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Exploring values affecting e-Learning adoption from the user-generated-content: A consumption-value-theory 

perspective 

 

 

Abstract: 

 The aim of this study is to utilise the user-generated content from social-media platforms and merchandise 

websites to explore various values affecting behavioural intention in context of e-Learning services from the consumption-

value-theory perspective. This study has utilised a novel mixed-method approach based on natural language processing 

(NLP)-techniques for the both the qualitative and quantitative analysis. This study has used user-generated content of 

Coursera (an e-Learning service) consisting of online reviews from Coursera-100k-dataset and tweets about Coursera. 

Some of the important themes generated from the thematic based analysis of tweets are “value addition”, “course content”, 

“topic cover”, “reliability of course”, “course quality”, “enjoyed course”, “recommend the course”, “value for money”, 

“facilitator skills”, etc. Results of the empirical study reveal that offers and deals, emotional connect, facilitator quality, 

course reliability, platform innovativeness, and compatibility are important predictors of behavioural intention. This study 

concludes with the various limitations and future directions. 
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e-Learning services; Consumption Value Theory (CVT); Latent Dirichlet Allocation (LDA); Natural Language Processing 

(NLP)-based approach; Topic-Modeling; User Generated Data.



Introduction 

The advancement of technological innovations has led to the growth of various electronic services (better known 

as e-Services) like, food-delivery, hotel-booking, online-learning, etc. which has not only changed the way people used to 

live but has also made life easier. Over the years e-Learning services, which refers to the process of taking up courses over 

digital platforms (Gao, Wu, & Wu, 2018), have become a medium to enhance career growth (Ray, Bala, & Dasgupta, 

2019). Some leading global e-Learning platforms are, Coursera, Udemy, Udacity, etc. (Kalish, 2019). The global e-

Learning market is expected to reach $398.15 billion by 2026 (Costello, 2019). Despite the benefits of using e-Learning 

services, like, convenience, flexibility, etc. (Li, Asimiran, & Suyitno, 2018), retaining users in e-services is a huge 

challenge (Panigrahi, Srivastava, & Sharma, 2018). A good understanding of the values that affects user’s decisions 

behind the choice of e-Learning services can help to solve various issues. For exploring customer perspectives, researchers 

have usually used traditional research methods (qualitative or quantitative or mixed-method approaches). However, the 

traditional research methods in most cases are limited by the sample size and the spread of the sample population (Boddy, 

2016; Delice, 2002; Deziel, 2018). 

The present era has witnessed a growth of various social-platforms like, Facebook, Twitter, etc. (Simon, 

Goldbergb, & Adinia, 2015). Social-media platforms enable users to openly exchange information online through 

exchange of user-generated content (Simon et al., 2015). Online-customer-reviews are also available in company websites 

and other related pages (Chatterjee, 2019). These user-generated data contains customer perspectives and a proper analysis 

can reveal deeper insights (Siering, Deokar, & Janze, 2018). Rohm, Stefl, & Clair (2018) have stated that in the e-Learning 

industry, firms need to keep a note of the latest consumer demands. Hence, understanding user-generated-content will 

provide a much wider perspective usually unavailable through traditional research approaches. Few studies have attempted 

to explore techniques to utilise the user-generated content for examining factors in the model of interest. Kunimoto and 

Saga (2014) and Saga and Kunimoto (2016) have used hierarchical Latent Dirichlet Allocation (hLDA) and structural 

equation modeling (SEM) for finding keywords based on a selected topic of interest. However, the study suffers from 

accuracy issues. Additionally, the emotional aspects of textual data were not captured in the study. Ray and Bala (2019b) 

attempted to utilise natural language processing (NLP)-based techniques to determine the factors affecting adoption of e-

services utilising an SEM based analysis. However, the study has used a pre-defined corpus of words. Hence this study is 

not generalizable. This study attempts to address these research gaps. 

While the business problem is to understand the values that affect user’s decision from the online posts, the 

scientific problem is to formulate an approach to utilise the user-generated content for both qualitative thematic analysis as 

well as quantitative path model analysis. To address these two main research gaps, namely, exploring consumption values 



from user-generated content in context of e-Learning services, and second to formulate a technique to utilise the user-

generated content in traditional-research approaches for reducing the limitations related to sample size and the spread of 

the sample population. This study attempts to utilise the user-generated content for exploring the various values that affect 

user’s decisions using a mixed-method NLP-based approach. 

The study is novel in that it has developed the dataset for the path-model from the user-generated content 

(consisting of online user reviews from Coursera 100k dataset (ref: Coursera)). This study has utilised a NLP-based 

approach by using a Latent Dirichlet Allocation (LDA) technique to perform topic-modeling on the user-generated data for 

both the qualitative thematic based analysis as well as for generating the dataset for path-model. The user-generated 

content consists of online reviews and user comments/tweets from Twitter. Results of the thematic-based analysis of the 

social media feeds generated the themes “value addition”, “course content”, “easy to understand”, ”easy to follow”, “topic 

cover”, “course reliability”, “course quality”, “enjoyed course”, “recommend the course”, “videos to watch”, “good deals”, 

“value for money”, “facilitator skills”, and “discussion forum”. The empirical analysis revealed that offers and deals, 

emotional connect, facilitator quality, course reliability, platform innovativeness, and compatibility are important 

predictors of behavioural intention. 

The section following this discusses the existing literature on e-Learning services, online reviews and NLP-based 

approach to form path-models. In Section 3, we have constructed the conceptual research model and framed the 

hypotheses to be tested. Section 4 discusses the methodology followed in this study followed by the results and discussion 

in Section 5 and Section 6 respectively. Finally this study concludes with the limitations, implications, and future 

directions. 

 

Literature Review 

This study attempts to utilise the user-generated data for exploring the various values that affect user’s intention to take up 

courses from a particular e-Learning platform. To discuss the literature review, we have formed three subsections, namely, 

the online user generated content, the e-Learning platforms, and the consumption value theory. 

Online User-generated Content 

 The penetration of internet and the smartphones had led to people posting comments/views about the services on 

social-platforms, like, Facebook, Twitter, company webpages, etc. These posts and reviews may influence the intention of 

potentially new prospects to use the services of a particular service-provider (Chatterjee, 2019). Extracting useful 

information from this user-generated data can solve various strategic issues for a service-provider. This information can be 



utilised by companies to influence customer buying behaviour through different strategies like, pricing and promotions 

(Ajorlou, Jadbabaie, & Kakhbod, 2016).  

 Extracting social-media-feeds and online-customer-reviews is a web-mining process. It involves three main 

operations: getting data from social-platforms; parsing, integrating, and storing the cleansed data; and analysing the 

cleansed data to extract information relevant to our objectives (Crooks, Croitoru, Stefanidis, & Radzikowski, 2013). 

Stopping and stemming are done in the cleansing phase to remove unimportant words and considering the ‘root’ words 

from the text to be analysed (Chatterjee, 2019). Text-mining can be used in extracting valuable information from user-

generated content. One technique to perform text-mining is topic-modeling. Topic-modeling constructs a structure of 

topics from a group of documents utilising the concept that the document group that constitutes the corpus belongs to the 

specific topic (Kunimoto & Saga, 2014; Saga & Kunimoto, 2016). Topic-modeling can be performed by various 

techniques like, latent semantic indexing (LSI) (Kunimoto & Saga, 2014), latent dirichlet allocation (LDA) (Blei, Ng, & 

Jordan, 2003), hierarchial LDA (hLDA) (Blei, Griffiths, & Jordan, 2010), etc. Both LDA and LSI are similar in that they 

have the latent variables presented in a probabilistic way (Blei et al., 2003). Kunimoto and Saga (2014) had used hLDA to 

develop path-model from user-generated data. However, in hLDA, the main topic constitutes the root of the tree of infinite 

height and the hierarchical structure branches off endlessly. So, this technique had accuracy issues and was not able to 

explore factors of importance properly. The emotional aspects of textual comments were also not captured properly. 

Extant literature has often ignored exploring the ‘emotional aspect’ (Siering et al., 2018) from customer reviews. 

Additionally, extant literature has hardly focused on utilising both customer reviews (Chatterjee, 2019). Text-mining also 

finds wide application in sentiment and emotion analysis and is often referred to as opinion-mining (Barnaghi, Ghaffari, & 

Breslin, 2016). Utilisation of topic-based sentiment analysis in the contexts like, e-commerce, e-Learning, tourism, etc. 

