
(1)
The system matrix Amat is obtained as:

o) I
A = .
mt L(MS +M,)" (K, +K,) —(M,+M,)"(C, +C,) @)

After solving equation (2), the eigenvalue vector is derived as
A=T=iQ, (5)

where I' is modal damping vector (with elements y;) and Q (with elements w;) is the modal
frequency vector. When y;<0 for all j, any transient oscillations decay and the system is
dynamically stable. As the wind speed increases, one component of the modal damping vector
tends to zero and then becomes positive. The first airspeed at which this element become zero is

the flutter speed and the corresponding modal frequency is the flutter frequency.

3.0 FUZZY UNCERTAINTY APPROACH

The wing flutter speed is generally an uncertain parameter because it depends upon structural and

aerodynamic parameters which are physically uncertain due to manufacturing and operational
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conditions. Airspeed is also not a certain parameter; when the speed is set at a specified value
during the flight, the air speed may fluctuate around this value due to atmospheric conditions.

An eigenvalue problem for the P method including uncertain parameters, can be represented as
(29).

V()= A (5580 )W (1) (6)
where the {, are the uncertain parameters and m is the number of uncertain parameters. The

uncertain parameters are modeled as fuzzy numbers. The fuzzy parameter  , which is shown in

Figure 1, is defined by a variation about a crisp value at each a-cut.

a

: >

&

Figure 1. Triangular fuzzy membership function.

According to this figure, an a-cut is the set of all {'such that ,,(¢) is greater than or equal to a.

The fuzzy vector ¢ is defined by a crisp value C. and the variation AZ at a given a-cut as

o=, +AL", (7

or

& =g +[ AL, @®)



where {* and ¢ are the maximum and minimum of the fuzzy parameter vector { for a given a-

cut, respectively. The membership function is discretized by different intervals which are linked
to a-cuts ranging from O to 1.

Many methods to determine output (response) intervals based on the input (parameter) intervals
are available, many of which use the exact input-output functional relationship. Here, to
demonstrate the proposed approach, the interval is divided into several intervals at each a-cut and
a first order Taylor series expansion is used to determine the upper and lower bounds of the flutter
frequency and modal damping for each interval.

The interval model can be used to describe nonlinear dynamic systems under uncertainty with
low-order Taylor series expansions. However, the Taylor series-based interval method is only
suitable for problems with small uncertainty levels ®®. Truncation errors exist in this linear model
since the higher-order terms are neglected, but for highly nonlinear problems, the truncation error
cannot be ignored ©7).

Using this method, the modal damping and frequency are expressed as

m 1oy (E,U
P (GU) =7 (CU)+S, M}Ag ©

= s

n 160 (C,U
o o) G ST (0

After applying the interval operation, the lower and the upper bounds of the modal damping at

each a-cut are defined, respectively, as:

n |oy® (¢, U
K(@U)W“(CC,U)@%A_??, an
m a U
Fe)=r Uy a(;‘;, bz, (12

Also, the lower bound and the upper bound of the modal frequency at each a-cut are:
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n 10w (§ U
o 0)=or (0.0)+ 570 s 03
> 0" (§,,U
0" (LU)=0 (CL,U)+Z wa(;; )M,-“, (14)

Note that taking the absolute values of the sensitivities in equations (11) to (14) may lead to

conservative bounds. The flutter speed that corresponds to equation (11) gives the upper bound of

the flutter speed (U7 ), and the flutter speed that corresponds to equation (12) provides the lower

bound of the flutter speed ( lT;i‘ ). The crisp values can be easily obtained by solving equation (2).

Analytical expressions of the partial derivatives 67 / 84’ and aa) ¢, U ) / 0¢” cannot

be obtained easily due to the complicated implicit functional relationship between y and w. One
practical method to calculate these expressions is to use finite difference approximations ©%, After
solving the above equations, the flutter speed bound at each a-cut is derived. These bounds are

combined to achieve the example membership function shown in Figure 2.

(Ur)A

Ug Ur Up U

Figure 2. An example flutter speed membership function.
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4.0 RELIABILITY OF THE WING FLUTTER SPEED

In this section, the reliability of the wing flutter speed is investigated. To this end, the flutter speed
and air speed interference pyramid is obtained and then the fuzzy reliability approach is employed

to determine the flutter reliability.

4.1. Airspeed and flutter speed interference
The method to obtain the flutter speed membership function was described in the previous section.

The air speed can be modeled as another membership function U,,. It is assumed that the crisp
value of the air speed is US, and it will not be less than U™ nor greater than U™ . If the
triangular membership function is used for the air speed it means that the possibility of U is o=1.
For other interval points, the possibility reduces linearly from 1 to 0. When the air speed is equal
to U™ or lower, or when the air speed is equal to U™ or higher, the possibility of the air speed

is zero. The possibility of the air speed membership function U, can be written as:

0 u<um
YU ymn cy<ue
us-umt
u(U)=4 1 U=U; (15)
VU e cy<um™
us-um
0 ur<u

The air speed and flutter speed membership functions and their two dimensional interference
are shown in Figure 3.

