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Abstract  9	

The viruses historically implicated or currently considered as candidates for misuse 10	

in bioterrorist events are poxviruses, filoviruses, bunyaviruses, ortho- and paramyxoviruses 11	

and a number of arboviruses causing encephalitis, including alphaviruses and flaviviruses. 12	

All these viruses are of concern for public health services when they occur in natural 13	

outbreaks or emerge in unvaccinated populations. However, there is also a generally 14	

growing risk of dangerous biological agents being misused by the terror scene for 15	

malevolent purposes as exemplified by recent events and as revealed by intelligence 16	

reports. Public health responses commonly used in natural disasters and outbreaks of 17	

infectious disease may not be sufficient to deal with the severe consequences of a deliberate 18	

release of such agents. One important aspect of countermeasures against viral biothreat 19	

agents is the availability of post-exposure prophylaxis based on a number of antiviral 20	

treatment options. These issues had motivated the organizers of the 16th Medical 21	

Biodefense Conference, held in Munich in 2018, to address aspects of antiviral research in 22	

this particular context in a special session. Following this thematic approach our review 23	

will provide an overview of antiviral compounds in the pipeline that are already approved 24	

for use or still under development and which target agents currently perceived as a threat to 25	

societies or associated with a potential for misuse as biothreat agents.  26	
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1. Introduction  28	

Antiviral compounds effective in infections caused by tropical and vector-borne 29	

viruses were a neglected topic of international antiviral research until very recently. A 30	

number of compounds are now in clinical trials, very few have received regulatory 31	

approval, or have made it to the market.  32	

Biodefense relevance. While infections with arthropod-borne and tropical viruses 33	

are fairly common in nature, severe outcomes are usually rare. Therefore, countermeasures 34	

against such unlikely events, especially in the developed world, are regarded as giving little 35	

or no return on investments and are sidelined by grant driven research and manufacturers. 36	

While this is a legitimate point of view for academia and the pharmaceutical industry, 37	

governments have to consider countermeasures against rare agents released, or threatened 38	

to be released deliberately by individuals or groups aiming to cause maximum societal 39	

disruption and chaos. For such events governments have to prepare credible 40	

countermeasures in order to be able to provide prophylaxis, isolation, and treatment for 41	

large numbers of exposed and infected individuals. This requires research into these 42	

countermeasures, including the development, testing and stockpiling of vaccines and 43	

antiviral drugs, particularly for dangerous biological agents. This review will focus on viral 44	

agents that fit into this category, briefly discussing their relevance for public health and 45	

biodefense, mode of action, and give an overview of treatment options available or in the 46	

pipeline. The basis of all considerations on countermeasures and biothreat preparedness is 47	

an agent-related risk assessment, which includes numerous criteria like availability of 48	

stocks or samples for potential perpetrators, ease of handling, pathogenicity, transmission 49	

pathways, tenacity and others. 50	

Public health relevance.  51	

Viral hemorrhagic fevers (VHFs) cause the highest mortality in human hosts among 52	

all known viral agents. Encephalitides and severe respiratory infections caused by a range 53	

of viruses are other diseases with often severe clinical outcomes. The recent emergence of 54	



such infections from geographical hotspots are mainly a consequence of the rapid 55	

development of ground and air transport. Vector-borne infections are also affected by 56	

climate change. Large scale outbreaks were first described for Monkeypox virus in central 57	

Africa in the 70s (Petersen et al., 2019), while outbreaks of mosquito-borne Chikungunya 58	

virus (Levi and Vignuzzi, 2019) and Dengue virus infections in the Indian Ocean islands 59	

were seen mostly in the 21st century (Robert et al., 2019). The historic Ebola outbreak in 60	

West-Africa in 2013-2014, followed by a more recent one in the Republic of Congo with 61	

1891 fatalities (Dyer, DRC 2019), has attracted extensive media attention. The rapid and 62	

uncontrolled spread of Ebola fever in Africa has been considered as a threat for the national 63	

security of developed countries with regard to the risk of imported cases but also for 64	

economic reasons. The Bundeswehr Institute of Microbiology (IMB) was involved in the 65	

international effort to contain Ebola fever in West-Africa during the 2014-2016 outbreak 66	

(Quick et al., 2016). The institute also runs a research program for antiviral drug 67	

development and hosts the biennial Medical Biodefense Conference (MBDC). Antiviral 68	

compounds and their possible role in biodefense were a special theme during the MBDC in 69	

2018. The selection of topics with a focus on pox-, alpha- and flaviviruses was guided by 70	

the NATO AMedP- 6 ‘Handbook on the medical aspects of nuclear, biological and 71	

chemical (NBC) defensive operations –Part II’. Smallpox, albeit eradicated in nature, is 72	

continuously perceived as a threat for several reasons, one of them being the risk that 73	

variola virus might be brought back with the methods of synthetic biology. Military forces 74	

and first responders in many countries were revaccinated in the early 2000s for fear that 75	

Iraq might have weaponized smallpox virus (which it did not, as was revealed later on). 76	

Emergency plans were developed to deal with a deliberate release. While no licensed drug 77	

was available at the time to treat infections with variola virus, a drug effective against 78	

orthopoxviruses, tecovirimat, has recently been approved by the United States Federal Drug 79	

Administration  (FDA; Grosenbach et al., 2018).  80	

Smallpox as an exclusively human infection was eradicated by vaccination, but this 81	

is impossible for zoonoses like yellow fever, which has a number of non-human reservoir 82	

hosts. This is an important distinction, and in the case of an acute zoonotic viral infection, 83	

post-exposure antiviral treatment of the unvaccinated is a potentially lifesaving option in 84	

need of further development. Unfortunately, the public health repository of antiviral 85	



countermeasures for such infections is woefully small. 86	

VHFs are caused by infection with RNA viruses. The standard of treatment for 87	

RNA virus infections where it shows efficacy, is ribavirin, developed in 1963 (De Clercq 88	

and Li, 2016). Where possible, early start of treatment of acute virus infections with 89	

existing drugs gives the best results and, in this context, accurate and rapid virus diagnosis 90	

is essential. The crucial role of a well-organized public health system and classic quarantine 91	

approaches was demonstrated in the recent Ebola outbreaks in West- and Central Africa. 92	

However, the need for new antiviral agents had generally been recognized and been 93	

reviewed by David Freestone as early as 1985 (Freestone, 1985). While many virus 94	

infections are asymptomatic, new or improved antiviral drugs are needed for the prevention 95	

and/or treatment of a number of significant conditions caused by viruses which at present 96	

cannot be controlled by alternative measures, including vector control, immunization and 97	

treatment with existing antiviral drugs. The need for specialized BSL-3/BSL-4 facilities 98	

with trained personnel for experiments with life viruses, and animal challenge, has further 99	

restricted research to a few high-security sites worldwide. As a result, there are no FDA-100	

approved antivirals for Ebola or the causative viral agents of many other viral hemorrhagic 101	

fevers, viral encephalitides, and respiratory infections. Few therapeutic interventions are 102	

available except for supportive therapy.  103	

In the following sections we will give a summary of the antivirals session held 104	

during the 16th MBDC, as well as an overview of antiviral drug development 105	

methodologies and selected experimental antivirals designed for potential biothreat agents.  106	

2. MBDC 2018 – Antivirals Session 107	

After an introduction on the chances and challenges encountered in the development 108	

of novel antivirals (Brancale - MBDC-2018-GO1), a discussion on the current conditions in 109	

