BAS-ADAM: An ADAM based Approach to
Improve the Performance of Beetle Antennae
Search Optimizer

Abstract—In this paper, we propose enhancements to Beetle
Antennae Search (BAS) algorithm, called BAS-ADAM, to
smoothen the convergence behavior and avoid trapping in
local-minima for a highly non-convex objective function. We
achieve this by adaptively adjusting the step-size in each iteration
using the Adaptive Moment Estimation (ADAM) update rule.
The proposed algorithm also increases the convergence rate in
a narrow valley. A key feature of the ADAM update rule is
the ability to adjust the step-size for each dimension separately
instead of using the same step-size. Since ADAM is traditionally
used with gradient-based optimization algorithms, therefore we
first propose a gradient estimation model without the need to
differentiate the objective function. Resultantly, it demonstrates
excellent performance and fast convergence rate in searching
for the optimum of non-convex functions. The efficiency of the
proposed algorithm was tested on three different benchmark
problems, including the training of a high-dimensional neural
network. The performance is compared with Particle Swarm
Optimizer (PSO) and the original BAS algorithm.

Index Terms—Metaheuristic optimization, Beetle Antennae
Search, Neural network, ADAM, Gradient estimation, and
Nature-inspired algorithms

I. INTRODUCTION

Optimization plays an integral part in the efficient operation
of almost all real-world systems [1], [2]. Additionally, with the
rise of machine learning in recent years, the development of
numerically efficient and robust optimization algorithms has
been a topic of great research interest [3]-[5]. Conventional
optimization techniques use gradient-based methods to search
for the optimum value [6]-[9]. Although these algorithms
have proven to be quite stable [10], [11], however, they
require the symbolic or numerical computation of the gradient
direction. Most of the practical optimization problems are
highly nonlinear with multimodal objective functions and
non-convex constraints. Numerically evaluating the gradient
for such function can be a computationally intensive task
[12]. Additionally, the computation of gradient imposes
several conditions about continuity and differentiability of the
objective function [13]. Such conditions do not hold for the
vast majority of the systems, e.g., integer programming [14].
In fact, for the vast majority of the optimization problem,
specifically in the control system [15], an accurate model of
the system might be unknown in advance and require real-time
estimation of parameters [16], [17].

The large majority of the gradient-based optimization is
well-suited for computing systems with high computation
power. However, their implementation on low-end embedded
systems is challenging due to their limited computation power.
To overcome such challenges, a new class of optimization
algorithm called metaheuristic optimization has gained the

attention of researchers [18]-[20]. These algorithms are
mostly inspired by natural phenomena and do not require
the computation of the gradient of the objective function.
These algorithms have been shown in the literature to
possess excellent convergence properties and high numerical
efficiency. Even for problems in control systems where
the model is unknown apriori [21], such algorithms have
been employed for the parameter estimation, and tuning
of controller gains [22]. One of the significant advantages
offered by metaheuristic optimization is a relaxation on the
conditions of continuity and differentiability. These algorithms
can be effectively employed for solving discrete optimization
problems. Additionally, because of their low complexity,
they can be efficiently implemented on embedded systems
with limited computational power. Given the advantages of
metaheuristic algorithms, they have found their applications
in several real-world systems [23]-[27].

Almost all the metaheuristic optimization optimization
algorithm proposed in literature [28]-[33] have found their
inspiration in natural processes. Most of these algorithms
have been inspired by the behavior of the animals, whereas
others found their inspiration from the biological and chemical
systems [34]. For example, biological evolution have given
rise to a complete class of metaheuristic algorithm [35], [36]
e.g. Genetic Algorithms (GAs) [37], [38]. Other commonly
used metaheuristic algorithms inspired by the behavior of
living organisms include Particle Swarm Optimization (PSO)
[39], [40]. PSO was inspired by the swarming behavior
commonly observed in birds and insects. Swarming behavior
[41] has been of particular interest to researchers because it
was observed that large groups of the birds and insects are
able to coordinate by just following a set of straightforward
rules. Although each member of the swarm is only aware
of its limited surrounding environment, still their combined
effort can solve a large-scale, complicated task. This behavior
is termed as swarm intelligence [42], [43]. Swarm behavior
can be considered as an optimization process in which a
group of birds works together to maximize the survivability
of the whole swarm. Swarm intelligence has inspired several
other algorithms, e.g., Ant Colony Optimization (ACO) [44],
which is based on the social behavior of ants. An ant colony
can contain millions of ants, but their social behavior and
swarm intelligence help them efficiently search for food, thus
maximizing the productivity of the colony. Similarly, the
Artificial Fish Swarm Algorithm [45] is based on the swarming
behavior of fishes and other aquatic lives. Although several
nature-inspired algorithm metaheuristic algorithms have been
presented in literature, few of them are mentioned here:

Food Source
(Goal)
BAS algorithm:

* At each step, beetle
estimate gradient direction,

. . . . é.
i " t=6
* At each step beetle just %

V. using antennae
take a step in

the direction of
estimated gradient.

* At each iteration, : :
the step length, oy,
decreases according to S2__y
exponential decay factor. 4---- b= 3
S) <
e,V

1 Color intensity represent
smell distribution, i.e., =
objective function value.

it =l
V(]‘___——?

(a)

Food Source
(Goal)

BAS algorithm:

* At each step, beetle
estimate gradient direction,
%t, using antennae fibres.

* The new update direction

is calculated using ADAM g

update rule. Vi y

At each iteration, the

step length d; is

adaptively adjusted using + =2 SN

the estimated gradient, %t.

Ed

t Color intensity represent
smell distribution, i.e.,
objective function value.

(b)

Fig. 1: Illustration of the working of Original BAS and the
BAS-ADAM Algorithm proposed in this paper using beetle
analogy. (a) Original BAS. (b) BAS-ADAM.