If there is a region where this interference occurs, then there is a possibility of flutter, otherwise,
the flutter possibility is zero. In this section, the flutter reliability of the wing is calculated based
on the general non-probabilistic interval reliability model. Wang and Qiu ©> used this method for
flutter reliability analysis by means of rectangular membership functions for flutter speed and air
speed. They represented the flutter speed and air speed in a plane, as shown in Figure 4. The solid
rectangle shows the region of variation of both U,, and0Uy. By crossing this region with the failure

plane U,, = U , the safe region and the failure region can be determined as shown in Figure 4.
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min min max Max
U & U U
w F w F

Figure 3. Flutter speed and wind speed 2-D fuzzy interference.

UF Failure Plane
A Ur=Us
U max
F
Safe Region
U min
F
Failure Region
: >
U min U max U\\
w w

Figure 4. Space of variables and the occurrence of interference.

Here, due to the use of triangular membership functions for flutter speed and air speed, such a
space of variables occurs at each a-cut. By assembling this space of variables at all a-cuts, a
pyramid is created in the space of U,, — Ur — a, as shown in Figure 5. The approach would also
work for non-triangular membership functions although the shapes would be more complex and
the computation more intensive.

This pyramid shows the region of variations of U,,, and Uz for each a-cut. By cutting this
volume with the failure plane U,, = U, the safe volume and the failure volume are defined as
shown in Figure 6. Using this approach, the effects of both air speed and flutter speed uncertainties

are considered in the reliability analysis.
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BR0-0., Il Space of variables

U

Figure 5. The pyramid of variables in the case of triangular membership functions.

failure plane
UF = Um

safe region failure region

Ur

Figure 6. Safe region and failure region.
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4.2. Fuzzy reliability of the wing flutter speed

In the design process, the air speed U, is required to be smaller than the flutter speed Ug. This
implies that with respect to the crisp values (0=1), the wing should be safe. As a result of the
dispersion of the fuzzy areas, they may share the same numerical values, shown in Figure 3 as the

shaded region.

As shown before, the space of variables forms a pyramid. This volume is a function of U, and

Uy, and defined as F;, (U F,UW). By integrating this function, the total volume of the space of

variables is obtained as:

v={pF (U,.U,)dr, (16)

The integration of equation (16) is evaluated numerically. In this method the pyramid in the
possible space is divided into cuboids based on the number of alpha cuts, as shown in Fig. 7
schematically. Then the volume of the pyramid is obtained by summing the volumes of all of the
cuboids. To evaluate the failure volume, the cuboid for each a-cut is split into two polygon prisms
(for example triangular prisms) defined by the failure plane. The volume of the failure region is

obtained by summing the volume of all of the prisms within the failure region. .

e

Figure 7. Numerical integration evaluation to obtain the volume of the possible space.
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The safe volume ¥ is the part of this total volume Vin whichU,, U}, , and the failure volume 7y
is the part of the total volume ¥ in which U, 2U, (see Figure 6). To present the mathematical

concept, the following function is defined.

—~

= Ur — Uy, (17)

[1]

The safe volume is a volume in which Z>0 and the failure volume is a volume in which E<0.
For the case £=0 the failure plane is created. Assuming that y is the possibility of each event, the

possibility of the safe region is obtained as:

<

E<0)=—=, 18
2(E<0) ” (18)
Similarly, the possibility of the failure region is:
14
E>0)=—, 19
7(E8>0)=- (19)
Then the reliability or safety probability of the flutter speed is formulated as:
V. v,
R=y(E<0)=—==1--L, 20
2(E<0) 7 % (20)

Figure 8 shows a case in which all parts of the space of variables are in the safe region. In this
case, the flutter airspeed membership function lower bound is larger than the maximum wind speed
and the reliability of the flutter occurrence is 1. This means that the flutter will not happen under
any circumstances.

If all parts of the space of variables are located in the region where = = Ur — U,, > 0, as shown
in Figure 9, then the air speed is always larger than the maximum flutter airspeed. In this case, the

reliability of flutter occurrence is 0, and hence flutter will definitely happen.

16



failure plane

safe region

Figure 8. A case in which all parts of the interference volume are in the safe region.

&
failure plane

UF = Uu:\
failure region

Figure 9. A case in which all parts of the interference volume are in the failure region.

The steps for this method are given as a flowchart in Figure 10. First, uncertain parameters are
determined as fuzzy membership functions. Then these fuzzy membership functions are divided
to intervals, and the intervals are evaluated at each value of a. In the next step, the interval
corresponding to each a-cut is propagated into the structural equations using a Taylor series
expansion, and the upper and lower bounds of the flutter speed are obtained. By assembling the

flutter speed at each a-cut the flutter speed membership function is obtained. The 3D interference

17



between the obtained flutter speed and the airspeed membership functions forms a pyramid. By
interpreting the volume of this pyramid by the mentioned cutting plane the flutter reliability is

obtained.

