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1 Introduction

An important by-product of the Maldacena conjecture [1], is the study of supersymmetric

and conformal field theories (SCFTs) in diverse dimensions.1 The last two decades wit-

nessed a large effort in the classification of Type II or M-theory backgrounds with AdSd-

factors, see for example [4, 5]. These solutions are conjectured to be dual to Conformal

Field Theories (CFTs) in dimension d − 1 and with different amounts of Supersymmetry

(SUSY). In the case in which the backgrounds preserve eight Poincaré supercharges major

progress has been achieved.

In fact, for the case of N = 2 superconformal field theories in four dimensions, the field

theories studied in [6] have holographic duals first discussed in [7], and further elaborated on

in [8–15] (among other places). The case of five-dimensional SCFTs was analysed from the

field-theoretical and holographic viewpoints in [16–23], as well as in other interesting works.

An infinite family of six-dimensional N = (1, 0) SCFTs was discussed from both the field-

theoretical and holographic points of view in [24–33]. For three-dimensional N = 4 SCFTs,

the field theories presented in [34] were discussed holographically early on, in e.g. [35–38].

Two-dimensional SCFTs and their AdS duals have also received much attention. From a

holographic perspective, recent work in this direction can be found in [39–47].

The generic string or M-theory backgrounds dual to CFTs with four Poincaré super-

charges are harder to classify. In the case of four-dimensional SCFTs one can find some

efforts along this line in [4, 10, 11].

In the holographic approach, after identifying these diverse AdS solutions with their

dual CFTs, the most natural step is to study the dynamics that ensues by deforming the

CFT and flowing away from the fixed-point theory. The Holographic Renormalisation

Group (H-RG), a set of ideas developed in [48–51], is a well studied technical tool that

allows a geometric understanding of many details of these flows. In particular, it can be

used to extract from a given gravitational background the field theory sources and vacuum

expectation values for operators involved in the deformation of the fixed-point theory.

One of the primary strengths of the Renormalisation Group, holographic or otherwise,

is its versatility. It has been successfully employed to uncover the low energy properties of

theories with and without Lagrangian descriptions, in theories whose coupling is weak or

1Here we mostly refer to SCFTs in diverse dimensions. It is important to keep in mind that the studies

on SCFTs in four dimensions originated in [2, 3], where many interesting perturbative and non-perturbative

results were derived.
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strong, and for theories which enjoy varying amounts of (super)symmetry. A particularly

interesting arena, in which many of these ideas intersect, is in the study of RG “flows across

dimensions”. This refers to deformations of a UV theory in dimension d + n, which drive

the theory to an IR fixed point whose physics is effectively d-dimensional.

An important class of such flows arises when the deformation driving the flow corre-

sponds to placing the (d+ n)-dimensional UV theory on a n-dimensional manifold. In its

earliest incarnation, this is of course the scenario of Kaluza and Klein. More recently, this

idea has been rejuvenated and exploited with great success, notably in the study of the

landscape of interacting superconformal field theories in four dimensions [52–54].

Maldacena’s conjectured duality offers a powerful perspective on these ideas, realising

the RG flow geometrically. This perspective was taken in [52], in which supergravity

solutions corresponding to wrapping a large number of M5-branes on a Riemann surface

were constructed. These solutions preserve either four or eight Poincaré supercharges, and

were interpreted holographically as M-theory solutions dual to four-dimensional SCFTs

obtained by placing the six-dimensional (2,0) M5-brane theory on a Riemann surface with

a topological twist. In the subsequent years, starting with [6, 53], substantial work has

been devoted to understanding the properties of these four-dimensional field theories.

A primary motivation of this present work is to continue this exploration, returning

to the gravitational picture provided by holographic duality. To make progress, we will

appeal to two consistent truncations of seven-dimensional supergravity with known uplifts

to ten and/or eleven-dimensional supergravity. The truncations result in five-dimensional

gauged supergravity theories with N = 2 and N = 4 supersymmetry whose solutions

include those of [52].

Importantly, the five-dimensional perspective grants access to sectors of these theories

which consistently decouple from the rest of the dynamics. In particular, our approach

allows us to identify and study a subset of supersymmetric states and RG flows in these

theories without the necessity of confronting the computational difficulties of working with

higher-dimensional theories of supergravity. An interesting feature of our approach is that

a particular solution to the five-dimensional supergravity equations of motion may have

more than one uplift to higher dimensions. In this sense, the flows we find are capturing

universal Physics in infinite classes of outwardly distinct four-dimensional SCFTs. This

universality in the behaviour of some physical phenomena was also pointed out in [55].

The outline of our work is as follows: in section 2, we introduce a consistent truncation

of seven-dimensional minimal gauged supergravity. The reduction ansatz incorporates a

topological twist, marrying certain gauge fields in the supergravity theory to the spin

connection on a Riemann surface. The bosonic sector of the reduced theory is that of a

N = 2 gauged supergravity in five dimensions, with gauge group SO(2) × R.

In section 3, borrowing the results of [56], we use the data of this supergravity theory

to obtain a set of BPS equations governing the supersymmetric flows which preserve four

supercharges. Although the equations can be studied for any value of the curvature of the

Riemann surfaces, we focus on the particular case in which this surface is (a quotient of)

H2. In this case, we can holographically identify supersymmetric solutions corresponding

to supersymmetric states in the dual SCFT.
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In section 4 we reproduce known uplift formulae which allow us to embed the solutions

to our five-dimensional theory in ten and eleven dimensions. The content of this section

is not new, but crucial for understanding the higher-dimensional features of our solutions.

As an example, we exhibit explicitly the admissibility criterion of [52] for the singularities

which arise in the IR of our five-dimensional flows. Some of our solutions end in an

“admissible” singularity, and we prefer to think about these solutions as a first step towards

the holographic description of the QFT dynamics. It is plausible that a different (perhaps

more elaborate) truncation to gauged supergravity leads to a resolution of such singular

behaviours.

Section 5 follows the same lines of inquiry, but this time in a very recently discovered

truncation of maximal gauged supergravity in seven dimensions [57]. We study supersym-

metric solutions in this theory which preserve at least eight supercharges. Interestingly,

when the Riemann surface is taken to be H2 or a quotient thereof, we succeed in finding

an analytic solution which generalises a solution presented in [58] in the holographic study

of the Ω-background. For certain values of the solution’s parameters, which correspond

to vacuum expectation values for operators in the dual field theory, the dual state shares

some important features with a well known Coulomb branch solution of N = 4 Super

Yang-Mills [59].

In section 6 we highlight some lessons we can extract holographically on the properties

of the dual SCFTs. We discuss a well known “RG-monotone quantity” which can be

computed both from the five-dimensional and higher-dimensional perspectives and shown

to agree (as anticipated). Additionally, we comment on the higher-dimensional perspective

on the computation of strip entanglement entropies and holographic Wilson loops. In

particular, we emphasise the way in which the kinematical data of the UV CFT (the ranks

of colour and flavour groups) “decouples” from the details of the flow, at least for the

particular quantities we study here. It is in this sense that we are uncovering universal

qualities of flows away from a large class of SCFTs.

We conclude in section 7 with some additional comments and a discussion of future

directions this work will allow one to pursue.

2 An N = 2 gauged SUGRA in d = 5 from N = 1 gauged SUGRA in

D = 7

In this section we start from the minimally supersymmetric SU(2) gauged supergravity in

seven dimensions [60], and perform a reduction to five dimensions on a two manifold Ω2,l.

We write explicitly the reduced action as an N = 2 gauged supergravity in five dimensions,

study its scalar potential and critical points.

2.1 Reduction ansatz

Our starting point is the minimal gauged supergravity (a theory with 16 supercharges) in

seven dimensions [60],

L =R ? 1− 5X−2dX ∧ ? dX − 1

2
X4F(4) ∧ ?F(4) − V ? 1

− 1

2
X−2F i(2) ∧ ?F

i
(2) − hF(4) ∧B(3) +

1

2
F i(2) ∧ F

i
(2) ∧B(3). (2.1)
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The field content is a metric, a scalar X, SU(2) gauge fields Ai(1) with field strength F i(2) =

dAi(1) −
g̃
2ε
ijkAj(1) ∧ A

k
(1), and a three-form potential B(3) with field strength F(4) = dB(3).

The scalar potential is given by

V = 2h2X−8 − 4
√

2g̃hX−3 − 2g̃2X2. (2.2)

Henceforth, we work in units such that the gauge coupling g̃ = 1. The equations of motion

following from the action of the supergravity theory (see appendix A) are supplemented

by an odd-dimension self-duality constraint

X4 ? F(4) = −2hB(3) +
1

2
Ai(1) ∧ F

i
(2) +

1

12
εijkA

i
(1) ∧A

j
(1) ∧A

k
(1). (2.3)

We now present a Kaluza-Klein reduction ansatz such that the resulting theory is an

N = 2 gauged supergravity in five dimensions. The reduction of the metric takes the form

ds2
7 = e−4φds2

5 + e6φds2(Ω2,l). (2.4)

Here Ω2,l is a Riemann surface (or quotient thereof). It is useful to work in the obvious

orthonormal frame, where ds2
7 = ηMNeMeN , in which the siebenbein can be taken as

eM = (e−2φēm, e3φēa) with m = (t, x, y, z, r) and a = (1, 2). Accordingly, we have

ds2
5 = η̄mnēmēn, ds2(Ω2,l) = ēaēa.

The parameter l = {0,±1} is related to the curvature of the Riemann surface (S2, T 2, H2)

by dω̄12 = R12 = lvol2 in our conventions.

The ansatz for the SU(2) gauge fields introduces an SO(2) doublet of charged scalars

θ, and an SO(2) gauge field A. Crucially, the ansatz includes a twisting in this sector, in

which these SO(2) indices are aligned with the “a” indices of the frame on Ω2,l:

A1 = −εabθaēb, A2 = θaēa, A3 = ω̄12 +A.

In terms of the SO(2) covariant derivative Dθa = dθa − εabA θb, the corresponding field

strengths are given by

F 1 = −εabDθa ∧ ēb, F 2 = Dθa ∧ ēa, F 3 = F + (l − θ · θ)vol2,

where F = dA. The ansatz for the three-form potential is

B(3) = c(3) + χ(1) ∧ vol2 −
1

2h
d(ω̄12 ∧ A). (2.5)

The last term, evidently singular in the h → 0 limit, is not required when the topological

mass is vanishing. In the case h = 0, the three-form obeys a standard second order equation

of motion.

Finally, the seven-dimensional scalar X and the metric mode φ are taken to depend

only on the coordinates of ds2
5. Let us write the five-dimensional action produced by

this reduction.
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2.2 The N = 2 action and gauging

After some calculation (outlined in appendix A), we find that the equations of motion of

the reduced theory can be obtained from the action,

S5 =

∫
R̄ ∗ 1− 3Σ−2dΣ ∧ ∗dΣ− 2dϕ ∧ ∗dϕ− e2ϕDθa ∧ ∗Dθa

− 1

2
e4ϕ
(
Dξ − εabθaDθb

)
∧ ∗
(
Dξ − εabθaDθb

)
− V5 ∗ 1

− 1

2
Σ−2H0 ∧ ∗H0 − 1

2
Σ4H1 ∧ ∗H1 − 1

2
A1 ∧H0 ∧H0. (2.6)

We introduced the redefined scalars Σ and ϕ such that

Σ = Xe−2φ, and eϕ =
1

X
e−3φ, (2.7)

as well as the Stueckelberg scalar ξ whose covariant derivative is defined as

Dξ = dξ + lA0 + 2hA1. (2.8)

The vectors A0 and A1 are related to those of the reduction ansatz as AĨ = (A,−χ(1)),

and H Ĩ = dAĨ .