(Popescu & Etzioni, 2007; Chatterjee, 2019) is still new. There are only a handful of studies that have attempted to explore 

techniques to utilise the user-generated content for examining factors in the model of interest. Kunimoto and Saga (2014) 

and Saga and Kunimoto (2016) used hLDA and SEM to construct path models on a selected topic of interest. However, 

the study suffers from accuracy issues. Ray and Bala (2019b) used NLP-based techniques using a predefined corpus to 

explore the factors affecting adoption of e-services utilising through SEM based analysis. The use of the pre-defined 

corpus makes the study not so generalizable. Exploring techniques to utilise the abundant user-generated data for 

understanding the factors of interest in various conceptual frameworks and in various contexts is still in its nascent stage. 

This study tries to address these gaps by utilising topic-modeling and text analytics to explore factors of importance in a 

chosen framework. For this study, we have chosen the e-Learning services to explore the values that customers value 

more. 



 

E-Learning Services 

Researchers over the years have analysed the factors that affect usage of e-Learning services from various 

directions, like, analysing the importance of social interactions on technical elements to improve e-mentoring systems 

(Headlam-Wells, Gosland, & Craig, 2006), using a task-fit model to understand retention of students in massive online 

open courses (Huang, Zhang, & Liu, 2017), understanding the influence of factors like, system-quality, perceived ease-of-

use and system functionality on usage-intention (Li, Duan, Fu, & Alford, 2011), and analysing the importance of system 

response and system functionality of the e-Learning website on customer’s continuance intention (Liao, Liu, Pi, & Chou, 

2011). Pentina and Neeley (2007) in another comparative study between traditional and online ways of learning found that 

factors like performance expectancy, financial risks and societal status affects the decisions to choose between traditional 

and online ways of learning. Researchers Emerson and MacKay (2011) found that students who took classroom-based 

classes performed better than those who took online lessons. Griff and Matter (2012) investigated adaptive learning and 

found that it works best when the goals are properly aligned to objectives. Parahoo, Santally, Rajabalee, and Harvey 

(2015) in context of online higher education found that factors like university reputation, facilities and student-student-

interactions influence satisfaction. Robinson (2016) found that factors like innovativeness and support-services influence 

decisions of using online courses.  

Though, previous researchers have tried to understand customer behaviour in the use of e-Learning services using 

different approaches like, qualitative-based approach (Waheed, Kaur, & Qazi, 2016), quantitative-based approach (Li & 

Tsai, 2017), mixed-method approach (Chatterjee & Juvale, 2015), opinion-mining (Tewari, Saroj, & Barman, 2015) and 

even sentiment analysis (Zarra, Chiheb, Faizi, & El Afia, 2016), there are limited studies that have utilised the online-

customer-reviews/comments. This study is the first that have attempted to analyse the user-generated data from e-Learning 

platforms using NLP-based approaches to build path-models. 

 

Consumption-value-theory (CVT) 

 Understanding customer perspectives and the factors that affect the customer satisfaction and the adoption of 

various innovations is an important market research task (Rana & Dwivedi, 2016; Dwivedi, Rana, Janssen, Lal, Williams, 

& Clement, 2017; Dwivedi, Rana, Jeyaraj, Clement, & Williams, 2019; ). Sheth, Newman, & Gross (1991) developed 

CVT for capturing the various value-oriented elements that influence customers’ behavioral choice. CVT uses five 

different values namely: functional, emotional, social, epistemic, and conditional (Sheth et al., 1991, pp. 160-163). Over 

the years, CVT has been used for explore consumer’s behavioural choices in various contexts, like, using smartphones 



(Bodker, Gimpel, & Hedmanm, 2009), etc. Understanding consumer values helps e-Services to establish an interactive 

engaging experience with the consumers and prevent switching to a competitor service (Wong, Chang, & Yeh, 2019). In 

this present study, CVT has been used to understand the users’ behaviour with respect to e-Learning services for the 

following reasons. First, there is a research need for understanding the various values that affect customer behaviour in 

case of e-Learning services (here in this study, Coursera). Understanding customer behaviour with respect to the different 

consumption values in the e-Learning context will help to explore consumer perspectives better and our study is the first 

NLP-based study in this regard. Second, Choe and Kim (2018) have stressed the importance of CVT in capturing the 

multidimensional consumer-values. Hence, we have used CVT in this study. 

 

Conceptual Model and Hypotheses development 

 This study has utilised nine independent variables grouped under various values, namely, functional values 

(compatibility, convenience), conditional values (offers & deals), quality values (course quality, facilitator quality, 

reliability of course), emotional values (emotional connect) and epistemic values (topic cover, platform innovativeness), 

and one dependent variable (intention to use the e-learning service) variables. The proposed model is depicted in Figure 1.  



 

 

Figure 1. Proposed conceptual model (Source: Adapted from Sheth, Newman, and Gross, 1991) 

 



Conditional values 

Conditional values describe the various utilities, like, offers, discounts, etc. that an individual gets at specific 

situations. Researchers have found conditional values and customer intentions to be positively related in contexts like, 

purchase of organic food (Qasim, Yan, Guo, Saeed, & Ashraf, 2019), online shopping (Suman, Srivastava, & Vadera, 

2019), etc. Choe & Kim (2018) found that price value has a positive influence on customer attitude. In context of e-

Learning services, by conditional benefits we feel that when a customer gets better offers/discounts they will take up the 

course of interest from that particular provider. Companies like Coursera also use other strategies, like, fee-based model to 

attract students to take up more useful certificates on completion of courses (Fain, 2013), thus providing price value. Thus, 

based on the findings by earlier scholars, we suppose: 

 H1: Offers and deals (conditional values) have a positive influence on intention to use the e-Learning platform. 

Emotional values 

 Emotional values refer to the various emotional aspects that an individual derives from a particular service 

(O’Donohoe & Turley, 2007; Chang, Hsu, & Lan, 2019; Lim, Teh, & Ahmed, 2016). In case of e-Learning services, we 

feel that emotional values can be measured by how much a customer enjoys the course and loves the service provided. 

Earlier researchers have found emotional values and usage-intention to be positively related in various scenarios like, 

consumption of organic food (Qasim et al., 2019), customer’s purchase intention (Asshidin, Abidin, & Borhan, 2016), 

local food consumption (Choe & Kim, 2018), accepting public information technologies (Hsu et al., 2010), etc. In context 

of e-Learning services, we also feel that higher the emotional connect, the more the customer will be interested to use the 

service. Hence, in line with the findings of earlier researchers, we hypothesise: 

 H2: Emotional connect (emotional values)  and usage-intention are positively associated.  

Quality values 

Quality values refer to the various standards, uniformity related to the product. Choe and Kim (2018) in context of food 

consumption among tourists defined quality values as taste/quality of food, dining experience, etc. In context of e-

Learning services, Li et al. (2011) observed that course quality and usage-intention are positively associated. Yang, Shao, 

Liu, and Liu (2017) in context of MOOCs found that course quality has a convincing influence on retention intention. Liao 

et al. (2011) found that course quality and course flexibility has a significant impact on continuance intention.  

Dağhan and Akkoyunlu (2016) stated that information quality acts upon customer’s intention to use online 

platforms. Ali, Yaacob, Endut, and Sulam (2018) found that information quality significantly affects user’s intention to use 

social-media for academic purposes. The course content, the rigour of course, the assignments, the examples, etc. provided 

in the course add to the course quality. Researchers Albelbisi and Yusop (2019) found that there is a significant influence 



of course quality on self-regulated learning skills. Users will generally opt for a course which has a good course quality 

and hence we hypothesise: 

 H3: Course quality (quality values) has a positive influence on intention to use the e-Learning platform. 

 A facilitator’s way of course delivery and his/her ability to deliver the course content by making it interesting 

influences the user’s intention to take up particular courses. This is another reason why some courses have higher 

subscriptions over other similar courses. Earlier researchers have also found a relationship between facilitator quality and 

the listener’s performance (Paulus, Larey, & Ortega, 1995; Higginbotham & Myler, 2010; Berkel et al., 2018). Thus in line 

with earlier research works, we also suppose:  

 H4: Facilitator quality (quality values) has a positive influence on intention to use the e-Learning platform. 