Beetle Antennae Search (BAS) [46], [47], Cuckoo Search
[48], [49], Invasive Weed Optimization (IWO) [50], Honey
Bee Algorithm (HBA) [51], [52], and Firefly Algorithms
(FAs) [53]. These metaheuristic algorithms have been shown
to have good performance in real-world practical scenarios.
However, their application in machine learning is still limited.
The machine learning models are usually very large-scale,
having a large number of parameters. The training of these
models require searching very high-dimensional spaces, and
conventional metaheuristic algorithm does not scale well to
such high-dimensions [54].

As already mentioned in the abstract, in this paper, we
consider Beetle Antennae Search (BAS) algorithm [46], [47].

Food foraging behavior observed in beetles inspired BAS.
Beetle behavior is of particular research interest because unlike
other insects, beetles usually do not work in a swarm and
have the ability to search for food individually. Beetles can
search for food using its antennae and sensitive sense of smell.
Besides, the beetle antennae have several small fibers, and
by sensing the difference of smell at each of the fiber, the
beetle can develop a map of smell intensity of surrounding.
This map helps in finding the direction of maximum smell
change. Inspired by this concept, an estimation model can
be developed, which helps in approximating the gradient
direction. The estimation of an approximated gradient is a
key feature of BAS, which distinguishes it from another
metaheuristic algorithm. Since its introduction, BAS has found
its application in several real-world systems [17], [55]-[64].
The working of the original BAS can be described like this; at
each iteration, the value of the objective function is computed
at each antennae fiber location, a vector is drawn from the
fiber with the lowest value toward the fiber with the highest
value, the vector represents the direction of the approximated
gradient. The approximated gradient is then used to update
the location of the beetle. The working of the original BAS is
shown in Fig. 1(a).

One of the key limitations of the BAS algorithm is the
selection of a suitable value for initial step size and proper step
size annealing. Careful tuning of these parameters is required
to achieve a fast convergence rate and stable performance.
The previous works on BAS [46], [47] use exponential decay
and power-law annealing. However, these methods are not
adaptive to the shape of the objective function, i.e., the
step size change at the same rate. This behavior can results
in slow convergence if the objective function has a narrow
valley. From optimization literature, we know that for such
objective functions, the gradient-based method, especially
Stochastic Gradient Descent (SGD), shows poor performance
since the estimated point can bounce back and forth between
walls of the valley during iterations [65]. It increases the
number of iteration required to reach the optimal point. To
improve the convergence rate, several modifications to the
SGD algorithm have been proposed in the literature, which
adaptively adjusts the step size and direction. On such popular
algorithm is Adaptive Moment Estimation (ADAM) [6]. The
ADAM algorithm updates the value of step size based on all
the past values of gradient and square of gradients. The idea
of ADAM is borrowed from momentum SGD [65] but show
more robustness and stability near-optimal points. For this
reason, we choose the ADAM algorithm to adaptively update
the step size during runtime instead of manually adjusting the
parameters in the beginning. The working of the BAS-ADAM
is shown in Fig. 1(b). It can be seen that it shows much faster
convergence as compared to the original BAS.

To demonstrate the fast convergence, efficiency, and
effectiveness of the proposed BAS-ADAM algorithm, we
performed several sets of experiments and compared its
performance with other benchmark metaheuristic algorithm.
In the literature on metaheuristic algorithms, the performance
of algorithms is verified using low dimensional benchmark
functions [51]. In this paper, we took the rigor of the

testing process one step further and used the BAS-ADAM to
train a hidden layer neural network with nonlinear activation
functions. Additionally, we wused two other benchmark
optimization problems, which were similar to other works
in metaheuristic literature. We solved these benchmark
optimization problems using the PSO, a state of the art
metaheuristic algorithm, original BAS, and BAS-ADAM. It
is shown in results that the BAS-ADAM show superior
performance as compared to original BAS and PSO in solving
the benchmark optimization problems, including the training
of neural networks.

The rest of the paper is organized as follow; Section II
present the details of the BAS-ADAM algorithm, Section III
present the benchmark optimization problems we used in this
paper, Section IV present the experimental results, and Section
V concludes the paper.

II. BAS-ADAM ALGORITHM

In this section, we will describe the technical details and
mathematical formulation of the BAS-ADAM algorithm and
outline its steps.

A. Beetle Antennae Search

Here we will describe the BAS algorithm [46] and present
the gradient estimation model. Consider the optimization
problem:

max f(x), ()

where f(x) € R! is the objective function and x € R™ is the
domain of objective function. BAS algorithm treats f(x) as the
smell intensity distribution in an n-dimensional space and tries
to search for a point x* at which the value of smell intensity
is maximum. The point x* corresponds to the position of the
food source, and the objective of the beetle is to search this
point. If the beetle is standing at point x; at time instant ¢, then
to find the direction of the food source, the beetle measure
the intensity of smell at each of its antennae fibers. For
mathematical formulation, consider the beetle having a total
of m antennae fibers. The location of each fiber is represented
by a normally distributed normalized random position vector
b relative to the beetle position x;. The set of m position
vectors can be represented as B = {by, ba,..., b} C R™.
Using the set B, the location of each antennae fiber can be
written as

N
=x; + by,
X2 =x;+ 1 bo,

b b d
X°™ = X¢ + 1 b, 2
where 7, represents the length of the beetle antennae. The
actual location of each antennae fibre can be written as a set
X = {xPr xPz .. xPm},
After creating the set X’ of the antennae fiber locations, we
evaluate the objective function f at each of its points. Thus
creating a set J of the objective values

F={f(x):x € X} = {f(x"), f(x>), ..., f(x"m)}.