The Hodge star ∗ is taken with respect to ds2
5, and the five-dimensional potential is

given by

V5 = −2Σ2 − 4
√

2e2ϕΣ−1h+ 2e4ϕΣ−4h2 − 2le2ϕΣ2 +
1

2
e4ϕΣ2(l − θ · θ)2. (2.9)

This action is outwardly of the form required by N = 2 supersymmetry, with gravity

plus one vector and one hyper multiplet. In our conventions (aligned with [61]) this theory

takes the form

SN=2 =

∫
R ∗ 1− 1

2
gxyDφ

x ∧ ∗Dφy − 1

2
gUVDq

U ∧ ∗DqV − Vs ∗ 1

− 1

2
aĨ J̃H

Ĩ ∧ ∗H j̃ − 1

3
√

3
CĨ J̃K̃A

Ĩ ∧H J̃ ∧HK̃ . (2.10)

Here, x enumerates the scalars in the vector multiplets, gxy is the metric on a very spe-

cial real manifold, U enumerates the hypermultiplet scalars which are coordinates on a

quaternionic-Kähler manifold with metric gUV , and Ĩ = 0, . . . , nv where nv is the number

of vector multiplets.

The vector multiplet scalar, which we identify with Σ, parametrises the very special

real manifold SO(1, 1), while the four hypermultiplet scalars qU = (ϕ, ξ, θ1, θ2) parametrise

the quaternionic-Kähler manifold SU(2, 1)/U(2), which is the so-called “universal hyper-

multiplet”. Some relevant details about the geometry of these manifolds can be found in

appendix A.2.

The gauging of this theory is clearly within the hypermultiplet sector alone, and with

DqU = dqU +AĨkU
Ĩ

we read off the Killing vectors associated with the gauged isometries as

k0 = θ1∂θ2 − θ2∂θ1 + l∂ξ, k1 = 2h ∂ξ. (2.11)

– 5 –
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It is simple to see that these vectors generate SO(2)×R. The relevant terms in the scalar

potential are given by

Vs = 8

(
3

16
hĨkU

Ĩ
gUV k

V
J̃
hJ̃ + ~Px · ~P x − 2~P · ~P

)
, (2.12)

where the vectors
~P ≡ 1

2
hĨ ~PĨ and ~Px ≡

1

2
hĨx
~PĨ (2.13)

are computed from the SO(1, 1) data and the moment maps

~PĨ =
1

2
~JU

V∇V kUĨ , (2.14)

with ~J the triplet of SU(2) complex structures on SU(2, 1)/U(2). In appendix A we compute

these quantities explicitly, and verify that they reproduce the reduced scalar potential (2.9)

via (2.12). We discuss the critical points of the potential below, in section 2.3.

2.2.1 Minimal gauged SUGRA in d = 5 from D = 7

We note in passing that these results can further be used to show that any solution of

minimal gauged supergravity in d = 5 can also be uplifted to the minimal theory in D = 7.

Subsequently these solutions can be promoted to Massive IIA or D = 11 by the various

formulae in the literature [62, 63]. This is accomplished by first taking

h 6= 0, l = −1, Σ = (2h2)1/6, ϕ = −1

2
ln

3

2
, θa = ξ = 0 and A0 = 2hA1. (2.15)

Introducing the redefined gauge field A with two-form field strength H = dA such that

A = A1
√

3(2h2)1/3 (2.16)

one finds that the resulting equations of motion can be derived from the action for minimal

N = 2 gauged supergravity:

S5 =

∫ (
R̄+

12

L2

)
∗ 1− 1

2
H ∧ ∗H − 1

3
√

3
A ∧H ∧H . (2.17)

This is a realisation of the conjecture from Gauntlett and Varela articulated in [64], see

also [65]. For a recently proposed proof, see [66]. This conjecture associates to each

supersymmetric AdS solution of D = 10 or D = 11 supergravity of the warped product

form AdSd+1×wM a truncation onM to the modes dual to the stress tensor multiplet in

the corresponding SCFTd.

2.3 Critical points of the scalar potential

The scalar potential of the reduced theory has two critical points when l = −1, which

corresponds to reducing on H2. They both lead to AdS5 geometries. The first is given by

Σ = (2h2)1/6, ϕ = −1

2
ln

3

2
, θa = 0 such that L2

AdS5
=

9

2
(2h2)−1/3. (2.18)
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We will see shortly that this solution is in fact supersymmetric. The second, which is not

supersymmetric, is given by

Σ =

(
2h2

9

)1/6 [
−2 + (27

√
17 + 109)1/3 − (27

√
17− 109)1/3

]1/3
,

ϕ =
1

2
ln

[
2

3

(
−3 + (

√
17 + 9)1/3 + (9−

√
17)1/3

)]
,

θa = 0. (2.19)

This solution has previously appeared in [67].2 We will briefly elaborate on the Physics

associated to these exact solutions in section 6. Let us now study the flows away from the

supersymmetric fixed point.

3 Supersymmetric flows preserving four supercharges

Using the results of [56], we next proceed to hunt for more general supersymmetric solutions

in this theory. In particular, we will be interested in identifying domain wall type geome-

tries which correspond holographically to renormalisation group flows preserving Poincaré

invariance in 3+1 dimensions.

In our conventions, the superpotential is given by

W =

√
4

3
~P · ~P

=
1

6
Σ−2

√
16e2ϕ θ · θΣ6 +

(
2
√

2Σ3 + e2ϕ
(
2h+

√
2(l − θ · θ)Σ3

))2
(3.1)

Under certain conditions, including supersymmetry, one can derive the potential of the

gauged supergravity via

Vs = −12W 2 + 9gΩΞ∂ΩW∂ΞW, (3.2)

where Ω,Ξ label all scalars of the theory, i.e. φΩ = (φx, qU ). This will be the case whenever

∂x ~Q = 0, which we define presently.

The algebraic constraints for SUSY flows are written in terms of a vector ~Q, which is

a unit vector pointing along ~P :

~Q ≡
~P

|~P |
=

2√
3

~P

W
. (3.3)

The full set of requirements for a solution to preserve at least four supersymmetries is then

given in terms of an “RG flow” metric ansatz,

ds2
5 = e2A

(
−dt2 + d~x2

)
+ dr2, (3.4)

as

∂rA = W, (3.5)

∂x ~Q = 0, (3.6)

∂rφ
Ω = −3gΩΞ∂ΞW. (3.7)

2In fact, see around eq. (3.11) of the paper [67]. We thank Jerome Gauntlett for pointing this out.
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The algebraic conditions from (3.6) are generically satisfied when θa = 0. Note that

when the potential can be written in terms of a superpotential, critical points of the

superpotential are critical points of the potential — but the converse is not necessarily

true. In particular, the second AdS5 in (2.19) is not a critical point of the superpotential,

and hence not supersymmetric.

The flow equations for supersymmetric solutions in this reduced theory thus simplify to

∂rA =

√
2

3
Σ +

1

6
e2ϕ
(
l
√

2Σ + 2hΣ−2
)
, (3.8)

∂rΣ = −
√

2

3
Σ2 +

1

6
e2ϕ
(

4hΣ−1 − l
√

2Σ2
)
, (3.9)

∂rϕ = −1

2
e2ϕ
(
l
√

2Σ + 2hΣ−2
)
. (3.10)

We now attempt to solve these equations.

3.1 Analytic solutions

When l = 0, corresponding to Ω2,0 ∼ T 2, the BPS equations can be solved exactly. Intro-

ducing a new radial coordinate ρ such that

∂ρ

∂r
= Σ−2, (3.11)

the BPS equations are readily integrated, yielding a general solution of the form

ϕ = −1

2
ln (2hρ− cϕ) , Σ =

(
6hρ− 3cϕ

3
√

2hρ2 − 3
√

2ρcϕ + 2cΣ

)1/3

,

A = cA +
1

6

(
ln(2hρ− cϕ) + 2 ln

(
3
√

2hρ2 − 3
√

2ρcϕ + 2cΣ

))
, (3.12)

with the three integration constants cA, cϕ, cΣ.

As a special case, when these integration constants vanish, one finds that the seven-

dimensional scalars are given by

X =
(
e−2ϕΣ3

)1/5
=
(
8h2
)1/10

, e−5φ = Σeϕ =
(

41/5hρ
)−5/6

. (3.13)

Furthermore, using our reduction formulae (2.4) to uplift this solution (with cA = cϕ =

cΣ = 0 and h = 1
2
√

2
) to seven dimensions, one finds a metric

ds2
7 =

32/3

25/6
ρ
(
−dt2 + d~x2

)
+

1√
2
ρ ds2

T 2 +
2

ρ2
dρ2. (3.14)

This is in fact the supersymmetric AdS7, with radius L7 = 2
√

2.

For l = ±1, we have been unable to find closed-form solutions to the BPS equations.

However, we have succeeded in reducing the full set of equations to a single Abel equation.
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In fact, as explained in appendix B, the whole system can be expressed in terms of the

‘radial variable’ Σ. We have a configuration

ds2 = e2A(Σ)dx2
1,3 + y2(Σ)dΣ2, (3.15)

e2ϕ(Σ) =
1− y(Σ)f1(Σ)

y(Σ)f2(Σ)
, A(Σ) =

∫ [
f4(Σ) + e2ϕf5(Σ)

]
y(Σ)dΣ.

The functions fi(Σ) are defined in appendix B, see eq. (B.4). The function y(Σ) solves the

Abel equation of the first kind,

∂Σy = G1y +G2y
2 +G3y

3, (3.16)

where the functions Gi(Σ) are defined in terms of the fi(Σ) in appendix B, see eq. (B.8).

In this language, the solution in eqs. (3.12)–(3.14) corresponds (for vanishing integration

constants) to,

y = −3
√

2

Σ2
, e2ϕ = Σ3, e2A =

1

Σ5
, X = 1, e−2φ = Σ.

ds2
7 =

1

Σ3

(
dx2

1,3 + dΩ2,0

)
+ 18

dΣ2

Σ2
≡ e−

v√
2
(
dx2

1,3 + dΩ2,0

)
+ dv2.

Let us now study other solutions.

3.2 Numerical solutions

Absent an analytical solution, one can appeal to numerics to try to gain control over

the landscape of supersymmetric flows. As an illustration, we focus here on flows with

l = −1, in which the supersymmetric AdS5 can provide a putative endpoint for the flow.