 Course reliability refers to the validity and authenticity of the course certificate. Additionally it also related to the 

course content delivered, i.e., whether the course content is relevant, whether the course taught will be applicable in 

modern day scenarios, whether the course will help in career growth, etc. Researchers in recent times have voiced their 

concern about trust related to online based services (Belanger & Carter, 2008; Seufert, 2012; Hashim & Tan, 2015; Silic, 

Barlow, & Back, 2018; Chin, Harris, & Brookshire, 2018). Recently Ray et al. (2019a) have also found a positive 

relationship of authenticity on interest to take up a particular course. Thus, we propose: 

 H5: Course reliability (quality values) has a positive influence on intention to use the e-Learning platform. 

 

Epistemic values 

 Epistemic values are related mainly to the customer’s curiosity, knowledge and novelty (Choe & Kim, 2018). 

Earlier researchers have noted that epistemic values and usage-intention are positively associated in various scenarios, like, 

tourism (Choe & Kim, 2018), mHealth services (Lee, Han, & Jo, 2017), etc. In case of e-Learning services, new 

interesting concepts in a course, the novel techniques taught in the course, the unique examples taught in a course, etc. are 

related to the epistemic values. Using e-Learning services can provide epistemic values and users regard this as the ability 

to learn something new and valuable. Thus, we propose: 

 H6: Topic cover (epistemic values) has a positive influence on the intention to use the e-Learning service 

 Epistemic values also deals with the novel, unique offerings in the platform from the technical point of view 

which can help the user. Researchers Wang and Huang (2014) have argued that the service content of the platform is 

equally important as the platform design. Several other researchers (Zhang, Yin, Luo, & Yan, 2017; Shao, 2018) in context 

of MOOCs have also lend their support on a good platform design. 



.  H7: Platform innovativeness (epistemic values) has a positive influence on the intention to use the e-Learning 

service 

 

Functional values 

Functional values generally deals with the functional aspects of the service platform (website or application). Li 

et al. (2011) and Liao et al. (2011) in context of e-Learning services found a strong influence of system quality, perceived 

ease-of-use, system’s response and system functionality on usage-intention. A service-provider providing better services 

will attract more customers. Researchers have found that functional values have a positive impact on usage-intention in 

various contexts like, purchase of organic products (Qasim et al., 2019), using self-service technologies (Jia, Wang, Ge, 

Shi, & Yao, 2012), accepting technologies (Hsu, Chen, & Wang, 2010), etc. Earlier researchers have found that factors 

like ease of use, usefulness, compatibility issues, etc. affect customer’s intention to adopt certain technologies (Davis, 

Bagozzi, & Warshaw, 1989; Venkatesh, Morris, Davis, & Davis, 2003; Hsu & Wu, 2011). Compatibility refers to the fact 

that the e-Learning platform and the courses taught in that platform can be accessed from any device. Earlier researchers 

have found a positive relationship between compatibility and usage intention in various contexts like, intention to adopt 

mobile banking (Al-Jabri & Sohail, 2012; Lin, 2011), mobile commerce (Wu & Wang, 2005), online shopping (Chen, 

Gillenson, & Sherrell, 2002), etc. Thus in line with earlier research works, we propose: 

 H8: Compatibility (functional values) has a positive influence on the intention to use the e-Learning services. 

. Convenience refers to the ease of use of the e-Learning platform. If the courses can be accessed at any-time and 

easily without much technical glitches of the platform, it will make more customers adopt the course. Earlier researchers 

have found that convenience has a positive influence on intention in contexts like, use of video games (Bassiouni, 

Hackley, & Meshreki, 2019), mobile payment services (Gao & Waechter, 2015), tourist revisit intention (Wong & Zhao, 

2014), etc. Thus in line with earlier research works, we propose: 

 H9: Convenience (functional values) has a positive influence on the intention to use the e-Learning services. 

 

Research Methodology 

The main objective of this study is to explore the factors that affect user’s choice of various online courses from 

the consumption value theory (CVT) stance by utilising the user generated content available in various online platforms. 

Hence, we have used an NLP-based approach in this study. Web-mining was utilised for extracting the text from the 

service-provider (in our case Coursera) platforms, like, Coursera webpages, Tweets, etc. Text-mining is performed to 



reveal the important information from the text. Topic-modeling, sentiment-analysis and emotional-analysis of the textual-

data were also done for extracting relevant scores from the user-generated data. 

Since the study is both purposive as well as probabilistic in nature, we have adopted a mixed-method approach. 

But the uniqueness of this study is that we have utilised an NLP-based approach for performing both the qualitative as well 

as the quantitative based analysis. The study is divided into two phases. In the first phase, we have utilised the NLP-based 

analysis to extract important themes from social-media pages using a content analysis based approach. Based on the 

themes generated, the conceptual model was formed and was tested quantitatively using an SEM based approach. The data 

for the quantitative based analysis was generated from the online reviews posted in Coursera. We have used the Coursera 

100k dataset for our research purpose. The steps followed for performing the analysis are discussed in depth in the 

following sub-sections. 

 

Sample Size 

For analysing the user-generated content, we have used Coursera 100k dataset (contains 139581 reviews) (ref: 

Coursera) containing 1lakh user reviews. We have also extracted 1442 tweets from Twitter using R-studio (all tweets since 

2010) using the official Coursera handle. 

 

Data Analysis 

The data was cleansed by removing stop-words, re-tweets, punctuation, etc. Though there are various ways to 

perform multi-lingual text analysis, we have only focused on reviews posted in English and hence have removed reviews 

that were not written in English. Since we intend to perform sentiment and emotion analysis on the textual-data, reviews 

having over 100 words were considered (which is the minimum criteria for accurate scores) (Ref: IBM Watson). The final 

dataset for analysis contains 3229 reviews. Topic-modeling, sentiment analysis and emotion analysis was performed on 

this cleansed data to extract the scores based on user views. We have used topic-modeling since topic-modeling helps to 

extract important and new themes by analysing words from textual data (Aggarwal & Zhai, 2012, p. 107; Blei, 2012) 

without chances of potentially-biased scenarios (Jelveh, Kogut, & Naidu, 2015). LDA and Gibbs sampling technique was 

preferred because latent variables are represented in a probabilistic way by generating an estimated probability of a 

document being represented by a topic and the probability of a word being used for representing a topic (Blei et al., 2003). 

Topic-modeling results in a document-term matrix containing various topics and related terms. The topics were treated as 

observed variables of the path-model. The generated probabilities, sentiment scores and emotion scores were standardised 

to represent values like Likert scale (1= strongly disagree; 5= strongly agree). ‘sentimentr’ package in R was used for 



performing the sentiment and emotion analysis. Sentiment and emotion scores are used since analysing the 

sentiments/emotions provides a much deeper insight. The positive or negative polarity of sentiments gives the text valence 

score, while the emotion (anger, anticipation, disgust, fear, joy, sadness, surprise, trust) scores provide the affective-

cognitive understanding of the textual content (Chatterjee, 2019).  

The steps followed for extracting the important qualitative themes from the social-media data are discussed below: 

Step 1: After the social-media data (tweets) is cleansed, “LDA tuning” is performed on the social-media feeds to find out 

the optimal number of topics that can be generated.  

Step 2: Based on the optimal number of topics generated, topic modeling is performed to generate the topics and the 

probability scores.  

Step 3: Based on discussion among the researchers based on the formula of Boyatzis (1998) (given below), the important 

topics relevant for the particular context are chosen and results are coded. 

                        

We have used this technique to explore important themes from textual data inspired from earlier research works where 

researchers have used NLP and text mining techniques to extract important information from the text and one popular 

technique to extract important themes by analysing the words in a text is through topic modeling (Aggarwal & Zhai, 2012, 

p. 107; Wei & Croft, 2006; Blei, 2012). 

Based on the themes generated, the conceptual model is developed. For testing the model of interest, a quantitative based 

analysis is performed. But the uniqueness of this study is that we have used user-generated data to generate the dataset for 

quantitative analysis, thus providing a new avenue for performing research analysis. The steps followed for preparing the 

quantitative-based dataset are discussed below: 

Step 1: After the user generated data (customer reviews in Coursera) is cleansed, “LDA tuning” is performed on the social-

media feeds to find out the optimal number of topics that can be generated. It is to be noted that each review is treated as a 

separate document for performing topic modeling. 