B. Gradient Estimation

Now we will formulate the strategy to estimate the gradient
direction using the element of setting X and JF. Note that
there is a one-to-one correspondence between the elements
of X and F. Based on this correspondence, we first create a
subset X} from the set X' corresponding to the k(< m) lowest
value in set . Similarly, we create a set A}, corresponding to
the k£ highest value in the set F. The value of k controls
the robustness of the gradient estimation. In mathematical
formulation, we create the following sets

.}'l:{f:fcf/\fEmkinf},
]-"h:{f:fC]:/\fEmgX]:}, 3)
where notation min and max are used to represent £ minimum

k
and maximum value from the corresponding sets. Then we
create the sets X} and A}, using the values in sets F; and F},

Xi={x:xCXAf(x) € F},
Xy ={x:xC XA f(x) € Fn}. 4)
For a beetle analogy, A&; and A} are sets of k antenna

fiber locations, where the smell intensity is minimum and
maximum, respectively. We calculate the centroid of sets A

and A}, as
x; = Z x/k
xEX]
xi= Y x/k. 5)
XEX}L

The vectors x; € R™ and x5, € R™ calculated in 5 corresponds
to locations around antennae fibres at which the value of the
objective function is minimum and maximum respectively. A
vector starting from point x; to x;, represents the direction of
maximum value change, i.e., gradient direction. Therefore the
estimated gradient direction can be denoted as

Vi =xp —x, (6)
where V, represent the estimated gradient direction on time
instant £. We will now use the estimated gradient direction to
update the location of beetle from x; to x;;; using ADAM
update rule in next subsection.

C. ADAM Update Rule

Based on the value of estimated gradient 6,5, we can
formulate an update rule as

Xnew = Xt + 52& (615)7 (7)
where §; is the step size and proportional to the distance
between x; and x;y;1. The step length 6; is a function of

estimated gradient V; and we defined it according to the
ADAM update rule as

5:(Vy) = gt 8

t(vt) 0 \/E ()

where d is the initial step size, and its value is constant. 7

and 0, represent the first and second moment of the estimated
gradient V, and its value is calculated as follow,

my = Bimy—1 + (1 — By)sign(f(x,) — f(Xl))ﬁt
v = Bovr_1 + (1= B2) V2.)

The factor of sign(f(x,) — f(x;)) is multiplied to make
sure that V; always point toward the direction of increasing
objective function value. (.)? functions represent a piecewise
square operation of the elements of vector V;. As noted in
ADAM literature, the values of m; and v; are biased toward
zero. The correction factor for this biasness can be applied as
A my
my = 1— B {
Ut
S 1-p
By putting the values of 1, and 0 in (8), we can calculate the
value of 6,(V,) and the value of X;,¢,,. For further increasing
the efficiency of the algorithm, the value of x:i; is only
updated if there is an improvement in the value of objective
function, i.e., f(x¢1+1) > f(x¢). For this we keep track of the
best solution x.s¢ and corresponding objective function value
fvest = f(Xpest). Therefore, the final update rule for the value
of x;41 can be written as

Ut

(10)

_ Xnews if f(xnew) > fbest7

X1 = { Xy, otherwise. an

The presented BAS-ADAM algorithm is given in Algorithm
1; it can be summarized as

1) Begin with an random starting point Xg.
2) Generate a set of m normalized random position vectors,
B C R™
3) Calculate the set for location of antennae fibres, X C
R™,
4) Calculate the set of the objective function values F =
(S, F(xP2), e, f(xP))
5) Calculate the sets F; and Fj of k(< m) lowest and
highest values from set F using (3).
6) Calculate the set A; C X and &}, C X according to the
values in F; and Fj,.
7) Calculate the centroid x; and xy, of the set A7 and Aj.
8) Calculate the value of estimated gradient V, using (6).
9) Calculate the first and second moments of estimated
gradient using (9).
10) Calculate the unbiased moments using (10).
11) Determine candidate for update point X,,¢,, using (7).
12) The value of =x;;; is only updated if there is
improvement in objective function value at X,eq-
13) If t < tpae, Where t,,4, iS maximum number of
iterations, then go back to step 2.

III. VALIDATION METHODOLOGY

This section presents the validation methodology used to
test the efficiency, convergence, and efficacy of the proposed
BAS-ADAM algorithm. We selected a set of three benchmark
problems. The first is to search for the optimum value of
Michalewicz function [66]. The second is a linear regression
optimization problem, and the 3rd problem involves training
of a single hidden layer neural network.

A. Michalewicz Function

Michalewicz function [66] is a highly nonlinear,
multimodal, non-convex function. This problem involves
searching for the minima of the Michalewicz function. Since
it is a multimodal function, there is a high chance that the

Algorithm 1: BAS-ADAM Optimizer

Input: An objective function f(x), where x € R”, and
values of parameters: xg, dg, 1, 7, 51, B2, and

tstop-
Output: Optimal solution x* to the problem:
maxy f(x) and optimal value f(x*).
t1
Xpest < X0
Joest < f(Xpest)
while ¢ < tstop do
Generate a set of m random direction vectors,

B = {bl,bg, 7bm :b; e R" A ||b1H2 = 1}
Calculate the set, X = {xP1, xP2 ... xPm}, of the
beetle antennae fibre location according to (2).

Calculate the set, F = {f(x) : x € X'}, of
objective function values at location in set X.

Select k lowest and highest values from set F to
create the set F; and Fj, using (3).

Using F; and Fj, create set &; and A}, according
to (4).

Calculate the centroids x; and xj, of the elements
of set X} and X} using (5).

Estimate the gradient direction, Vy, using (6).

Calculate the first moment m; and second
moments v; of the estimated gradient using (9).

Correct the biasness in the calculated moments
using (10).

Calculate a condidate for update-value X;,¢,, using
.

lf f(Xnew) > fbest then
Xi41 < Xpew

fbest <~ f(xnew)
Thest € Xnew

else
X1 & X

fbest — fbest
Tpest < Thest

end
t+—t+1;

end

searching algorithm gets trap in local minima. Therefore

it is heavily used in literature to test the performance of

metaheuristic algorithms. Michalewicz function is defined as
2

d . . le 2m
M(x) =— Z:leln(gci) sin (py))

where d is the dimension of input x to the Michalewicz
function, i.e., x € R?. The value of m is directly proportional
to the narrowness of the valleys for this function. For a
given value of d, the Michalewicz function have a total of
d! optimum in range [0, 7]?%. Plot of the function in the range
of interest is shown in Fig. 2. Since our original algorithm was
designed according to maximization problem (1) and this is a
minimization problem, we can transform it into the following
maximization problem

x* = min M(x)

X

(12)

= max —M(x). (13)

Michalewicz function

J
| Global Minimum: (d=2,m = 10)

| x* (22,1577
M(x*) =~ —1.8(

Contour plot
on I To-axis

x1 0o 3 To@xe

Fig. 2: Plot of the Michalewicz function selected as validation
problem formulated in section III-B. It is a non-convex
function with several local optimum. Its theoritically known
optimal solution is shown on the graph.

