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I. INTRODUCTION

Computing perturbative scattering amplitudes in gauge
theories is a key tool in confronting theories of particle
physics with experimental results, and there is considerable
demand for new predictions particularly at “next-next-
leading order” (NNLO) [1,2]. Amplitudes are also the
custodians of the symmetries of the theory and as such are
important for exploring properties of theories which are not
always manifest in a Lagrangian approach. Computing
amplitudes in closed analytic form is particularly useful in
this regard.

Amplitudes for the scattering of gluons within a gauge
theory are key, being both important phenomenologically
and central to gauge theory. Modern techniques have
driven progress in the calculation of analytic expressions
for tree and one-loop gluon scattering amplitudes but
analytic expressions for two-loop and beyond amplitudes
are relatively rare (although in theories of extended
supersymmetry a great deal more progress has been
made [3,4]).

Computing two-loop amplitudes for gluon scattering
in analytic form has proceeded by separating the
amplitude into its physical components. Specifically,
amplitudes with a given color structure and specific
choice of external helicities have been computed. For
four-point scattering, all of these components have been
calculated [5,6] (and more recently to all orders of
dimensional regularization in [7]). At five-point and
beyond, progress has been made in a variety of stages.
In terms of color structure, the simplest amplitudes are
the “leading in color” amplitudes which only require
planar two-loop integrals to be computed. For external
helicity, the “all-plus” amplitude, where all external
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(outgoing) legs have the same helicity, has the most
symmetry and is the simplest. The all-plus amplitudes
vanish at tree level, and so they have a relatively simple
singularity structure at loop level. In [8,9] the five-point
all-plus leading in color amplitude was computed using
generalized unitarity techniques and subsequently pre-
sented in a very simple analytic form [10]. In Ref. [11]
it was recomputed using simpler four-dimensional
unitarity and recursion methods which is the method-
ology we use in this article. The remaining leading in
color five-point helicity amplitudes have also been
computed: in Ref. [12] the “single-minus” (an ampli-
tude which also vanishes at tree level) was computed
and the remaining helicities in [13]. In Ref. [14] the
remaining parts of the full color all-plus five-point
amplitude were calculated. Beyond five-point only a
few amplitudes are known. The leading in color all-plus
amplitudes have been computed using our methodology
for six-gluons [15] and seven gluons [16]. In Ref. [17]
a conjecture for a specific color subamplitude was
presented valid for n-gluons.

In this article, we compute and present in closed
analytic form the full color all-plus six-point amplitude
AP (1+ 2% 3+ 4+ 5+ 6). This is the first full color
six-point amplitude and contains a wider class of color
amplitudes than the four- and five-point cases. Our
methodology involves computing the polylogarithmic
and rational parts of the finite remainder by a combina-
tion of techniques. The polylogarithms are computed
using four-dimensional unitarity cuts, and the rational
parts are determined by recursion. The amplitude con-
tains double poles in (complex) momenta, and we over-
come the concomitant issues by using augmented
recursion [18]. Our methods bypass the need to calculate
nonplanar integrals.

II. FULL COLOR AMPLITUDES

A general two-loop amplitude for the scattering of n
gluons in a pure SU(N,) or U(N,.) gauge theory may be
expanded in a color trace basis as

Published by the American Physical Society
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The partial amplitudes multiplying any trace of color matrices are cyclically symmetric in the indices within the trace. The
summations count each color structure exactly once. Specifically, when the sets are of different lengths (r — 1 # 3, s # 1,

t #%5* and 3s # m, n) the sets P,., are

Py =Zy(ay,....a,),
Por=2Z_(ay,...a,_1) X Zp1_(ar,...;a,), r>1, r—=1#n+1-r
Poisi =2Zg(ay, ...;ag) X Z(Agy1, oo Agiy) X Zyg_((Agipis -onay). (2.2)
When the sets have equal lengths, to avoid double counting,
Pomzmir = Zw @y, oo @) X Zy(@pis -5 @) X Zo,
7Dn:s,s = Zs(ah (AL} as) X ZS(aS—Hv LERE] aZS) X Zn—ZS(aZS—H’ LRRE] an) S Z27
P3m:m.m = Zm(alv (RS am) X Zm(aerlv ceey a2m) S Zm(a2m+lv (RS aSm) X S3’
P2m:2s,m—s = ZZS(al EERE) a2s) X Zm—s(aZH»l EERE) aerm) X Zm—x(aSerJrh [ERR) aZm) X ZZ' (23)
[
For example for Ag:na(a,byc,dye, f) the manifest sym- A%(l;l&--',n)+Aff;)1(1,2,3,---,n)
metry is @ @
+A,7,2,1.3,..n)+---+A7(2,...,1,n)=0.  (2.5)

Po:op = Zs(a,b) x Zy(c.d) x Zy(e, f)

x S3({a, b}, {c,d}. {e. f}) (2.4)

which means the summation of this particular term is over
15 terms.

The above expansion is valid for both a SU(N.) gauge
theory and a U(N.) gauge theory. In the expansion for
SU(N.,) the color trace terms with a single trace Tr[T?%] are

512:)2 and A(2>l . and

omitted. Specifically these are the terms A nils
AS12:)1,1- These functions are consistent gauge invariant
objects whose role is to cancel other terms. By letting
one or more of the external gluons lie in the U(1) part
of U(N,.) and requiring the full amplitude to vanish
generates relations between the partial amplitudes
known as decoupling identities. For example letting leg
1 be a U(1) gluon and examining the coefficient of

Tr[T?T3 - - - T"] we obtain

07

) (2)
n:2 n:l-
(2)

1

This allows A
Similarly the A

., to be expressed in terms of the A
> and Aizz)u may be expressed in terms of

n:

the Af)l and Ai%)r, r > 2. The decoupling identities can be

used iteratively to express the sub-sub leading SU(N,)

terms A£,2;>Sy,, s =1, 2, in terms of A;(12:)1 and AEIZ),, r>2.
Although this may not be the most efficient expressions for

these. Finally, if we consider A,(12:)1 > the decoupling iden-

tities provide consistency constraints but do not relate these
to the other amplitudes,

ne

n:

(123, )+ A% (213, ) + -

@ (2....1,n)=0.