Step 2: Based on the optimal number of topics generated, topic modeling is performed to generate the topics and the 

probability scores. 

Step 3: Based on the factors in the model of interest and the topics generated through topic modeling of the user generated 

content, a Naïve Bayes classification (the formula is given below) is performed to find out the presence of a topic in a 

particular document. If the topic is present, the probability score of the particular topic is populated. For the topic which is 

not present, the field is left blank. 



 

Where, TM1, TM2, TM3, .., TMn are the topics and C={factor, not a factor}. 

Step 4: The result of the above step is a matrix which is around 95.94% sparse. Based on the emotion and sentiment 

scores, the documents which are almost similar are then grouped together, to impute the missing values based on the 

cosine based similarity formula given below. 

 

Where, rui is the term similarity score given by user u to term i. 

Step 5: After all the probability scores are populated for all the factors, the scores are normalized on a scale of 1-5 using 

the sentiment and emotion scores. The resulting matrix is the dataset for the quantitative based analysis. 

The dataset was then analysed using SEM technique. The reason behind using SEM is that SEM has the ability to give 

accurate calculations of probability distribution of data (Urbach & Ahlemann, 2010; Baabdullah, Alalwan, Rana, Kizgin, 

& Patil, 2019). We have used SMART PLS (v 3.2.8) for the SEM analysis. The topic-modeling and textual analysis was 

performed using R 3.4.0 platform.  

 

Results 

Results of the thematic based analysis of the social media feeds generated the themes “value addition”, “course 

content”, “clear examples”, “easy to understand”, ”easy to follow”, “topic cover”, “practical examples”, “interesting 

topic”, “course duration”, “reliability of course”, “assignments”, “course quality”, “recommend the course”, “videos to 

watch”, “course materials to read”, “good deals”, “value for money”, “facilitator skills”, “good slides”, “discussion 

forum”, “enjoyed the course”, “loved the course” and “review scores”. These are grouped into mainly nine themes, 

namely, offers and deals (“good deals”, “value for money”), emotional connect (“enjoyed the course”, “loved the course”), 

topic cover (“topic cover”, “practical examples”, “interesting topic”), course quality (“value addition”, “course content”, 

“clear examples”, “course quality”), facilitator quality (“easy to understand”, ”easy to follow”), platform innovativeness 

(“assignments”, “videos to watch”, “discussion forum”, “review scores”), course reliability (“reliability of course”), usage 

intention (“recommend the course”), and convenience (“course duration”, “course materials to read”). 

Table 1 provides information regarding the various measurement items for our analysis. The measurement items 

are actually the themes generated after analysing the topics from the topic-modeling output. The recommended lower 

boundary for composite reliability (CR), chronbach alpha (CA), and average variance extracted (AVE) is 0.70 (Hair, 

Anderson, Tatham, & Black, 1998; Hair, Black, Babin, & Anderson, 2010). The model demonstrated satisfactory 



reliability (CA, CR, AVE >0.50 for all the constructs) (refer Table 1). In case of factor loadings (refer Table 1) we find 

that all the items have a good loading. Discriminant validity tests whether the constructs for measurement are unrelated 

(Chin, 2003) (refer Table 2). Discriminant validity in this study is measured using Fornell-Larcker Criteria and HTMT 

tests (Fornell & Larcker, 1981; Henseler, Ringle, & Sarstedt, 2014). The result shows satisfactory discriminant validity. 

 



Table 1. Information regarding measurement items [factor loadings, variation inflation factor (VIF), average variance 

extracted (AVE), composite reliability (CR), Chronbach Alpha (CA).] 

 Reliability measures 

Measures 

(References) 

Measurement Items Factor 

Loadings 

VIF AVE CR CA 

Offers and Deals 

(Conditional Values) 

OD1: Good deals. 0.90 1.23 0.71 0.83 0.60 

OD2: Value for money. 0.78 1.23 

Emotional Connect 

(Emotional Values) 

EC1: Really liked the course. 0.91 1.96 0.69 0.87 0.78 

EC2: Enjoyed and loved the course. 0.87 1.74 

EC3: Emotional score. 0.70 1.44 

Course Quality 

(Quality Values) 

CQ1: Good course design 0.93 1.13 0.65 0.78 0.50 

CQ2: Course is easy/difficult to understand 0.66 1.13 

Facilitator Quality  

(Quality Values) 

FQ1: Facilitator has good communication skills. 0.91 1.13 0.66 0.79 0.51 

FQ2: Facilitator is knowledgeable.  0.69 1.13 

Course Reliability 

(Quality Values) 

CR1: Course topics are valid and reliable. 0.86 1.32 0.75 0.85 0.66 

CR2: Authentic and valid course certificates. 0.87 1.32 

Compatibility  

(Functional Values) 

COM1: Manage product design to suit needs. 0.86 1.32 0.75 0.86 0.66 

COM2: Is compatible with all devices. 0.87 1.32 

Convenience 

(Functional Values) 

CON1: Videos and lectures can be watched as per 

convenience. 

0.89 1.35 0.75 0.86 0.68 

CON2: Easy to complete courses at own pace. 0.84 1.35 

Topic Cover 

(Epistemic Values) 

TC1: Good topic and information cover. 0.98 1.59 0.75 0.85 0.76 

TC2: New techniques and real life examples are 

taught. 

0.72 1.59 

Platform 

Innovativeness  

(Epistemic Values) 

PI1: Forum for discussion 0.80 1.15 0.68 0.81 0.53 

PI2: Slides, Materials, Videos available on platform to 

access anytime. 

0.85 1.15 

Usage Intention UI1: Liked/loved the course 0.89 1.31 0.74 0.85 0.66 

UI2: Recommend the course to others. 0.83 1.31 

Note: results displayed upto two decimal places. 



Table 2. Information regarding measurement items [discriminant validity measures using Fornell-Larcker and Heterotrait-Monotrait Ratio (HTMT) tests]. 

 COM CON CQ CR EC FQ UI OD PI TC 

COM 0.864*          

CON 0.026*, 0.044** 0.868*,          

CQ 0.035*, 0.063** 0.041*, 0.088** 0.805*,        

CR 0.059*, 0.090** 0.109*, 0.165** 0.060*, 0.126** 0.863*,        

EC 0.054*, 0.069** 0.094*, 0.125**  0.022*, 0.059** 0.000*, 0.039** 0.830*,       

FQ 0.082*, 0.141** 0.028*, 0.064** 0.044*, 0.104** 0.019*, 0.035** 0.060*, 0.078** 0.811*     

UI 0.098*, 0.149** -0.027*, 0.058** 0.047*, 0.076** 0.037*, 0.054** 0.526*, 0.687** 0.141*, 0.237** 0.861*,    

OD 0.081*, 0.124** -0.014*, 0.055** 0.058*, 0.100** -0.019*, 0.089** 0.034*, 0.082** 0.127*, 0.229** 0.105*, 0.169** 0.843*,   

PI 0.040*, 0.067** 0.016*, 0.031** 0.072*, 0.139** 0.037*, 0.066** 0.051*, 0.069** 0.118*, 0.228** 0.123*, 0.210** 0.088*, 0.150** 0.825* ,   

TC 0.088*, 0.134** 0.072*, 0.096** 0.057*, 0.096** -0.001*, 0.055** 0.069*, 0.102** 0.060*, 0.109** 0.011*, 0.011** 0.040*, 0.065** 0.064*, 0.091** 0.864*,  

Note: COM: Compatibility; CON: Convenience; CQ: Course Quality; CR: Course Reliability; EC: Emotional Connect; FQ: Facilitator Quality; UI: Intention to use; OD: 

Offers and Deals; PI: Platform Innovativeness; TC: Topic Cover. 

*Fornell-Larcker Criteria Values 

**HTMT Values 

 



 

Extant literature have stated different threshold values for the fit indices: Standardised Root Mean Square 

Residual (SRMR) value (<0.08), Chi-square ratio degrees of freedom (X2/df ) < 3.0 (Hair et al., 2010; Hair, Ringle, & 

Sarstedt, 2013). In this study, the measurement model demonstrated good-fit-indices: SRMR=0.059, X2/df =2.786.  

Figure 2 depicts the standardised regression path-coefficients for relationships in the model under study. All the 

paths except the path (Course Quality→ Intention-to-use e-Learning platforms) have significant influences (p-values<0.1). 