UK/ EU research networks, obstacles at the interface between research and industry, and 110	

preparedness for the treatment of infections with biodefense-related viruses followed. 111	

Further contributions outlined the methodical approach to antiviral design and biological 112	

evaluation (Fig. 1.). Using examples from chemists present at the meeting, the structural 113	

approach (Step 1; Bassetto – MBDC-2018-GO1), based on in silico dynamic models of 114	



antivirals targets, i.e. small molecule inhibitors of polymerases, proteases, 115	

methyltransferases, and ProTide-based improvements of antiviral nucleosides (McGuigan 116	

et al., 2010; Slusarczyk et al., 2018), were explained in detail. The dynamic models are 117	

based on solved NMR structures of protein targets. The preselection of virtual candidate 118	

antiviral compounds in in silico models against viral protein targets reduces the number of 119	

compounds by four magnitudes (10^6 library -> 10^2 selected candidates). The 120	

compounds are then synthesized, shipped and compared at a standard concentration (10μM 121	

at IMB) for comparative effectiveness and toxicity in organotypical cell lines against a 122	

panel of viruses of interest for the biodefense community, including alpha-, bunya-, filo-, 123	

flavi-, ortho-/paramyxo-, and poxviruses. Hit compounds with high efficacy and low 124	

toxicity are identified (Step 2). This is followed by IC50/ CC50 evaluation (Step 3) of 125	

emerging hit to lead compounds, aiming for selective indices > 30 in sensitive (e.g. Huh-7 126	

hepatoma cells) and organotypical cell lines selected for the pathogenic traits of the viruses 127	

of interest (e.g. U138 glioblastoma cells for encephalitis viruses). This usually results in 128	

another reduction of candidate numbers by one to two magnitudes. To confirm drug targets, 129	

target validation is then carried out, either by the use of enzymatic assays for viral enzyme 130	

targets (Silvestri - MBDC-2018- GO3), or by induction of resistant virus strains showing 131	

resistance mutations in the antiviral target areas, as shown with tecovirimat (ST-246) for 132	

orthopoxviruses. This concludes the classical in vitro evaluation of antiviral drug 133	

candidates. The winnowing process up to this point leads to a reduction ratio of six 134	

magnitudes (10^6 to 1). If in vitro toxicity is minimal (generally over 50 μM), the 135	

compounds go straight into pharmacokinetics testing (rodent models), and into animal 136	

models of viral infections (Step 5). Here a dramatic rate of attrition leads to only one out of 137	

ten compounds tested in animal models making it into phase I clinical studies (Kola et al., 138	

2004). To further select compounds prior to animal testing, complex infection models, 139	

including in vitro 3D models, are currently the focus of much research in the antivirals field 140	

(Koban et al., 2018). Functional models of virus infection at barriers, and the effect of 141	

antivirals on the virus passing the barrier, give an indication of antiviral effects on typical 142	

viral pathogenesis, e.g. encephalitis viruses that are being tested on models of the blood 143	

brain barrier (Step 4; Hurler –MBDC-2018- GP1). A successful prediction by in vitro 144	

functional models of antivirals efficacy in vivo, particularly using primary human 145	



organotypic cells, would also result in a significant reduction of unsuccessful drug testing 146	

in animal models. The evaluation cycle described above, follows the general considerations 147	

as outlined by Huggins et al. for Ebolavirus (EBOV) in 1999 (Huggins et al., 1999), with 148	

the addition of in silico design with dynamic models for compound preselection, which had 149	

not yet been available at that time, and represents a methodical approach to antivirals 150	

design and development. This approach is used by groups active in the field and is also the 151	

basis of the ‘Antivirals Platform’ collaboration between Cardiff University and IMB into 152	

prophylaxis and treatment of infections caused by viral biothreat agents, which is funded by 153	

SER CYMRU/MRC and IMB´s basic funding. The platform established comprises all steps 154	

from molecular design to in vitro testing in complex infection models. Talks at MBDC 155	

2018 included different examples of this approach towards antiviral drug discovery: in 156	

silico design of small nucleosidic antivirals and prodrugs against arboviruses (Bassetto-157	

MBDC-2018-GO2, Yates et al., 2019-), Cima-4, Den-12, MB-124, tick borne encephalitis 158	

(TBEV) polymerase inhibitor nucleoside analogues with superior activity in the central 159	

nervous system (CNS) cells compared to sofosbuvir (Bugert-MBDC-2018-GO3), novel 160	

protease inhibitors for Zika virus as surrogate virus for other flaviviruses using an 161	

enzymatic assay for target validation as well as a Zika mouse model (Silvestri-MBDC-162	

2018-GO4), and BB4-D9, a dandelion natural extract antiviral against poxviruses (Zanetta 163	

–MBDC-2018-GO5). FDA approval of oral TPOXX® (Tecovirimat/ST-246®), a F13L 164	

morphogenesis inhibitor of orthopoxviruses, was reported in the poxvirus session 165	

(Grosenbach-MBDC-2018-HO2). Posters provided meaningful examples of the evaluation 166	

cycle, with contributions on live cell imaging of virus-infected cells for antivirals testing in 167	

a model of the blood brain barrier (Hurler-MBDC-2018-GP2), a novel polymerase-168	

inhibiting CHIKV antiviral (MB-70, Hucke-MBDC-2018-GP4), a NS4a autophagy testing 169	

system for flaviviruses (Tscherne-MBDC-2018-GP5), and MoA studies on Cf2642 170	

inhibiting macropinocytosis of measles and poxviruses for use as synergistic cell targeting 171	

antiviral along with virus-specific compounds (Narayan-MBDC-2018-GP6). 172	

 173	

 174	



3. Antivirals - FDA approved and experimental 175	

Complementing the recent review by De Clercq and Li (De Clercq and Li, 2016) 176	

this section will focus on small-molecule antiviral compounds  and discuss a selection of 177	

compounds that are either FDA approved or lately proved effective against viruses 178	

associated with a biothreat risk in in vitro experiments, animal or phase I-III clinical 179	

studies. Subsections give a brief overview of the viral agents in the order of relevance for 180	

biodefense, the FDA-approved treatment options, and antivirals in development, with top 181	

candidates highlighted in yellow in Table 1, which lists virus-specific compounds in the 182	

same order of relevance, detailing compound class, target and stage of development.  183	

 184	

3.1 Poxviridae 185	

Variola virus (smallpox virus), a member of the orthopoxvirus (OPV) genus of the 186	

family poxviridae, was used in the 18th century as a biological warfare agent by British and 187	

American forces in North America (Dixon, 2005), and remains on the top of the list of 188	

biological threat agents for warfare or bioterrorism (NATO AMedP-6; Delaune et al., 189	

2017). Effective vaccines and FDA-approved antivirals exist and could be used to control a 190	

deliberate release. Variola virus (VariolaV), which only infects humans, was declared 191	

eradicated in 1980, after a global vaccination campaign. Handling of VariolaV requires 192	

BSL-4 containment. Virus stocks are officially kept in only two designated laboratories in 193	

Russia and the US. Monkeypox virus (BSL-3), a zoonotic agent causing sequelae similar to 194	

smallpox but less fatal, is endemic in central Africa (Democratic Republic of Congo; 195	

DRC), recent introductions to the UK were travel-related. Poxviruses are transmitted by 196	

contact infection and via the respiratory tract, causing a systemic infection in humans and 197	

animals. Smallpox virus infection leads to a fatal multiorgan failure syndrome within 7-14 198	

days, in complicated cases with a hemorrhagic syndrome and CNS involvement. Smallpox 199	

has played a role in large-scale epidemics in history and its causative agent continues to be 200	

considered as a potential biological warfare agent (Delaune et al., 2017). Orthopoxviruses 201	