For simplicity, in this section we choose h = 27/4 such that the AdS5 radius is one. To

investigate the possibility for such flows, we note that the BPS equations, linearised around

the SUSY AdS5 vacuum, permit modes

A = r
(

1 + δA rδ̂
)
, Σ = Σ0 + δΣ erδ̂, ϕ = ϕ0 + δϕ erδ̂, (3.17)

with

δ̂ = 0,−1∓
√

7. (3.18)

The mode with δ̂ = 0 is a universal mode that simply corresponds to a diffeomorphism

resulting in an overall rescaling of all coordinates by the same factor. The modes δ̂ = −1∓√
7 correspond to deformations of the AdS5 that are compatible with supersymmetry. The

upper sign is a relevant deformation, which would be naturally interpreted as a deformation

of the dual d = 4 SCFT, driving a flow towards the IR. The lower sign is an irrelevant

deformation, and thus has a chance to describe the IR behaviour of a putative twisted

AdS7 → AdS5 flow.
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Figure 1. UV scaling behaviour of various metric functions in the D = 7 uplift of the solution to

the d = 5 BPS equations described in the text.
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Figure 2. The profiles of the bulk fields present in a supersymmetric flow from AdS5 to the singular

IR. The numerical solution is drawn in black, and the orange dashed lines give the asymptotic

behavior of the fields at the AdS5 critical point. The UV is approached as r →∞.

3.2.1 AdS7 → AdS5

A flow realising the latter scenario has in fact already appeared in the literature [54]. Here

we recover this solution from the perspective of our five-dimensional theory. By integrating

the irrelevant mode out from the supersymmetric AdS5 one obtains a seven-dimensional

UV solution of the form

ds2
7 ∼

r3

L 3

(
− dt2 + d~x2 + ds2

H2

)
+ L 2 dr2

r2
, (3.19)

for constant L . This scaling behaviour is illustrated in figure 1. Numerically, one finds

that L 2 = 9
4L

2
7, with L7 the supersymmetric AdS7 radius. Accordingly one can change

radial variable such that r = ρ2/3 and

ds2
7 ∼

ρ2

L 3

(
− dt2 + d~x2 + ds2

H2

)
+ L2

7

dρ2

ρ2
, (3.20)

which is manifestly AdS7 with two spatial directions wrapped on H2. We thus have a

numerical solution holographically describing the RG flow induced by wrapping a six-

dimensional SCFT on H2, which subsequently flows to a four-dimensional SCFT.

3.2.2 AdS5 →?

It is similarly straightforward to integrate the relevant mode, corresponding to the scalar

operator of the dual SCFT4 with dimension ∆ = 1+
√

7 acquiring a vev. The bulk solution

is shown in figure 2. The flow is singular, generically terminating at a fixed radial value.

This IR singularity can be seen to be “good” by the criterion in [52] once the solution is

uplifted to eleven dimensions. Numerical evidence for this is given in figure 3 below — we

outline the uplift in section 4.
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It is interesting to gain analytical control of the IR of this flow, which can give im-

portant insights on its dual physics. From the numerical solution, we observe that as the

IR is approached, Σ → ∞ while e2ϕ → 0. In this limit, the leading form of the BPS

equations (3.8)–(3.10) is

∂rA =

√
2

3

(
1− 1

2
e2ϕ

)
Σ, (3.21)

∂rΣ = −
√

2

3

(
1− 1

2
e2ϕ

)
Σ2, (3.22)

∂rϕ =
1

2
e2ϕ
√

2Σ. (3.23)

These coincide with those of the h = 0 theory when θ = 0 and l = −1 (see appendix A.3).

These equations can be solved exactly. Indeed, using the new radial variable ρ defined via

∂rρ = −Σ, the solution is

ϕ = −1

2
ln
√

2ρ, Σ = s0
1

ρ1/6
e
√
2

3
ρ, A = − ln Σ + a0. (3.24)

The metric then approaches the form3

ds2
IR ∼ Σ−2

(
−dt2 + d~x2 + dρ2

)
. (3.25)

In these coordinates, the singularity corresponding to the IR of the full flow is at ρ→∞.

The coordinate change can be evaluated in the far IR limit to obtain

r − µ ∼ 3√
2
ρ1/6e−

√
2

3
ρ =

3√
2

1

Σ
, (3.26)

in excellent agreement with the numerics.4

We can analyse the character of the singularity using the criterium that Gubser pre-

sented in [69]. A “good”, or acceptable singularity requires that the potential in eq. (2.9)

is bounded above for the asymptotics in eq. (3.24). Considering eq. (3.24), near the singu-

larity the leading order behaviour of the potential is given by

V = Σ2

(
−2− 2le2ϕ +

e4ϕ

2
l2 − 4h

√
2
e2ϕ

Σ3
+ 2h2 e

4ϕ

Σ6

)
∼ −2Σ2 → −∞. (3.27)

The potential is bounded above, and hence the singularity acceptable according to Gubser’s

criterium.

In summary, we can view this supersymmetric solution as an RG flow which connects

the supersymmetric AdS5 in the UV to an exact solution of the h = 0 theory in the IR.

We shall study some physical aspects of this solution in section 6. Now, let us study the

lift of these backgrounds to eleven or ten-dimensional supergravities.

3Through an elementary change of radial coordinate, this metric can be thought of as a logarithmic

correction to the IR of the flow in [68] as given by (5.49), which is dual to a state on the Coulomb branch

of N = 4 SYM. We will find another example of this in section 5.2.
4In the variables of eq. (3.15) the solution is harder to find as the resolution of the Abel equation (3.16)

leads to a transcendental equation for y(Σ).
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4 Uplifts to 10 and 11 dimensions

In this section we describe the lift of the flows described by the different solutions of

eqs. (3.8)–(3.10). We first describe the lift to eleven-dimensional supergravity. After that,

we discuss the lift to Massive IIA supergravity. As previously advertised, there are actually

‘infinitely many’ lifts to Massive IIA. We shall clarify this statement below.

4.1 The N = 2 gauged supergravity uplift to D = 11

For non-vanishing topological mass h, the uplift of the minimal gauged supergravity in

D = 7 to D = 11 was given in [62]. To align their conventions with ours, we first take

g̃ → g and h → 1
2
√

2
g. We continue to work in units where g̃ = g = 1. It will also be

convenient to recall that the seven-dimensional scalar X is related to those of the five-

dimensional theory like

X =
(
e−2ϕΣ3

)1/5
, e−5φ = Σeϕ. (4.1)

We also remind the reader that the seven-dimensional metric is given by

ds2
7 = (eϕΣ)4/5 ds2

5 + (eϕΣ)−6/5 dΩ2
2,l. (4.2)

Let us move now to the details of the lift. We introduce an interval coordinate ζ, and

define

∆ = X−4 sin2 ζ +X cos2 ζ. (4.3)

The internal manifold in the uplift of the seven-dimensional metric is then given by

ds2
4 = X3∆dζ2 +

1

4
X−1 cos2 ζ ~Ω · ~Ω, (4.4)

where
~Ω = ~σ − ~A(1), (4.5)

with the ~σ left-invariant one-forms on S3 such that dσi = −1
2εijkσ

j ∧ σk and the ~A(1) are

the SU(2) field strengths of the D = 7 theory. With these considerations, the D = 11

metric is

ds2
11 = ∆1/3ds2

7 + 2∆−2/3ds2
4, (4.6)

and the three-form flux can be written as

Â(3) = − sin ζ
((

Dξ − εabθaDθb
)
∧ vol2 + Σ4 ∗ dχ(1)

)
− 1√

2
sin ζ

(
− εabDθa ∧ ēb ∧ Ω1 +Dθa ∧ ēa ∧ Ω2 +

(
F + (l − θ · θ)vol2

)
∧ Ω3

)
+

1

2
√

2

(
2 sin ζ + sin ζ cos2 ζ∆−1X−4

)
Ω1 ∧ Ω2 ∧ Ω3. (4.7)

Note that for any uplifted five-dimensional solution, the singularity criterion of [52]

requires that

|g(11) tt| = e
2
3
ϕΣ |g(5) tt|

(
cos2 ζ + e2ϕΣ−3 sin2 ζ

)1/3
(4.8)

does not increase anywhere along ζ as the far IR is approached. An example of its behaviour

is shown in figure 3.

Let us discuss now the lift to Massive IIA.
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Figure 3. The IR behaviour of |g(11) tt|, as given by (4.8), for the supersymmetric flow once lifted

to eleven dimensions. That this component of the metric vanishes at the singularity is consistent

with the singularity being “good” in the classification of [52]. Pictured is the ζ = π/6 slice.

4.2 The N = 2 gauged supergravity uplift to D = 10

Any solution with non-vanishing h can also be uplifted via the formulae in [63] to the

Massive IIA Supergravity theory in ten dimensions. In fact, this can be accomplished in

infinitely many ways (all possible flavour and colour groups combinations defining a six-

dimensional N = (1, 0) SCFT). As in the eleven-dimensional uplift, we continue to work

in units with g = 1 and h = 1
2
√

2
. For brevity, we quote below only the metric and dilaton

in Massive IIA, using the variables in [27]. In appendix D we give a full account of the

configuration.

Recall that the configuration in seven dimensions is described by the fields

Σ(r), ϕ(r), A(r) satisfying BPS equation (3.8)–(3.10). It was useful to define the com-

binations X5 and e−5φ as in eq. (4.1). The seven-dimensional metric is of the form given

in eq. (4.2). The gauge field A3 = ω̄12 is the spin connection on ds2(Ω2,l). The metric

and dilaton (and all other fields) in Massive IIA are given in terms of the functions X(r)

and α(z) (together with its derivatives α̇ and α̈). The function α(z) is defined in an inter-

val 0 ≤ z ≤ z∗ and encodes all the field-theoretical information that defines a minimally

SUSY six-dimensional CFT, see [27, 30] for the details. The metric and dilaton in Massive

IIA read

1

µ
ds2

st = X−1/2

√
−α
α̈

ds2
7 +X5/2

√
− α̈
α

(
dz2 +

(
α2

α̇2 − 2αα̈

)
1

W
DΩ2

)
,

e2Φ = e2Φ0X5/2
(
−α
α̈

)3/2 1

W (α̇2 − 2αα̈)
, (4.9)

W = (1−X5)
α̇2

(α̇2 − 2αα̈)
+X5, DΩ2 = dχ2 + sin2 χ

(
dψ − 1

2
A3

)2

.

The numbers µ,Φ0 can be read from eqs. (2.3) and (2.4) in [30]. Notice that when X = 1

we have W = 1 and this solution with A3 = 0 is the uplift of the configuration in eq. (3.12),

that is AdS7 ×M3. The function α(z) is then determined by all the possible choices of

six-dimensional SCFT. It is in this sense that we have infinitely many lifts to Massive IIA.

The uplifted solution (if singular) will present an acceptable singularity if

gtt,E = e−Φ0/2
(
−α
α̈

)1/8
(α̇2 − 2αα̈)1/4W 1/4X−9/8e4ϕ/5Σ4/5e2A, (4.10)

is bounded close to the singular point, for any value of z.
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Other details of this uplift, such as the expression for the B2 and the Ramond fields,

are given in appendix D. We now turn to a different five-dimensional supergravity and

its uplift.

5 An N = 4 gauged SUGRA in d = 5 from N = 2 gauged SUGRA in

D = 7

In [57, 66] a consistent truncation of eleven-dimensional supergravity to a five-dimensional

supergravity theory with N = 4 supersymmetry was presented. As in the previous section,

this theory can be obtained by reducing a seven-dimensional gauged supergravity on a

Riemann surface with a topological twist incorporated into the reduction ansatz. In this

case, however, the starting point is the SO(5) gauged supergravity in seven dimensions,

which can be uplifted to eleven dimensions according to [70, 71].