+ An:lB (26)

Decoupling identities do not exhaust the color relations,

and further constraints arise from recursive approaches

)

[19,20] which imply extra relations involving both A,z
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and other amplitudes. For n = 5 these contain sufficient

information to determine Ag2:>1 5> but at n = 6 and beyond

the Af:), p 18 a further function which must be determined.
In summary, the minimal set of color trace amplitudes

which must be determined to fully specify the amplitude

are AL AD with r > 2, A%, with s > 2 and A" .

n:l»
At six-point all partial amplitudes can be expressed

in terms of Aé%)l, Aézzé, Aézz)4 and Aézfl 5- Explicitly, the
) amplitudes are given by

specifically U(N
A% (1:2,3,4,5.6)
=-A%(1,2,3.4,5.6) - A% (2.1,3.4,5,6)
A% (2,3,1,4,5,6) — A% (2.3.4.1,5.,6)
—A% (2,3,4,5.1,6),
AP (152:3,4,5,6)

= -Ag5(1,2:3,4,5.6) + Ag (o)
ocOP{a{p)
and
AL 5(152,3;:4,5,6)
= -A%(1,2,3:4,5.6) —A%,(2.1.3:4,5.6)
—ACL(2,3:1,4,5,6) — AP (2,3:4,1,5.6)
2
~A%(2,3:4,5.1,6), (2.7)

where {a} = {2,1}, {#} = {3,4,5,6} and OP{S,}{S,}
is the set of all mergers of S; and S, which preserves the
order of §; and S, within the merged list. Note the first
element in these sums has the list reversed although for a set
of two legs this is meaningless. The remaining SU(N )
partial amplitude is given by

AL ,(1,2;3,4;5,6)

:—Z S Y Agmn)
7200 €O P} (v} # €OPT3} o)

DY

Zy(v.p) o€OP{a}{v}

- > AP L (Live),

Zy(n) Zy({v.p}) c€OP{2}{p}

where {#} = {2, 1}, {v} = {3,4} and {p} = {5,6}. This
is an inefficient expression with considerable cancellation
amongst the terms on the rhs. For example, the rhs of the
above contains terms with double poles in complex

momenta whilst Aéz)z , does not.

We calculate all eight U(N,.) functions directly, and we
use (2.6), (2.7) and (2.8) as consistency checks.

AP (p: o)

(2.8)

III. STRUCTURE OF THE AMPLITUDES

The IR singular structure of a color partial amplitude is
determined by general theorems [21]. Consequently we

can split the amplitude into singular terms U ,(12)2 and finite

terms F' 512)1

2
AD = Ul + F2 + o).

n:

(3.1)

@)

.., simplifies
considerably and is at worst 1/¢? [22]. Specifically, U U )1 is

proportional to the one-loop amplitude,

2 1 ol wo\©
U, = AU {_ >4 <_S‘ ) 62
ii+1

i=1

As the all-plus tree amplitude vanishes, U,

and the two-loop IR divergences for the other unrenormal-
ized partial amplitudes are presented in a color trace basis
in Ref. [23].

The finite remainder function F ,% can be split into
polylogarithmic and rational pieces,

2

n

2 2
) =P+ R (3.3)

F
We calculate the former piece using four-dimensional
unitarity and the latter using recursion.

The one-loop all-plus amplitude is rational to leading
order in € and in four-dimensional unitarity effectively
provides an additional on shell vertex [16,24]. The two-
loop cuts effectively become one-loop cuts with a single
insertion of this vertex which yield1

S (3.4)

A

where ¢} are rational coefficients,

K2 K?
F2n(S,T,K2,K?) = Li, (1 - T) +Li, <1 —72>

_ K3 K2
+L12<1—?>+L12<1—7)
K2K?2 1 S
—Lip (1 ——24) +-In?( =
o157 ) e (7)

(3.5)

and, in the specific case where K3 = 0,

'"The functions F*™ and F'™ are the polylogarithimc parts
of two-mass easy and one-mass one-loop box functions
respectively.
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K2 K2 2
F>™(S,T,0,K2) =F"™(S,T,K3) =Lip [ 1 = =2 ) + Li, (1 =22 | += L S +Z (3.6)
S T 2 6
Deﬁning2
2m b d i [ef] F2m
C (a cde, f) 3(ab>(bc><cd)<da) (tabcvtbcdasbc’sef)
sz(a b c d e, f) [ef] X Fzm(tabwtbcdvshc’sef)y (37)
< b)(bd)(dc)(ca) '
and

lfabc< |dP ypcla) + (cldefPg.rla) + (a|fPgrlc)s efXFlm(s Spos Laer)

3 (ab) (be) (ca{cd) (de) ef) ([ ab S g

. | ((@ldP |6} CldPosela) + (ca)(soplalfPusele) — (alPuscefdl)) .