30 N

|
20%“,'
0] ¥+ ¥

\‘ ey
0

*‘ +
~10

Point cloud used in validation problem two and three.
Problem two estimate a linear fit and problem three
estimate a nonlinear fit through point cloud using

e + 3D point cloud
-
o+ Th s e e
+

Y

f & Fe +

Lo T oen +++;++*‘*'¢t+‘i*$ + i
| Projection of pofnf 4 %+ #t:‘f;";‘*ﬂ; o

p +

72(N‘ cloud on zjzy-plane ¥ F*) +

\ +att

—30] O VR S a

Fig. 3: Point cloud used in validation problems problem two
and three in Sections III-B and III-C respectively. x1,zo are
independent variables and y is dependent variables.

We used d = 2 and m = 10 in our experiments. Value of d = 2
allow us to easily visualize the convergence performance using
2D contour plots. The results are presented in Section IV.

B. Linear Regression

For Michalewicz function, the objective function was
fixed, and the optimum value is already known in the
literature. However, our second problem involves solving
a linear regression optimization problem in which the
objective function is defined using randomly generated data
points. Since linear regression is essentially the least-square
optimization problem; therefore, the objective function is
convex. The linear regression optimization problem can be
defined like this: given a vector of n independent variables
and one dependent variable ([x1,za,...,2,],y), estimate the
parameter {6g,601,0s,...,0,} which results in best fit to
following equation. The criteria for the best fit is usually

defined in the least square sense

n
Y= Onp + On 12n 1+ .+ 0121 + 00 = Y Oizi, (14)
i=0
where xy = 1 is used for ease of mathematical notation. The
above equation can be simplified using matrix operations

y=0"x,

where x = [vg,21,22,...,2,]7 € R""! and 6 =
[907 6‘1,92, ceey 9n] € R+,

If we are provided with a set of m datapoints for
independent and dependent variables, i.e., {X1,Xa,...X;m+1}
and {y1,¥s2,...ym} respectively, we can define a vector of

residual error values as
T T
R(a) = [yl -0 X1, Y2 — 0 X2, ...
based on this vector, we can define a cost function based on
square-sum of the residual values as

C(0) = |[R(8)]l2,
= Z(yz - 0"x;)%.
=0

Therefore, linear regression can be written as the following
optimization problem

0" :mein co) = max —C(0). (15)

During experiments, we used n = 2, m = 300, i.e., 300
samples points. The randomly generated dataset is shown in
Fig. 3. It can be seen from (1) that for n = 2, three parameters
need to be estimated, i.e., @ = [0, 02, 03] € R3. In Section IV
we will present the numerical results for this problem.

) ym - OTXm]Ta

C. Neural Network Training

As the third benchmark problem, we choose the training
of a hidden layer neural network with nonlinear activation
functions. Most of the metaheuristic algorithms show poor
performance when it comes to the training of a machine
learning model because these models are highly nonlinear and
contain a large number of parameters. Without the information
about the gradient direction, searching a high dimensional
space becomes very challenging. Since our metaheuristic
algorithm involves a rough estimation of the gradient direction,
it is expected to show better performance for high dimensional
search spaces. Additionally, we used the ADAM algorithm to
adjust step size adaptively, therefore the proposed algorithm
also does an excellent job in avoiding the local minimum.

It is known from machine learning literature that hidden
layer neural networks are excellent in end to end learning [67],
i.e., they can model an unknown process by just observing
the input-output data points. They can model an arbitrary
nonlinear process without needing an apriori mathematical
model. Therefore we used the point cloud of Fig. 3 same as
linear regression. However, this time, instead of using a linear
model of (14), we used a neural network. It is expected that
the neural network will provide a better fit to the point cloud
and therefore produce a lower value for the cost function. The
architecture of the neural network we used in this paper has
two inputs, ten hidden neurons, and one output. Now we will
derive the objective function for this optimization problem.
Let x € R" and y € R! be the input and output of the neural

network, respectively. The feedforward equation of the neural
network can be written as

01 = ¢(XTW1 + b]_),
y =01 W3 + bg, (16)

where 01 € R is output of the hidden layer. ¢(.) is an
activation function, in our experiments we choose hyperbolic
tangent sigmoid as the activation function, ie., ¢(.) =
tansig(.). The matrices W1 € R™F* and W, € RFx!
are trainable weights of the hidden layer and output layer
respectively. Similarly, b; € R¥ and by € R are the biases
of hidden and output layer. These matrices can be written as
follow

1 1 1 1
v vl el g
w. w w w.
W]_ _ 21 22. 13 2k ’
1 1. 1 1
wv(u) w7(12) w§3) w7(zk)
T
W, = [wﬁ) ws) wl) wffl)} :
and,
b= [5 b o], b2 = o]

Now let us consider a set of m samples of input and output
data points. Similar to the approach we used in III-B, we
can define the following cost function for training the neural

network
m

C(W1,Wa,b1,bs) = (i — ¢(x{ W1 + b1)W3 — by)*.

i=0
Using the cost function C(W1, Wz, by, by) we can formulate
the training of the neural network as the following optimization
problem

0" = ngn c) = max —C(0). (17)

In our experiments we used a neural network with 10 hidden
neurons, 2 inputs and 1 output. There are a total of 41 trainable
parameters in such a neural network. In summary, the problem
3 have these final values for the optimization problem: n = 2,
k = 10, ¢(.) = tansig(.) and m = 300, i.e., 300 training
samples. The results are presented in Section IV.