Here too the five-dimensional theory can be efficiently used to identify 1
2 -BPS solutions

holographically dual to RG flows in a (3 + 1)-dimensional field theory. In this section we

discuss such RG flows.

5.1 Setup

The five-dimensional theory is an N = 4 gauged supergravity with three vector multiplets

and non-compact gauge group SO(2)×SE(3). In our conventions, the Einstein-scalar sector

of the theory is described by the Lagrangian

Lscalar = R ? 1− 3Σ−2dΣ ∧ ? dΣ +
1

8
DMMN ∧ ?DMMN + Lpot, (5.1)

where

Lpot =
1

2
g2

[
fMNP fQRSΣ−2

(
1

12
MMQMNRMPS − 1

4
MMQηNRηPS +

1

6
ηMQηNRηPS

)
+

1

4
ξMNξPQΣ4

(
MMPMNQ − ηMP ηNQ

)
+

1

3

√
2fMNP ξQRΣMMNPQR

]
.

(5.2)

The capital Roman indices from the middle of the alphabet are SO(5, 3) indices, and here

we will raise and lower them with the metric η = diag(−,−,−,−,−,+,+,+). Capital

indices from the beginning of the alphabet index SO(5) × SO(3) (in this order), and we

will often split them such that e.g. A ∈ {m, a} where m = 1, 2, . . . 5 and a = 6, 7, 8. The

symmetric tensor MMN can be constructed from a vielbein VA M parametrising the coset

SO(5, 3)/(SO(5)× SO(3)) in the standard way,

M = VTV, (5.3)

and we employ also the completely antisymmetric tensor MMNPQR =

εm1...,m5Vm1
M . . .Vm5

R.

Given a parametrisation of the scalar manifold, the remaining data specifying the

supergravity theory is contained within the embedding tensors, which determine the gaug-

ing. Here,

ξ45 = −
√

2 (5.4)
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and

f123 = −1

2
(3 + l), f678 =

1

2
(3− l), f128 = f236 = −f137 = −1

2
(l + 1),

f178 = −f268 = f367 =
1

2
(1− l), (5.5)

where again l = {0,±1} is a twisting parameter in the reduction. These tensors are totally

antisymmetric.

5.2 Supersymmetric flows preserving eight supercharges

The conditions for 1
2 -BPS domain walls (preserving eight of the sixteen supercharges) are

given in [72] in terms of the dressed embedding tensors, defined as

f̂ABC = fMNPVA MVB NVC P , and ξ̂AB = ξMNVA MVB N . (5.6)

Any such flow will satisfy the algebraic constraints

P [mnP pq] = 0, (5.7)

∂Σ

(
W−1Pmn

)
= 0, (5.8)

f̂amnPmn = 0, (5.9)

1

4
√

2
Σ3εmn pqrP

pq ξ̂ra = Pp
[mf̂n]pa (5.10)

and the BPS equations

A′ = W, (5.11)

Σ′ = −Σ2∂ΣW, (5.12)

φx ′ = −3gxy∂yW. (5.13)

In writing these, we have introduced the shift matrix and superpotential

Pmn = − 1

6
√

2
Σ2ξ̂mn +

1

36
Σ−1εmnpqrf̂pqr, W =

√
2PmnPmn, (5.14)

again parametrised the domain wall solutions as

ds2
5 = e2A

(
−dt2 + d~x2

)
+ dr2, (5.15)

and labeled the surviving scalars in the truncated SO(5, 3)/(SO(5)× SO(3)) coset φx with

metric gxy. For such solutions, in our conventions, the scalar potential Vs can be written

in terms of the superpotential as

Vs = 9gxy∂xW∂yW + 3Σ2 (∂ΣW )2 − 12W 2. (5.16)

It is straightforward to demonstrate that an SO(2) invariant sector of the N = 4 theory

immediately satisfies all of the algebraic constraints.5 This sector is a further consistent

5There may be alternative ways to satisfy the necessary conditions. This however appears to be the

largest subtruncation, based on invariant subgroups, that automatically satisfies all of the algebraic con-

straints.

– 15 –



J
H
E
P
0
3
(
2
0
2
0
)
0
8
0

truncation of the N = 4 theory to the modes invariant under the SO(2) ⊂ SO(2)× SE(3),

leaving a total of seven scalars.6 In this reduced theory, the metric on the scalar manifold

is given by

ds2
SO(2) = 3Σ−2dΣ2 + 3dϕ2

3 +
1

4
T −1
αβ T

−1
γδ dTβγdTδα, (5.17)

where the symmetric tensor T can be constructed as T = V TV with

V =

eϕ1 eϕ1a1 eϕ1(a1a2 + a3)

0 eϕ2−ϕ1 eϕ2−ϕ1a2

0 0 e−ϕ2

 . (5.18)

The superpotential for the full SO(2) invariant sector is given by

W =
g

6Σ
e−2(ϕ1+ϕ2)−3ϕ3

(
e2(ϕ1+ϕ3) +

(
1 + a2

1(1 + a2
2) + 2a1a2a3 + a2

3

)
e2(2ϕ1+ϕ2+ϕ3)

+ (1 + a2
2)e4ϕ2+2ϕ3 + le2(ϕ1+ϕ2) + 2Σ3e2ϕ1+2ϕ2+3ϕ3

)
(5.19)

and the first order BPS equations are those dictated by (5.11)–(5.13). From the structure

of the superpotential it is easy to see that it is consistent to switch off the three axions

ai = 0 and keep the three dilatons ϕi plus the scalar in the gravity multiplet Σ. The

remaining equations are thus

A′ =
g

6Σ
e−2ϕ2−ϕ3

(
1 + e2ϕ1+2ϕ2 + e−2ϕ1+4ϕ2 + le2ϕ2−2ϕ3 + 2Σ3e2ϕ2+ϕ3

)
, (5.20)

Σ′ =
g

6
e−2ϕ2−ϕ3

(
1 + e2ϕ2+2ϕ1 + e−2ϕ1+4ϕ2 + le2ϕ2−2ϕ3 − 4Σ3e2ϕ2+ϕ3

)
, (5.21)

ϕ′1 =
g

3Σ
e−2ϕ2−ϕ3

(
1 + e−2ϕ1+4ϕ2 − 2e2ϕ1+2ϕ2

)
, (5.22)

ϕ′2 =
g

3Σ
e−2ϕ2−ϕ3

(
2− e−2ϕ1+4ϕ2 − e2ϕ1+2ϕ2

)
, (5.23)

ϕ′3 =
g

6Σ
e−2ϕ2−ϕ3

(
1 + e2ϕ2+2ϕ1 + e−2ϕ1+4ϕ2 + 3le2ϕ2−2ϕ3

)
. (5.24)

The AdS5 preserving 16 supersymmetries is recovered by setting the twisting parameter

l = −1, as well as ϕi = 0, Σ = 1/21/3 and A = r/L with L the AdS radius, L = 22/3/g. We

are primarily interested in flows from this AdS5 triggered by sources for relevant operators,

or expectation values of operators in the dual field theory. We thus fix l = −1 from

this point on, although analytic solutions for other values of l can also be found in some

simple cases.

A linearised analysis around the AdS solution shows that the dilaton modes permitted

by supersymmetry correspond to vevs for two ∆ = 4 operators and a source for a ∆ = 6

operator, while the scalar in the gravity multiplet Σ is dual to the vev of a ∆ = 2 operator.

The BPS equation can be solved in the radial coordinate z defined as

dr

dz
= −2

g

Σ

z
e2ϕ2+ϕ3 (5.25)

6We ignore the Stueckelberg scalars ξα of [57] throughout, which will play no role in the RG flow solutions

of immediate interest.
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Notice that the last three equations decouple from the rest. The most general solution in

this sector contains three integration constants. If we want to keep AdS5 either as the UV

or IR of the flow, then it is clear that we cannot keep simultaneously the source for the

irrelevant operator and the marginal vevs. Switching off the vevs we obtain a flow that

reaches AdS7 in the UV, first found in [52].

If instead we keep only the vevs, we have AdS5 as the UV geometry. The generic

solution in this class will have a bad IR singularity. However, it is possible to tune the

vevs, by choosing either of the integration constants for ϕ1 or ϕ2 to vanish, so that the

IR behaviour is softened — still singular, but “good” in the classification of [52]. This

particular solution, once the irrelevant source is switched off in order to retain a CFT in

the UV, reads

e−6ϕ2 =
(
1 + cϕ z

4
)
, (5.26)

e2ϕ3 =
(1 + cϕ z

4)1/6 arcsinh
(√
cϕ z

2
)

√
cϕ z2

, (5.27)

Σ =

(
cϕz

4
)1/12 (

1 + cϕ z
4
)1/12 [

arcsinh
(√
cϕ z

2
)]1/6[

2z4cσ
√
cϕ + z2√cϕ (1 + cϕ z4)1/2 + arcsinh

(√
cϕ z2

)]1/3
, (5.28)

e6A

L6
=

(1 + cϕ z
4)1/2 arcsinh

(√
cϕ z

2
) [

2z4cσ
√
cϕ + z2√cϕ

(
1 + cϕ z

4
)1/2

+ arcsinh
(√
cϕ z

2
)]

2cϕ z10
.

(5.29)

The remaining dilaton assumes the profile

e−3ϕ1 =
(
1 + cϕ z

4
)

or e6ϕ1 =
(
1 + cϕ z

4
)

(5.30)

depending on which integration constant for ϕ1 or ϕ2 one chooses to switch off. Notice

that since we forced the irrelevant source to vanish and tuned one of the vevs there is only

one free parameter cϕ from the dilaton sector.

It is straightforward to see that the UV of this solution is indeed the known supersym-

metric AdS5, while the (singular) IR is generically described by a metric of the form

ds2
5 ∼

(
log z

z4

)1/3(
−dt2 + d~x2 +

log z

z6
dz2

)
. (5.31)

With a careful tuning of the vevs such that 2cσ = −√cϕ, however, the leading singularity

can be removed. In this case, the singular IR geometry becomes

ds2
5 ∼

(
log z

z4

)2/3(
−dt2 + d~x2 +

dz2

z2

)
, (5.32)

which can be seen, in this radial coordinate, as a logarithmic correction to the Coulomb

branch metric, discussed further around (5.49).

In either case, these IR geometries do not exhibit (hyper)scaling. For the metric given

in (5.32), one can solve exactly the massless Klein-Gordon equation for a scalar mode in
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this background. Repeating the line of arguments that will be developed in section 6.1.1,

one thus anticipates that the solution with this IR behaviour holographically describes a

gapped phase of the dual field theory.

5.3 Uplift to 11D

The uplift to eleven dimensions can be efficiently accomplished in a two step process. First,

we lift to solutions of seven-dimensional gauged supergravity, then we uplift on S4 [70, 71].