(OPV) are ovoid-shaped enveloped viruses with Group I double stranded (ds) DNA 202	

genomes, replicating via a virus-encoded DNA polymerase, an antivirals target, in the 203	



cytoplasm of infected cells (Fields, 2013). Poxviruses enter cells by macropinocytosis, but 204	

a poxvirus-specific receptor is still elusive (Mercer and Helenius, 2009). Anti-poxvirus 205	

drugs. One of the first effective drugs in clinical use as a parenteral treatment in severe 206	

OPV infections was cidofovir, a biphosphononate developed at REGA, in Belgium (De 207	

Clercq, 2002; Delaune et al., 2017) and FDA approved against human cytomegalovirus 208	

(HCMV). The ether lipid analogue brincidofovir (CMX001), a prodrug of cidofovir, has 209	

shown efficacy in small animal models and is awaiting FDA approval (Parker et al., 210	

2008,2014; Trost et al., 2015; Chittick et al., 2017; Foster et al., 2017; Grossi et al., 2017; 211	

Pires et al., 2018). The F13L virus egress inhibitor tecovirimat (ST-246, TPOXX®) has 212	

been independently developed to treat smallpox infections and has been FDA-approved 213	

since 2018. Tecovirimat has recently been used to treat nonhuman primates infected with 214	

variola, and humans exposed to OPV (Mucker etal., 2013; Grosenbach et al., 2018; Pires et 215	

al., 2018, Whitehouse et al., 2019). Tecovirimat (TPOXX®) is currently stockpiled in the 216	

US and production for similar stockpiles in Europe is planned. Anti-poxvirus drugs 217	

effective in animal models are reviewed in more detail elsewhere (Smee and Sidwell, 218	

2003). Further candidate anti-poxvirus drugs include kinase inhibitors imatinib 219	

(Gleevec/STI-571; Reeves et al., 2005 a,b) and olomoucine (Holcakova et al., 2010), 220	

terameprocol (Pollara et al., 2010), mitozandrone (Altmann et al., 2012), the membrane 221	

targeting ddBCNA cf2642 (Mcguigan et al, 2013), bisbenzimide derivatives (Yakimovich 222	

et al., 2017), FC-6407, a OPV D4 processivity factor mimic (Nuth et al., 2019), a number 223	

of natural extracts that have shown interesting antiviral activity against OPV in in vitro 224	

infection models (Cryer et al., 2017; Zanetta, 2019; Table 1). 225	

 226	

3.2 Filoviridae 227	

Filoviruses are category A select agents, World Health Organization risk group 4 228	

pathogens, high on the list of potential biological threat agents (NATO AMedP-6), and 229	

their handling requires BSL-4 containment. In nature they infect primates, pigs and bats 230	

(free-tailed and fruit bats) and are transmitted to human hosts by exposure to infected bush 231	

meat and body fluids of human patients. Ebola and Marburg viruses (EBOV/ MARV) 232	



cause severe viral hemorrhagic fevers with hematemesis, bloody diarrhea, prostration and 233	

case fatality rates of up to 90% within three days of infection. The EBOV envelope 234	

glycoprotein has been used in the VSV-EBOV vaccine, which is 70–100% effective 235	

preventing disease in exposed and vaccinated individuals and has been approved in October 236	

2019 in the EU as the world’s first Ebola vaccine (Callaway E, 2019). Filoviruses are 237	

filamentous enveloped viruses with Group V negative sense single stranded (ss) RNA 238	

genomes. The endosomal Nieman Pick C1 protein, also relevant in flavivirus infections 239	

(Osuna-Ramos et al., 2018) and the TIM-1 (HAVCR1) receptor on the surface of T cells, 240	

also relevant for hepatitis C virus (HCV) entry (Kachko A. et al., 2018), are potential 241	

targets for antiviral drug development. Anti-filovirus drugs. While treatment 242	

recommendations are emphasizing intensive medical support if suitable clinical facilities 243	

and cohort isolation are available (Bray and Paragas, 2002; Bray, 2003), defense against the 244	

use of filoviruses as biological weapons would benefit from an effective virus-targeting 245	

therapy. There are currently no licensed antiviral drug treatments for filoviruses. However, 246	

in a recent multi-outbreak, multi-country study (PALM- “Together save lives”) started in 247	

November 2018 in the DRC, two monoclonal antibodies (Mabs) emerged as giving the 248	

greatest chance to survive Ebolavirus infection. Zmapp, mAb114 and REGN-EB3 were 249	

compared to the small molecule drug remdesivir (WHO, 2019). The trial was stopped 250	

early with REGN-EB3 and mAb114 giving the greatest chance to survive Ebolavirus 251	

infection. The WHO recommends, to use these two Mabs for all further treatments (WHO, 252	

2019). Remdesivir (GS-5734;1-cyano-substituted adenosine nucleotide analogue), a 253	

nucleoside-analogue prodrug and lead compound of the small molecule antivirals class, has 254	

been shown to inhibit EBOV in cell culture and in non-human primates likely by chain 255	

termination (Warren et al., 2017), but showed lower efficacy in the clinical trial compared 256	

to monoclonal antibody based therapeutics. A good alternative, albeit not tested in the DRC 257	

clinical trial, may be T705 (favipiravir; Furuta et al., 2002), a repurposed drug synthesized 258	

by FUJIFILM-Toyam Chemical Co., licensed for use against  influenza virus in Japan, and 259	

since found to be a broad-spectrum inhibitor of viral RNA polymerases (Furuta et al., 2013, 260	

Delang et al., 2018). T705 and the related pyrazinecarboxamide compounds T-1105 and T-261	

1106 have similar antiviral properties - see also section 3.3. (Alphaviruses). FDA approval 262	

for use of favipiravir to treat filovirus infections is pending. Several animal pilotstudies, 263	



most recently in nonhuman primates (NHP), have shown the efficacy of favipiravir (Bixler 264	

et al., 2018a + b). While extensively tested, ribavirin is not FDA-approved for EBOV 265	

(Huggins, 1989). Other promising candidates (Table 1) are the FGI-106 entry inhibitor 266	

(Aman et al., 2009),  CM-10-18 type glycan processing inhibitors, active against Marburg 267	

virus and Ebola virus in mice models (Chang et al., 2013), a number of kinase inhibitors, 268	

including AR-12 (OSU-03012; Mohr et al., 2015; Chan et al., 2018), and K11777, a 269	

protease inhibitor developed for Chagas disease, which has additional activity against  270	

SARS-CoV and Ebola virus (Zhou et al., 2015). 271	

3.3 Alphaviridae 272	

Alphaviruses are mosquito-borne viruses, but some can be effectively transmitted 273	

via the aerosol route from contaminated rodent feces. Rodents, birds and possibly marine 274	

species are maintenance reservoirs (Forrester et al., 2012). Alphaviruses can cause a 275	

number of diseases in humans, including Chikungunya fever, Eastern, Western and 276	

Venezuelan equine encephalitis. The handling of the respective viruses requires BLS-3 277	

containment. Two type species, Venezuelan and Eastern Equine Encephalitis viruses 278	