Cab.cid.e.f) = ( (ab)(bc{ca)(ad) (de) {ce) e} (Fa) )F (Sate Spc- Laer)

_{ca)ldlefld) = dIPupe|e)d|Posela)
(ab) (bc) (ca){ee) {ef) (fa)

[dIPusla)ld1f|c) = [d\Pus ) dlela)
(ab) (be){ae) {ec) {cf) (fa)

Clm(a,b,c;d, e, f) =

Cl™(a,b,c;d, e, f) = X F(Sps Spes Ler)

Ci"(a,b,c;d, e, f) =

X EY (S0 Spes Lger)

lma c: e — _ tibc X lms s

Celabresd o) = 2 ey tea ey (rdy < T e v taer)

"(a,b,cyd, e, f) =— [4]Pasclc)” X F'" (545, 8

Cortabcsd ) = 20y ca) ey ley ey ot )
de?ca?

C}J’”(a,b,c;d, e,f)=-—

2 @by (be)caac) (e (fa) (S e aer ) (3:8)

Note that these six-point coefficients are conformally invariant: a feature noticed for the five-point all-plus amplitude
in Ref. [25].
Using these definitions the results for P( >/1 are

Pé:)l (a,b,c,d e, f) = Z(Cé’"(a, b,c;d,e, f) + C¥(a;b,c;d;e, f)), (3.9)
Pe:1
P (a.bic.d.e.f) =Z(c;m(a,b,c;d,e,f> +C™(a,c.bid,e.f)+Cl(c.a.bid.e.f) = C)" (a.c.dsb.e. f)
Pe:3

1
—C}I’”(c,a,d;b,e,f) —C}y’”(c,d,a;b,e,f) - C}y’”(d,e,f;c,a,b) +§C}]’”(d,e,f;a,b,c)
+4C2"(c;d,e; fra,b) + C2(bse, fasc,d) + C¥(f;b,ase;c,d) — Co" (e f,a; bic,d)
—C¥"(fse,bya;c,d) + Cy"(dse, b; fra,c) — C¥"(byd, e; fra,c) —Ci’”(d;e,f;b;a,C)), (3.10)

1
Pézlt(a, b,c;d,e, f) = Z(§Cé"’(a,b, c;d,e, f)—Ci"(a,b,c; f,e,d) + C}j”(d, b,ajc,e,f) + C}j”(b,d,a;c,e,f)
7)(324

1 1
+ Cy"(b,a,d;c.e. f) + Ci™(a; f,e;b;c,d) —ECi’”(a;b,f;e;c,d) —ECim(f;a, e;b;c,d)

+ (b, d;cse, ) = Ci(as b, c; ds e, f) = €3 (ds a, b c;e,f)) (3.11)

Here a null momentum is represented as a pair of two component spinors pt = o, dﬂ"ﬁ‘. We are using a spinor helicity formalism
with the usual spinor products (ab) =e,3A%%, and [ab) :—edﬁﬁgﬁ/bj. Also s, = (k, +k)? = (ab)[ba] = {a|bla], type = (k, + ky + k. )2,

[a| Py|d) = [ab](bd) + [ac](cd) etc., t_[ijkl] = w("SL k) = (i) K kD) (1] = (iljkd)i], e [ijkl] = (U 0 k) =
171Gk [k (i) and e(i, j. k, 1) = tr, [ijk]] — tr_[ijki].
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1
PP J(a.bic dse, f) = 5 S T(Ch(a.b.cre f.d) + Cy(b.a cie. f.d) + CY(b.c.aze. f.d) + 6C2"(d:a, bicie, f)
Ps:2n

—3C(ayb,c;dye, f) —3Ci"(bya, d;c;e, f)) (3.12)
and

PéZ:)IB(a,b,c,d,e,f) = Z(le”’(a,b,c;f,d,e) —C}’"(c,b,a;d,e,f,)—I—C}m(b,f,e;a,c,d) +C}m(f,b,e;a,c,d)
P()Zl
+Cj"(f.e,b;a,¢c,d)=C}"(f,b,c;a,d,e)=Ci" (b, f,c;a,d,e) = Cy"(b,c, f;a,d,e)
+6C?"(f;b,e;d;a,c) —6CH" (b f,e;dsa,c) —6C3"(fe,d;b;a,c) +6C2" (a;b,c;dse, f)
+3C2(f;b,c;e;a,d) +3C3(cse, f;bya,d) —3C" (b, fre;a,d) —3Co" (cse,b; fa,d)).  (3.13)

This expression for Pé%)l » matches the n-point form of Pf:)1 5 given in [17]. The U(N,) pieces are

P(62;>2(a;b, c.dye f)= Z(C},’”(b, c.dya, e, f)+C"™(b,c,d;a, e, f)— C(a,b,c;d, e, f) — C"(b,a,c;d, e, f)

Pe:2
—Cl™(b,c,a;d, e, f) —2C¥(b;c,d;e; f,a) + Co"(b;c,a;dse, f)
- C2"(aib.cidse. f) — C¥(bic.dsaze. f)). (3.14)

Pé%)l.l(a;b;c,d,e,f) = Z (Ci™(c.d,esa, b, f) —=3C¥(c;d,e; f;a,b) — Ci™(b,c,dya, e, f) — Ci™(c,b,d;a, e, f)
Pﬁi].l

—Clm(c,d,bsa, e, f)+3C3(b;c,dye; f,a) +3C2"(c;d, e; b f,a) —3C3"(c;d, b e; f, a)),
(3.15)

and

1
PO (abocidoef) = (2 (CY(c.b.dya e, f) + C(b.c.dsa,e. f) + CY(b.d,c;a.e. f))
Ps:12

1
—|—§(Cl’"(c,b,d;a,f, e)+ C™(b,c,d;a, f,e)+C(b,d, c;a,f, e))

1
—E(C;m(a,d, e;b,c, f)+ C;m(d,a, e;b,c,f)+ C;’"(d, e,a;b,c,f))