The seven-dimensional metric is given by

ds2
7 =

(
Σ

e3ϕ3

)2/5

ds2
5 +

(
e3ϕ3

Σ

)3/5

ds2(H2) (5.33)

and the surviving scalars enter the symmetric matrix Tij , with index i ∈ {a, α} like

Tab =
(
eϕ3 Σ3

)3/5
δab, Taα = 0, Tαβ =

(
1

eϕ3 Σ3

)2/5

e2ϕ1 0 0

0 e2ϕ2−2ϕ1 0

0 0 e−2ϕ2

 . (5.34)

The eleven-dimensional metric, then, is given by

ds2
11 = ∆1/3ds2

7 +
1

g2
∆−2/3T−1

ij Dµ
iDµj , (5.35)

where µiµi = 1 are constrained coordinates on S4, and

∆ = Tijµ
iµj , Dµa = dµa + ω̄abµb, Dµα = dµα, (5.36)

with ω̄ab the spin connection on H2.

This is enough to check the nature of the IR singularity. We see that the temporal

component of the metric vanishes as (log z)−1/3 for the general solution and z−4/3 for the

one with improved asymptotics (which is the same as the Coulomb branch flow, equa-

tion (5.49)).

The uplift we have presented, with non-trivial dilatons ϕi, corresponds to RG flows

in the N = 2 CFT of [52]. On the other hand, the solution with cϕ = 0 is supported

solely by Σ, which is the scalar in the gravity multiplet. This scalar can be identified with

the one present in Romans five-dimensional supergravity [73], so this particular solution

can be obtained in that restricted theory. As a consequence it has two possible uplifts:

either to type IIB supergravity using [74] (see [58] for explicit formulae), resulting in the

SO(4)×SO(2) invariant Coulomb branch flow of [59], or to eleven-dimensional supergravity

using the expressions in [75]. According to this last reference, Romans supergravity is a

consistent truncation on any manifold in the class found in [76], so the uplift of this solution

corresponds to RG flows, triggered by the vev of a dimension 2 operator, on an arbitrary

Gaiotto-Maldacena gauge theory.

The eleven-dimensional metric in this restricted solution reads

ds2
11 =

∆̃1/3

λ X̃1/3

(
ds2

5 + ds2
6

)
, (5.37)
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with ∆̃ and λ warp factors to be defined below. The five-dimensional metric, which coin-

cides with the metric in the lower-dimensional supergravity, is given by

ds2
5 =

L2

z2X̃2

(
X̃3 dx2

1,3 + dz2
)
. (5.38)

The constant L is the radius of the AdS in the UV of the flow, related to the coupling of

the gauged supergravity by g L = 22/3. The scalar X̃ in Romans supergravity is related to

the one in the N = 4 gravity multiplet as

Σ =
1

21/3

1

X̃
=

1

21/3

1

(1 + cσz2)1/3
. (5.39)

On the other hand, the internal metric is7

ds2
6 =L2X̃

{
λ3

4 (1− λ3ρ2)

[
dρ2 + eD

(
dy2

1 + dy2
2

)]
+

λ3ρ2

4X̃2∆̃
dΩ2

2 +

(
1− λ3ρ2

)
X̃

∆̃
(dy3 + V )2

}
. (5.40)

This metric is supported by the four-form which, in terms of the one-forms

e1 =
Lλ eD/2

2 (1− λ3ρ2)1/2
dy1 , e2 =

Lλ eD/2

2 (1− λ3ρ2)1/2
dy2 , (5.41)

e3 =
L
(
1− λ3ρ2

)1/2
λ1/2

(dy3 + V ) , e4 =
Lλ

2 (1− λ3ρ2)1/2
dρ (5.42)

and the two-form

Ω̂ =
L2 λ2 ρ2

4
ω2 , (5.43)

with ω2 the volume form of the two-sphere, can be written as

F4 = − 1

λ2ρ2
Ω̂ ∧ d

[
X̃−2∆̃−1λ1/2

(
1− λ3ρ2

)1/2
ρ e3

]
− 2

Lλρ
Ω̂ ∧ e12 − 2

Lλ5/2ρ2
Ω̂ ∧ e3 ∧ e4 .

(5.44)

The different warp factors in these expressions are given in terms of a solution to the Toda

equation (
∂2
y1 + ∂2

y2

)
D + ∂2

ρe
D = 0 (5.45)

as

λ3 = − ∂ρD

ρ (1− ρ∂ρD)
, ∆̃ = X̃λ3ρ2 + X̃−2

(
1− λ3ρ2

)
, (5.46)

while the fibration is

V =
1

2
∂y2D dy1 −

1

2
∂y1D dy2 . (5.47)

7The coordinate ρ here is not the holographic radial coordinate, that we denoted z above, but an internal

one.
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A particularly simple solution to (5.45), corresponding to [52], is

eD =
1

y2
2

(
1

4
− ρ2

)
. (5.48)

Using this solution, the eleven-dimensional metric is regular everywhere except in the limit

z →∞, which is the IR of the flow. In this limit, the five-dimensional metric goes as

ds2
5 ∼

L2

z4/3

(
−dt2 + d~x2 +

dz2

z2

)
, (5.49)

which cannot be put into hyperscaling form. In [59] it was argued that this results in

a continuous but gapped spectrum, and similar physics should apply to the alternative

uplift (5.37). This is further elaborated in section 6.1.1.

6 Comments on the dual field theories

In this section we aim to analyse some aspects of the QFTs dual to the various flows and

fixed point solutions presented in sections 2–5. We only scratch the surface of a more

in-depth study that will be the subject of future work.

As emphasised throughout this paper, some of the solutions presented here are singular.

Even when the singularities are “good” or “acceptable” according to standard criteria such

as [52, 69], the singularities are indicating that some Physics is not being captured by

the supergravity approximation.8 Nevertheless we expect the solutions presented here

to faithfully capture the dynamics of the QFT, if calculations are performed with the

dual background sufficiently far from the singular locus. Such a perspective on singular

supergravity backgrounds has proven to be valuable, as in the familiar cases of e.g. the

Klebanov-Tseytlin [77] and Klebanov-Strassler [78] backgrounds. Of course, we would

ultimately like to find a mechanism by which one could resolve the singular behaviour.

One might hope that this could be accomplished by allowing for a larger truncation of the

ten or eleven-dimensional supergravity, an idea we have also left for future work.

We begin our analysis with a quick study of the linearised spectrum around the super-

symmetric fixed point in eq. (2.18). We then briefly comment on the behavior of linearised

fluctuations in the IR regime of eq. (3.24), and the corresponding field theory expectations.

Following this, we discuss an RG-monotone quantity commonly referred as “central-”

or “c-function”. This quantity together with the Entanglement Entropy (for a rectangular

region) and the rectangular Wilson loop serve as representative examples of a peculiar

‘decoupling’ between the kinematical data defining the UV CFTs (ranks of colour and

flavour groups, representations for matter fields) and the flow itself. In this sense, the flows

described in sections 2–5 capture universal dynamics, applying to an infinite class of CFTs.

8Even the comparatively well understood singularities associated to the presence of brane sources require

the addition of degrees of freedom beyond those in supergravity.
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6.1 Linearised fluctuations around fixed points

We can learn more about the Physics of the fixed points in eqs. (2.18)–(2.19) by studying

the spectra linearised around the solutions. This opens the possibility of flows connecting

them. In particular, note that around the supersymmetric AdS5, the linearised equations

for the vectors can be written as

d ∗
(
H0 + hH1

)
= 0 and d ∗

(
H0 − 2hH1

)
= − 6

L2
∗
(
A0 − 2hA1

)
, (6.1)

which demonstrates that the vectors mix to form a massless and a massive vector mode,

dual to operators of dimensions ∆ = 3 and ∆ = 2 +
√

7 respectively. The former is a

conserved current, the latter an irrelevant vector operator in the dual CFT.

In the scalar sector, we have an SO(2) doublet of operators dual to the θa, with

m2L2 = 3. These are also irrelevant modes with ∆ = 2 +
√

7. The scalars Σ and ϕ

mix, and give rise to decoupled modes with m2L2 = ∓2(
√

7 ∓ 2). These are relevant and

irrelevant scalar operators, with dimensions ∆ = 1 +
√

7 and ∆ = 3 +
√

7 respectively.

As a consequence of supersymmetry, it follows that these dual operators organise into

multiplets of SU(2, 2|1), the superconformal algebra of N = 1 SCFT’s in four dimensions.

Adapting the conventions of [79], one finds that in addition to the conserved stress tensor

multiplet A1Ā1[1; 1]r=0
∆=3 (with ∆ = 4 stress tensor and ∆ = 3 vector current) the remaining

modes in the truncation fill out the long multiplet LL̄[0; 0]r=0
∆=1+

√
7
.

Although we will have little to say about the non-supersymmetric critical point in this

work, we note that the scalar modes retained in our truncation are linearly stable around

this vacuum. This extends the analysis in [67], whose results we recover in the Σ, ϕ sector.

6.1.1 Spectral functions and their IR properties

To understand the physical ramifications of the IR singularity represented in eq. (3.24), it

is helpful to consider the IR properties of spectral functions computed holographically

in this background. In particular, we note that linearised fluctuations of the metric

hx y ∼ e−iωth(ρ) obey a massless Klein-Gordon equation, whose most regular solution

at the singularity is given by

h(ρ) =
√
ρe

ρ√
2
(1−
√

1−2ω2) U

(
3

4
− 1

4
√

1− 2ω2
,
3

2
,
√

2ρ
√

1− 2ω2

)
(6.2)

where U is the confluent hypergeometric function. This solution is manifestly real for

frequencies ω < 1/
√

2. It is thus expected on general grounds that the spectral function

for the operator T x y will exhibit a gap at low frequencies, with a continuous spectrum

above [59].

6.2 Holographic c-function

In this section we shall study an interesting observable in Quantum Field Theory, the

so-called “c-function”. At conformal fixed points, this observable evaluates to the central

charge. It sometimes makes sense to associate a (varying) “central charge” to flows between

conformal points. In such cases, this quantity can provide a proxy for a measure of the
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number of degrees of freedom (at a given energy scale) of the Quantum Field Theory,

monotonically decreasing along the RG flow.

Holographically, the central charge of a (ds + 1)-dimensional conformal field theory is

calculated as the volume of the ‘internal space’. That is the (8 − ds)-dimensional space

complementary to the AdSds+2 part of the geometry. This type of expression appeared first

in the work of Brown and Henneaux (a precursor to the AdS/CFT correspondence) [80].

After that, the work of Freedman, Gubser, Pilch and Warner [81] proposed a definition

of the central charge that (as discussed above) was basically the volume of the internal

space. Their definition can be generalised to flows away from an AdS fixed point. It was

shown that such a quantity is indeed monotonic along the flow if certain energy conditions

are imposed [81]. Their results are particularly well suited to calculations directly in the

lower-dimensional gauged supergravity. For a five-dimensional metric ansatz of the type

studied in the present work, they define

c(r) =
π

8G5

1

A′(r)3
. (6.3)

It is simple to see that this expression holographically reproduces the central charge at a

conformal fixed point, where A′ = L−1, with L the AdS radius.

It is often advantageous to consider the higher dimensional origin of this formula. For

generic field theories (like those describing the excitations of Dp-branes) the holographic

definition of central charge was given in [82]. For the type of geometries we studied in this

paper, the definition of [82] needs to be generalised as was done in [83, 84]. In particular

for field theories that flow across dimensions the holographic definition was given in [84].

Let us review briefly the formalism developed in [82–84].