(VEEV and EEEV), are considered potential biological threat agents (NATO AMedP-6) 279	

with up to 70% mortality in unprotected populations (Walton and Johnson, 1988) and 280	

represent category B select agents. While human infections with VEEV and EEEV are rare, 281	

sporadic and unpredictable but explosive epidemics caused by Chikungunya virus 282	

(CHIKV) have occurred in the last decade mainly in South-East Asia and in South 283	

America, Central America and the Caribbean, globally amounting to millions of cases. 284	

Autochthonous cases of Chikungunya fever have been reported in Italy (Marano et al., 285	

2017). Viremia with rashes and fever usually lead to death of cells lining joints, causing 286	

arthritis and joint pain. CHIKV infections of neurons can result in potentially fatal 287	

encephalitis. Fatal infections, mainly seen in human infants, are rare, but long-lasting 288	

polyarthralgia and encephalitis cause significant morbidity (Matusali et al., 2019). 289	

Alphaviruses are enveloped viruses with positive-sense ss RNA genomes. Most 290	

experimental antivirals target the viral RNA polymerase. There are no licensed antiviral 291	

drugs against alphaviruses causing arthritis and encephalitis, and the treatment of infections 292	

is mainly supportive (anti-inflammatory drugs, glucocorticoids).  Anti-alphavirus drugs. 293	



While pox- and filoviruses are highly lethal biological agents, alphavirus infections are 294	

rarely fatal, but can lead to large numbers of incapacitated individuals, due to severe 295	

arthralgias and headaches. In this sense, alphaviruses might be effective biological threat 296	

agents where incapacitation and saturation of medical care facilities are the goal of a 297	

perpetrator (incapacitating agents). Specific antivirals should be able to pass the blood brain 298	

barrier (BBB) to control post-exposure encephalitis. Intravenous Ribavirin, which is FDA-299	

approved for HCV and respiratory syncytial virus (RSV) infection, does not pass the BBB, 300	

thus alleviating peripheral symptoms but not providing cure (Abdelnabi et al., 2015). 301	

Intranasal ribavirin may be more effective. Ribavirin resolves joint swelling in CHIKV 302	

(Ravichandran and Manian, 2008), but has no activity against VEEV in vitro (Franco et al., 303	

2018). Sofosbuvir, an FDA-approved antiviral drug against HCV, which has been 304	

suggested for repurposing against various viruses, has been evaluated for in vitro activity 305	

against CHIKV (Ferreira et al., 2019). Among the most promising novel compounds is the 306	

broad-spectrum antiviral candidate favipiravir (T-705), initially developed to treat human 307	

influenza, which shows a potent antiviral effect in small animal models. The drug is 308	

licensed in Japan, while FDA approval is pending (Furuta et al., 2013). An in vitro 309	

comparison between ribavirin and favipiravir revealed that efficacy is cell-type dependent 310	

(Franco et al., 2018). Efficacy was also shown in a mouse model (Abdelnabi et al., 2017). 311	

Other compounds of interest (Table 1) include drugs approved for other medical conditions 312	

and tested for repurposing. Those are the old antiparasitic suramin, which shows 313	

ameliorating effects against CHIKV infection in mice (Kuo et al., 2016) and the 314	

anthelmintic ivermectin, which shows in vitro activity against a range of alphaviruses 315	

(Varghese et al., 2016). Compounds with known cellular targets include  the cancer drugs 316	

mefenamic acid and sorafenib, inhibiting replication of CHIKV and other alphaviruses 317	

via eIF4E dephosphorylation in vivo (Rothan et al., 2016; Lundberg et al., 2018), and 318	

halofuginone, a prolyl t-RNA synthetase inhibitor in veterinary use that is active in vitro 319	

against both alpha- and flaviviruses (Hwang et al., 2019). Also promising is the virus-320	

specific antiviral ML336 that inhibits Nsp4 of VEEV and EEEV in vivo (Jonsson et al., 321	

2019). Less well described compounds are LL-37 peptide, an alphavirus entry inhibitor in 322	

vitro (Ahmed et al., 2019), compound 25 that was identified in silico and optimized to 323	

inhibit CHIKV replication in vitro (Bassetto et al., 2013), Prest-37 and -392, with in vitro 324	



activity against VEEV nsP1 capping enzyme (Ferreira-Ramos et al., 2019), and baicalin, 325	

which inhibits CHIKV replication in vitro by interfering with a cellular target (Oo et al., 326	

2018). 327	

 328	

3.4 Arenaviridae 329	

Arenaviruses (Lassa virus – Old World/ Junin, Machupo virus –New World) can 330	

also cause viral hemorrhagic fevers and are therefore on the list of potential biological 331	

threat agents (NATO AMed P-6; Argentine – Bolivian hemorrhagic fevers). Handling of 332	

Lassa virus (LassaV) requires BSL-4 containment. Annual case numbers of Lassa fever 333	

(LassaF) are estimated to be between 100.000 and 300.000 in West Africa, but the true 334	

public health burden of LassaF is unknown, as are exact case numbers on New World 335	

arenavirus infections (WHO Roadmap Neclected Tropical Diseases, 2012). Transmitted by 336	

aerosolized rodent droppings, arenavirus infections start with a generalized flu-like illness 337	

and then cause a range of conditions from aseptic meningitis/encephalitis with choroid 338	

plexus infiltration (Lymphocytic Choriomeningitis Virus; LCMV) to potentially fatal 339	

hemorrhagic fevers (Lassa, Junin, Guanarito, Machupo, Sabia, and White Water Arroyo 340	

Virus), with case fatality rates over 30%. Recently a person-to-person transmission of 341	

Lassavirus in Germany (WHO, 2016) and an outbreak in Nigeria raised public health 342	

concerns. Arenaviruses are enveloped viruses incorporating ribosomes (‘arena’ is latin for 343	

sand; ‘sand’-like appearance of ribosomes in electron microscopy of virus particles, hence 344	

arenavirus), with a Group IV genome of two ambisense ss RNA segments. They use the 345	

ubiquitously expressed alpha-dystroglycan as their cellular receptor, and their main cellular 346	

targets are antigen-presenting cells. Anti-arenavirus drugs. Ribavirin is used under 347	

compassionate use protocols for the treatment of LassaF (McCormick et al., 1986; 348	

Ölschläger et al., 2011), while recently favipiravir was evaluated and found to enhance 349	

survival in cynomolgus (crab-eating) macaques (Rosenke et al., 2018). A further interesting 350	

compound is LHF 535, an entry inhibitor targeting arenaviral GP2 (Madu et al., 2018). 351	

 352	



3.5 Bunyaviridae 353	

Human pathogenic bunyaviruses, particularly Hantaviruses and Crimean-Congo 354	

Hemorrhagic Fever Virus (CCHFV), can cause hemorrhagic fevers, and CCHFV is on the 355	

list of potential biological threat agents (NATO AMed P-6). Handling of these viruses 356	

requires BSL-3/BSL-4 containment. Bunyaviruses have a wide host range, including plants, 357	

ticks (Hyalomma ticks - CCHFV), insects (Culex - Rift Valley fever virus) and rodents 358	

(Hantaviruses), which also serve as transmission vectors. Humans are dead-end hosts, 359	

suffering fatal outcomes in the case of Crimean-Congo hemorrhagic fever (CCHF), as well 360	

as in hemorrhagic fever with renal syndrome (HFRS; Europe – South East Asia; Puumala/ 361	