1
—EC}]’”(CZ, e.fib,c,a)—Cl"(d e, f;a,b,c)— C[I[”(b,d, e;a,c,f)— C},’”(d, b,e;a,c,f)

—Cli™(d,e.bya,c,f) +3Ci"(c;b, fre;a,d) +3C3" (bye, c; fra,d) —3C3"(bse, fic;a,d)
—3C¥(e;b,c; fya,d) +3C2"(c;d, e; f;a,b) +3C3"(ds e, f;c;a,b) —3C3"(d; e, c; f;a,b)

—3C2(a;d, e; f;b,c) —3C2"(d;e, f;a;b,c) +3C3"(d; e, a; f; b, c)> (3.16)

|
IV. RATIONAL TERMS mon}enta. The 1§ading poles are determined by the ampli-
tude’s factorization but there are no general theorems that
As R,(f)/1 is a rational function we may calculate it using  determine the subleading poles. We use color dressed
recursion techniques by performing a complex shift of its ~ augmented recursion as reviewed in [16,23] to overcome
external legs [26,27] and analyzing the singularities of the  the issue of double poles. This requires generating certain
resultant complex function R(z). This is complicated  doubly off shell currents which we present in the Appendix.
because the amplitude has double poles in complex  The specific rational pieces are
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AR,
Kb ) = g 3 O @)
where
i Sl sty
G b.e.de.f) = G108 weP 0 + 5 T (e
G2 (a bc.d,e, f) = 9 <;i> aclldf]
G (a.b.c.de.f) = % o
and
ngl(a’b’c’d’e’f):sf“sb"”“"”’e*%Safscd—g[albcflw 8la ICde|a>—*[ |cdfla >_*[b|cef|b> (4.3)

This was first calculated in [15] and later presented in an alternative form [16]. It was subsequently confirmed by Badger
et al. [28].

B. R,

Rézzé(a,b;c,d,e,f)zz B(Héﬁ(a,b,c,d,e,f)—Hé:3(a,b,c,d,f,e))

Ps:3

N i (G§:3(a,b,c,d,e,f)+G2:3(a,b,c,d,e,f)+Gé:3(a,b,c,d,e,f)) i Gg:3(a,b,c,d,e,f)

3 (ab) (bc) {ca) (de) e ) [ d) T 12{ab){be) (cd) (de) (ef) (Fa) |
(4.4)
where
o Giolaboedef) . led  (cf)db)blsld)
Heslaboed e ) = o oy (ed de) ef) a)  (ed)? {ab)(af) (bf) (deblel)

Gg.5(a.b.c.d,e.f) = s..(c|bf|d) = s.s(c|be|d)
[d|Pyesbla){d|fPacsla) + s4c[f|cbd|f) + [bldf|e](blcPupc|e)
Lief
sap{d|fblc)[c|Papcle)  sqe(fldble)[c|d|e)
(de)tyey (ef)taey
Gi.5(a,b,c.d, e, f) = —spqsq. — la|bde|a) + [b|cde|b) — [a|bdf|a) + [b|cdf|b) + [b|cef|b) — [b|def|b)
Gi.5(a,b,c,d e, f) = =452 + 2505 0a — 2SacSaa + 25apSae — 2SacSae + 255, — 257, + 2sl2,f —88,40Scq +48peSca

G§:3(a,b,c,d,e,f) =

Gg:3(a,b,c,d,e,f) =

125045 cq + 6575 = 85 acSce + 12545 ce +165paSce +45peSce +85caSce + 252 + 257 — 85acSae

— 4840540 — 4SpeSge + 45 cqSae + 45 ceSqe — 8lalbeela) —39[albef|a) — 18[a|bdf|a) + 2]a|bef|a)

— 10[a|cdf|a) —2[a|cef|a) — 4[aldef]|a) + 8[b|cde|b) — 4[b|cdf|b) —4[b|cef|b)

—4[bldef|b) —4[c|def]c). (4.5)
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C.R¢,

(Gl.,(a,b,c.de.f)+G2. (a,b,c.de.f)) (G}.,(a,b,c.d,e.f)+G¢. (a,b,c.d,e,f))

) i
R;.,(a,b,c,d,e,.f)=— [ +12 ,
outl =362 ab) (be) (cay(de) ef) (1 (aby(cdy(deNe ) (fe)
(4.6)
where
4(e|P byle|dP,,.|b
Gé:4(a7 b? C’ d’ e’f) - <3| abca|t iFe| abC| ]’
G2.,(a,b,c.d, e, f) = 52,4 1065,,5,4 + 102[albcd|a) — 4]a|bde|a) — 4]a|dbe|a),
b
Ghalabicad.e.) = = 27 (alealt) + (alef|8).
G2:4(a, b,c,d,e, f) = [a|cd|b] + [a|ef|D]. (4.7)
2
D. Ry,
Gl' 7b7 7d’ b +G2' 7b7 ’d7 9’
RZ,(abic.die.f) = i o:a0(a.b,c.d e f)+Ggps(ab.c.d e f)7 (4.8)
2 P (ab) (be) (ca) (de) (e Fd)
where
b|P d)|b|cP,,.|d
Gé;z,z(a’ b, c,d,e,f) _ < | abcft>b[ |C abc| ]’
G%:2,2(a’ b,c.d,e, f) = sad[e|Pbc|e> — Sac [6|Pfa|e> ~ SafSae — SaeScd- (49)
2
E. Ry
An n-point formula was conjectured in [17], and we find agreement.
RO pla.b.c.doe f) = REp (a.bc.de.f) + Ry (a.b.c.d.e. f), (4.10)
where
RO (a.b.c.de. f) = 2 x> (i) (4.11)
Cy(a’ b,c.d,e, f) a<i<j<k<I<f
and
2) ) e(c,d, e, f) e(c,d, e, f) e(c,d, e, f)
R;- ,b,c,d,e,f) =4
6‘132(a ¢.d.e.f) l(Cy(a,b,d,e, c.f) Cy(a,b,e c.d,f) + Cy(a,b,e,d,c,f)
e(a,b,c,d) e(a,b,c,f) n e(a,b,c,d) e(a,c,d, f)
Cy(a,c,d,b,e,f) Cyla,c,d,e,b,f) Cy(a,d,b,c,e,f) Cy(a,d,b,e,c,f)
e(a,b,c,d) e(a,b,d, f) B ela,c,d, f) e(a,b,d, f)
Cy(a,d,c,b,e,f) Cy(a,d,c,e,b,f) Cy(a,d,e,b,c,f) Cy(a,d, e c,b,f)