IV. RESULTS & DISCUSSION

Now we will present and discuss the experimental results
for the validation problems presented in Sections III-A,
III-B and III-C. Additionally, we compared the performance
of the proposed BAS-ADAM algorithm with the PSO and
original BAS algorithm. For the PSO algorithm, we used its
implementation provided by MATLAB’s global optimization
toolbox [68], whereas for BAS-ADAM and original BAS, we
wrote the code in MATLAB.

A. Solution: Michalewicz Function

For Michalewicz function, we used d = 2 and m = 10 in
our experimentation. From literature [66] it is known that this
function have a global minimum at x* =~ [2.20, 1.57] and
minimum value of the function is M (x*) ~ —1.8013.

The performance of the BAS-ADAM, along with PSO and
original BAS, is shown in Fig. 4. The Fig. 4(a) shows the
decrease in value of residual error with increase in iterations.

Results:
2 BAS: x* &~ [2.249, 1.572]7 — M(x*) ~ —1.7669
BAS-ADAM: x* = [2.203, 1.571]7 — M(x*) ~ —1.8013
PSO: x* & [~9763, 19504]7 — M(x*) ~ —1.4581 B

| Observations:

| BAS-ADAM is able to find the global minimum value for

n Michalewicz function, same as theoritical value given in
Fig. 2. Convergence point for BAS is also quite close to
the theoritical value, whereas for PSO the convergence

- point is very far from the known global minimum.

Michalewicz function M (x)
_

"~ BAS-ADAM
_9 I I I I I I I I
0 10 20 30 40 50 60 70 80 90 100

Iterations (t)

()

3 Note:
Only convergence of BAS and BAS-ADAM
are shown for ease of visualization.
The convergence point of PSO lies
2.5 very far as given in (4(a)).

BAS

) /

<

Observation:

BAS algorithm¢onvergence trajectory
have large oseillations near optimal
point. For BASSADAM the convergence
trajectory is smooth.

™
" 15
1 —1.
—1.
0.5
BAS-ADAM —-1.6
Contour plot for Michalewicz Function in domain [(J,7r]2
-1.8
00 0.5 1 1.5 2 2.5 3
L1
(b)

Fig. 4: Performance of optimization algorithms for
Michalewicz function minimization given in Section III-A.

The plot of error residual clearly shows that the BAS-ADAM
shows the best convergence performance as compared to the
other two optimization algorithms. The optimal point and
minimum value reached by the BAS-ADAM comes quite
close to the one given in the literature. BAS-ADAM is
able to reach the theoretical minimum value of —1.8013,
whereas, for original BAS, the final value is —1.7669. For
PSO, the final value is —1.4581, and the final point is
[—9763, 19504]7, which is a local optimum, very far from
the know global optimum [2.20, 1.57]. Similarly, Fig. 4(b)
shows the convergence trajectory of BAS-ADAM and original
BAS. This plot shows that the ADAM-BAS is able to reach
the optimum point quite smoothly, whereas, for original
BAS, the convergence trajectory shows many vibrations. It
demonstrates the robustness of the BAS-ADAM optimizer.
The convergence trajectory for PSO is not included for the
purpose of visualization since its final point lies far off the
graph.

Y
200 i T -
i T mk‘_. Results:
180 1 | 1 BAS: 6% ~ [2.06, 18.42, 0.49]7
\ 3000 [y, _ = C(6") ~ 16.6531
N ! i BAS-ADAM: 6" ~ [2.06, 20.03, 0.51]T
160 . | 2000 i — C(6") ~ 4.7641 R
"\ ! i PSO: 6° ~ [2.03, 20.01, 0.50]
— 140 | 1 1000 N |
X ! | \
S 0 -
~ 190 { ! | 0 10 20 30 i
5] \ | Observations:
= | \ \ BAS-ADAM convergence to the minimum |
é 100 \ \ value at the fastest rate. On the other hand
E \ | BAS is not able to reach the lowest value.
= 80 \ | - PSO PSO is also able to reach the minimum
8 \ | value but takes few more iterations.
© 601 ' ¢.-—-= BAS-ADAM |
|
\
10 - 0 BAS i
¢ ‘\‘
20 - \
Yoo N
() ‘, ‘, Il ‘, —\ Il Il ‘, Il :
0 10 20 30 40 50 60 70 80 90 100
Iterations ()
(a)
+
R Result of BAS-ADAM for
+ + r - o linear regression problem.
30~ o4+ PP

(b)

Fig. 5: Performance of optimization algorithms for linear
regression validation problem given in Section III-B.

B. Solution: Linear Regression

The second validation problem involves solving the linear
regression optimization problem given in (15). It is a convex
optimization problem with a single global optimum and
no local optimum. We tuned the parameters for BAS and
BAS-ADAM until we reached the best performance.

The experimental results are shown in Fig. 5. The plot
in Fig. 5(a) shows the decrease in value of error residual
with iterations. The plot shows that BAS-ADAM shows the
final rate of convergence, followed by PSO and original BAS.
However, the final reached by original BAS, 16.6531 is much
higher as compared to the values reached by BAS-ADAM and
PSO. BAS-ADAM took about 33 iterations to reach near the
optimum point, while PSO took around 43 iterations. These
results again prove the faster rate of convergence and superior
performance of the BAS-ADAM algorithm. Using the final
estimated parameters from BAS-ADAM, we can plot a linear

fit through the point cloud of Fig. 3. The fitted plane is shown
in Fig. 5(b).

@
; T T
T 10000 i
l?j()_ PSO~ < _ N |)
1onl I 5000 l'
160 | | 1
. | \
< anls I _ i
™ a0y d_____ N e
NeJ —a 0 50
r\:\ 120 Observations: Y — B
o ! BAS-ADAM shows the fastest convergence
g 1(][),! rate followed by BAS algorithm. PSO o _ 4
g | algorithm shows very poor performance R
o 3 R in training of the neural network and = -
2 S 0 \ residual error decreases very slowly.
o A
© 60 1
4 BAS
0 BAS-ADAM
20 X
‘~—.______________________________! __________
() Il Il Il Il Il Il Il Il Il
0 20 40 60 80 100 120 140 160 180 200
Iterations (t)
(a)
+ Nonlinear surface produced by result
< H *-_ of BAS-ADAM algorithm for neural
+ + £ o
+ *-I: network training problem.