Hantaan type viruses) and hantavirus pulmonary syndrome (HPS; Americas; Sin Nombre 362	

type viruses). The clinical outcome is linked to geographical context and the typical animal 363	

vector. While high case fatality rates were described with the Korean hantavirus types and 364	

with Sin Nombre type viruses causing HPS in the Americas, the European situation 365	

indicates a high case load with HFRS, but less severe clinical outcomes (nephropathia 366	

epidemica), caused mainly by Puumala type viruses (Bugert et al., 1999; Klempa et al., 367	

2003; Schmidt-Chanasit et al., 2009; Report of the European Center for Disease Control 368	

2016). Bunyavirus infections are endemic, vector-borne infections. Normally they do not 369	

cause epidemics, with the exception of CCHF in case of nosocomial transmission. 370	

Thousands of cases usually occur only in hyperendemic situations over a longer period of 371	

time. Beginning with an initial generalized flu-like illness and fever which lasts for about 372	

three days, these infections can end in fatal hemorrhagic fever (CCHF, HFRS), and 373	

pulmonary syndrome (HPS) with a 1 – 40 % case fatality rate depending on virus strain 374	

(Jonsson et al., 2008). Bunyaviruses are enveloped viruses with bi- and tri-segmented 375	

ambisense ss RNA Group IV genomes. Human cellular receptors include human beta 3 376	

integrins, the main human cellular targets are macrophages and endothelial cells, and they 377	

replicate in the cytoplasm. No vaccines or licensed treatments are currently available. Anti-378	

bunyavirus drugs.  The focus towards the identification of antiviral agents has been 379	

mostly on CCHFV infections, which are common in endemic areas, but are either 380	

asymptomatic or cause a non-specific febrile illness that does not require hospitalization or 381	

specific treatment. Few patients develop hypotension and hemorrhage, and medical 382	

management is then largely supportive, with volume replacement, and prevention of edema 383	



and inflammation (Jabbari et al., 2012). Ribavirin has been used to treat CCHF patients 384	

under compassionate use protocols with some success since 1985 (van Eeden et al., 1985), 385	

especially if given early in the course of the infection, but many studies with apparently 386	

beneficial results lack controls. Recent randomized clinical trials were unable to show 387	

significant beneficial effects of ribavirin versus CCHFV (Koksal et al., 2010; Johnson et 388	

al., 2018). Further interesting candidates for virus-specific treatment (Table 1) include 389	

favipiravir (T-705), which has been evaluated against a number of phleboviruses 390	

(PhleboV) and to treat CCHFV infection in rodent models (Gowen and Holbrook, 2008; 391	

Gowen et al., 2010; Hawman et al., 2018), galidesivir (BCX4430), effective against Rift 392	

Valley fever virus (RVFV) infection in a hamster model and investigated for use by the 393	

FDA (Westover et al., 2018), 2′-fluoro-2′-deoxycytidine (2FdC), which showed 394	

protective effects against infections with PhleboV in a rodent model (Smee et al., 2018), 395	

and the FGI-106 entry inhibitor (Smith et al., 2010).  396	

 397	

3.6 Flaviviridae 398	

Flaviviruses causing hemorrhagic fever or severe encephalitis (Omsk hemorrhagic 399	

fever, Dengue and Yellow fever, Russian spring-summer encephalitis/ Tick Borne 400	

Encephalitis (TBEV)) are listed as potential biological threat agents (NATO AMed P-6) 401	

and handling requires BSL-3/BSL-4 containment. Flaviviruses are arthropod-borne viruses 402	

that are endemic worldwide with virus/vector specific geographical distributions, causing 403	

regular outbreaks and fatalities, with 30.000 cases/year through yellow fever in Africa 404	

alone (Garske et al., 2014; WHO, 2018). Infections with flaviviruses can lead to 405	

hemorrhagic fevers (Omsk hemorrhagic fever, yellow fever (YF) and dengue fever with 406	

case fatality rates of up to 30%) or affect the CNS, causing encephalitis (e.g. Japanese 407	

encephalitis, tick borne encephalitis with case fatality rates up to 20%, Zika and West Nile 408	

encephalitis). Human-to-human transmission is not effective. Live vaccines against yellow 409	

fever (17D) and Japanese Encephalitis (JE), a number of inactivated TBEV vaccines, and 410	

most recently a live Dengue virus vaccine are available. Flaviviruses are a large family of 411	

mosquito- or tick-transmitted enveloped viruses with a Group IV positive-sense single-412	



strand RNA genome, using G-protein coupled receptors for entry into host cells (Fields, 413	

2013). Anti- flavivirus drugs. Ribavirin is an effective early treatment for yellow fever 414	

under compassionate use protocols, but fails to improve survival of dengue infections in 415	

non-human-primates (NHP; Malinoski et al., 1990; Monath, 2008). Out of a quite large 416	

number of drugs investigated for repurposing against flaviviruses by the FDA (Table 1), 417	

the most promising candidate is sofosbuvir (Bullard-Feibelman et al., 2017). Sofosbuvir 418	

was initially developed and approved by FDA for treatment of hepatitis C. It shows activity 419	

against a number of flaviviruses in vitro and in the mouse model (Mumtaz et al., 2017; de 420	

Freitas et al., 2019). Further interesting candidates (13 compounds listed in Table 1) inhibit 421	

the viral polymerase (Eyer et al., 2017;  Segura Guerrero et al., 2018), NS2B/NS3 protease 422	

and kinases (Chan et al., 2017; Chan et al., 2018), cell entry and membrane trafficking 423	

(Nolte et al., 2016, Cannalire et al., 2019), and other flavivirus targets. The action and the 424	

efficacy of most of these compounds in vivo are yet to be determined. The major 425	

shortcoming of all candidates so far tested in animal models for the treatment of infections 426	

with Usutu (UsutuV), Dengue (DENV) and Zika viruses (ZikaV) is their rather low 427	

efficacy (Milligan et al., 2018; Chan et al., 2018).  428	

 429	

3.7 Orthomyxoviridae 430	

Orthomyxoviruses, in particular influenza viruses, although not on top of the list of 431	

potential biological threat agents, are fast-moving airborne pathogens capable of causing 432	

pandemics with significant mortality. Recombinant influenza viruses could be considered 433	

as potential biological threat agents. Handling of avian influenza viruses and other 434	

influenza viruses with high pathogenic potential require BSL-3 containment. Pandemic 435	

influenza viruses type A are transmitted by the respiratory route to birds and mammals, 436	

type B only from human to human, as well as via saliva, nasal secretions, feces and blood, 437	

causing acute respiratory distress with potentially fatal outcomes in humans. In humans, 438	

infection of the respiratory tract can lead to pneumonia, secondary pneumonia and 439	

overwhelming immune responses, followed by multiorgan failure in rare cases. 440	

Orthomyxoviruses are globally endemic, and cause sporadic outbreaks, rarely pandemics. 441	



Orthomyxoviruses are enveloped viruses with a negative-sense segmented ssRNA 442	

genome. The viral RNA polymerase has a high error rate of 1/10000. Vaccines are 443	

composed of HA/NA subunits (purified from inactivated virions), purified subunits from 444	

recombinant sources, or live/attenuated strains of the endemic strains/subtypes of influenza 445	

A virus (currently H1N1 and H3N2), as well as those of influenza B viruses (Fields, 2013). 446	