e(a,d, e, f) e(a,c,e,f) e(a,c,e,f) e(a,b,e,f) >
- - . (412)
Cy(a,e,b,c,d,f) Cy(a,e,b,d,c,f) Cy(a,e,d,b,c,f) Cy(a,e,d,c,b,f)
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where Cy is the Parke-Taylor denominator,

Cy(a,b,c,d, e, f) = (ab)(bc)(cd)(de)(ef){fa).

(
F. R¢.1,

We also calculate the U(N.) amplitudes,

Gg.qyla.b.c.d.e.f)+Gg. (a.b.c.d.e.f)

(4.13)

)

ngl.l(a,b,c,d,e,f)

R(62:>1,1(a2b;0,d,e,f) - Z <z

Ps:1.1

where

PyeaefPpeab
Gfl):l,l(%b,c,d,e,f) = [C| bed®JS Pped |C>’

Iped

(be)(cd)(db){ae)(ef)(fa)

T ac) (edy(dby (be) (ef) <fa>>’ (4.14)

1
G%:l,l(av b» c, d: e, f) = zsahscd — SacSae + SacScd + SadScd — s%d — ScdSce — Scdscf - scdsdf - [a|cde|a> + 5 [C|d€f|C>

and
Gé:l,l(a’ b? ¢, d’ e, f) = 2Sabsac + 2330 + 2sacsad + zsacsae + 2sacsbc — SaeSbe + SabScd + SacScd
+ SaaSca — 2saescd + 2sadsce - 2saesce — ScdSce — s%e — ScaScf + SceSdf
1
=5 ScaSes + 2[a|cbd|a) + 2[a|cbe|a) + 4[a|cde|a) — [c|def]|c). (4.15)
2
G. R,
i(Gt. ,(a,b,c.d e, f)+ G2 ,(a,b,c.d,e,f))
R (@b cidoef) =Y —%12 o e , (4.16)
P (ef)(fa) (ae) (bc) (cd)(db)
where
Gl (b e.d e f) = — el PpcadbPpeale) + [e|PycabcPyeaale) ,
" tpea
Gi. ,(a.b.c.d. e, f) = |albce|a) —2[b|dce|b) + [b|def|b). (4.17)

H. RY,

Rézz)z is compactly written by its decoupling identity
which we have checked numerically,
Rézz)z(a;b, c,d,e, f)

= —Rézz)l(a, b,c,d, e f)— Rézfl(b, a,c.d,e,f)
- RéZ)l (b’ ¢ a, d’ e, f) - RéZ)l (ba c, d7 ae, f)

- Rézz)l(b, c,d,e,a,f). (4.18)

These expressions are valid for both U(N.) and SU(N.)
gauge groups and are remarkably compact. We have

confirmed that they satisfy the constraints arising from
the decoupling identities. The SU(N,.) amplitudes have the
correct collinear limits: all nonadjacent and intertrace limits
vanish, and adjacent limits within a single trace factorize
correctly. All of the partial amplitudes have the correct
symmetries. Recursion involves choosing specific legs to
shift, breaking the symmetry of the amplitude. Restoration
of this symmetry is a powerful check of the validity of
our results. We have checked that none of the Rézz)/l are
annihilated by the conformal operator.

V. CONCLUSIONS

Computing perturbative gauge theory amplitudes to high
orders is an important but difficult task. In this article, we
have calculated the full color all-plus six-point two-loop
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amplitude and presented the results in simple analytic
forms. We have computed all the color components directly
thus presenting the first complete six gluon two-loop
scattering amplitude.

Our methodology obtains these results bypassing the
need to determine two-loop nonplanar integrals. There are
some inherent assumptions in our methods; however, the
results satisfy a variety of consistency checks. Firstly, they
give the correct results for the five-point amplitudes and for

Aé%)] which was computed subsequently. Secondly, we have
generated the full set of amplitudes and then checked the
decoupling identities are satisfied. We have checked the

collinear limits of the amplitudes. Note that the singular

terms Uff)/1 and the polylogarithms Pf)z must combine to

give the correct collinear limits as Refs. [11,24].

Analytic forms are particularly useful in studying formal
properties of amplitudes. For example we have confirmed
that the coefficients of the polylogarithms are conformally
invariant whilst the rational terms are not.
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APPENDIX: CURRENTS AND RECURSION

Augmented recursion was reviewed in [23] and shown to
work for a full color amplitude. We will outline the steps
here. The amplitude contains double poles and so factori-
zation theorems do not provide the full pole structure.
Mathematically we can take the residue of a function via its
Laurent expansion,

C_» C_1
_l’_

(z—2z)* (z—7z)

where the residue is simply

f(z) =

+0((z - z;)°), (A1)

i 1

C_2 ~1
7. Zj Zj

“J

f (Z)] (A2)

Res [—
z

As Rflzz)/1 is a rational function we can obtain it recursively by
performing a complex shift of its external legs [26,27]
and analyzing the singularities of the resultant complex
function R(z).