Input uncertain
parameters as fuzzy
membership functions

Input airspeed [uzzy
membership function

different a-cut

|
4

Specify intervals
corresponding to i ™ g-cut
s l N
Propagate interval value in
eigenvalue equation

[ Separate fuzzy input to ]

_ J
' l N\
Obtain the flutter interval in
L ithg-cut )

[
¥

Combine the interval flutter
wind speed values

Formation of the
flutter speed
membership function

Make 3D interference ]
pyramid J

Obtain reliability
by cutting plane

Figure 10. Fuzzy method flowchart

5.0 NUMERICAL EXAMPLES

Many theoretical and experimental studies on wing aeroelasticity have been performed in the
literature using typical section models ' '3, These models can represent typical airfoil sections
along a finite wing and are still widely used by researchers because of their simplicity. The most
popular structural models used for wing aeroelasticity are beam models 1% 13D These models

consider the wing as a flexible beam that experiences, in general, bending in two orthogonal planes
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and torsion about the elastic axes. In this section, to illustrate the feasibility of the fuzzy reliability

method, a typical section 2D wing model and a clean wing 3D model are used.

5.1. Example 1: Typical Section 2D Wing Model

A typical section wing model ?V is shown in Figure 11. This configuration could represent the
case of a rigid, two-dimensional wind-tunnel model that is elastically mounted in a wind-tunnel
test section, or could correspond to a typical airfoil section along a finite wing. In the latter case,
the discrete springs would reflect the wing structural bending and torsional stiffness, and the
reference point would represent the wing elastic axis.

Suppose that the wing mass, moment of inertia and flexural and torsional stiffnesses are
uncertain parameters. These parameters should be converted to fuzzy triangle membership
functions. The membership functions are expressed as (&min, e, Emax) In Which &pin and Epax are
minimum and maximum values at 0=0, and & is the value at o=1. The fuzzy triangle membership

functions of the wuncertain parameters are assumed to be = (0.95m,m,1.05m),

1,=(0.951,,1,,1.051,),k, =(0.95k,,k,,1.05k,)and k, = (0.95k,, k,,1.05k,).

2b

Figure 11. A typical section wing model.

The aeroelastic governing equations can be derived as:

m(h+bx,0)+kh=-L, (21)

IP[9'+mbx5ii+k90=MQ+bG+a]L, (22)
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where m 1s the typical section mass, X, is the chord-wise offset of the center of mass from the

reference point, /p is the moment of inertia about P, L is the aerodynamic lift, Mp is the
aerodynamic moment and k;, and ky are flexural and torsional stiffnesses, respectively.

Unsteady aerodynamic loads are simulated based on the model of Peters et al. ¢ as

L:ﬂpbz[}i+U9—ba§]+CL9pUb {/&+U@+b(%—aj0‘—ﬁo}, (23)
M, =—npb® lﬁ+b(l—£]é+Ué (24)
0 =TV 5 8 2 ’

N
where 4, = an/ln is the induced flow velocity and is calculated through a system of N first order

n=1
coupled differential equations @Y.
To solve the above equations, the following dimensionless parameters are introduced.

1 _, m U

r=—L o V=—. (25)

mb’ , - mob’ bw,

For validation, the modal damping versus dimensionless air speed is shown in Figure 12 and
compared with the results given in reference V. This validation is performed to determine the
accuracy of the current aeroelastic governing equations and the solution methodology.

Furthermore, for model validation, the deterministic typical section model is also compared

with an Equivalent 2D Goland wing ' in which the flexural and torsional stiffness are considered
as k, =0.597" (z/L)" Eland k, =(z/2L)’ GJ . The parameters are given in Table 1. The flutter
speed and frequency are obtained and compared in Table 2. The results show that this 2D model
with finite state unsteady aerodynamic loading is in good agreement with the mentioned reference.

To obtain the flutter fuzzy membership function the dominant flutter mode is considered. In

this example, the bending mode experiences flutter and the other modes are stable.
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0.4 1 L 1 | I

—— Hodges and Pierce[21] @ Present

V

Figure 12. Modal damping versus dimensionless airspeed for a =-0.2, e = 0.1, y = 20,
r2=0.24 and 0 = 0.4.

Table 1
Goland wing parameters(®
Parameters Value Unit
EI 9.77x10°6 N.m?
GJ 9.890x10° N.m?
/ 6.09 m
X0 0.182 m
a -0.333
m 35.7187 kg/m
b 0.9144 m
r 0.457 m
ko 8.75 x10* N/m
kn 6.57x10% N/m
p 1.225 kg/m®
Table 2
Deterministic flutter speed and frequency
Flutter speed Flutter frequency Reference
(m/s) (rad/s)
137.09 71.36 Present 3D (Example 2)
140.73 73.21 Present 2D (Example 1)
141.17 72.56 Borello et al. 2D ©
137.05 75.52 Fazelzadeh et al.3D (12
137.16 70.69 Goland Exact (9
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Assuming that the relationship between the eigenvalues and the uncertain parameters is

monotonic, and applying the fuzzy interval method, the modal damping for each a-cut is obtained

as:
F(m>15kh>k95U):7/a (mc51c9kh(,‘>k9c5U)+ a;/ (mcalac’kahcjkech)|Ama
m

+ 67/“ (mc ’]c"ﬁh(f’k&"U)|A1a + 87/0‘ (m(f’[c’kahc’kﬁc ’U)|Akha ) (26)
oI | ok, |

. 6}/1(mc,lc,khc,kgc,,U)|Akg
ok ,*

P (ol ok U) =7 (el Kok U )+ (m"’%’ih”’kg‘”U”Ama

- m

+ 670! (mcﬂlc’khc’kBC’U) Ala + 87/0[ (mc’lc’khs’kﬂc’U)|Ak;{ (27)
or“ ok ,”

N oy” (mc,lc,khc,kgc,U) AKE
ok ,*

Using equations (26) and (27) at each a-cut, the flutter airspeed membership function can be
obtained, and is shown in Figure 13. The flutter boundary range can be seen as a triangular fuzzy
mountain shape. For each value of modal damping and at every a-cut, the upper and lower bounds
of the flutter speed can be extracted. Values corresponding to o = 0 are the largest intervals, and

the value corresponding to o = 1 is deterministic.
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Figure 13. Three-dimensional plot of modal damping versus airspeed for different a-
cuts.