Anti-orthomyxovirus drugs. FDA-approved neuraminidase inhibitors oseltamivir 447	

(Tamiflu®), zanamivir (Relenza®), laninamivir (Inavir®), and peramivir have marginal 448	

clinical benefits only when given early but may be useful in severe infections requiring 449	

hospitalization/ mechanical ventilation (Gubareva et al., 2017). In 2018 baloxavir - 450	

marboxil (Xofluza®), an inhibitor of the viral cap-dependent endonuclease (CEN; 451	

influenza virus polymerase PA subunit), was approved by the FDA for the treatment of 452	

acute, uncomplicated influenza among patients aged 12 years or older (Noshi et al., 2018, 453	

Koszalka et al., 2019). Favipiravir developed and approved in Japan specifically for 454	

treatment of influenza virus infections, and its combination with neuraminidase inhibitors 455	

was shown to be effective in a mouse model (Furuta et al., 2002, Baz et al., 2018). Further 456	

interesting candidates are: haloxanide/nitazoxanide, thiazolide compounds that were 457	

originally developed as anti-parasitic agents, but were shown to inhibit influenza virus 458	

hemagglutinin maturation and intracellular trafficking of viral components in infected cells 459	

and that are now in clinical trials (Tilmanis et al., 2017; La Frazia et al., 2018) as well as 460	

cycloheptathiophene-3-carboxamide, which interferes with the polymerase PA-PB1 461	

subunits of influenza virus (Nannetti et al., 2019). Alicyclic amines/aminoadamantanes 462	

amantadine and rimantadine, first described in 1985 as M2 protein blockers (Hay et al., 463	

1985; H+ channel/viroporin; only type A viruses) are not recommended anymore for 464	

clinical use (WHO/ US), due to rapid induction of viral resistance mutations: 100% of 465	

clinical isolates are resistant).  A 2014 Cochrane review found no evidence for efficacy or 466	

safety of amantadine for the treatment of influenza A (Alves Galvao et al., 2014). However, 467	

their structures may still be useful as scaffolds for the design of future M2 inhibiting drugs.   468	

 469	

 470	



3.8 Paramyxoviridae 471	

Paramyxoviridae are fast-moving airborne pathogens infecting animals and 472	

humans. Hendra (HeV) and Nipah (NiV) viruses, in the genus Henipavirus,  are considered 473	

zoonotic agents in Australia (horses) and South-East Asia (pigs), respectively. Both viruses 474	

may be able to infect other domesticated mammals, and there is a real concern in the 475	

veterinary and biodefense communities about spill-over infections and the high fatality rate 476	

in humans (632 human NiVcases: 59% case fatality; Ang et al 2018; Singh at al. 2019). 477	

Henipaviruses have so far not caused global epidemics, but due to a high percentage of 478	

severe outcomes, as well as lack of vaccines or treatments, HeV and NiV are designated 479	

biosafety level (BSL-4) agents (Nannetti et al., 2019). They are currently not on the NATO 480	

AMed P-6 list of biological threat agents but their potential as agents for bioterrorism has 481	

been discussed (Lam 2003; Luby 2013). Other Paramyxoviruses causing diseases in 482	

animals are: canine distemper virus (CDV), endemic in Europe (dogs/humans; Beineke et 483	

al., 2015), Newcastle disease virus affecting birds, and rinderpest virus infecting cattle. 484	

Human parainfluenza viruses and respiratory syncytial virus (RSV) are major causes of 485	

bronchiolitis, bronchitis and pneumonia in infants and children. Measles (morbilli, rubeola) 486	

caused by measles virus (MeaslesV) was responsible for around 733,000 deaths globally in 487	

2000 (CDC, 2009), mostly due to viral pneumonia, secondary bacterial infections due to 488	

immune suppression (B cell tropism), and encephalitides (inclusion body encephalitis 489	

(MIBE); subacute sclerosing panencephalitis (SSPE)). A very successful vaccine 490	

(MeaslesV strain Edmonston) has been used with the goal to eradicate measles in 2010 491	

(Holzmann et al., 2016). However, anti-vaccine movements have led to the loss of herd 492	

immunity and the reemergence of measles in many developed countries (Dahl, 1986; 493	

Fraser-bell, 2019). Paramyxoviruses are a family of enveloped viruses with a negative 494	

sense ss RNA genome (mononegavirales) replicating in the cytoplasm (Fields, 2013). Anti-495	

paramyxovirus drugs. Ribavirin administered with cyclodextrin has been shown to be 496	

effective in a mouse model for measles encephalitis (Jeulin et al., 2009). A very promising 497	

candidate antiviral against measles is ERDRP-0519, which has been shown effective 498	

against canine distemper virus in a ferret model (Krumm et al., 2014), however early 499	

resistance development has been described (Kalbermatter et al., 2019). Favipiravir has a 500	

protective effect against Nipah virus infections in the hamster model (Dawes et al., 2018), 501	



remdesivir inhibits a number of paramyxoviruses in vitro (Lo et al., 2017). ddBCNAs (see 502	

section 3.1 and 3.6;  McGuigan et al., 2013) and the plant extract naphthoquinone 503	

droserone have anti-measles activities in vitro (Lieberherr et al., 2017). The nucleoside 504	

analogue 4’-azidocytidine (R1479; balapiravir) was developed to inhibit HCV (Nelson et 505	

al. 2012), paramyxoviruses, and filoviruses in vitro (Hotard, et al, 2017), but showed low 506	

efficacy and high toxicity in hepatitis C patients in early clinical trials  (Nelson et al., 507	

2012). 508	

 509	

Table 1  510	

 511	
Compound name Virus/Target Paper/ 

Author-Date 
Regulatory  
Approval/ Dev. 
Stage 

Poxviridae-  VariolaV, other OPV (Baltimore Group I dsDNA) -  section 3.1 
Tecovirimat (ST246, TPOXX) OPV/ F13L - egress Mucker 2013 FDA-appr. 

Orthopoxvirus 
Cidofovir 
 

OPV/ Pol De Clerc 2002 FDA-appr. CMV 
Compassionate 
Use 

Brincidofovir OPV/ Pol Parker 2008 
 

IND 

Gleevec (STI-571) OPV/ kinases Reeves 2005 FDA-appr. Cancer 
in vitro 

Mitoxandrone OPV/ unclear Altmann 2012 FDA-appr. Cancer 
in vitro 

Olomoucine II OPV/ kinases Holcakova 2010 in vitro 
Terameprocol OPV/ unclear Pollara 2010 in vitro 
ddBCNA-cf2642 OPV/ membranes, 

autophagy 
McGuigan 2013 in vitro 

Bis-benzimides OPV/ DNA 
intercalators 

Yakimovich 
2017 

in vitro 

KPB-100/200 OPV/ unclear Cryer 2017 in vitro 
FC-6407  OPV/ D4  Nuth 2019 in vitro 
BB4 D9 OPV/ unclear Zanetta 2019 in vitro 
Filoviridae - EBOV, MARV (Baltimore Group V ss-RNA) -   section 3.2 
Remdesivir (GS-5734) EBOV/ Pol  Warren 2016 

 
IND 
in vitro  
Phase II clinical 
trial DRC- 2018-
2019 

Favipiravir (T705)  EBOV/ Pol Bixler 2018a appr. in Japan - 
Influenza 
in vivo  



 
Galidesivir (BCX4430) RVFV/ Pol Warren 2014 

Taylor 2016 
IND 
in vivo 

CM-10-18 EBOV-MARV/ 
a Gluc. 
ER enzymes 

Chang 2013 in vivo 
 

FGI-106 EBOV/ entry Aman 2009 in vitro 
AR-12 (OSU 03012) EBOV-MARV / 

PDK-1 
Mohr 2015 in vitro 

 
K11777 EBOV/ Prot Zhou 2015 in vitro 
Alphaviridae – CHIKV, EEEV, VEEV (Baltimore Group IV  ss+RNA) - section 3.3 
Ribavirin CHIKV/ Pol, GTP 

depletion, mutagenic 
Abdelnabi 2015 FDA-appr. HCV; 