The hypotheses findings are shown in Table 3. We find that though 8 paths are significant, some beta-values are negative 

indicating a negative association. Thus, hypotheses H3, H6 and H9 are refuted. The path-coefficients (β-values) are used to 

measure the influence of factor 1 on factor 2. In this study, we notice that emotional connect (emotional values) has the 

highest influence on intention to use a particular e-learning platform (β=0.521). Course reliability (epistemic values) 

(β=0.038) have the lowest influence on usage-intentions. 

  



 

Figure 2. The path co-efficient of the various paths. 

 

   



Table 3: Hypotheses results, Standard deviation (std. dev.), t-statistic, confidence intervals (C.I.), beta values, and results. 

Hypothesis number: Paths Std. Dev. t-statistics C.I. 2.5% C.I. 97.5% β-value, 

p-value  

Conclusion 

H1: Offers and Deals→Intention-to-use e-

Learning platforms. 

0.016 3.968 0.034 0.094 0.064, 

p<0.001 

Significant 

H2: Emotional Connect→ Intention-to-use 

e-Learning platforms. 

0.014 37.409 0.494 0.548 0.521, 

p<0.001 

Significant 

H3: Course Quality→ Intention-to-use e-

Learning platforms. 

0.015 1.584 -0.005 0.054 0.024, 

p>0.1 

Refuted 

H4: Facilitator Quality→ Intention-to-use e-

Learning platforms. 

0.015 5.954 0.063 0.121 0.091, 

p<0.001 

Significant 

H5: Course Reliability→ Intention-to-use e-

Learning platforms. 

0.016 2.369 0.011 0.069 0.038, 

p<0.001 

Significant 

H6: Topic Cover→ Intention-to-use e-

Learning platforms. 

0.021 1.839 -0.076 0.005 -0.038, 

p<0.1 

Refuted 

H7: Platform Innovativeness→ Intention-to-

use e-Learning platforms. 

0.015 5.287 0.046 0.105 0.079, 

p<0.001 

Significant 

H8: Compatibility→ Intention-to-use e-

Learning platforms. 

0.016 3.523 0.026 0.086 0.056, 

p<0.001 

Significant 

H9: Convenience→ Intention-to-use e-

Learning platforms. 

0.022 3.803 -0.117 -0.037 -0.083, 

p<0.001 

Refuted 



Discussion: 

In this study, we have attempted to explore the various values that affect usage intention in case of e-Learning 

services using a unique mixed-method approach utilising only user-generated content. Additionally, we have utilised a 

novel NLP-SEM based approach for path-model analysis. For evaluating this approach, online-customer-reviews and 

Tweets about Coursera were utilised. This study has used a CVT perspective to evaluate the impact of various values on 

usage-intention. The hypotheses results are discussed below: 

H1 examined the positive association between offers and discounts (conditional values) and intention to take up 

courses from an e-Learning platform. Similar to what earlier researchers (Qasim et. al., 2019; Suman et al., 2019) have 

found, findings reveal that conditional values and usage-intention are positively associated. The influence (β=0.064) of 

offers and discounts on usage-intention is good which might be due to the fact that an user when taking up an online 

course compares with other branded providers to find out which provider is offering better deals. If the course structures 

are almost similar, users tend to take up the course from the provider who offers better deals. 

H2 explored the positive influence of emotional connect (emotional values) on intention to take up courses from 

an e-Learning platform. Findings reveal a strong significant positive association (β=0.548). This is similar to what earlier 

researchers have found in contexts like, consumption of organic food (Qasim et al., 2019), customer’s purchase intention 

(Asshidin et al., 2016), etc. Possible reasons can be: First, users develop an emotional bonding with a particular provider 

when they feel that the courses offered by the provider are good and are value for money. Second possible reason can be 

the good presence of various quality courses in the platform that satisfies the customer needs which develops a feeling of 

loyalty among the customers. 

H3, H4 and H5 examined the positive relationship between quality values (course quality, facilitator quality and 

course reliability) with intention to take up courses from an e-Learning platform. Unlike what earlier researchers (Ali et 

al., 2018; Albelbisi & Yusop, 2019) have found, the study results show that course quality has no significant relationship 

with intention to take up courses from an e-Learning platform. However, what earlier researchers have found 

(Higginbotham & Myler, 2010; Berkel et al., 2018; Belanger & Carter, 2008; Seufert, 2012; Silic et al., 2018; Ray et al., 

2019a), facilitator quality and course reliability have positive relationships with intention to take up courses from an e-

Learning platform. Some possible reasons can be: First, earlier researchers have found that course quality (Li et al., 2011; 

Yang et al., 2017) and course flexibility (Liao et al., 2011) has a positive influence on usage-intention. However, due to 

the large number of popular e-Learning providers providing the same course, in this modern era, the users generally look 

for better deals (as evident from hypothesis H1) rather than course quality. However, the facilitator quality matters because 

the way the facilitator delivers the course will affect the learning process.  Hence, we feel that the course design, the 



quality of contents taught in a course, the value addition of a particular course, the difficulty in understanding, the 

information quality, etc. play an important role in affecting customer’s behavioural-intention. Second, in this present era of 

services marketing, most e-learning providers are trying to develop courses which will help in career growth. Hence the 

quality of the courses does not play a significant role. However, if the certificate provided by the e-Learning platform is 

not accepted by various job providers, it won’t be useful for a user to take up courses from that particular provider. Hence, 

course reliability plays a significant role.  

H6 and H7 examined the positive association between epistemic values (topic cover and platform innovativeness) 

and intention to take up courses from an e-Learning platform. Results of this study reveal a negative relationship between 

topic cover and intention to use the e-Learning platform. This is unlike what earlier researchers (Lee et al., 2017; Choe & 

Kim, 2018) have found. The possible reason can be that the topics covered, the new techniques taught, etc. will be of not 

much value to users unless the facilitator taking the course can make it interesting. The other possible reason might be that 

users look for courses which cover important topics within a less amount of time. So if there are lots of topics available, 

users might feel that the facilitator may not be able to teach all the topics properly. Additionally they might also feel that it 

might be better to first learn a few topics within a particular time rather than taking up a course which covers a lot of topics 

and put pressure on them. This is also evident from hypothesis H4. We also see that in line with earlier researchers, (Wang 

& Huang, 2014; Zhang et al., 2017), we find a positive relationship (β=0.105) between platform innovativeness and 

behavioural intention. The possible reasons can that user look for e-Learning platforms which provides some technical 

facilities for enhancing the learning process like intelligent bots to handle user queries, forum for discussion, webinars to 

attend the lectures live and discuss with people from different places, etc.  

H8 and H9 explored the positive impact of functional values (compatibility and convenience) on intention to take 

up courses from an e-Learning platform. Similar to what earlier researchers have found in contexts like, using self-service 

technologies (Jia et al., 2012), etc., findings reveal a good influence (β=0.086) of compatibility on behavioural-intentions. 

Possible reasons can be: First, in case of e-Learning services, users need the platform to perform properly. Second users 

prefer platform which is very responsive. Thus, system quality and platform quality matter a lot. However, unlike what 

earlier researchers have noted in contexts like, use of video games (Bassiouni et al., 2019), and mobile payment services 

(Gao & Waechter, 2015), results of the study show that convenience has a negative influence on intention to use a e-

Learning service. The possible reason might be that user might feel that if the courses can be taken anytime without a 

specific time period in mind, they will lose focus. Hence, convenience can play a negative role in affecting user decisions. 

 

 



Theoretical Implications 

This study has three main theoretical implications. First, this research has utilised the user-generated content to 

examine the conceptual path-model. Researchers in future can utilise this technique to utilise the abundant data available 

in various platforms for various research studies in various contexts. Since, collecting data for quantitative studies takes 

time, effort, and sometimes money, utilising the abundant data for analysing a conceptual model can become an alternative 

to quantitative research using path-models in future. Since topic modeling is used to find out the words/terms related to the 

user-generated content, this study can also be utilised as an alternative to qualitative research since the themes will provide 

the emic-perspectives of the customers who have used the service. 

Second, this study provides an avenue for future researchers to utilize the user-generated content to explore not 

only the values or factors influencing user’s intention but also barriers that affect user’s decisions. Additionally, this study 

can be extended to generate a plethora of themes which can help in formulating better research models. Third, this study 

contributes to the e-Learning literature by exploring the various values from the customer’s viewpoint as relevant from 

their posts. This is help researchers to gain a deeper insight from the online customer reviews. Finally, this study will help 

researchers working on topic modeling techniques. Here, Gibbs sampling in LDA is used and the probability scores are 

used to generate the data. This study provides a simple technique to utilise the probability scores. However, researchers 

can work on advanced techniques like hLDA in future. 

