
Journal Pre-proofs

Breaking through the selectivity-permeability tradeOFF using nano zeolite-Y
for micellar enhanced ultrafiltration dye rejection application

Shaheen Fatima Anis, Boor Singh Lalia, Raed Hashaikeh, Nidal Hilal

PII: S1383-5866(20)30428-7
DOI: https://doi.org/10.1016/j.seppur.2020.116824
Reference: SEPPUR 116824

To appear in: Separation and Purification Technology

Received Date: 26 January 2020
Revised Date: 4 March 2020
Accepted Date: 7 March 2020

Please cite this article as: S. Fatima Anis, B. Singh Lalia, R. Hashaikeh, N. Hilal, Breaking through the
selectivity-permeability tradeOFF using nano zeolite-Y for micellar enhanced ultrafiltration dye rejection
application, Separation and Purification Technology (2020), doi: https://doi.org/10.1016/j.seppur.2020.116824

This is a PDF file of an article that has undergone enhancements after acceptance, such as the addition of a cover
page and metadata, and formatting for readability, but it is not yet the definitive version of record. This version
will undergo additional copyediting, typesetting and review before it is published in its final form, but we are
providing this version to give early visibility of the article. Please note that, during the production process, errors
may be discovered which could affect the content, and all legal disclaimers that apply to the journal pertain.

© 2020 Published by Elsevier B.V.

https://doi.org/10.1016/j.seppur.2020.116824
https://doi.org/10.1016/j.seppur.2020.116824


1

BREAKING THROUGH THE SELECTIVITY-
PERMEABILITY TRADEOFF USING NANO 
ZEOLITE-Y FOR MICELLAR ENHANCED 
ULTRAFILTRATION DYE REJECTION 
APPLICATION

Shaheen Fatima Anisa, Boor Singh Laliaa, Raed Hashaikeha*, Nidal Hilala, b*

a NYUAD Water Research Center. New York University Abu Dhabi, P.O. Box 129188, Abu Dhabi, 

United Arab Emirates
b Centre for Water Advanced Technologies and Environmental Research (CWATER), College of 

Engineering, Swansea University, Fabian Way, Swansea SA1 8EN, United Kingdom

a,b*Corresponding author: Centre for Water Advanced Technologies and Environmental Research 

(CWATER), College of Engineering, Swansea University, Fabian Way, Swansea SA1 8EN, United 

Kingdom. Email: n.hilal@swansea.ac.uk. Tel: +971-6284000

a* Corresponding author: NYUAD Water Research Center. New York University Abu Dhabi, P.O. 

Box 129188, Abu Dhabi, United Arab Emirates. Email: raed.hashaikeh@nyu.edu Tel: +971 2 

6284626

mailto:n.hilal@swansea.ac.uk
mailto:raed.hashaikeh@nyu.edu


2

Abstract

Membrane performance is a region of growing research interest, where new functional 

nanomaterials are continually sought. In this study, nano zeolite type Y was prepared through a 

unique ball milling process. The produced zeolite has a high surface area, and abundant flow 

channels with a well-defined pore structure facilitating water passage, but at the same time 

restricting the passage of contaminants through the molecular sieving effect.  Polysulfone (PSf) 

membranes were prepared through phase inversion with nano-Y loadings from 0.2 to 1.5 wt. %. 

Membranes were characterized for their structure, morphology, thermal stability and porosity. 

The developed membranes were tested for micellar enhanced ultrafiltration (MEUF) cationic dye 

rejections. The addition of nano-Y zeolite affected both the flux and dye rejection of the 

membranes. Optimum performance was obtained at 0.4 wt. % nano-Y loading, giving a rejection 

of 99.5% and a corresponding flux of 105 L.m-2.h-1. The static contact angle measurements 

indicate that membrane hydrophilicity increased with progressive nano-Y additions until 0.4 wt. 

%, after which the membrane showed no further change in hydrophilic character. The obtained 

effects of nano-Y addition on membrane performance was attributed to the well-connected 3-D 

microporous structure in which nano-Y zeolite provided preferential water pathways though 

nanoporous hydrophilic channels.  Whereas, the high dye rejection was attributed to the fact 

that nano-Y zeolite is negatively charged and, as a result, provided resistance to the negatively 

charged micelles, and further restricted its passage through the microporous zeolite structure.

Keywords: Ultrafiltration; micellar; nano-zeolite; dye rejection; phase inversion
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1. INTRODUCTION

Membrane based, pressure driven  filtration processes  are important tools for water treatment 

[1]. UF is one such process in which membranes have pore diameters ranging from about 0.1 µm 

to 0.01 µm. This makes the process attractive for removing a range of viruses, dyes, large 

proteins, and other several industrial contaminants for wastewater treatment. Micellar-

enhanced ultrafiltration (MEUF) is one such UF technology which utilizes a surfactant-based 

separation technique to remove industrial contaminants such as ions, organics, dyes and other 

pollutants [2]. MEUF allows the rejection of low molecular weight contaminants to be rejected 

by an ultrafiltration membrane through molecular weight enlargement using surfactants. 