RSV 
in vivo 

Sofosbuvir CHIKV/ Pol  Ferreira 2019 FDA-appr. HCV 
in vitro 

Favipiravir (T705)  CHIKV/ Pol Abdelnabi  2017 appr. in Japan - 
Influenza 
in vivo 

Suramin (Germanin™, 
Antrypol™) 

CHIKV/ unclear Kuo 2016 FDA-appr. 
antiparasitic 
in vivo 
 

Ivermectin CHIKV/ unclear Varghese 2016 FDA- 
anhelmintic 
in vitro 
 

Mefenamic acid CHIKV/ eIF4E 
dephosphorylation 

Rothan 2016 FDA-cancer 
in vivo 
 

Sorafenib CHIKV, VEEV, EEEV/ 
eIF4E 
dephosphorylation 

Lundberg 2018 FDA-cancer 
in vitro 
 

Halofuginone CHIKV/ 
Protyl tRNAse 

Hwang 2019 Veterinary use 
in vitro 
 

ML-336 VEEV, EEEV/ Nsp4  Jonsson 2019 in vivo 
 

LL-37 VEEV/ entry Ahmed 2019 in vitro  
 

Compound 25 CHIKV/ nsP2 Bassetto 2013 in vitro 
 

Prest-37, -392 VEEV/ nsP1 capping 
enzyme 

Ferrera-Ramos 
2019 

in vitro 
 

Baicalin CHIKV/ unclear Oo 2018 in vitro 
 

Arenaviridae – LassaV, JuninV  (Baltimore Group V ss-RNA) - section 3.4 
Ribavirin LassaV/ 

Pol, GTP depletion, 
mutagenic 

McCormick 
1986 

FDA-appr. HCV; 
RSV 
Compassionate 
use LassaF 



Favipiravir (T705) LassaV/ Pol Rosenke 2018 appr. in Japan -
Influenza 
in vivo 
 

LHF 535 JuninV/ glycoprotein 
GP2 

Madu 2018 in vivo 
 

Bunyaviridae – CCHFV, RVFV, other PhleboV (Baltimore Group V ss-RNA) -  section 3.5 
Ribavirin CCHFV/ Pol,  GTP 

depletion, mutagenic 
van Eeden 1985 FDA- appr. HCV; 

RSV 
Compassionate 
use CCHF 

Favipiravir (T705) PhleboV, CCHFV/ Pol Gowen 2010 
Hawman 2018 

appr. in Japan -
Influenza 
in vivo 

Galidesivir  RVFV/ Pol Westover 2018 IND 
in vivo 

2ʹ-Fluoro-2ʹ-deoxycytidine PhleboV/ Pol Smee 2018 in vivo 
FGI-106 CCHFV +/ entry Smith 2010 in vitro 
Flaviviridae – TBEV, DENV, YFV + (Baltimore Group IV ss-RNA) section 3.6 
Ribavirin 
 

YFV +/ 
Pol, GTP depletion, 
mutagenic 

Malinoski 1990 FDA-appr. HCV; 
RSV 
Compassionate 
use YF  

Sofosbuvir ZikaV, YFV +/ Pol Bullard- 
Feibelman 2017 
De Freitas 2019 
 

FDA-appr. HCV  
in vivo  
 

Favipiravir (T705) UsutuV/ Pol Seguera 
Guerrero 2018  

appr. in Japan - 
Influenza 
in vivo  
 

Ivermectine  YFV +/ Helicase Mastrangelo 
2012 

FDA-appr. 
antihelmintic 
in vitro 
 

Bromocriptine  ZikaV/ Prot 
(Dopamine agonist) 

Chan 2017 FDA-appr. 
Diabetes/ 
Parkinson 
in vitro 
 

Erythrosin B DENV +/ Prot  Li 2018  FDA-appr. food 
additive 
in vitro 

Niclosamide YFV +/ entry/fusion- 
translation 

Mazzon 2019 
 

FDA-appr. 
antihelmintic 
in vivo  

Galidesivir (BCX4430) TBEV, WNV / Pol Eyer 2017  
 

IND 
in vitro 

AR-12 (OSU 03012) 
 

ZikaV / PI3K-Akt 
pathway 

Chan 2018 IND-NSAID 
in vitro 

FGI-106 DENV / entry Aman 2009 in vitro 



3’,5’-di-O- trityluridine  
 

YFV, DENV / unclear De Burghgraeve 
2013  

in vitro 
 

ddBCNA-cf2642 ZikaV/  membranes, 
autophagy 

Nolte 2016 in vitro 
 

NITD008  DENV/ Pol Milligan 2018 in vitro 
K22  ZikaV +/ unclear García-Nicolás 

2018 
 

in vitro 
 

PBTZ 16 
 

YFV, TBEV +/ Virus 
maturation 

Cannalire 2019 in vitro 
 

Orthomyxoviridae – Influenza virus (Baltimore Group V ss-RNA) -  section 3.7 
Oeseltamivir, Zanamivir, 
Laninamivir, Peramivir 

Influenza virus/ 
neuraminidase 

Gubareva 2017  FDA–appr. 
Influenza 

Baloxavir -Marboxil Influenza virus/ 
cap dependent 
endonuclease (CEN) 

Noshi 2018 FDA–appr. 
Influenza 
 

Favipiravir (T705) 
 

Influenza virus/ 
Pol 

Furuta 2002 
Baz 2018 
 

appr. in Japan - 
Influenza 

Haloxanide/Nitazoxanide Influenza virus/ 
HA maturation 

Tilmanis 2017 Phase III 
 

Cycloheptathiophene Influenza virus/ 
Pol 

Nannetti 2019 in vitro 
 

Paramyxoviridae – MeaslesV, NipahV + (Baltimore Group V ss-RNA) -  section 3.8 
Ribavirin MeaslesV +/ 

Pol, GTP depletion, 
mutagenic 

Jeulin 2009 FDA-appr. HCV; 
RSV 
in vivo 
 

ERDRP-0519 MeaslesV/ Pol  Krumm 2014 in vivo 
Favipiravir (T705) NipahV/ Pol Dawes 2018 appr. in Japan - 

Influenza 
in vivo  

Remdesivir (GS-5734) NipahV +/ Pol Lo 2017 in vitro 
ddBCNA-cf2642 MeaslesV/ 

membranes 
autophagy 

McGuigan 2013 in vitro 
 

Droserone (Measles virus)/ 
unclear 

Lieberherr 2017 in vitro 
 

4’-Azidocytidine (R1479) 
Balapiravir 

NipahV +/ Pol Hotard 2017 in vitro 
 

 
 512	
Table 1 Legend 513	

The table lists virus-specific compounds in the order of their relevance, detailing compound 514	

class, target and stage of development. 515	

Abbreviations: 516	

Appr.: approved 517	

FDA: US Food and Drug Administration 518	



IND (FDA investigational drug) 519	

NHP: non-human primates 520	

NSAID: nonsteroidal anti-inflammatory drug 521	

Phase: clinical trial phase I to III 522	

Pol: viral polymerase 523	

Prot: viral protease 524	

Vs.: versus 525	

Yellow highlight: lead small molecule drug candidate 526	

+:  more viruses, not listed 527	

 528	

3.9 Synergy through combination and the use of broad-spectrum antivirals 529	

Combination treatments with antiviral compounds using different modes of action 530	