(b)

Fig. 6: Performance of optimization algorithms for neural
network validation problem given in Section III-C.

C. Solution: Neural Network

Among the three validation problems, the training of a
hidden layer neural network is the most challenging one. As
mentioned in III-C, we used a neural network with ten hidden
neurons to model the point cloud in Fig. 3. The topology of
the neural network includes two inputs, one fully connected
hidden layer with ten neurons and one output.

Fig. 6 shows the experimental results for training the neural
network using the three optimization algorithms. The plot of
error residuals is shown in Fig. 6(a). According to the plot,
the BAS-ADAM shows the best performance, followed by
BAS and PSO. The BAS-ADAM is able to reach the objective
function value of around 6.5, i.e., C(W7T, W3, bj, b}) ~ 6.5.
Whereas original BAS and PSO get stuck in a local minimum
and reach a minimum value of around 16 and 80. It is also
worth noting that although the problem of linear regression
and neural network are modeling the same point cloud using
linear regression and neural network, respectively. The reason
for the poor performance of PSO and original BAS is the

high dimensionality of the objective functions. The neural has
a total of 41 trainable parameters. The huge search space
decreases the efficiency of PSO, original BAS, and other
similar metaheuristic optimization algorithms. Fig. 6(b) shows
a nonlinear surface to model the point cloud of Fig. 3. The
surface is drawn using the final estimated parameters for the
BAS-ADAM algorithm.
V. CONCLUSION

In this paper, we presented a robust nature-inspired
metaheuristic algorithm, called BAS-ADAM. The proposed
algorithm is inspired by the BAS algorithm and improves
its performance for the objective function, having very
steep valleys. We achieve this by using the adaptive
moment estimation (ADAM) technique widely applied
in gradient-based optimization algorithms. The proposed
algorithm estimated a gradient direction at each iteration using
the antennae fibers of the beetle. The estimated gradient is then
used as input to the ADAM algorithm, which computes its first
and second moments. These moments are then used to adjust
the step size for the next iterations. This technique offers a
significant advantage as compared to original BAS because
it automatically adapts the step size for each dimension
according to the shape of the objective function. Therefore the
BAS-ADAM shows much smoother convergence performance
near the optimum points, as shown in the experiments. For
original BAS, the step size is calculated using exponential
decay rule and independent of the shape of the objective
function. It is demonstrated through extensive experiments that
the proposed algorithm offers fast and robust convergence as
compared to other metaheuristic optimization algorithms. We
selected three benchmark optimization problems to test the
performance of the proposed algorithm. We repeated the same
experiments with original BAS and PSO optimizers to present
the comparative results. The experimental results show that, on
average, BAS-ADAM takes fewer iterations and able to reach
better optimum values as compared to original BAS and PSO.
Additionally, we trained a hidden layer neural network, which
shows the potential of the proposed algorithm in real-time
machine learning applications.

REFERENCES

[1] H. Wang, P. X. Liu, X. Xie, X. Liu, T. Hayat, F. E. Alsaadi,
Adaptive fuzzy asymptotical tracking control of nonlinear systems
with unmodeled dynamics and quantized actuator, Information Sciences
(2018).

[2] C. Yang, J. Luo, C. Liu, M. Li, S.-L. Dai, Haptics electromyogrphy
perception and learning enhanced intelligence for teleoperated robot,
IEEE Transactions on Automation Science and Engineering (2018).

[3] L. Bottou, F. E. Curtis, J. Nocedal, Optimization methods for large-scale
machine learning, Siam Review 60 (2) (2018) 223-311.

[4] S. Theodoridis, Machine learning: a Bayesian and optimization
perspective, Academic Press, 2015.

[5] T. Liu, B. Tian, Y. Ai, L. Li, D. Cao, E-Y. Wang, Parallel reinforcement
learning: a framework and case study, IEEE/CAA Journal of Automatica
Sinica 5 (4) (2018) 827-835.

[6] D.P. Kingma, J. Ba, Adam: A method for stochastic optimization, arXiv
preprint arXiv:1412.6980 (2014).

[71 S. Ruder, An overview of gradient descent optimization algorithms,
arXiv preprint arXiv:1609.04747 (2016).

[8] Y. Shi, Y. Zhang, Solving future equation systems using integral-type
error function and using twice znn formula with disturbances suppressed,
Journal of the Franklin Institute 356 (4) (2019) 2130-2152.

[9] L. Xiao, S. Li, E-J. Lin, Z. Tan, A. H. Khan, Zeroing neural dynamics
for control design: comprehensive analysis on stability, robustness, and

(10]

[11]

[12]

[13]

[14]

[15]

[16]

(17]

(18]

[19]

[20]

[21]

[22]

[23]

[24]

[25]

[26]

[27]

(28]

[29]

[30]

[31]

[32]

convergence speed, IEEE Transactions on Industrial Informatics 15 (5)
(2018) 2605-2616.

Y. Zhang, Z. Qi, B. Qiu, M. Yang, M. Xiao, Zeroing neural dynamics
and models for various time-varying problems solving with zIsf models
as minimization-type and euler-type special cases [research frontier],
IEEE Computational Intelligence Magazine 14 (3) (2019) 52-60.

Y. Zhang, Z. Qi, M. Yang, J. Guo, H. Huang, Step-width theoretics and
numerics of four-point general dtzn model for future minimization using
jury stability criterion, Neurocomputing 357 (2019) 231-239.

R. Johnson, T. Zhang, Accelerating stochastic gradient descent using
predictive variance reduction, in: Advances in neural information
processing systems, 2013, pp. 315-323.

J. D. Lee, M. Simchowitz, M. 1. Jordan, B. Recht, Gradient descent only
converges to minimizers, in: Conference on Learning Theory, 2016, pp.
1246-1257.