Here z is a complex parameter introduced by the shift
and the shift must be chosen carefully so that R(z) vanishes

for large |z|. Cauchy’s theorem then tells us

R=R(0) = - Res [@]

Zﬁéo

(A3)

Zj

For tree amplitudes this can be achieved by the Britto-
Cachazo-Feng-Witten shift [26]. For the two-loop all-plus
amplitude the Risager shift [27],

Ag = Ao = Ay + 2]bclh,,
Ay = Ay = Ay + 2[cald,,

Ae = Ap = Ao + 2[ablA,. (A4)
preserves overall momentum conservation and gives the
desired large |z| behavior, where 4, must satisfy (an) # 0
etc. but is otherwise unconstrained. Shifting the legs breaks
the symmetry of the amplitude so recovering the necessary
symmetries (the cyclic symmetries as well as 4, independ-
ence) provides a strong check. The symmetry is recovered
by the Risager shift.

The leading poles are determined by the amplitude’s
factorization but there are no general theorems that deter-
mine the subleading poles. The Risager shift excites poles
corresponding to tree:two-loop and one-loop:one-loop
factorizations. The former involve only single poles and
their contributions are readily obtained from the rational
parts of the five-point two-loop amplitude [14,23],

R§2;)1 (a*.b*.ct,dt,et) =~

2i 1

tr? [deab)
ST o s+ s ).

SS:I

Rg%)S(a+, btiyct,dt, et) =—

and
RO p(at bt e d¥,e?)

= 2ie(a, b, c,d) Z Cpr(a,b,e,c,d).

Zs(a,b,c,d.e)

(AS)

The one-loop:one-loop factorizations involve double
poles and we need to determine the sub-leading pieces.

tr_[acde|tr_[ecba]
3 {ab)(ba){cd)(de)(ec) Z( SaeSed

3
+ 5 S§b>
Ss:3
[

By considering a diagram of the form Fig. 1 using an
axial gauge formalism [29,30], we can determine the
full pole structure of the rational piece, including the
nonfactorizing simple poles. We have used this approach
previously to compute one-loop [31-33] and two-loop
amplitudes [11,15,16,23], we labeled this process aug-
mented recursion.
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/dAC(oﬁ‘, at,bt,p7)

o/ L0 Vil a O Wae.b.p). (A7)
= a,da, s Uy s
cr(2n)P ) PR }

the vertices are in axial gauge and T;(zl)’c is a doubly off shell
current where ¢ denotes an implicit sum over color.

As we are only interested in the residue on the s,, — 0
pole, we do not need the exact current. It is sufficient that
the approximate current satisfies two conditions [11,32]:

+
a (1) The current contains the leading singularity as s,;, —0
Sh o2 32
FIG. 1. Diagram containing the leading and subleading poles as B with a, f # 0, ) ) )
Su, — 0. The axial gauge construction permits the off shell (ii) The current is the one-loop, single-minus amplitude
continuation of the internal legs. in the on shell limit &?, > — 0, Sqp # 0.

This process is detailed in [16] and applied to the full color
case in [23].

The U(N..) color decomposition of dA° contains acommon
kinematic factor so we have the color decompositions,

c — 1),c, _
/dA (a+7a+’ b+7ﬁ )TSI) (a ’/j+7 C+a ‘~-7n+)7 (A6) Tg,l)’c — ZCAT(I')A and /dAC — CA/dA()7 (AS)
A

where where

The principal helicity assignment in Fig. 1 gives

i dP¢ la|?|q)[b|¢|q) (Bq)?
dAy(a,a™, b, ) = / . A9
] ano )= 0P| PR (ag)iba) (aq) (49)
Hence the full color contribution is
pIYeNe’ / dio(a*,at bt p)T (@ fr et o). (A10)
7

The various 1,(11:; can be expressed as sums of the leading amplitudes =

the six-point case there are three currents to calculate. Télz)l (a=,pt,ct,d, et, f1) has been calculated previously [15] and

presented for arbitrary ¢ [16]. The remaining two currents are given by

(1)

.-) Via a series of U(1) decoupling identities. For

,épl(a_,cﬁﬁtdﬂeﬁﬁ):z( feeles) _(adP(Pldele) cldo)

3\(eB)(de) (ef) 2 (ac) (Bd) ~ (ch)(de)(ef){fa)(ac)(Bdy " (ef)(fa)(pd)*[c|Ppale)iepa
. [flc|a)? O 7 O I B .. N 5 ) D
(ch)(de)Xac)[flclB)[clPusle) * Fallaclips, . L(de)(Bd) " (de)[c|Ppale)  (B)LfIcI)
+ O(54p) (A11)

and

W (cB)(ad)’[cd] (ae)* (BF)ef] le|d|a)?

To (@7 AL BT S )_5<_<Cd>2<d/)’>2<ef><fa><ﬂe>+(Cd><d/3><ef>2<0w><ﬁe>2+<d/)’>2<ef><fa>[C|Pdﬂ|e>tcdﬂ
. [F|Peala)® Lo ldel  fed)idp)  [ef)ipe] D
(cd){ac)(Be) [fIPucld)tueg | Lfallacltyse ~ L(dB) ()" (Be)lc|Pasle)  (dB)IFIPucld)
+O(54p)- (A12)