Consider a ten-dimensional background (in string frame) dual to a (ds + 1) Quantum

Field Theory of the form,

ds2
st = a(r, ~θ)

[
dx2

1,ds + b(r)dr2
]

+ gij(r, ~θ)dθ
idθj . (6.4)

The background is complemented by a dilaton Φ(r, ~θ). To calculate the central charge of

the QFT we need to define the quantities

Vint =

∫
dθi
√
e−4Φ det[gij ]a(r, θ)ds , H = V 2

int.

Then, following [83, 84], we compute

c =
ddss
GN

b(r)
ds
2
H

2ds+1
2

(H ′)ds
=

(
ds
2

)ds b(r)ds/2
GN

V
(ds+1)

int

(V ′int)
ds
. (6.5)

Here, ′ always denotes a derivative with respect to the holographic coordinate, and GN is

the ten dimensional Newton constant. If the background were given in Einstein frame, one

can again use (6.5), but this time with the quantities

Vint =

∫
dθi
√

det[gij ]a(r, θ)ds , H = V 2
int.
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If on the other hand we write the background as a solution of eleven-dimensional

supergravity,

ds2
11 = e−2Φ/3

[
a(r, ~θ)

(
dx2

1,ds + b(r)dr2
)

+ gij(r, ~θ)dθ
idθj

]
+ e4Φ/3(dx11 −A)2, (6.6)

we calculate

Vint =

∫
dx11dθi

√
det[gij ]a(r, θ)ds , H = V 2

int.

and we obtain exactly the same expression as in (6.5), with the replacement GN,10 =
GN,11∫

dx11
.

Let us now compute the c-function for the various geometries studied in this paper.

6.3 c-Function along RG flows preserving four supercharges

Consider the metric for any of the supersymmetric backgrounds in section 3. We obtained

these configurations as solutions to the BPS equations of a five-dimensional gauged super-

gravity. As explained in section 4, the eleven-dimensional metric reads

ds2
11 = ∆1/3ds2

7 +
2

∆2/3
ds2

4, (6.7)

∆ = X−4 sin2 ξ + ∆ cos2 ξ, X5 = Σ3e−2ϕ,

ds2
7 = (eϕΣ)4/5

[
e2A(r)dx2

1,3 + dr2
]

+ (eϕΣ)−6/5dΩ2,l,

ds2
4 = X3∆dξ2 +

cos2 ξ

4X

[
dα2 + sin2 αdβ2 + (dψ −A3)2

]
.

Explicitly, we can choose coordinates on the Riemann surface such that the vector A3 =

cosh y dv (the spin connection of H2) for dΩ2,l=−1 = dy2 + sinh2 y dv2. Similarly, for l = 1

we have A3 = cos θ dφ (the spin connection on S2) and A3 = 0 for l = 0.

Following the nomenclature of eqs. (6.4)–(6.6) and considering that we aim to calculate

the c-function of the dual four dimensional QFT, we find

ds = 3, a = ∆1/3(eϕΣ)4/5e2A(r), b = e−2A(r),

ds2
int = ∆1/3(eϕΣ)−6/5dΩ2,l

+
2

∆2/3

(
X3∆dξ2 +

cos2 ξ

4X

[
dα2 + sin2 αdβ2 + (dψ −A3)2

])
,

det gint a
3 = e6A cos6 ξ sin2 α

4
vol22,l.

Evaluating (6.5), one obtains

c =
N

8GN,11

1

A′(r)3
, (6.8)

4N =

∫ π/2

0
cos3 ξdξ

∫ π

0
sinα dα

∫ 2π

0
dβ

∫ 4π

0
dψ

∫
Ω2,l

dvol2,l

In perfect agreement with (6.3).
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A more explicit expression for A′(r) can be found by using the BPS equations (3.8)–

(3.10) and the material and definitions of appendix B. We find in terms of the ‘coordinate’

Σ and the function y(Σ),

A′(r) =
1

y(Σ)

(
f4 + e2ϕf5

f1 + e2ϕf2

)
, e2ϕ =

1− y(Σ)f1

y(Σ)f2
. (6.9)

6.3.1 The flow and its uplift to Massive IIA

Some field-theoretical aspects of the flow become clearer when analysing the lift of the five-

dimensional supergravity solution to Massive IIA. Let us briefly recall the lift to Massive

IIA described in section 4.2. For the flow we are interested in, and referring to eq. (4.9),

we have that

ds2
7 = (eϕΣ)4/5

[
e2A(r)dx2

1,3 + dr2
]

+ (eϕΣ)−6/5dΩ2,l, X5 = Σ3e−2ϕ,

DΩ2 = dχ2 + sin2 χ

(
dψ − 1

2
A3

)2

.

We can compute a holographic c-function following a procedure similar to the one

outlined above. We have, for a solution describing an RG flow of a four-dimensional field

theory,

ds = 3, a = X−1/2(eϕΣ)4/5e2A(r)

√
−α
α̈
, b = e−2A(r),

ds2
int = X−1/2

√
−α
α̈

(eϕΣ)−6/5dΩ2,l

+X5/2

√
− α̈
α

[
dz2 +

α2

α̇2 − 2αα̈+ 2αα̈(1−X5)
DΩ2

]
.

e−4Φ det ginta
3 = e6A(−αα̈)2 sin2 χ vol22,l.

Using this data in (6.5) yields

c =
N

8GN,10

1

A′(r)3
, (6.10)

N =

∫ π

0
sinχ dχ

∫ 2π

0
dψ

∫
Ω2,l

dvol2,l

∫ z∗

0
(−αα̈). (6.11)

Notice that the coefficient N is proportional to that obtained in [85] when calculating the

central charge of the six-dimensional CFTs. The interpretation of (6.11) is then clear.

Flowing away from the CFT, the c-function factorises into a component coming purely

from the original conformal point (encoded in N, and dependent only on the original CFT

and on the volume of the compactification manifold) and a contribution from the flow itself,

captured by A′(r). In other words, the dynamics of the RG flow is independent of the data

defining the SCFT. The same RG flow is universal for all the SCFTs with a trustable

string dual.

– 24 –



J
H
E
P
0
3
(
2
0
2
0
)
0
8
0

6.4 c-function along flows preserving eight supercharges

Consider now the flow discussed in section 5.2. More particularly, we focus on the inter-

esting special case of the background described below (5.37). In the coordinates there, we

have an eleven-dimensional metric of the form,9

ds2
11 =

1

4

(
∆X2L6

λ3

)1/3 [
4

z2

(
dx2

1,3 +
dz2

X3

)
+ ds2

int

]
, (6.12)

ds2
int =

λ3

1− λ3ρ2

(
dρ2 + eD(dy2

1 + dy2
2)
)

+
λ3ρ2

∆X2
dΩ2 + (1− λ3ρ2)

X

∆
(dy3 − V )2

λ3 = − ∂ρD

ρ(1− ρ∂ρD)
, D = D(ρ, y1, y2),

∆ = λ3ρ2 (X3 − 1)

X2
+

1

X2
, X = X(z).

When the field X(z) = 1 we have ∆ = 1. The function λ(y1, y2, ρ) is defined in terms of

the function D(y1, y2, ρ) which satisfies a Toda equation. In the particular case in which

the solution to the Toda equation has an extra isometry in the y1-y2 plane, we can reduce

to Type IIA. The interpretation in terms of a long linear quiver was given in [7–13].

A straightforward calculation of the c-function in this case leads to

det[gint]a
3 =

L18

45

e2Dλ6ρ4X3 sin2 χ

(1− λ3ρ2)2z6
,

Vint =

∫
dρdy1dy2dy3dχdξ

√
det ginta3 = N

X3/2

z3
. (6.13)

Under the (non-essential) additional assumption that D = D(ρ), we can further evaluate

N =
L9

32
Vy1y2 × 2π × 4π

∫ ρ∗

0
dρ

eDλ3ρ2

1− λ3ρ2
= −π

2L9

4
Vy1y2

∫ ρ∗

0
dρ ρ∂ρe

D. (6.14)

Following the procedure outlined above we have

H = N2X
3

z6
, b(z) =

1

X3
, c =

N
8GN,11

1

(−X(z) + zX′(z)
2 )3

= − N
8GN,11L3

1

A′(r)3
. (6.15)

In the final equality, we have used the BPS equations and (5.25) with ϕi = 0 to bring the

expression to a more familiar form.

We find here the same phenomenon as above. Namely, when evaluated along these

flows, the c-function factorises into a part determined solely by the quiver structure (in

particular the colour and flavour groups of the original CFT) encoded by N, and a part

controlled by the details of the flow as the radial coordinate changes. In other words, the

same kind of universality as found above is at work here. The RG-flow holographically

described by the BPS equations (3.8)–(3.10) is the same for all the Gaiotto SCFTs with a

trustworthy string dual.

9To avoid cluttering the formulas, here we shall denote by X,∆ what below eq. (5.37) was denoted by

X̃, ∆̃.
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6.5 Entanglement entropy and Wilson loops

Finally, we briefly comment on the higher-dimensional perspective of the holographic com-

putation of strip entanglement entropy and Wilson loops in the field theory phases dual

to the backgrounds we presented in this paper. For brevity, we shall study only the five-

dimensional backgrounds in section 3 when lifted to Massive IIA as indicated in section 4.2.

The notable feature stressed above, namely the “factorisation” between the CFT data and

the dynamics imposed by the flow, will also appear here (as well as in the other backgrounds

in eleven dimensions). The result in this sense is again universal.

The holographic prescription for computing an entanglement entropy was first given

in [86]. For our backgrounds, which describe flows away from a fixed point, we find it

convenient to use the methods developed by [82]. To calculate the entanglement entropy

between two rectangular regions separated a distance L̄, we consider an eight-manifold

defined by M8 = [x1, x2, x3, H2, z,Ω2]. There is a dependence of the holographic coordinate

r = r(x1). The induced (string frame) metric on such manifold is

1

µ
ds2

8 = X−1/2

√
−α
α̈

[
(Σeϕ)4/5e2A

(
dx2

2 + dx2
3 + dx2

1(1 + e−2Ar′2)
)

+ (Σeϕ)−6/5dΩ2,l

]
+X5/2

√
− α̈
α

(
dz2 +

α2

N
DΩ2

)
.

Here N = α̇2 − 2αα̈+ 2αα̈(1−X5). Following [82] we calculate

SEE =
1

GN,10

∫
M8

e−2Φ
√

det[gind] = M
∫ L̄

0
dx1e

3A(r)
√

1 + e−2A(r)r′(x1)2, (6.16)

with

GN,10 M = e−2Φ0volx1,x2vol2,l volS2

∫ z∗

0
(−αα̈).

Again, we find a decoupling between the dynamics of the observable induced by the flow

— represented by the integral in (6.16), and the UV CFT data encoded in M. The com-

putation proceeds by dealing with a minimisation problem as described in [87].

Along very similar lines, we can calculate the Wilson loop defined in [88, 89]. To

holographically compute the energy between a pair of heavy quarks in the field theory that

are separated a distance L̄ in time T , we consider a string in the configuration t = τ, x1 = σ

with r = r(σ) and z = z0 fixed. We calculate the induced metric and the Nambu-Goto

Action for this string

ds2
ind = X−1/2

√
−α
α̈

(Σeϕ)4/5e2A
[
−dt2 + dσ2(1 + e−2Ar′2)

]
, (6.17)

SNG =
1

2πα′

∫
dτdσ

√
− det gind = T

∫ L̄

0
dσF (r(σ))

√
(1 + e−2Ar′2),

2πα′T = T

√
α(z0)

α̈(z0)
, F 5 = Σe6ϕ.