 

Implications for Practice 

This study will help managers for the following reasons. First, utilising the user-generated contents may be cost-

effective since taking proper quantitative surveys of a large population may involve some investment. However, the user-

generated content is easily available in company websites/social-media pages. This can be easily extracted and analysed. 

The availability of the user-generated content and the regular posts by users will help managers to get the instant views of 

customers unlike what happens in qualitative or quantitative-based studies. Second, this study provides an alternative way 

to qualitative and quantitative survey based path-models analysis. Using the NLP-based approach will help managers get 

easy and quick views of customers. Customers keep posting their views regularly and if a service has a wider presence, the 

company will be able to capture the perspectives of a wider population very easily. This will help them to analyse what 

aspects they lack and formulate their strategies as per the situation. If the service providers find out that the customers are 

favouring a certain factor, they may analyse and find out if that factor is an advantage or some issues that the customers 

are facing. If the factor turns out to be an issue, the service providers need to take required actions sooner than later. 

Hence, this study will be hugely beneficial for the service-providers. Third, the study results show that in case of e-



Learning services, though all the values (offers and deals, emotional connect, facilitator quality, course reliability, platform 

innovativeness, and compatibility) play an important role, emotional connect is the major predictors. This shows that 

managers need to focus more on the emotional aspect. Additionally, in the e-Learning sector, the website/app. 

functionality plays a huge role since it’s the only medium though which the customer can learn and view the courses. If the 

platform is not functioning properly, it will result in dis-satisfied customers. Managers will also need to improve the 

facilitator quality. This shows that users choose an e-Learning service based on the offers and deals, course reliability, 

facilitators and emotional attachments. Companies to stay in the competition need to provide value-laden courses which 

will be beneficial for the users in future. Service-providers need to keep updating their course content regularly so that the 

courses provided will help the users in their career. Users usually take up courses which will be beneficial in their career 

growth. The service-providers need to keep a check on the facilitators and also the course pedagogy so that the quality of 

the service can be properly maintained. We also find that the users have mentioned “recommend courses” as an important 

factor. The loyal customers or the satisfied customer will refer others in their friends/peer circle to take up the courses 

from the service-providers they feel are good. This will also help the service-providers since they can easily promote their 

services through this loyal customer base without spending much in promotions. 

Limitations and Future Directions 

This study has a few limitations. First, this study will help only those service-providers who are providing 

services for quite some-time. Second, this study has used LDA based technique.  However, there are other topic-modeling 

techniques like, hLDA, LSA, etc. Future researchers can work on finding out the best method by performing a 

comparison-based study.  Third, the model did not demonstrate good discriminant validity measures which may be due to 

poor variation inflation factor scores. Future researchers can find some new ways to measure the validity and reliability of 

data generated from user-generated content. Additionally, future researchers can also work on combining the qualitative, 

quantitative and NLP-based approaches. In this study, only the online reviews and comments were considered. In future, 

researchers can also extract important information from the images/audio/videos posted by users regarding the service 

using neural network techniques, like convolution neural networks. 

 

Conclusion: 

In this modern era, the availability of abundant user-generated data in the form of online-customer-

reviews/comments in social-media pages or company websites can not only help new customers choose a particular 

service but also help service-providers get an insight on the customer’s perspectives. This study attempted to utilise a 

mixed-method approach using the user-generated content (online customer-reviews and tweets) for an e-Learning provider 



(Coursera) to explore the values that affect user’s decisions. The NLP-based approach has made use of topic-modeling 

techniques using LDA. While the findings of the thematic based analysis generated themes, like,  “value addition”, ”easy 

to follow”, “topic cover”, “reliability of course”, “course quality”, “recommend the course”, “videos to watch”, “good 

deals”, “value for money”, “facilitator skills”, “discussion forum”, “review scores”, etc. the quantitative based analysis of 

the customer reviews revealed that offers and deals, emotional connect, facilitator quality, course reliability, platform 

innovativeness, and compatibility are important predictors of user’s intention to take up courses from e-Learning 

platforms. 

 

Statement on Open Data, ethics and conflict of interest: 

The data used from the Coursera 100k dataset is publicly available and is also cited properly in the text. The data taken 

from Twitter is also available for research purpose and the user ids are not shared anywhere. Also the authors have no 

conflict of interest to report. 

 

 

References: 

Aggarwal, C.C., & Zhai, C. (2012). A survey of text clustering algorithms. Mining text data. Springer US77–128. 

Retrieved from http://link.springer.com/chapter/10. 

Albelbisi, N.A., & Yusop, F.D. (2019). Factors Influencing Learners’ Self –Regulated Learning Skills in a Massive Open 

Online Course (MOOC) Environment. Turkish Online Journal of Distance Education. 20(3), 1-16. 

Al-Jabri, I. M., & Sohail, M. S. (2012). Mobile banking adoption: Application of diffusion of innovation theory. Journal 

of Electronic Commerce Research, 13(4), 379–391. 

Ajorlou, A., Jadbabaie, A., & Kakhbod, A. (2016). Dynamic pricing in social networks: The word-of-mouth effect. 

Management Science. 64(2), 971-979. 

Ali, M., Yaacob, R.A.I.R., Endut, M.N.A.-A., & Sulam, M. (2018). The Influence of Contents Utility on Students’ Use of 

Social Media. Pertanika J. Soc. Sci. & Hum. 26, 93-110. 

Asshidin, N.H.N., Abidin, N., & Borhan, H.B. (2016). Perceived Quality and Emotional Value that Influence Consumer’s 

Purchase Intention towards American and Local Products. Procedia Economics and Finance. 35, 639–643. 

Baabdullah, A.M., Alalwan, A.A., Rana, N.P., Kizgin, H., & Patil, P. (2019). Consumer use of mobile banking (M-

Banking) in Saudi Arabia: Towards an integrated model, International Journal of Information Management, 44, 38–

52. 



Barnaghi, P., Ghaffari, P., & Breslin, J.G. (2016). Opinion Mining and Sentiment Polarity on Twitter and Correlation 

between Events and Sentiment. In 2016 IEEE Second International Conference on Big Data Computing Service and 

Applications (BigDataService). 

Bassiouni, D., Hackley, C., & Meshreki, H. (2019). The integration of video games in family-life dynamics: An adapted 

technology acceptance model of family intention to consume video games, Information Technology & People, 32(6), 

1376-1396. 

Belanger, F., & Carter, L. (2008). Trust and risk in e-government adoption. The Journal of Strategic Information Systems, 

17(2), 165–176. 

Berkel, C., Mauricio, A.M., Sandler, I.N., Wolchik, S.A., Gallo, C.G., & Brown, C.H. (2018). The Cascading Effects of 

Multiple Dimensions of Implementation on Program Outcomes: a Test of a Theoretical Model. Prev Science, 19, 782–

794 (2018) doi:10.1007/s11121-017-0855-4 

Blei, D.M., Ng, A.Y., & Jordan, M.I. (2003). Latent dirichlet allocation. The Journal of Machine Learning Research. 3, 

993-1022. 

Blei, D.M., Griffiths, T.L., & Jordan, M.I. (2010). The nested Chinese restaurant process and bayesian nonparametric 

inference of topic hierarchies, Journal of the ACM, 57(2), 1-30. 

Blei, D.M. (2012). Probabilistic topic models. Communications of the ACM. 55(4), 77–84. 

Boddy, C. (2016). Sample size for qualitative research, Qualitative Market Research, 19(4), 426-432. doi: 

https://doi.org/10.1108/QMR-06-2016-0053 

Bødker, M., Gimpel, G., & Hedmanm, J. (2009). The user experience of smart phones: a consumption values approach. 

8th Global Mobility Roundtable Conference, Cairo, November 1-3. 

Boyatzis, R. E. (1998). Transforming Qualitative Information: Thematic Analysis and Code Development. Sage, New 

York, NY. 

Chang, Y.-W., Hsu, P.-Y., & Lan, Y.-C. (2019). Cooperation and competition between online travel agencies and hotels. 

Tourism Management. 71, 187–196. 