Many of the terms in the nonadjacent currents do not give rationals upon integration. We are thus left with
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d°¢ i (afl@blelg) oy, - o e e
| G fagipg) TS
:i[ab]< (df){ae)’ef](bg)? (ad)*(be)|d|c|a)(bg)* 4+ [fIc|a)*(bg)* )
6 (ab) \ (cb)(de)*(ef)*(ac)(bd)(aq)® (cb)(de)*(ef)(fa)(ac)(bd)*(aq)® " (cb){de)*(ac)(aq)*[flc|b)[c|P.y|c)
(A13)
and
¢ i lalf|g)[ble
/f2a2ﬂ2 (Zﬂ.)D[ |<a|cq];£b|q>|q> 1(6{)1(“_’C+’d+vﬁ+’e+’f+)|(l

ae)’(bf)(bq)’[ef]

:_mm< (
6 (ab) \(cd){db){ef)*(ac)(a

q)*(be)®

(cb)(bq)*(ad)’[cd] ) (A14)
;)

(cd)*(db)*(ef)(fa)(aq)*(be

We then color-dress Fig. 1, sum over all distinct diagrams, extract the contribution to each color structure and take the
residues. Summing over all the channels excited by the Risager shift and all helicities gives the full color two-loop

amplitude.

[1] G. Brooijmans et al., Les Houches 2017: Physics at TeV
Colliders Standard Model Working Group Report, arXiv:
1803.10379.

[2] P. Azzi et al., Report from working group 1, CERN Yellow
Rep. Monogr. 7, 1 (2019).

[3] S. Caron-Huot, L. J. Dixon, F. Dulat, M. von Hippel, A.J.
McLeod, and G. Papathanasiou, Six-Gluon amplitudes in
planar N' = 4 super-Yang-Mills theory at six and seven
loops, J. High Energy Phys. 08 (2019) 016.

[4] J.L. Bourjaily, E. Herrmann, C. Langer, A.J. McLeod,
and J. Trnka, All-Multiplicity Non-Planar MHV Amplitudes
in sYM at Two Loops, Phys. Rev. Lett. 124, 111603
(2020).

[5] E. W.N. Glover, C. Oleari, and M. E. Tejeda- Yeomans, Two
loop QCD corrections to gluon-gluon scattering, Nucl.
Phys. B605, 467 (2001).

[6] Z. Bern, A. De Freitas, and L. J. Dixon, Two loop helicity
amplitudes for gluon-gluon scattering in QCD and super-
symmetric Yang-Mills theory, J. High Energy Phys. 03
(2002) 018.

[71 T. Ahmed, J. Henn, and B. Mistlberger, Four-particle
scattering amplitudes in QCD at NNLO to higher orders
in the dimensional regulator, J. High Energy Phys. 12
(2019) 177.

[8] S. Badger, H. Frellesvig, and Y. Zhang, A two-loop Five-
Gluon helicity amplitude in QCD, J. High Energy Phys. 12
(2013) 045.

[9] S. Badger, G. Mogull, A. Ochirov, and D. O’Connell, A
complete two-loop, Five-Gluon helicity amplitude in Yang-
Mills theory, J. High Energy Phys. 10 (2015) 064.

[10] T. Gehrmann, J. M. Henn, and N. A. Lo Presti, Analytic
form of the Two-Loop Planar Five-Gluon All-Plus-Helicity
Amplitude in QCD, Phys. Rev. Lett. 116, 062001 (2016);
Erratum, Phys. Rev. Lett. 116, 189903 (2016).

[11] D.C. Dunbar and W. B. Perkins, Two-loop five-point all
plus helicity Yang-Mills amplitude, Phys. Rev. D 93,
085029 (2016).

[12] S. Badger, C. Brnnum-Hansen, H.B. Hartanto, and T.
Peraro, Analytic helicity amplitudes for two-loop five-gluon
scattering: The single-minus case, J. High Energy Phys. 01
(2019) 186.

[13] S. Abreu, J. Dormans, F. Febres Cordero, H. Ita, B. Page,
and V. Sotnikov, Analytic form of the planar two-loop five-
parton scattering amplitudes in QCD, J. High Energy Phys.
05 (2019) 084.

[14] S. Badger, D. Chicherin, T. Gehrmann, G. Heinrich,
J.M. Henn, T. Peraro, P. Wasser, Y. Zhang, and S. Zoia,
Analytic form of the Full Two-Loop Five-Gluon All-Plus
Helicity Amplitude, Phys. Rev. Lett. 123, 071601 (2019).

[15] D. C. Dunbar, G. R. Jehu, and W. B. Perkins, Two-Loop Six
Gluon All Plus Helicity Amplitude, Phys. Rev. Lett. 117,
061602 (2016).

[16] D. C. Dunbar, J. H. Godwin, G. R. Jehu, and W. B. Perkins,
Analytic all-plus-helicity gluon amplitudes in QCD, Phys.
Rev. D 96, 116013 (2017).

[17] D.C. Dunbar, W.B. Perkins, and J. M. W. Strong, An
n-point QCD two-loop amplitude, Phys. Rev. D 101,
076001 (2020).

[18] S.D. Alston, D.C. Dunbar, and W. B. Perkins, Complex
factorisation and recursion for one-loop amplitudes, Phys.
Rev. D 86, 085022 (2012).

[19] A.C. Edison and S.G. Naculich, SU(N) group-theory
constraints on color-ordered five-point amplitudes at all
loop orders, Nucl. Phys. B858, 488 (2012).

[20] A.C. Edison and S. G. Naculich, Symmetric-group decom-
position of SU(N) group-theory constraints on four-, five-,
and six-point color-ordered amplitudes, J. High Energy
Phys. 09 (2012) 069.