W.-N. Chen, J. Zhang, H. S. Chung, W.-L. Zhong, W.-G. Wu, Y.-H.
Shi, A novel set-based particle swarm optimization method for discrete
optimization problems, IEEE Transactions on evolutionary computation
14 (2) (2010) 278-300.

S. Ling, H. Wang, P. X. Liu, Adaptive fuzzy dynamic surface control
of flexible-joint robot systems with input saturation, IEEE/CAA Journal
of Automatica Sinica 6 (1) (2019) 97-107.

H. Nguyen-Xuan, G. Liu, C. a. Thai-Hoang, T. Nguyen-Thoi, An
edge-based smoothed finite element method (es-fem) with stabilized
discrete shear gap technique for analysis of reissner—mindlin plates,
Computer Methods in Applied Mechanics and Engineering 199 (9-12)
(2010) 471-489.

A. H. Khan, S. Li, X. Luo, Obstacle avoidance and tracking control of
redundant robotic manipulator: An rnn based metaheuristic approach,
IEEE Transactions on Industrial Informatics (2019).

Y. Zhou, L. Kong, Z. Wu, S. Liu, Y. Cai, Y. Liu, Ensemble
of multi-objective metaheuristic algorithms for multi-objective
unconstrained binary quadratic programming problem, Applied Soft
Computing 81 (2019) 105485.

J. A. Parejo, A. Ruiz-Cortés, S. Lozano, P. Fernandez, Metaheuristic
optimization frameworks: a survey and benchmarking, Soft Computing
16 (3) (2012) 527-561.

C. Blum, A. Roli, M. Sampels, Hybrid metaheuristics: an emerging
approach to optimization, Vol. 114, Springer, 2008.

H. Wang, P. X. Liu, X. Zhao, X. Liu, Adaptive fuzzy finite-time
control of nonlinear systems with actuator faults, IEEE transactions on
cybernetics (2019).

O. Roeva, T. Slavov, Pid controller tuning based on metaheuristic
algorithms for bioprocess control, Biotechnology & Biotechnological
Equipment 26 (5) (2012) 3267-3277.

A. Song, W.-N. Chen, T. Gu, H. Yuan, S. Kwong, J. Zhang, Distributed
virtual network embedding system with historical archives and set-based
particle swarm optimization, IEEE Transactions on Systems, Man, and
Cybernetics: Systems (2019).

C. Yang, G. Peng, Y. Li, R. Cui, L. Cheng, Z. Li, Neural networks
enhanced adaptive admittance control of optimized robot—environment
interaction, IEEE transactions on cybernetics 49 (7) (2018) 2568-2579.
L. Cheng, W. Liu, C. Yang, T. Huang, Z.-G. Hou, M. Tan, A
neural-network-based controller for piezoelectric-actuated stick—slip
devices, IEEE Transactions on Industrial Electronics 65 (3) (2017)
2598-2607.

H. Liu, L. Cheng, M. Tan, Z. Hou, Containment control of general linear
multi-agent systems with multiple dynamic leaders: A fast sliding mode
based approach, IEEE/CAA Journal of Automatica Sinica 1 (2) (2014)
134-140.

H. Liu, M. Zhou, Q. Liu, An embedded feature selection method for
imbalanced data classification, IEEE/CAA Journal of Automatica Sinica
6 (3) (2019) 703-715.

X.-S. Yang, Nature-inspired metaheuristic algorithms, Luniver press,
2010.

J. Krause, J. Cordeiro, R. S. Parpinelli, H. S. Lopes, A survey of
swarm algorithms applied to discrete optimization problems, in: Swarm
Intelligence and Bio-Inspired Computation, Elsevier, 2013, pp. 169-191.
H. Shayanfar, F. S. Gharehchopogh, Farmland fertility: A new
metaheuristic algorithm for solving continuous optimization problems,
Applied Soft Computing 71 (2018) 728-746.

E. Wari, W. Zhu, A survey on metaheuristics for optimization in food
manufacturing industry, Applied Soft Computing 46 (2016) 328-343.
X. Luo, M. Zhou, S. Li, Z. You, Y. Xia, Q. Zhu, A nonnegative latent
factor model for large-scale sparse matrices in recommender systems
via alternating direction method, IEEE transactions on neural networks
and learning systems 27 (3) (2015) 579-592.

[33]

[34]

[35]

[36]

[37]

[38]

[39]

[40]

[41]
[42]

[43]

[44]

[45]

[46]

[47]

(48]

[49]

[50]

[51]
[52]

[53]

[54]

[55]

[56]

[57]

X. Luo, M. Zhou, Y. Xia, Q. Zhu, An efficient non-negative
matrix-factorization-based approach to collaborative filtering for
recommender systems, IEEE Transactions on Industrial Informatics
10 (2) (2014) 1273-1284.

J. Li, Q. Pan, P. Duan, H. Sang, K. Gao, Solving multi-area
environmental/economic dispatch by pareto-based chemical-reaction
optimization algorithm, IEEE/CAA Journal of Automatica Sinica
(2017).

P. J. Angeline, G. M. Saunders, J. B. Pollack, An evolutionary algorithm
that constructs recurrent neural networks, IEEE transactions on Neural
Networks 5 (1) (1994) 54-65.

G. Wei-Shang, S. Cheng, Iterative dynamic diversity evolutionary
algorithm for constrained optimization, Acta Automatica Sinica 40 (11)
(2014) 2469-2479.

D. E. Golberg, Genetic algorithms in search, optimization, and machine
learning, Addion wesley 1989 (102) (1989) 36.

F. P. Such, V. Madhavan, E. Conti, J. Lehman, K. O. Stanley, J. Clune,
Deep neuroevolution: Genetic algorithms are a competitive alternative
for training deep neural networks for reinforcement learning, arXiv
preprint arXiv:1712.06567 (2017).