Unlike the case of the c-function and the strip entanglement entropy considered above,

the dynamics of this particular string probe is independent of the detailed CFT data —
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see [87] for a qualitative analysis of the different behaviour of Entanglement Entropy and

Wilson loop.

The calculation proceeds along the usual line, by minimising the Nambu-Goto action.

Although we do not perform this calculation here, we can nonetheless comment on our

expectations for this observable in the states dual to our solutions. As noted above in dis-

cussing solutions to the massless Klein-Gordon equation in the IR geometries, these flows

share important qualitative features with the “Coulomb branch” flow found in [68]. Holo-

graphic spectral functions and Wilson loops were studied in this background in [59]. There

it was argued that the nature of the IR singularity is such that the dual phase is gapped,

but not confining. In particular, the Wilson loop exhibits “perfect screening” at large dis-

tances, characterised by perimeter law behaviour. We expect a similar behaviour for our

QFTs. This is another universal aspect of the holographic QFTs defined in this work.

7 Discussion, conclusions and future work

Let us start with a brief summary. In this work we have exploited the power of consistent

Kaluza-Klein truncations of supergravity to study 1/2-BPS RG flows in a large class of

four-dimensional superconformal field theories in the holographic limit. Included in this

class are certain examples of the N = 2 class-S theories of [6], as well as their massive

deformations described by the N = 1 “Sicilian” gauge theories introduced in [53].

As a consequence of the plurality of the available uplifts to higher-dimensional su-

pergravity (either to eleven dimensions or Massive IIA), these same five-dimensional so-

lutions can in fact describe supersymmetry preserving RG flows in infinite families of

four-dimensional SCFTs. This provides yet another interesting realisation of universality

in strongly coupled holographic field theories. Along this line, qualitatively similar univer-

salities were observed in [55]. We have studied certain aspects of the dual field theories, like

those encoded in linearised fluctuations around particular backgrounds. Importantly we

described ‘universal’ quantities, for which the data defining the UV CFT decouples from

the details of the flow.

Our results encourage a number of interesting directions in which future efforts could

be focused. One example is the landscape of non-supersymmetric RG flows in these SCFTs.

As indicated in section 2, when l = −1, the five-dimensional theory has two AdS5 solutions.

Only one of these is supersymmetric, but the two are in fact quite close to one another in

field space. For example, their radii satisfy

Lsusy

Lnosusy
≈ 1.00009.

It seems likely that a flow exists from the supersymmetric fixed point to the fixed point in

which all supersymmetry is broken. To construct this flow, it will be necessary to solve the

(second order) equations of motion, which can be accomplished numerically using standard

techniques.

Alternatively, it may be interesting to look more closely at flows for other values of

l. These flows do not terminate at an AdS5, but could nonetheless be phenomenologically
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novel and physically relevant. For example, when h = 0 and l = 1, the BPS equations are

solved by the well-known Chamseddine-Volkov flow [90, 91], which is of interest because its

IR behaviour is holographically interpreted as the confining phase of strongly-interacting

N = 1 Super Yang-Mills coupled to adjoint matter [92]. It would be interesting to learn

whether or not a flow exists in the h 6= 0 theory which is described in the UV by an AdS7

solution with two spatial directions curled into an S2, and in the IR by the Chamseddine-

Volkov solution.

Moreover, black hole solutions corresponding to finite temperature states of these the-

ories could be constructed, cloaking the singularities and thus showing explicitly that they

are good in the sense of [69]. Some peculiarities are to be expected in the thermodynamic

properties of such black holes in analogy to those of the Coulomb branch solution [93].

Another avenue that may be worth pursuing is a more thorough investigation of the

brane configurations which give rise to the RG flow solutions we have found. In many

respects, the dual physics of these solutions is reminiscent of that of a Coulomb branch so-

lution in N = 4 Super Yang-Mills [68] (or the analogous flow in the ABJM theory [94, 95]).

In both these examples, the higher dimensional geometries reveal that the supergravity so-

lutions are supported by “continuous distributions” of branes [59]. It would be interesting

to see what can be learned in the present case.

It would also be interesting to repeat the analysis in this work, but for lower-

dimensional gauged supergravities, with a view towards constructing flows away from

SCFTs described by the backgrounds in [16–47].

Finally, we highlight two future directions in which we have already taken some prelim-

inary steps. The first is an investigation of 1/4-BPS flows in the N = 4 theory, using the

results of [96]. The second is to expand the N = 2 truncation of section 2 by embedding it

in the maximal theory in seven dimensions. Broadly, from the discussion in [53] one might

anticipate an enlargement to an N = 2 theory whose gauge group can be extended to

include U(1)R × SU(2)F as a compact subgroup. From the seven dimensional perspective,

this should be the U(1)R×SU(2)F inside the SO(4) ⊂ SO(5) gauge group (also anticipated

in [66]). We hope to report on these developments shortly.
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A Details of the reduction

A.1 Equations of motion

The equations of motion of minimal gauged supergravity in D = 7 are

0 = RMN − 5X−2∇MX∇NX −
1

5
VgMN −

1

2X2
[F(2)]

2
MN −

X4

2
[F(4)]

2
MN (A.1)
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0 = ∇M (X−1∇MX)− X4

120
F 2

(4) +
1

20X2
F 2

(2) −
X

10
∂XV (A.2)

0 = d(X4 ? F(4)) + 2hF(4) −
1

2
F i(2) ∧ F

i
(2) (A.3)

0 = D(X−2 ? F i(2))− F
i
(2) ∧ F(4) (A.4)

where we introduced the SU(2) covariant derivative D which acts on an SU(2) triplet as

e.g. DH i = dH i − εijkAj(1) ∧H
k, and further defined

[F(2)]
2
MN ≡ F i(2) MPF

i
(2) N

P − 1

10
F 2

(2)gMN ,

[F(4)]
2
MN ≡

1

6
F(4) MPQRF(4) N

PQR − 1

40
F 2

(4)gMN . (A.5)

For non-vanishing topological mass h, it is necessary to impose the first order constraint

to perform a correct accounting of the degrees of freedom. To motivate the form of the

ansatz for the three-form, it is thus helpful to note that in this reduction

1

2
Ai(1) ∧ F

i
(2) +

1

12
εijkA

i
(1) ∧A

j
(1) ∧A

k
(1)

= −1

2
d
(
ω̄12 ∧ A

)
+

1

2
A ∧ F + lA ∧ vol2 − εabθaDθb ∧ vol2. (A.6)

From the ansatz for the three-form potential

B(3) = c(3) + χ(1) ∧ vol2 −
1

2h
d(ω̄12 ∧ A), (A.7)

it follows that

F(4) = f(4) + dχ(1) ∧ vol2 and ? F(4) = e12φ ∗ f(4) ∧ vol2 + e−8φ ∗ dχ(1), (A.8)

where f(4) = dc(3). The self-duality constraint yields the relations

X4e12φ ∗ f(4) = −2hχ(1) + lA− εabθaDθb, (A.9)

X4e−8φ ∗ dχ(1) = −2h c(3) +
1

2
A ∧ F . (A.10)

The reduction of the flux equations of motion yields an equation of motion for the

doublet of scalars θ,

0 = D
(
X−2e−6φ ∗Dθa

)
+X−2e−16φθa(l − θ · θ) ∗ 1− εabDθb ∧ f(4), (A.11)

a Maxwell equation for the vector A,

0 = d
(
X−2e4φ ∗ F

)
+ 2X−2e−6φεabθa ∗Dθb −F ∧ dχ(1) − (l − θ · θ)f(4) (A.12)

and second order equations for the modes appearing in F(4),

0 = d
(
X4e12φ ∗ f(4) + 2hχ(1) − lA+ εabθaDθb

)
, (A.13)

0 = d

(
X4e−8φ ∗ dχ(1) + 2hc(3) −

1

2
A ∧ F

)
. (A.14)
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These have been written so as to emphasise the fact that the reduced second order equations

are compatible with the reduced constraints (A.9) and (A.10), as anticipated.

Introducing for convenience the two-form field strength H = dχ(1), the reduction of

the Klein-Gordon equation for X gives the five-dimensional equation

0 = d
(
X−1 ∗ dX

)
− 1

5
X4
(
e12φf(4) ∧ ∗f(4) + e−8φH ∧ ∗H

)
+

1

10
X−2

(
2e−6φDθa ∧ ∗Dθa + e4φF ∧ ∗F + e−16φ(l − θ · θ)2 ∗ 1

)
+

2

5
X−8

(
4h2 − 3

√
2hX5 +X10

)
∗ 1, (A.15)

while the reduced Einstein equations give a Klein-Gordon equation for φ

0 =∇2φ− 1

3
le−10φ +

1

15
e−4φV − 1

2X2

[
1

30
e4φF2 − 1

5
e−6φ(Dθa)2 − 4

15
e−16φ(l − θ · θ)2

]
− 1

2
X4

[
1

120
e12φf2

(4) −
1

15
e−8φH2

]
(A.16)

and five-dimensional Einstein equations

0 = R̄mn − 30∇mφ∇nφ− 5X−2∇mX∇nX −
1

X2
e−6φDmθ

aDnθ
a

− 1

3

(
e−4φV − 2le−10φ +

1

2X2
e−16φ(l − θ · θ)2

)
η̄mn

− 1

2X2
e4φFmpFn p +

1

12X2
e4φF2η̄mn −

1

2
X4e−8φHmpHn p +

1

12
X4e−8φH2η̄mn

− 1

12
X4e12φfmpqrfn

pqr +
1

48
X4e12φf2

(4)η̄mn. (A.17)

It is straightforward to show that these reduced equations of motion, taken together

with (A.9), (A.10), are equivalent to the equations of motion of the N = 2 theory described

by (2.6).

A.2 Special geometry

In our reduced theory, the manifold SO(1, 1) is characterised by the symmetric tensors

C100 =

√
3

2
, a00 = Σ−2, a11 = Σ4 (A.18)

and can be embedded in a two-dimensional space spanned by

h0 =

√
2

3
Σ and h1 =

1√
3

Σ−2 with CĨ J̃K̃h
ĨhJ̃hK̃ = 1. (A.19)

Consistency requires

aĨ J̃ = −2CĨ J̃K̃h
k̃ + 3hĨhJ̃ and gxy = 3∂xh

Ĩ∂yh
J̃aĨ J̃ , (A.20)

which is indeed the case.
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To understand our paramerisation of SU(2, 1)/U(2), we mostly follow the conventions

of [57]. The metric can be written in an orthonormal frame such that gUV = fa Uf
a
V ,

using the vierbeins

f1 = 2dϕ, f2 = e2ϕ
(

dξ − εabθadθb
)
, f3 =

√
2eϕdθ1, f4 =

√
2eϕdθ2. (A.21)

The SO(4) valued spin connection is given by

ω =
1

2

[(
2M21 +M34

)
f2 +

(
M31 +M24

)
f3 +

(
M41 +M32

)
f4
]
, (A.22)

where Mmn = Emn−Enm generate SO(4)-the matrix Emn has a 1 in the m,n positions, and

zeroes elsewhere. Decomposing the spin connection into SU(2)×Sp(2) it is straightforward

to extract the complex structures valued in SU(2). They are

~J = −
(
f14 + f23, f24 − f13, f12 + f34

)
. (A.23)

The corresponding moment maps are then

~P0 =

(√
2eϕθ1,

√
2eϕθ2, 1 +

1

2
e2ϕ(l − θ · θ)

)
, (A.24)

~P1 =
(

0, 0, he2ϕ
)
, (A.25)

and with (2.12)–(2.14) one arrives at a scalar potential given by

Vs = −2Σ2 − 4
√

2e2ϕΣ−1h+ 2e4ϕΣ−4h2 − 2le2ϕΣ2 +
1

2
e4ϕΣ2(l − θ · θ)2, (A.26)

matching exactly that of the reduced theory.