In the following, the flutter safety of the wing for six different cases is examined. The 3D
interference of air speed and flutter speed is shown in Figure 14. A triangle membership function
for airspeed is a reasonable assumption since the airspeed is not a crisp value but varies within
intervals. The value which is most possible is the maximum value (a =1) and the value which is
least possible is the minimum value (o =0). Furthermore, the triangle membership function is
suitable for simplicity to show the concept. In this example the aim is to model airspeed as a fuzzy
membership function, not using interval or probabilistic models, to calculate reliability. This
method is general, and other arbitrary airspeed membership functions which are more realistic
could be used.

In Case 1, it is assumed that the fuzzy air speed is (115,120,125) m/s. This means that the
possibility of the air speed for values less than 115 m/s and more than 125 m/s is zero, and the
possibility that the air speed is 120 m/s equals one. Based on this assumption the 3D interface
between the air speed and the flutter speed is shown in Figure 14(a). Using equation (20) the fuzzy

flutter safety can be obtained as

V.
/ :1—M=99.66%. (28)
V 123.5848
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In Case 2, by keeping the crisp value unchanged, the air speed interval is assumed to be larger.
In this case, it is assumed that the fuzzy air speed is (100,120,140) m/s. As shown in Figure 14(b),
the failure region interference expands and the flutter safety decreases. The flutter safety value is
decreased to 93.91%, in this case.

In Case 3, the air speed intervals are the same as in Case 1, but the crisp value is increased. In
this case, it is assumed that the fuzzy air speed is (150, 155,160) m/s, so that the air speed region
is larger than the flutter speed in this case. The flutter safety decreases significantly and the flutter
reliability reduces to 1.654%. The interference for this case is shown in Figure 14(c). In Case 4,
it is assumed that the fuzzy air speed is (105, 110,115) m/s. Figure 14(d) shows that the reliability
value increases to 100 due to the lack of interference between the air speed and the flutter speed
regions. In Case 5, as can be seen in Figure 14(e), an asymmetric air speed region is considered. It
is assumed that the fuzzy wind speed is (100,120,125) m/s. In this case the flutter safety value is
99.87%. Finally, in Case 6, it is assumed that the fuzzy wind speed is (115, 120,140) m/s. Figure
14(f) shows that the difference between the minimum values and the crisp value is less than the
difference between the maximum value and the crisp value. In this case, the flutter safety value
reduces to 90.23%.
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Figure 14. Air speed and flutter speed 3D interference. (a) Case 1, (b) Case 2, (c) Case
3, (d) Case 4, (e) Case 5, (f) Case 6.

Finally, the impact of the number of a-cuts on the accuracy of the reliability is studied. Table 3

and Figure 15 shows the reliability versus the number of a-cuts for the six cases defined earlier.

The relative error is defined as

R R
R]

Err (29)

{ i : number of a-cut

j :Maximum number of a-cut

The results show that, when the number of a-cuts more than 100, the error is almost zero. In this
study, the maximum number of a-cuts is set equal to 1000 to guarantee the accuracy of the
simulation.

To verify the results the aforementioned method is also compared with Monte Carlo Simulation to
verify the integration accuracy. The results are shown in Table 4. The results show that the method

has high accuracy relative to the Monte Carlo method with low computational cost.
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Table 3