Chatterjee, S. (2019). Explaining customer ratings and recommendations by combining qualitative and quantitative user 

generated contents. Decision Support Systems. 

Chatterjee, R., & Juvale, D. (2015). A Mixed Method Study of the Relationship between Online Collaborative Learning 

Activities and Students’ Sense of Community in an Online Environment in Higher Education. Proceedings of SITE 

2015--Society for Information Technology & Teacher Education International Conference (pp. 223-228). Las Vegas, 

NV, United States. 



Chen, L., Gillenson, M. L., & Sherrell, D. L. (2002). Enticing online consumers: An extended technology acceptance 

perspective. Information & Management, 39(8), 705-719.  

Chin, W.W. (2003). Issues and Opinions on Structural Equation Modeling. MIS Quarterly.  22(1), 7-16.   

Chin, A. G., Harris, M. A., & Brookshire, R. (2018). A bidirectional perspective of trust and risk in determining factors 

that influence mobile app installation. International Journal of Information Management, 39, 49–59. 

Choe, J.Y(C). & Kim, S(S). (2018). Effects of tourists’ local food consumption value on attitude, food destination image, 

and behavioral intention. International Journal of Hospitality Management. 71, 1-10. 

Choi, M., Han, K., & Choi, J. (2014). The effects of product attributes and service quality of transportation card solutions 

on service user’s continuance and word-of-mouth intention. Service Business. 9(3), 463–490.  

Costello, H. (2019). Global E-Learning Market 2019, By Technology, Type, Learning Mode, Application, Key Vendor, 

End User, Emerging Trends and Growth Opportunities till 2026. Orbis Research. Published on: 3 January 2019. 

Accessed on: 2 September 2019. [online] https://www.reuters.com/brandfeatures/venture-capital/article?id=72033 

Coursera: https://www.kaggle.com/septa97/100k-courseras-course-reviews-dataset 

Crooks, A., Croitoru, A., Stefanidis, A., & Radzikowski, J. (2013). #Earthquake: Twitter as a Distributed Sensor System. 

Transactions in GIS. 17(1), 124–147. 

Dağhan, G., & Akkoyunlu, B. (2016). Modeling the continuance usage intention of online learning environments. 

Computers in Human Behavior. 60, 198–211.  

Davis, F. D., Bagozzi, R. P., & Warshaw, P. R. (1989). User acceptance of computer technology: a comparison of two 

theoretical models. Management science, 35(8), 982–1003. 

Delice, A. (2002). The Sampling Issues in Quantitative Research.  Educational Sciences: Theory & Practice, 10 (4), 2001-

2018. 

Deziel, C. (2018). The Effects of a Small Sample Size Limitation. Sciencing. Published on: 13 March 2018. Accessed on: 

13 January 2020. link: https://sciencing.com/effects-small-sample-size-limitation-8545371.html 

Dwivedi, Y. K., Rana, N. P., Jeyaraj, A., Clement, M., & Williams, M. D. (2019). Re-examining the unified theory of 

acceptance and use of technology (UTAUT): Towards a revised theoretical model. Information Systems Frontiers, 

21(3), 719-734.  

Dwivedi, Y. K., Rana, N. P., Janssen, M., Lal, B., Williams, M. D., & Clement, M. (2017). An empirical validation of a 

unified model of electronic government adoption (UMEGA). Government Information Quarterly, 34(2), 211-230. 

Emerson, L., & MacKay, B. (2011). A comparison between paper-based and online learning in higher education. British 

Journal of Educational Technology, 42(5), 727–735.  



Fain, P. (2013). Paying for Proof. Inside Higher ED. Published on: 9 January 2013. Accessed on: 3 September 2019. 

[online] https://www.insidehighered.com/news/2013/01/09/courseras-fee-based-course-option 

Fornell, C., & Larcker, D. F. (1981). Evaluating structural equation models with unobservable variables and measurement 

error. Journal of Marketing Research, 18(3), 39–50. 

Gao, H., Wu, H., & Wu, X. (2018). Chances and Challenges: What E-Learning Brings to Traditional Teaching. In 2018 

9th International Conference on Information Technology in Medicine and Education (ITME).  

Gao, L., & Waechter, K. A. (2015). Examining the role of initial trust in user adoption of mobile payment services: an 

empirical investigation. Information Systems Frontiers, 19(3), 525–548. 

Griff, E.R., & Matter, S.F. (2012). Evaluation of an adaptive online learning system. British Journal of Educational 

Technology, 44(1), 170–176.  

Hair, Jr., Anderson, R.E., Tatham, R.L., & Black, W.C. (1998). Multivariate Data Analysis with Readings. 5thed Prentice 

Hall, Enlgewood Cliffs, NJ. 

Hair, J., Black, W., Babin, B., & Anderson, R. (2010). Multivariate data analysis (7th ed.). Upper Saddle River: Pearson 

Prentice Hall. 

Hair, J.F., Ringle, C.M. & Sarstedt, M. (2013). Partial least squares structural equation modeling: rigorous applications, 

better results and higher acceptance. Long Range Planning.  46: 1-12. 

Haryono, S., Suharyono, Fauzi, D.H.A., & Suyadi, I. (2015). The Effects of Service Quality on Customer Satisfaction, 

Customer Delight, Trust, Repurchase Intention, and Word of Mouth. European Journal of Business and Management. 

7(12), 36-48. 

Hashim, K. F., & Tan, F. B. (2015). The mediating role of trust and commitment on members’ continuous knowledge 

sharing intention: A commitment-trust theory perspective. International Journal of Information Management, 35(2), 

145–151. 

Headlam-Wells, J., Gosland, J., & Craig, J. (2006). Beyond the organisation: The design and management of E-mentoring 

systems. International Journal of Information Management. 26(5), 372–385.  

Henseler, J., Ringle, C. M., & Sarstedt, M. (2014). A new criterion for assessing discriminant validity in variance-based 

structural equation modeling. Journal of the Academy of Marketing Science, 43(1), 115–135.  

Higginbotham, B. J., & Myler, C. (2010). The Influence of Facilitator and Facilitation Characteristics on Participants’ 

Ratings of Stepfamily Education. Family Relations, 59(1), 74–86. doi:10.1111/j.1741-3729.2009.00587.x 

Houlden, S., & Veletsianos, G. (2019). A posthumanist critique of flexible online learning and its “anytime anyplace” 

claims. British Journal of Educational Technology, 50(3), 1005-1018. 



Hsu, F.-M., Chen, T.-Y., & Wang, S. (2010). The role of customer values in accepting information technologies in the 

public information service sector. The Service Industries Journal. 30(7), 1097–1111.  

Hsu, C., & Wu, C. (2011). Understanding users’ continuance of Facebook: an integrated model with the unified theory of 

acceptance and use of technology, expectation disconfirmation model, and flow theory. International Journal of 

Virtual Communities and Social Networking, 3(2), 1–16. 

Huang, L., Zhang, J., & Liu, Y. (2017). Antecedents of student MOOC revisit intention: Moderation effect of course 

difficulty. International Journal of Information Management. 37(2), 84–91.  

IBM Watson: https://personality-insights-demo.ng.bluemix.net/ 

Jelveh, Z., Kogut, B., & Naidu, S. (2015). Political language in economics. (SSRN scholarly paper No. ID 2535453). 

Rochester, NY: Social Science Research Network.  

Jia, H. M., Wang, Y., Ge, L., Shi, G., & Yao, S. (2012). Asymmetric Effects of Regulatory Focus on Expected Desirability 

and Feasibility of Embracing Self-Service Technologies. Psychology and Marketing. 29(4), 209–225.  

Kalish, A. (2019). 14 Best Sites for Taking Online Classes That'll Boost Your Skills and Get You Ahead. themuse. 

Published on: 11 January 2019. Accessed on: 2 September 2019. [online] https://www.themuse.com/advice/14-best-

sites-for-taking-online-classes-thatll-boost-your-skills-and-get-you-ahead 

Kunimoto, R., & Saga, R. (2014). Purchase Factor Expression for Game Software Using Structural Equation Modeling 

with Topic Model in User’s Review Texts. International Journal of Innovation, Management and Technology. 5(6), 

417-421. 

Lee, M.C. (2009). Factors influencing the adoption of internet banking: An integration of TAM and TPB with perceived 

risk and perceived benefit. Electronic Commerce Research and Applications. 8(3), 130-141. 