Surfactants are amphiphilic molecules which consist of a hydrophilic head and a hydrophobic 

chain. The dissolved contaminant can get trapped by the surfactant micelles through charge 

attraction and thus solubilize in in the micelle interior. This increases the hydrodynamic size of 

the contaminant which can then be easily rejected by the membrane.  MEUF provides an 

advantage over NF and conventional UF, where membranes with larger pore diameter can reject 

low molecular weight contaminants with less pressure and energy requirements. In addition, 

MEUF is known to reject molecules even at lower concentrations as the solute can bind to the 

surfactant owing to ionic interactions. The technique finds great potential in the removal of 

organic dyes from colored effluent. The environmental effects are dominated by the liquid waste 

produced by textile, paper and plastic industries [3], where pretreatment of rejected streams 

becomes essential before discharging them into the sea. 
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Many of the existing UF membrane materials are limited with their inherent properties rendering 

low selectivity and permeability for these membranes [4]. Thus, membrane modification has 

emerged as a topic of great research interest [5], whereby many of the existing UF membrane 

materials such as polysulfone (PSf) and Polyvinylidene fluoride (PVDF) have been modified either 

by incorporating hydrophilic polymers [6] or through functional nanomaterials [7, 8]. With 

nanotechnology development, several functional nanomaterials have emerged for this 

application including  alumina [9], silica [10], zinc oxide [11], titanium dioxide [12] and zeolites 

[13]. These have been reported to improve membrane hydrophilicity [14],  thermal stability [15], 

and antifouling properties [4]. Nevertheless, limitations arise when either the selectivity or 

membrane permeability have to be compromised. A tradeoff between the two is often 

encountered. Zeolites represent one such class of materials which hold immense potential in 

breaking this tradeoff. 

Zeolites are crystalline aluminosilicates which have a well-defined inorganic structure [16]. The 

channels and pores act as molecular sieves, hence rendering it attractive for rejection of several 

species through the size exclusion principle. In addition, the negative charge associated with the 

alumina makes it favorable for absorbing ions with opposite charge. Majority of the reported 

studies for UF membrane utilize nano-zeolite with a low Si/Al ratio [4, 13]. Han et al. [13] reported 

zeolite NaA/ poly (phthalazinone ether sulfone ketone) composite UF membranes prepared 

through the phase inversion process, for the removal of Titan Yellow dye solution. A 3 wt.% NaA 

content gave the optimum membrane performance, with improved hydrophilicity, water 

permeability, antifouling property and enhanced dye rejections. A higher content caused 

nanoparticle agglomeration as concluded from their microscopic studies. Yilmaz Yurekli [14] 

impregnated zeolite NaX (from 1 to 10 wt.%) into PSf membranes through the phase inversion 
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technique for heavy metal removal from wastewater. They reported an initial decrease in 

membrane contact angle from 69o to 67o with zeolite loadings from 1-5 wt.%. However, an 

increase in contact angle ˃80 o was recorded for higher NaX additions of 10 wt. %, due to surface 

void formations. The performance of the hybrid membrane was determined under dynamic 

conditions, which gave better rejections for lead, compared to smaller metallic ions such as 

nickel. Nevertheless, the low Si/Al ratio is reported to have more defects in the form of grain 

boundaries compared to high Si/Al ratio zeolites, resulting in low selectivity [17]. Several other 

studies report the usage of low Si/Al ratio zeolites for UF membranes [4, 18, 19]. However, high-

silica zeolites have been found to be more effective for removing organic pollutants from various 

industrial wastes  [20]. In addition, the high Si/Al ratio influences the silanol (Si-OH) groups which 

can adsorb water by forming stable adducts [20]. 

Faujasite (FAU) type zeolite such as zeolite-Y has been reported  to be a potential candidate for 

many membrane based applications [21, 22]. It possesses inter-crystalline pores which form a 

3-D channel system facilitating preferential water pathways.  FAU structure has a high pore 

volume, 12-memberd ring structure, hence, even with a high Si/Al ratio, it shows favorable water 

transport properties compared to other zeolite structures which have similar Si/Al molar ratios 

[20] . Direct production of zeolite-Y with a high Si/Al ratio is restricted due to unfavorable 

hydrothermal synthesis route [23]. Following  this limitation, Bota el al. [23] reported the 

production of zeolite-Y nanoparticles (nano-Y) from commercial micron sized particles through 

the ball milling approach. Ball milling processing parameters were optimized for producing highly 

crystalline nano-Y particles which showed promising performances in various applications [24, 

25]. Recently, our group reported the use of nano-Y for desalination, where incorporation of 
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nano-Y in reverse osmosis membranes resulted in increased flux and salt rejections compared to 

other zeolite type such as zeolite-LTL [26]. In the present study, we assess embedding nano-Y in 

PSf UF membranes and the resulting performance for MEUF dye rejection. Nano-Y, due to its 3-

D structure and well-ordered microporous channels seems a promising for such an application 

where high flux is desirable. In addition, the highly negative charge of the nano-Y can contribute 

towards better rejection of the dye molecules. Thus, this work aims to study the effect of nano-

Y on UF membranes for improved performances. 