Number of a-cuts and its impact on the accuracy of the flutter reliability

Reliability

Case 1 Case 2 Case 3 Case 4 Case 5 Case 6
z
) =~ w 70 w ;v ;v
g £z £z £l7 £z £|72 ¢
o =% =d = = = . = = = = = =
=~ & s o s S s > s o s & s
= g g S g S g
@
1 0.9962 0.0010 [ 0.9370 0.0050 | 0.0124 0.0998 | 1.0000 0.0000 | 0.9985 0.0004 | 0.8992 0.0083
2 0.9956 0.0003 | 0.9333 0.0010 | 0.0131 0.0501 | 1.0000 0.0000 | 0.9982 0.0001 | 0.8933 0.0017
3 0.9954 0.0002 | 0.9329 0.0005 | 0.0135 0.0239 | 1.0000 0.0000 | 0.9982 0.0001 | 0.8926 0.0009
4 0.9954 0.0001 | 0.9328 0.0004 | 0.0138 0.0051 | 1.0000 0.0000 | 0.9982 0.0001 | 0.8924 0.0007
5 0.9954 0.0001 | 0.9328 0.0004 | 0.0138 0.0041 | 1.0000 0.0000 | 0.9981 0.0001 | 0.8925 0.0007
6 0.9953 0.0000 | 0.9325 0.0001 | 0.0139 0.0035 | 1.0000 0.0000 | 0.9981 0.0000 | 0.8920 0.0001
7 0.9954 0.0001 | 0.9327 0.0003 | 0.0138 0.0030 | 1.0000 0.0000 | 0.9981 0.0000 | 0.8923 0.0006
8 0.9953 0.0001 | 0.9326 0.0002 | 0.0137 0.0075 | 1.0000 0.0000 | 0.9981 0.0000 | 0.8922 0.0004
9 0.9953 0.0001 | 0.9326 0.0002 | 0.0138 0.0042 | 1.0000 0.0000 | 0.9981 0.0000 | 0.8921 0.0003
10 0.9953  0.0001 | 0.9326 0.0002 | 0.0139 0.0033 | 1.0000 0.0000 | 0.9981 0.0000 | 0.8922 0.0004
12 0.9952  0.0000 | 0.9324 0.0000 | 0.0139 0.0048 | 1.0000 0.0000 | 0.9981 0.0000 | 0.8919 0.0001
14 0.9954 0.0001 | 0.9327 0.0003 | 0.0139 0.0067 | 1.0000 0.0000 | 0.9981 0.0000 | 0.8923 0.0005
16 0.9953 0.0000 | 0.9325 0.0002 | 0.0138 0.0017 | 1.0000 0.0000 | 0.9981 0.0000 | 0.8921 0.0003
18 0.9953  0.0000 | 0.9324 0.0000 | 0.0139 0.0039 | 1.0000 0.0000 | 0.9981 0.0000 | 0.8919 0.0000
20 0.9953  0.0000 | 0.9326 0.0002 | 0.0140 0.0103 | 1.0000 0.0000 | 0.9981 0.0000 | 0.8921 0.0003
30 0.9953 0.0000 | 0.9325 0.0001 | 0.0139 0.0030 | 1.0000 0.0000 | 0.9981 0.0000 | 0.8920 0.0002
40 0.9953 0.0000 | 0.9325 0.0002 | 0.0139 0.0028 | 1.0000 0.0000 | 0.9981 0.0000 | 0.8921 0.0003
50 0.9953 0.0000 | 0.9324 0.0000 | 0.0138 0.0049 | 1.0000 0.0000 | 0.9981 0.0000 | 0.8919 0.0001
60 0.9952  0.0000 | 0.9324 0.0000 | 0.0139 0.0023 | 1.0000 0.0000 | 0.9981 0.0000 | 0.8919 0.0000
70 0.9953  0.0000 | 0.9324 0.0000 | 0.0139 0.0026 | 1.0000 0.0000 | 0.9981 0.0000 | 0.8919 0.0001
80 0.9953  0.0000 | 0.9325 0.0001 | 0.0138 0.0002 | 1.0000 0.0000 | 0.9981 0.0000 | 0.8920 0.0002
90 0.9952  0.0000 | 0.9324 0.0001 | 0.0138 0.0014 | 1.0000 0.0000 | 0.9981 0.0000 | 0.8919 0.0001
100 | 0.9952 0.0000 | 0.9324 0.0000 | 0.0138 0.0015 | 1.0000 0.0000 [ 0.9981 0.0000 | 0.8918 0.0000
200 | 0.9953 0.0000 | 0.9324 0.0000 | 0.0138 0.0003 | 1.0000 0.0000 | 0.9981 0.0000 | 0.8919 0.0000
500 | 0.9952 0.0000 | 0.9324 0.0000 | 0.0138 0.0001 | 1.0000 0.0000 | 0.9981 0.0000 | 0.8918 0.0000
1000 | 0.9952 0.0000 | 0.9324 0.0000 | 0.0138 0.0000 | 1.0000 0.0000 | 0.9981 0.0000 | 0.8918 0.0000
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Figure 15. Reliability versus number of a-cuts. (a) Case 1, (b) Case 2, (c) Case 3, (d)
Case 4, (e) Case 5, (f) Case 6.
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Table 4

The reliability of typical section wing flutter speed with 1000 a-cuts
Wing Typical Section

Method Fuzzy Monte Carlo
(Number of Simulations) (2001) (1000000)
Airspeed Membership Function Reliability Reliability error
Case 1 (115,120,125) 99.52 % 99.82% 0.3%
Case 2 (100,120,140) 93.24 % 95.27% 2.1%
Case 3 (150,155,160) 1.382 % 1.42% 2.6%
Case 4 (105,110,115) 100 % 100% 0%
Case 5 (100,120,125) 99.81 % 99.93% 0.1%
Case 6 (115,120,140) 89.18 % 92.41% 3.4%

5.2. Example 2: Clean Wing
In this example the reliability of a clean wing, which is a famous benchmark model in wing
aeroelasticity, is considered. This model is a cantilever beam with bending and torsional deflection
as shown in Figure 16.

Suppose that the wing bending and torsional rigidity, wing mass per unit length and moment of

inertia per unit length are considered as uncertain fuzzy parameters. The fuzzy triangle

membership functions of the uncertain parameters are assumed to be m=(.95m,m,1.05m),

1,=(951,,1,,1.051,), EI =(95EI,EI,1.05EI) and GJ =(.95GJ,GJ,1.05GJ).