(MoA) are further increasing efficacy and, by means of individual dose reduction, allow for 531	

lower toxicity of the individual compounds. This exploits possible synergies between 532	

synthetic small-molecules and natural extracts, virus-specific and broad-spectrum agents, 533	

and cell-targeting compounds. The use and potential benefits of multidrug cocktails, mainly 534	

reduction of resistance mutation and toxicity through dose reduction, have been pointed out 535	

by many authors, including in the context of yellow fever treatment (Monath, 2008). 536	

Examples for synergistic effects in combinations of antiviral compounds with similar or 537	

different MoA are ribavirin with vitamin A in measles infections (Bichon et al., 2017), 538	

ribavirin with favipiravir in Zika virus infections (Kim et al., 2018), and ribavirin with 539	

mefenamic acid in infections with Chikungunya virus (Rothan et al., 2016). Antiviral drug 540	

combinations may also be a way to deal with emerging antiviral drug resistance 541	

(Kalbermatter et al., 2019). 542	

Broad-spectrum antivirals on the other hand show significant activity against 543	

several members of the same or distinct virus families, allowing the empirical treatment of 544	

severe viral infections prior to positive diagnosis of the viral agent. Leading examples are at 545	

his point the pyrazine-carboxamide compounds T-705 (favipiravir; Furuta et al., 2002; 546	

Abdelnabi et al., 2017, Delang et al., 2018), T-1105 and T-1106, which are broad-spectrum 547	



viral RNA polymerase inhibitors, initially developped for the treatment of influenza virus, 548	

and found effective against bunyaviruses (Gowen et al., 2010; Caroline et al., 2014; 549	

Hawman et al., 2018), alphaviruses (Abdelnabi et al., 2015), filoviruses (Bixler et al., 550	

2018a) arenaviruses (Rosenke et al., 2018), paramyxoviruses (Dawes et al., 2018), and 551	

flaviviruses (Seguera-Guerrero, 2018). A favipiravir resistance mechanism in influenza 552	

virus has been described (Goldhill et al, 2018). Other potential broad-spectrum agents are: 553	

remdesivir (GS-5734), another RNA polymerase inhibitor (Tchesnokov  et al., 2019) 554	

active against filo-, and paramyxoviruses (Lo et al., 2017), FGI-106 with inhibitory activity 555	

against filo-, bunya-, and flaviviruses (Aman et al., 2009), galidesivir (BCX4430) with 556	

activity against filo- , bunya-, and flaviviruses (Warren et al., 2014; Eyer et al., 2017; 557	

Westover et al., 2018) and 2’fluoro-2’-deoxycytidine (2’-FdC), which was reported to 558	

inhibit various viruses in vitro, including Borna virus, HCV, Lassa virus, certain herpes 559	

viruses, and which also inhibits influenza viruses in mice (Smee et al., 2018). Previously 560	

thought as a one-family-broad-spectrum compound, sofosbuvir (Sovaldi™, Soforal™) has 561	

in vitro and in vivo activity against several members of the family flaviviridae, and has 562	

most recently been shown to be effective against Chikungunya virus (Ferreira et al., 2019). 563	

Natural product antivirals are single molecule natural compounds or complex mixtures of 564	

organic molecules (e.g. plant extracts) with antiviral activity. Natural product antivirals 565	

frequently exhibit broad spectrum antiviral activity and often a single active compound 566	

cannot be identified in extracts (Cryer et al., 2017).  567	

 568	

3.10 Treatment of viral hemorrhagic fevers (VHF) with ribavirin 569	

Viral hemorrhagic fevers (VHFs) cause the highest mortality in human hosts of all 570	

known viral agents and treatment options are a serious concern both in public health and in 571	

biodefense scenarios (Ippolito et al., 2012). If specific antiviral treatment options are not 572	

available, supportive care is the mainstay of clinical interventions in VHF, including 573	

haemodynamic, haematological, pulmonary and neurological support treatments. Treatment 574	

with corticosteroids, vasoactive substances, hemodialysis, and mechanical ventilation saves 575	

the patients with the worst clinical symptoms. The only currently widely available antiviral 576	



drug, ribavirin, is not approved by the FDA for intravenous application in VHF and is used 577	

under compassionate use protocols only. Intravenous ribavirin reduces mortality of HFRS 578	

if combined with hemodialysis and both morbidity and mortality in the case of Lassa fever 579	

(LassaF). Ribavirin (Copegus™, Rebetol™, Virazole ® ICN / Valeant (IND)) is used for 580	

the treatment of infections with African arenaviruses (Lujo- and Lassa fever) and 581	

bunyaviruses (HFRS, Crimean Congo fever, and Rift Valley fever). However, intravenous 582	

ribavirin does not show any benefits for the treatment of any of the VHFs caused by 583	

filoviruses, or in infections with RNA viruses causing severe encephalitis (Bray and 584	

Paragas, 2002; Ippolito et al., 2012).  585	

 586	

4. Conclusions 587	

Antiviral drug development is determined by the virus life cycle, both the steps of 588	

viral replication per se and the cellular processes supporting viral replication. The action of 589	

antivirals targeting a viral replication step, may be augmented by an antiviral hitting a 590	

different viral target or a cell process, or secondary effects via drug metabolism, resulting 591	

in synergy. Most antivirals in the experimental pipeline are either small molecules designed 592	

from scaffolds, mostly nucleoside analogues, or natural extracts/complex organic active 593	

compounds derived from extracts. The stages of antiviral drug development begin with in 594	

silico design and go via testing in single cell types (organotypic cell lines or primary cells) 595	

to determine IC50/CC50 = SI, and complex infection models to animal models, clinical 596	

trials, and eventually regulatory approval/ market. A major hindrance to antivirals 597	

development is that of many compounds that show activity in vitro only very few are 598	

effective in animal models. Development may also stop for lack of interest and funding. 599	

Human organoids/complex in vitro infection models (e.g. barrier models) may provide a 600	

bridge to predict activity in clinical trials.  601	

There is only a small number of antivirals with regulatory approval to treat virus 602	

infections, some of which have already been described to select for drug resistant strains. A 603	

number of drugs with antiviral activities which are approved for other conditions are being 604	

evaluated for repurposing, but the number of compounds currently in the experimental 605	



pipeline for clinical testing is small. Consequently, while there are treatment options, they 606	

may not be available in sufficient quantity in a biological threat situation. Therefore, 607	

research in identification, development, clinical testing and the stockpiling of approved 608	

antivirals in sufficient quantities, must be a priority for the government actors put in charge 609	

of a credible response to deliberate releases of some of the biological agents discussed here. 610	

It is well known that even the threat of a biological attack would cause mass hysteria with 611	

concomitant economic disruption. Only timely preparation underlined by visible 612	

infrastructure, stockpiles of drugs and vaccines, and well considered emergency plans will 613	

allow governments to give the necessary assurances when needed, to avoid negative 614	

outcomes (Hawley and Eitzen, 2001). Ideally, research on novel antivirals should also be a 615	

priority for research funding and pharmaceutical companies. As long as this is not the case, 616	

government funding and research in government-funded laboratories in collaboration with 617	

specialized university research groups organized in antivirals platforms have to step into 618	

the breach, when considerations of market performance and public health priorities are 619	

focusing resources elsewhere. 620	
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