A.3 Comment on the h = 0 limit

The reduction applies equally well to the case of vanishing topological mass in seven di-

mensions. Operationally, the only non-trivial step is to replace the reduction ansatz for

the three form with

B(3) = c(3) + χ(1) ∧ vol2. (A.27)

In other words, the singular-in-the-limit exact term is no longer present, as the three form

now satisfies a conventional second order equation of motion (and such a term is pure

gauge). The broadstroke features of the analysis continue as before, and one eventually

obtains (2.6) with h = 0.

An interesting consequence of the massless limit is that the five-dimensional theory

acquires a more intricate gauging. This gauging is now entirely along the Killing vector

k0 = θ1∂θ2 − θ2∂θ1 + l∂ξ (A.28)

which generates an isometry inside of SU(2, 1)/U(2). For the case of toroidal reduction

with l = 0 one finds that the gauge group is compact, SO(2), whereas for reductions on
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the sphere or hyperbolic plane the resulting gauge group is a non-compact mixture with

an R′ ⊂ SO(2)× R ⊂ SU(2, 1)/U(2).

When h = 0, there is the possibility to include an additional scalar mode in the BPS

equations. The scalar potential can be derived from the superpotential

Wh=0 =
Σ

3
√

2

√
4 + e4ϕ

(
l − θ · θ

)2
+ 4e2ϕ

(
l + θ · θ

)
(A.29)

and the flow equations are given by

∂rA = W, (A.30)

∂rΣ = −ΣW, (A.31)

∂rϕ = − 1

6W
Σ2
(
e2ϕ
(
l − θ · θ

)2
+ 2
(
l + θ · θ

))
e2ϕ, (A.32)

∂rθ
a = − 1

3W
Σ2
(

2− e2ϕ
(
l − θ · θ)

)
θa. (A.33)

Solutions to this h = 0 gauged supergravity in d = 5 can thus be uplifted through D = 7

to both Type I supergravity in D = 10 and to the D = 11 theory via the results of [97].

This uplift uses the formalism in which the D = 7 three-form has been dualised, which

is only available in the h = 0 case. As emphasised in their work, the eleven-dimensional

solutions are thus related to the lift of the h 6= 0 solutions through a singular limit.

B Working with the 5d BPS equations

In this appendix we discuss analytic manipulations on the system of BPS equation found

in eqs. (3.8)–(3.10). We begin by writing the equations,

Σ′ = f1(Σ) + e2ϕf2(Σ), (B.1)

ϕ′ =
e2ϕ

2
f3(Σ), (B.2)

A′ = f4(Σ) + e2ϕf5(Σ). (B.3)

The functions above are

f1(Σ) = −
√

2

3
Σ2, 6f2(Σ) =

4h

Σ
− l
√

2Σ2, f3(Σ) = −l
√

2Σ− 2h

Σ2
,

f4(Σ) =

√
2

3
Σ, 6f5(Σ) = l

√
2Σ +

2h

Σ2
. (B.4)

Let us start from eq. (B.1). Solving for ϕ, we get

e2ϕ =
Σ′ − f1

f2
→ 2e2ϕϕ′ =

d

dr

(
Σ′ − f1

f2

)
. (B.5)

Using this in eq. (B.2), we obtain

d

dr

(
Σ′ − f1

f2

)
= f3

(
Σ′ − f1

f2

)2

. (B.6)
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We operate with the equation above to obtain

Σ′′ +G1Σ′(r)2 +G2Σ′(r) +G3 = 0. (B.7)

We have defined

G1 = −(f3 + ∂Σf2)

f2
, G2 =

−f2∂Σf1 + 2f1f3 + f1∂Σf2

f2
, G3 = −f

2
1 f3

f2
. (B.8)

Now, we set 1
y(Σ) = Σ′(r), which implies that Σ′′(r) = − 1

y(Σ)3
∂Σy(Σ). This replaced in

eq. (B.7) gives

∂Σy = G1y +G2y
2 +G3y

3. (B.9)

This is a (first kind) Abel equation in the variable Σ for the function y(Σ). The functions

Gi are given in eqs. (B.8) together with (B.4). If we solve for y(Σ), we can then write

ds2 = e2A(Σ)dx2
1,3 + y2(Σ)dΣ2, (B.10)

e2ϕ(Σ) =
1− y(Σ)f1(Σ)

y(Σ)f2(Σ)
, A(Σ) =

∫ (
f4(Σ) + e2ϕf5(Σ)

)
y(Σ)dΣ.

C The SO(2) invariant truncation of 5D N = 4 SO(2) × SE(3) gauged

supergravity

This subtruncation retains the modes invariant under the SO(2) ⊂ SO(2) × SE(3). The

seven remaining scalars are

Σ, V =

u 0 v

0 12×2 0

v 0 u

 . (C.1)

To make contact with [57], we write

u = e−ϕ3UV −TU + eϕ3UV U and v = −e−ϕ3UV −TU + eϕ3UV U, (C.2)

where U is the matrix

U =
1√
2

0 0 1

0 1 0

1 0 0

 . (C.3)

The submatrices u and v are given by

u =


cosh(ϕ2 − ϕ3) −1

2a2e
ϕ2−ϕ3 −1

2a3e
ϕ2−ϕ3

1
2a2e

−ϕ1+ϕ2+ϕ3 cosh(ϕ1 − ϕ2 − ϕ3) −1
2a1e

ϕ1−ϕ2−ϕ3

1
2(a1a2 + a3)eϕ1+ϕ3 1

2a1e
ϕ1+ϕ3 cosh(ϕ1 + ϕ3)

 (C.4)

and

v =


− sinh(ϕ2 − ϕ3) 1

2a2e
ϕ2−ϕ3 1

2a3e
ϕ2−ϕ3

1
2a2e

−ϕ1+ϕ2+ϕ3 − sinh(ϕ1 − ϕ2 − ϕ3) 1
2a1e

ϕ1−ϕ2−ϕ3

1
2(a1a2 + a3)eϕ1+ϕ3 1

2a1e
ϕ1+ϕ3 sinh(ϕ1 + ϕ3)

 . (C.5)
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We catalogue the non-vanishing components of some antisymmetric tensors:

ξ̂45 = −
√

2 (C.6)

and defining f̃mn ≡ εmnpqrf̂pqr,

f̃45 = 3
(
V 1

1V
2

2V
8

8 + V 1
1V

3
3V

7
7 + V 2

2V
3

3V
6

6 + l V 1
1V

2
2V

3
3

− V 2
1V

3
3V

6
7 − V 2

2V
3

1V
6

8 − V 1
1V

3
2V

7
8 + V 2

1V
3

2V
6

8

)
, (C.7)

where

V =

e−ϕ3V −T 0 0

0 1 0

0 0 eϕ3V

 . (C.8)

This is sufficient to reproduce the fermion shift matrix, and thus the superpotential ap-

pearing in the BPS equations. Note that for the SO(2) × SO(2)R and SO(3) invariant

sub-tuncations, the second line in f̃mn vanishes.

D The lift to Massive IIA

The uplift depends crucially on a class of three-dimensional manifolds the authors of [63]

call M3. This manifold is topologically an S3, but locally an S2 fibration over an interval

with coordinate ζ. Associated with the M3 are functions A(ζ), φ(ζ), and x(ζ) that obey a

system of first order ODE’s, see [63] for these details.

The metric on the M3 takes the form

ds2
M3

= dζ2 +
1− x2

16w
e2AD~y ·D~y, (D.1)

where Dyi ≡ dyi+εijkyjAk(1) with yi constrained coordinates on R3 such that ~y ·~y = 1, and

w = X5(1− x2) + x2. (D.2)

The reader can find a possible representation for the yi in [63].

The ten-dimensional metric is given by

`−1ds2
10 =

1

8
X−

1
2 e2Ads2

7 +X
5
2 ds2

M3
, (D.3)

where ` is a length parameter which, in our conventions, is ` = 8
√

2. The dilaton Φ is

e2Φ = `
X

5
2

w
e2φ (D.4)

and the NS-NS two-form is given by

`−1B =
1

16
e2Ax

√
1− x
w

vol2̃ −
1

2
eAdζ ∧

(
a− 1

2
~y · ~A(1)

)
, (D.5)
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where

vol2̃ ≡
1

2
εijkyiDyjk and da = −1

2
volS2 . (D.6)

The R-R fluxes are

F2 = −q
(

vol2̃ + ~y · ~F(2)

)
+ `

F0

w
e2Ax

√
1− x2vol2̃, (D.7)

`−1F4 = − q

16w
e2Ax

√
1− x2~y · ~F(2) ∧ vol2̃ −

1

4
qe2Adζ ∧ εijkF i(2) ∧ y

jDyk

− 1

2
qeAdζ ∧X4 ∗7 F(4) − `−1 1

2
e3A−φxF(4), (D.8)

with F0 the Roman’s mass and q = 1
4e

A−φ√1− x2.

In the main body of the paper we found it more convenient to use the variables (z, α(z))

defined in [27]. To define those variables and coordinates, it is first necessary to move to

the (y, β(y))-variables, in terms of which,

e2A =
4

9

(
−∂yβ

y

)1/2

, eφ = eφ0

(
−∂yβ

y

)5/4

√
4β − y∂yβ

,

dζ2 =
1

9β

(
−∂yβ

y

)3/2

dy2, 1− x2 =
4β

4β − y∂yβ
. (D.9)

After this change, we move to the variables (z, α(z)) of [27]. The change is,

β = α2, y = − 1

18π
α̇, dy = − 1

18π
α̈dz,

∂yβ = −36π
αα̇

α̈
.

We then express the quantities,

e2A = 8π
√

2

(
− α

α̈

)1/2

, dζ2 = 4π
√

2

(
− α̈
α

)1/2

dz2,

e4φ = e4φ0

(
−α
α̈

)3
(α̇2 − 2αα̈)2

, 1− x2 = 2
(−αα̈)

(α̇2 − 2αα̈)
,

e4ΦIIA = e4φX
5

w2
.

Using these expressions one obtains the values quoted in eq. (4.9) for the metric and dilaton.

Similarly one can translate the expressions for the Ramond and NS two-form.

It is not particularly enlightening to write explicitly the seven-dimensional fields in

terms of those of the five-dimensional theory. The exception is the form of “admissible”

singularities in the ten-dimensional picture. This states that as one approaches the IR of

the solution, the quantity

|g(10) tt| =
1

8
eϕΣ

1
2 e2A|g(5) tt| (D.10)

should not increase.
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