(b)

Figure 16. (a) Schematic of the clean wing, and (b) the typical section wing

Using Hamilton’s Principle, the wing equations of motion are obtained as
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EW" +mw+ mygé =L (30)
~GJO"+ 1,0 +my,iv=M 31)

where EI and GJ are the bending and torsional rigidity, respectively, m is the wing mass per unit
length and /p is the wing moment of inertia per unit length. Also, L and M are aerodynamic lift and
moment, respectively.

The aerodynamic lift and moment based on Peters unsteady aerodynamic theory ¥ are used in

equations (30) and (31). The aeroelastic governing equations are given by:

2
[m(x) + mpb’ J W+ [m(x)ye + mpab’ J O+U[C,,pb]w+U |:—7Z'pb2 +C,,pab’ —C,,p b [C - IH 0
7

HEIW" +U[C,opb ]2 (¢)=U>[Cypb]0 =0
(32)

3
{m(x)k;1 +7rpb4(l+a2 )}9 +[m(x)yg +ﬂpab3JW+U{7rp%(%—lj—ﬁpalf +C,,pab’ (a +%j
z

b’ IR 1. y 1
-C,,p— 3 (7—1j(a+5ﬂ0+U{prb2 [a+5ﬂw—GJ0 +U{prb2 (a+5ﬂ/10 (t)

—U{ C,,pb* (a+ 2)}9 0
(33)

By discretizing the above equations with the Galerkin method, and solving the final eigenvalue
problem, the flutter airspeed and frequency based on the Goland wing parameters are given in
Table 2. The results show that this 3D model with finite state unsteady aerodynamic loading is in
good agreement with the literature. Furthermore, as expected, the results are more accurate than
the 2D equivalent Goland wing typical section model.

By applying the fuzzy interval method described previously, the modal damping for each a-cut

is obtained as:

7 [(ED)(GT)om 1,0 =7 [(ED), (GT), omd U ]

c

+ a}/a |:(EI)L ’(GJ) m, IPC’U] A(El)a-{— [( )L ’(GJ) PC”UjHA(GJ)a (34)
o(EI)" o(GJ)" | ’
+67,a[(E[)C,(GJ) m, IPC,U]Am _ oy [(E1),.(GJ), ,m, Ic,,U]|M _
om* ® al,” e
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Figure 17. Three-dimensional plot of modal damping versus airspeed for different a-cuts.

To obtain the flutter fuzzy membership function the dominant mode which can cause flutter is
considered. In this example the first bending mode is dominant and the other modes are stable.

Using equations (31) and (32) at each a-cut, the flutter airspeed membership function can be
obtained, as shown in Figure 17. The flutter boundary range can be seen as a triangle fuzzy
mountain shape. Indeed, for each value of the modal damping and at every a-cut, the upper and
lower bounds of the flutter speed can be extracted from this figure.

The reliability analysis for all cases which were studied in example 1 is also carried out for this
example and the results are given in Table 5. As expected, the results are very similar to the results

of the previous example because of the similar properties of the two models. Obviously, since a
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more accurate aeroelastic model was used in this example, the results are more accurate than the

typical section model results.

Table 5
The fuzzy reliability of wing flutter speed
Airspeed Membership Typical Section Clean Wing
Function
Fuzzy Reliability Fuzzy Reliability
Case 1 (115,120,125) 99.52 % 99.75 %
Case 2 (100,120,140) 93.24 % 92.69 %
Case 3 (150,155,160) 1.382 % 1.28e-3 %
Case 4 (105,110,115) 100 % 100 %
Case 5 (100,120,125) 99.81 % 99.90 %
Case 6 (115,120,140) 89.18 % 88.30 %

6.0 CONCLUSION

In this paper, a new method for the flutter speed reliability analysis of aircraft wings using a fuzzy
interval approach is investigated. Uncertain parameters are modeled as fuzzy membership
functions and propagated through the wing aeroelastic model. The flutter region at each a-cut is
obtained through the P method. By combining the flutter intervals at each a-cut the fuzzy flutter
speed membership function is obtained. The interference between the fuzzy flutter area and the air
speed area forms a pyramid. The reliability or flutter safety is then obtained from this interference
volume.

The prominent advantage of this method is that only membership functions of uncertain
parameters are required and the other statistical characteristics or the probabilistic distribution
densities are not needed for the reliability analysis. In order to illustrate the feasibility of this fuzzy
reliability method, a typical section 2D wing model and a clean wing 3D model were used. For
both examples, the reliability analysis is performed for six wind speed conditions and the flutter
reliability was determined for each condition. The results show that this approach is a suitable

method to predict wing flutter safety.
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Figure 1. Triangle fuzzy membership function. Click here to access/download;Figure;figure1.tif
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Figure 2. An example flutter speed membership function. Click here to access/download;Figure;figure2.tif £
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Figure 3. Flutter speed and wind speed 2-D fuzzy interference. Click here to access/download;Figure;figure3.tif £
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Figure 4. Space of variables under interference occurrence. Click here to access/download;Figure;Figure4.tif =
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Figure 5. The pyramid of variables in the case of triangular membership functions. Click here to access/download;Figure;figure5.tif £
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Figure 6. Safe region and failure region. Click here to access/download;Figure;figure6.tif £
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Figure 7. Numerical integration evaluation to obtain the volume of the possible space. Click here to access/download;Figure;figure7.tif £
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Figure 8. A case in which all parts of the interference volume are in the safe region. Click here to access/download;Figure;figure8.tif £
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Figure 9. A case in which all parts of the interference volume are in the failure region. Click here to access/download;Figure;figure9.tif £
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Figure 10. Fuzzy method flowchart
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Figure 11. A typical section wing model. Click here to access/download;Figure;figure11.tif =