J. Kennedy, R. Eberhart, C. 1995. particle swarm optimization, in: IEEE
International Conference on Neural Networks (Perth, Australia), IEEE
Service Center, Piscataway, NJ, 2001, pp. 1942-1948.

J. Wang, T. Kumbasar, Parameter optimization of interval type-2 fuzzy
neural networks based on pso and bbbc methods, IEEE/CAA Journal of
Automatica Sinica 6 (1) (2019) 247-257.

H. Shi, L. Wang, T. Chu, Swarming behavior of multi-agent systems,
Journal of Control Theory and Applications 2 (4) (2004) 313-318.

M. G. Hinchey, R. Sterritt, C. Rouff, Swarms and swarm intelligence,
Computer 40 (4) (2007) 111-113.

X. Feng, Y. Wang, H. Yu, F. Luo, A novel intelligence algorithm
based on the social group optimization behaviors, IEEE Transactions
on Systems, Man, and Cybernetics: Systems 48 (1) (2018) 65-76.

M. Dorigo, G. Di Caro, Ant colony optimization: a new
meta-heuristic, in: Proceedings of the 1999 congress on evolutionary
computation-CEC99 (Cat. No. 99TH8406), Vol. 2, IEEE, 1999, pp.
1470-14717.

M. Neshat, G. Sepidnam, M. Sargolzaei, A. N. Toosi, Artificial
fish swarm algorithm: a survey of the state-of-the-art, hybridization,
combinatorial and indicative applications, Artificial intelligence review
42 (4) (2014) 965-997.

X. Jiang, S. Li, Bas: beetle antennae search algorithm for optimization
problems, arXiv preprint arXiv:1710.10724 (2017).

X. Jiang, S. Li, Beetle antennae search without parameter
tuning (bas-wpt) for multi-objective optimization, arXiv preprint
arXiv:1711.02395 (2017).

X.-S. Yang, S. Deb, Engineering optimisation by cuckoo search, arXiv
preprint arXiv:1005.2908 (2010).

J. Zhao, S. Liu, M. Zhou, X. Guo, L. Qi, Modified cuckoo search
algorithm to solve economic power dispatch optimization problems,
IEEE/CAA Journal of Automatica Sinica 5 (4) (2018) 794-806.

A. R. Mehrabian, C. Lucas, A novel numerical optimization algorithm
inspired from weed colonization, Ecological informatics 1 (4) (2006)
355-366.

S. Nakrani, C. Tovey, On honey bees and dynamic server allocation in
internet hosting centers, Adaptive Behavior 12 (3-4) (2004) 223-240.
D. Karaboga, B. Akay, A survey: algorithms simulating bee swarm
intelligence, Artificial intelligence review 31 (1-4) (2009) 61-85.

X.-S. Yang, Firefly algorithms for multimodal optimization, in:
International symposium on stochastic algorithms, Springer, 2009, pp.
169-178.

M. Shang, X. Luo, Z. Liu, J. Chen, Y. Yuan, M. Zhou, Randomized latent
factor model for high-dimensional and sparse matrices from industrial
applications, IEEE/CAA Journal of Automatica Sinica 6 (1) (2018)
131-141.

Z. Zhu, Z. Zhang, W. Man, X. Tong, J. Qiu, F. Li, A new beetle
antennae search algorithm for multi-objective energy management in
microgrid, in: 2018 13th IEEE Conference on Industrial Electronics and
Applications (ICIEA), IEEE, 2018, pp. 1599-1603.

X. Yin, Y. Ma, Aggregation service function chain mapping plan
based on beetle antennae search algorithm, in: Proceedings of the 2nd
International Conference on Telecommunications and Communication
Engineering, ACM, 2018, pp. 225-230.

X. Lin, Y. Liu, Y. Wang, Design and research of dc motor speed control
system based on improved bas, in: 2018 Chinese Automation Congress
(CAC), IEEE, 2018, pp. 3701-3705.

(58]

[59]

[60]

[61]

[62]

[63]

[64]
[65]

[66]

[67]

[68]

Y. Sun, J. Zhang, G. Li, Y. Wang, J. Sun, C. Jiang, Optimized neural
network using beetle antennae search for predicting the unconfined
compressive strength of jet grouting coalcretes, International Journal
for Numerical and Analytical Methods in Geomechanics 43 (4) (2019)
801-813.

Q. Wu, X. Shen, Y. Jin, Z. Chen, S. Li, A. H. Khan, D. Chen, Intelligent
beetle antennae search for uav sensing and avoidance of obstacles,
Sensors 19 (8) (2019) 1758.

M.-j. LIN, Q.-h. LI, A hybrid optimization method of beetle antennae
search algorithm and particle swarm optimization, DEStech Transactions
on Engineering and Technology Research (ecar) (2018).

Q. Wu, H. Lin, Y. Jin, Z. Chen, S. Li, D. Chen, A new fallback
beetle antennae search algorithm for path planning of mobile robots
with collision-free capability, Soft Computing (2019) 1-12.

Y. Fan, J. Shao, G. Sun, Optimized pid controller based on beetle
antennae search algorithm for electro-hydraulic position servo control
system, Sensors 19 (12) (2019) 2727.

S. Xie, X. Chu, M. Zheng, C. Liu, Ship predictive collision avoidance
method based on an improved beetle antennae search algorithm, Ocean
Engineering 192 (2019) 106542.

J. Yang, Z. Peng, Beetle-swarm evolution competitive algorithm for
bridge sensor optimal placement in shm, IEEE Sensors Journal (2019).
N. Qian, On the momentum term in gradient descent learning algorithms,
Neural networks 12 (1) (1999) 145-151.

A. P. Engelbrecht, Fitness function evaluations: A fair stopping
condition?, in: 2014 IEEE Symposium on Swarm Intelligence, IEEE,
2014, pp. 1-8.

I. Sutskever, O. Vinyals, Q. V. Le, Sequence to sequence learning with
neural networks, in: Advances in neural information processing systems,
2014, pp. 3104-3112.

Mathworks, MATLAB: Global Optimization Toolbox 2018b, The
Mathworks Inc., 2018.