076024-11


https://arXiv.org/abs/1803.10379
https://arXiv.org/abs/1803.10379
https://doi.org/10.23731/CYRM-2019-007.1
https://doi.org/10.23731/CYRM-2019-007.1
https://doi.org/10.1007/JHEP08(2019)016
https://doi.org/10.1103/PhysRevLett.124.111603
https://doi.org/10.1103/PhysRevLett.124.111603
https://doi.org/10.1016/S0550-3213(01)00210-3
https://doi.org/10.1016/S0550-3213(01)00210-3
https://doi.org/10.1088/1126-6708/2002/03/018
https://doi.org/10.1088/1126-6708/2002/03/018
https://doi.org/10.1007/JHEP12(2019)177
https://doi.org/10.1007/JHEP12(2019)177
https://doi.org/10.1007/JHEP12(2013)045
https://doi.org/10.1007/JHEP12(2013)045
https://doi.org/10.1007/JHEP10(2015)064
https://doi.org/10.1103/PhysRevLett.116.062001
https://doi.org/10.1103/PhysRevLett.116.189903
https://doi.org/10.1103/PhysRevD.93.085029
https://doi.org/10.1103/PhysRevD.93.085029
https://doi.org/10.1007/JHEP01(2019)186
https://doi.org/10.1007/JHEP01(2019)186
https://doi.org/10.1007/JHEP05(2019)084
https://doi.org/10.1007/JHEP05(2019)084
https://doi.org/10.1103/PhysRevLett.123.071601
https://doi.org/10.1103/PhysRevLett.117.061602
https://doi.org/10.1103/PhysRevLett.117.061602
https://doi.org/10.1103/PhysRevD.96.116013
https://doi.org/10.1103/PhysRevD.96.116013
https://doi.org/10.1103/PhysRevD.101.076001
https://doi.org/10.1103/PhysRevD.101.076001
https://doi.org/10.1103/PhysRevD.86.085022
https://doi.org/10.1103/PhysRevD.86.085022
https://doi.org/10.1016/j.nuclphysb.2012.01.019
https://doi.org/10.1007/JHEP09(2012)069
https://doi.org/10.1007/JHEP09(2012)069

DALGLEISH, DUNBAR, PERKINS, and STRONG

PHYS. REV. D 101, 076024 (2020)

[21] S. Catani, The Singular behavior of QCD amplitudes at two
loop order, Phys. Lett. B 427, 161 (1998).

[22] Z. Kunszt, A. Signer, and Z. Trocsanyi, Singular terms of
helicity amplitudes at one loop in QCD and the soft limit of
the cross-sections of multiparton processes, Nucl. Phys.
B420, 550 (1994).

[23] D.C. Dunbar, J. H. Godwin, W. B. Perkins, and J. M. W.
Strong, Color dressed unitarity and recursion for Yang-Mills
two-loop all-plus amplitudes, Phys. Rev. D 101, 016009
(2020).

[24] D.C. Dunbar, G.R. Jehu, and W. B. Perkins, The two-loop
n-point all-plus helicity amplitude, Phys. Rev. D 93, 125006
(2016).

[25] J. Henn, B. Power, and S. Zoia, Conformal invariance of the
one-loop all-plus helicity scattering amplitudes, J. High
Energy Phys. 02 (2020) 019.

[26] R. Britto, F. Cachazo, B. Feng, and E. Witten, Direct Proof
of Tree-Level Recursion Relation in Yang-Mills Theory,
Phys. Rev. Lett. 94, 181602 (2005).

[27] K. Risager, A Direct proof of the CSW rules, J. High Energy
Phys. 12 (2005) 003.

[28] S. Badger, G. Mogull, and T. Peraro, Local integrands for
two-loop all-plus Yang-Mills amplitudes, J. High Energy
Phys. 08 (2016) 063.

[29] D. A. Kosower, Light cone recurrence relations for QCD
amplitudes, Nucl. Phys. B335, 23 (1990).

[30] C. Schwinn and S. Weinzierl, Scalar diagrammatic rules for
Born amplitudes in QCD, J. High Energy Phys. 05 (2005)
006.

[31] D.C. Dunbar, J. H. Ettle, and W. B. Perkins, Augmented
recursion for one-loop gravity amplitudes, J. High Energy
Phys. 06 (2010) 027.

[32] S.D. Alston, D.C. Dunbar, and W.B. Perkins, n-point
amplitudes with a single negative-helicity graviton, Phys.
Rev. D 92, 065024 (2015).

[33] D.C. Dunbar and W. B. Perkins, A/ = 4 supergravity next-
to-maximally-helicity-violating six-point one-loop ampli-
tude, Phys. Rev. D 94, 125027 (2016).

076024-12


https://doi.org/10.1016/S0370-2693(98)00332-3
https://doi.org/10.1016/0550-3213(94)90077-9
https://doi.org/10.1016/0550-3213(94)90077-9
https://doi.org/10.1103/PhysRevD.101.016009
https://doi.org/10.1103/PhysRevD.101.016009
https://doi.org/10.1103/PhysRevD.93.125006
https://doi.org/10.1103/PhysRevD.93.125006
https://doi.org/10.1007/JHEP02(2020)019
https://doi.org/10.1007/JHEP02(2020)019
https://doi.org/10.1103/PhysRevLett.94.181602
https://doi.org/10.1088/1126-6708/2005/12/003
https://doi.org/10.1088/1126-6708/2005/12/003
https://doi.org/10.1007/JHEP08(2016)063
https://doi.org/10.1007/JHEP08(2016)063
https://doi.org/10.1016/0550-3213(90)90167-C
https://doi.org/10.1088/1126-6708/2005/05/006
https://doi.org/10.1088/1126-6708/2005/05/006
https://doi.org/10.1007/JHEP06(2010)027
https://doi.org/10.1007/JHEP06(2010)027
https://doi.org/10.1103/PhysRevD.92.065024
https://doi.org/10.1103/PhysRevD.92.065024
https://doi.org/10.1103/PhysRevD.94.125027