Figure 12. Modal damping versus dimensionless airspeed for a =-0.2, e = 0.1, p = 20, Click here to access/download;Figure;Figure 12.jpg 2
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Figure 13. Three-dimensional plot of modal damping versus airspeed for different a- Click here to access/download;Figure;figure13.tif =
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Figure 14. Air speed and flutter speed 3D interference. (a) Case 1, (b) Case 2, (c) Case Click here to access/download;Figure;figure14a.tif £
3, (d) Case 4,(e) Case 5, (f) Case 6.

B safe region
© failure region




Figure 14. Air speed and flutter speed 3D interference. (a) Case 1, (b) Case 2, (c) Case Click here to access/download;Figure;figure14b.tif £
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Figure 14. Air speed and flutter speed 3D interference. (a) Case 1, (b) Case 2, (c) Case Click here to access/download;Figure;figure14c.tif £
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Figure 14. Air speed and flutter speed 3D interference. (a) Case 1, (b) Case 2, (c) Case Click here to access/download;Figure;figure14d.tif £
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Figure 14. Air speed and flutter speed 3D interference. (a) Case 1, (b) Case 2, (c) Case Click here to access/download;Figure;figure14e.tif £
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Figure 14. Air speed and flutter speed 3D interference. (a) Case 1, (b) Case 2, (c) Case Click here to access/download;Figure;figure14f.tif £
3, (d) Case 4,(e) Case 5, (f) Case 6.
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Figure 15. Reliability versus number of a-cuts. (a) Case 1, (b) Case 2, (c) Case 3, (d) Click here to access/download;Figure;figure15(a).tif £
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Figure 15. Reliability versus number of a-cuts. (a) Case 1, (b) Case 2, (c) Case 3, (d)
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Figure 15. Reliability versus number of a-cuts. (a) Case 1, (b) Case 2, (c) Case 3, (d) Click here to access/download;Figure;figure15(c).tif £
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Figure 15. Reliability versus number of a-cuts. (a) Case 1, (b) Case 2, (c) Case 3, (d) Click here to access/download;Figure;figure15(d).tif £
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Figure 15. Reliability versus number of a-cuts. (a) Case 1, (b) Case 2, (c) Case 3, (d) Click here to access/download;Figure;figure15(e).tif £
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Figure 15. Reliability versus number of a-cuts. (a) Case 1, (b) Case 2, (c) Case 3, (d) Click here to access/download;Figure;figure15(f).tif £
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Figure 16. (a) Schematic of the clean wing, and (b) the wing typical section.
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Figure 16. (a) Schematic of the clean wing, and (b) the wing typical section. Click here to access/download;Figure;Figure16b.tif £




Figure 17. Three-dimensional plot of modal damping versus airspeed for different a- Click here to access/download;Figure;figure17.tif =
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Table 1 Goland wing parameters(6) Click here to access/download;Table;Table 1.docx

Table 1
Goland wing parameters(®
Parameters Value Unit
EI 9.77x10° N.m?
GJ 9.890x10° N.m?
/ 6.09 m
X0 0.182 m
a -0.333
m 35.7187 Kg/m
b 0.9144 m
r 0.457 m
ko 8.75 x10* N/m
ky, 6.57x10* N/m

p 1.225 kg/m?




Table 2 Deterministic flutter speed and frequency Click here to access/download;Table;Table 2.docx *

Table 2
Deterministic flutter speed and frequency
Flutter speed Flutter frequency Reference

(m/s) (rad/s)

137.09 71.36 Present 3D (Example 2)
140.73 73.21 Present 2D (Example 1)
141.17 72.56 Borello et al. 2D [55]
137.05 75.52 Fazelzadeh et al.3D [47]

137.16 70.69 Goland Exact [53]




Table 3. Number of a-cut and its impact on the accuracy of flutter Click here to access/download;Table;Table 3.docx
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Table 1
Number of a-cut and its impact on the accuracy of flutter reliability
Reliability
Case 1 Case 2 Case 3 Case 4 Case 5 Case 6