Lee, E., Han, S., & Jo, S.H. (2017). Consumer choice of on-demand mHealth app services: Context and contents values 

using structural equation modeling. International Journal of Medical Informatics. 97, 229–238.  

Li, C.Y., Asimiran, S. & Suyitno (2018). Students’ Expectations and Perceptions on Service Quality of E-Learning in a 

Selected Faculty of a Public University in Malaysia. Advances in Social Science, Education and Humanities Research, 

Atlantis Press. 269, 85-90. 

Li, Y., Duan, Y., Fu, Z., & Alford, P. (2011). An empirical study on behavioural intention to reuse e-learning systems in 

rural China. British Journal of Educational Technology. 43(6), 933–948.  

Li, L.-Y., & Tsai, C.-C. (2017). Accessing online learning material: Quantitative behavior patterns and their effects on 

motivation and learning performance, Computers & Education, 114, 286–297. 



Liao, H.-L., Liu, S.-H., Pi, S.-M., & Chou, Y.-J. (2011). Factors Affecting Lifelong Learners’ Intention to Continue Using 

E-Learning Website: An Empirical Study. New Horizons in Web-Based Learning - ICWL 2010 Workshops.  

Lim, W. M., Teh, P.-L., & Ahmed, P. K. (2016). It is not about what you read, but how you read it: the effects of 

sequencing rational and emotional messages on corporate and product brand attitudes. Journal of Strategic Marketing, 

26(4), 339–355. 

Lin, H. F. (2011). An empirical investigation of mobile banking adoption: The effect of innovation attributes and 

knowledge-based trust. International Journal of Information Management, 31(3), 252–260. 

O’Donohoe, S., & Turley, D. (2007). Fatal errors: unbridling emotions in service failure experiences. Journal of Strategic 

Marketing, 15(1), 17–28. 

Panigrahi, R., Srivastava, P.R., & Sharma, D. (2018). Online learning: Adoption, continuance, and learning outcome—A 

review of literature. International Journal of Information Management. 43, 1-14.  

Parahoo, S. K., Santally, M. I., Rajabalee, Y., & Harvey, H. L. (2015). Designing a predictive model of student satisfaction 

in online learning. Journal of Marketing for Higher Education, 26(1), 1–19.  

Paulus, P. B., Larey, T. S., & Ortega, A. H. (1995). Performance and Perceptions of Brainstormers in an Organizational 

Setting. Basic and Applied Social Psychology, 17(1-2), 249–265. doi:10.1080/01973533.1995.9646143 

Pentina, I., & Neeley, C. (2007). Differences in Characteristics of Online versus Traditional Students: Implications for 

Target Marketing. Journal of Marketing for Higher Education, 17(1), 49–65.  

Popescu, A. M., & Etzioni, O. (2007). Extracting product features and opinions from reviews. In Natural language 

processing and text mining (pp. 9-28). Springer, London. 

Qasim, H., Yan, L., Guo, R., Saeed, A., & Ashraf, B. (2019). The Defining Role of Environmental Self-Identity among 

Consumption Values and Behavioral Intention to Consume Organic Food. International Journal of Environmental 

Research and Public Health. 16(7), 1-22. doi: 10.3390/ijerph16071106 

Rana, N. P., & Dwivedi, Y. K. (2016). Using clickers in a large business class: Examining use behavior and satisfaction. 

Journal of Marketing Education, 38(1), 47-64. 

Ray, A., Bala, P.K., & Dasgupta, S.A. (2019a). Role of authenticity and perceived benefits of online courses on 

technology based career choice in India: A modified technology adoption model based on career theory. International 

Journal of Information Management. 47, 140–151.  

Ray, A. & Bala, P. K. (2019b). Use of NLP and SEM in Determining Factors for E-Service Adoption, In:  Structural 

Equation Modeling Approaches to E-Service Adoption, Chapter 3, pp.38-47. 



Robinson, L. (2016). Embracing online education: exploring options for success. Journal of Marketing for Higher 

Education, 27(1), 99–111.  

Rohm, A.J., Stefl, M., & Clair, J.S. (2018). Time for a Marketing Curriculum Overhaul:Developing a Digital-First 

Approach. Journal of Marketing Education. 41(1), 1-13. 

Saga, R., & Kunimoto, R. (2016). LDA-based path model construction process for structure equation modeling. Artificial 

Life and Robotics. 21(2), 155–159. 

Seufert, S. (2012). Trust and reputation in eLearning at the workplace: The role of social media. IEEE 12th International 

Conference on Advanced Learning Technologies. 

Sheth, J.N., Newman, B.I., & Gross, B.L. (1991). Why we buy what we buy: a theory of consumption values. Journal of 

Business Research. 22(2), 159-170. 

Shao, Z. (2018). Examining the impact mechanism of social psychological motivations on individuals’ continuance 

intention of MOOCs: The moderating effect of gender, Internet Research, 28(1), 232-250. 

Siering, M., Deokar, A.V., & Janze, C. (2018). Disentangling consumer recommendations: Explaining and predicting 

airline recommendations based on online reviews. Decision Support Systems. 107, 52-63. 

Silic, M., Barlow, J., & Back, A. (2018). Evaluating the role of trust in adoption: A conceptual replication in the context of 

open source systems. AIS Transactions on Replication Research, 4(1), 1–17. 

Simon, T., Goldbergb, A., & Adinia, B. (2015). Socializing in emergencies—A review of the use of social media in 

emergency situations. International Journal of Information Management. 35(5), 609–619.  

Suman, S.K., Srivastava, P., & Vadera, S. (2019). Exploring the behaviour of Indian consumers towards online discounts. 

International Journal of Electronic Marketing and Retailing. 10(1), 78-94. 

Tewari, A.S., Saroj, A., & Barman, A.G. (2015). e-Learning Recommender System for Teachers using Opinion Mining, In: 

Kim K. (eds) Information Science and Applications. Lecture Notes in Electrical Engineering, vol.339. pp.1021-1029. 

Springer, Berlin, Heidelberg. 

Urbach, N., & Ahlemann, F. (2010). Structural equation modeling in information systems research using partial least 

squares, Journal of Information Technology Theory and Application, 11(2). 

Venkatesh, V., Morris, M. G., Davis, G. B., & Davis, F. D. (2003). User acceptance of information technology: toward a 

unified view. Management Information Systems Quarterly, 27(3), 425–478. 

Waheed, M., Kaur, K., & Qazi, A. (2016). Students’ perspective on knowledge quality in eLearning context: a qualitative 

assessment. Internet Research, 26(1), 120-145. 



Wang, K., & Huang, S.-T. (2014). How flow experience affects intention to use music streaming service. Proceedings of 

the 12th International Conference on Advances in Mobile Computing and Multimedia - MoMM ’14. 

doi:10.1145/2684103.2684172 

Wei, X., & Croft, W.B. (2006). LDA-based document models for ad-hoc retrieval, Proceedings of the 29th annual 

international ACM SIGIR conference on research and development in information retrieval (pp. 178–185). New York, 

NY: ACM. 

Wong, K.T., Chang, H.H., & Yeh, C.H. (2019). The effects of consumption values and relational benefits on smartphone 

brand switching behavior. Information Technology & People. 32(1), 217-243.  

Wong, I. A., & Zhao, W. M. (2014). Exploring the effect of geographic convenience on repeat visitation and tourist 

spending: the moderating role of novelty seeking. Current Issues in Tourism, 19(8), 824–844. 

Wu, J. H., & Wang, S. C. (2005). What drives mobile commerce? An empirical evaluation of the revised technology 

acceptance model. Information & Management, 42(5), 719–729. 

Yang, M., Shao, Z., Liu, Q., & Liu, C. (2017). Understanding the quality factors that influence the continuance intention of 

students toward participation in MOOCs. Educational Technology Research and Development. 65(5), 1195–1214. 

Zarra, T., Chiheb, R., Faizi, R., & El Afia, A. (2016). Cloud computing and sentiment analysis in E-learning systems, In 

2016 2nd International Conference on Cloud Computing Technologies and Applications (CloudTech).  

Zhang, M., Yin, S., Luo, M., & Yan, W. (2017). Learner control, user characteristics, platform difference, and their role in 

adoption intention for MOOC learning in China. Australasian Journal of Educational Technology. 33(1), 114-133. 