z

s % 7 % z z 5
=S| & §|&% |8 /&8 5|8 § |8 3
s = S = g g g
1 09962 0.0010 | 0.9370 0.0050 | 0.0124 0.0998 | 1.0000 0.0000 | 0.9985 0.0004 | 0.8992 0.0083
2 | 09956 0.0003 | 0.9333 0.0010 | 0.0131 0.0501 | 1.0000 0.0000 | 0.9982 0.0001 | 0.8933 0.0017
3 | 09954 0.0002 | 09329 0.0005 | 0.0135 0.0239 | 1.0000 0.0000 | 0.9982 0.0001 | 0.8926 0.0009
4 | 09954 0.0001 | 09328 0.0004 | 0.0138 0.0051 | 1.0000 0.0000 | 0.9982 0.0001 | 0.8924  0.0007
5 | 09954 0.0001 | 0.9328 0.0004 | 0.0138 0.0041 | 1.0000 0.0000 | 0.9981 0.0001 | 0.8925 0.0007
6 | 0.9953 0.0000 | 0.9325 0.0001 | 0.0139 0.0035 | 1.0000 0.0000 | 0.9981 0.0000 | 0.8920 0.0001
7 109954 0.0001 | 0.9327 0.0003 | 0.0138 0.0030 | 1.0000 0.0000 | 0.9981 0.0000 | 0.8923 0.0006
8 | 09953 0.0001 | 0.9326 0.0002 | 0.0137 0.0075 | 1.0000 0.0000 | 0.9981 0.0000 | 0.8922 0.0004
9 | 09953 0.0001 | 0.9326 0.0002 | 0.0138 0.0042 | 1.0000 0.0000 | 0.9981 0.0000 | 0.8921 0.0003
10 | 0.9953 0.0001 | 0.9326 0.0002 | 0.0139 0.0033 | 1.0000 0.0000 | 0.9981 0.0000 | 0.8922 0.0004
12 | 09952 0.0000 | 0.9324 0.0000 | 0.0139 0.0048 | 1.0000 0.0000 | 0.9981 0.0000 | 0.8919 0.0001
14 | 0.9954 0.0001 | 0.9327 0.0003 | 0.0139 0.0067 | 1.0000 0.0000 | 0.9981 0.0000 | 0.8923 0.0005
16 | 0.9953 0.0000 | 0.9325 0.0002 | 0.0138 0.0017 | 1.0000 0.0000 | 0.9981 0.0000 | 0.8921 0.0003
18 | 0.9953  0.0000 | 0.9324 0.0000 | 0.0139  0.0039 | 1.0000 0.0000 | 0.9981 0.0000 | 0.8919  0.0000
20 | 0.9953 0.0000 | 0.9326 0.0002 | 0.0140 0.0103 | 1.0000 0.0000 | 0.9981 0.0000 | 0.8921 0.0003
30 | 0.9953 0.0000 | 0.9325 0.0001 | 0.0139 0.0030 | 1.0000 0.0000 | 0.9981 0.0000 | 0.8920 0.0002
40 | 0.9953 0.0000 | 0.9325 0.0002 | 0.0139 0.0028 | 1.0000 0.0000 | 0.9981 0.0000 | 0.8921  0.0003
50 | 0.9953 0.0000 | 0.9324 0.0000 | 0.0138 0.0049 | 1.0000 0.0000 | 0.9981 0.0000 | 0.8919  0.0001
60 | 0.9952 0.0000 | 0.9324 0.0000 | 0.0139 0.0023 | 1.0000 0.0000 | 0.9981 0.0000 | 0.8919  0.0000
70 | 0.9953 0.0000 | 0.9324 0.0000 | 0.0139 0.0026 | 1.0000 0.0000 | 0.9981 0.0000 | 0.8919  0.0001
80 | 0.9953 0.0000 | 0.9325 0.0001 | 0.0138 0.0002 | 1.0000 0.0000 | 0.9981 0.0000 | 0.8920  0.0002
90 | 0.9952 0.0000 | 0.9324 0.0001 | 0.0138 0.0014 | 1.0000 0.0000 | 0.9981 0.0000 | 0.8919  0.0001
100 | 0.9952  0.0000 | 0.9324 0.0000 | 0.0138 0.0015 | 1.0000 0.0000 | 0.9981 0.0000 | 0.8918  0.0000
200 | 0.9953 0.0000 | 0.9324 0.0000 | 0.0138 0.0003 | 1.0000 0.0000 | 0.9981 0.0000 | 0.8919  0.0000
500 | 0.9952 0.0000 | 0.9324 0.0000 | 0.0138 0.0001 | 1.0000 0.0000 | 0.9981 0.0000 | 0.8918  0.0000
1000 | 0.9952  0.0000 | 0.9324 0.0000 | 0.0138 0.0000 | 1.0000 0.0000 | 0.9981 0.0000 | 0.8918  0.0000
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Table 1
The reliability of typical section wing flutter speed for a-cut = 1000
Wing Typical Section
Method Fuzzy Monte Carlo
(Number of Simulation) (2001) (1000000)

Airspeed Membership Function Reliability Reliability error
Case 1 (115,120,125) 99.52 % 99.82% 0.3%
Case 2 (100,120,140) 93.24 % 95.27% 2.1%
Case 3 (150,155,160) 1.382 % 1.42% 2.6%
Case 4 (105,110,115) 100 % 100% 0%
Case 5 (100,120,125) 99.81 % 99.93% 0.1%

Case 6 (115,120,140) 89.18 % 92.41% 3.4%
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Table 1
The fuzzy reliability of wing flutter speed
Airspeed Membership Typical Section Clean Wing
Function
Fuzzy Reliability Fuzzy Reliability
Case 1 (115,120,125) 99.52 % 99.75 %
Case 2 (100,120,140) 93.24 % 92.69 %
Case 3 (150,155,160) 1.382 % 1.28e-3 %
Case 4 (105,110,115) 100 % 100 %
Case 5 (100,120,125) 99.81 % 99.90 %

Case 6 (115,120,140) 89.18 % 88.30 %