2. EXPERIMENTAL

2.1 Materials 

The following chemicals were purchased from Sigma Aldrich: polyvinylpyrrolidone (PVP) (Mw 

=135,000 g.mol-1), PSf pellets (Mw=35,000 g.mol-1), n-Methyl-2-Pyrrolidone (NMP), ethanol, 

methanol, surfactant sodium dodecylbenzenesulfonate (SDS) (Mw=348.48 g.mol-1), and crystal 

violet dye (CVD) in the powder form (Mw=407.98 g.mol-1). Zeolite-Y (CBV 720) was purchased 

from Zeolyst International, while carbon nanostructures (CNS) were obtained from Applied 

Nanostructured solutions LLC.

Zeolite nano-Y was obtained by ball milling using an E-max high energy ball mill machine from 

Retsch, Germany using the method reported in [23]. In brief, micron-Y zeolite, obtained from 

zeolyst was used along with CNS in the weight ratio of 3:1 respectively, while the solvents ethanol 

and deionized water (DI) ratio was kept as 1:1. They were grinded in zirconia jars using zirconia 

balls of 2 mm diameter. Ball milling was carried out at 1000 rpm for 1 h, after which the samples 
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were centrifuged (Multifuge X3R, Thermo Scientific) at 4000 rpm for 10 min. This enabled 

separation of nano-Y from the solvents. The bottom part was collected as detailed in [23]. The 

nano-Y/CNS mixture was then dried at 80 °C overnight, following calcination at 610 °C for 5 h 

(Nabertherm 400-1 series furnace).

2.2 Nano zeolite/PSf membrane preparation

UF membranes were fabricated via the wet phase-inversion method [27]. A semi-automatic 

casting machine (PMI Porous Materials Inc. Model BT FS- TC) was used for this purpose. The 

polymer dope solution was cast on a glass plate using a constant shear rate of 200 s–1, with a 

casting blade thickness kept constant at 150 µm. After casting, the glass plate was immediately 

transferred to a DI water bath at room temperature to induce polymer precipitation. The bath 

water was changed after 1h, and the membranes were left in the new DI water bath for 24 h. 

Subsequently, the membranes were immersed in methanol for about 6 h, to ensure complete 

removal of the excess solvent.  They were then stored in DI water until further testing. 

For the polymer dope solution, PVP was first allowed to dissolve in NMP at 50 °C. PVP, a water 

soluble polymer is used in this study as a pore-forming agent which increases membrane 

porosity, similar to reported in [28, 29]. Following this, PSf was added to the solution, which was 

magnetically stirred overnight at 50 °C. Figure 1 shows the membrane preparation steps through 

a schematic. The effect of nano-Y concentration was studied by varying its concentration from 

0.2 wt.% to 1.5 wt.% in the NMP solvent. Nano-Y/PSf membranes were prepared in a similar 

fashion to PSf membranes, except that nano-Y zeolite nanoparticles were dispersed in NMP using 

ultrasonication (Q Sonica Ultrasonic Processor) before dissolving PVP in the nano-Y-NMP 
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dispersion.  In all cases, PSf and PVP concentration was fixed at 15 wt.% and 10 wt.% respectively. 

Membranes with varying nano-Y concentrations were defined as highlighted in Table 1.

Figure 1: Schematic of membrane preparation

Table 1: Composition of Nano-Y/PSf casting solutions of the membranes from M0 to M1.5 

Membrane PSf (wt. %) PVP(wt. %) Nano-Y(wt. %) NMP (wt. %) Total (wt. %)
M0 15 10 0 75.0 100
M0.2 15 10 0.2 74.8 100
M0.4 15 10 0.4 74.6 100
M0.6 15 10 0.6 74.4 100
M1.0 15 10 1.0 74.0 100
M1.5 15 10 1.5 73.5 100

2.3 Characterization
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Prior to membrane characterization, all membranes were air dried. Structural integrity of zeolite 

nano-Y and nano-Y/PSf membranes were studied through X-ray diffraction (XRD) (Panalytical 

Empyrean diffractometer). Ni-filtered CuKα (λ=1.5056 Å) radiations were used, with a voltage of 

40 kV and a current of 30 mA in the 2–40° half angle range. Surface chemistry of the membranes 

were determined   by attenuated total reflectance Fourier transform infrared spectroscopy (ATR-

FTIR) (iDT ATR- Nicolet iS5 Spectrometer) over the range from 4000-650 cm-1. Before analysis, 

the samples were air dried followed by vacuum drying over night at 40 °C to remove moisture. 

The zeta potential of micro-Y CBV 720 particles and ball milled nano-Y particles was measured by 

dynamic light scattering (Nano ZS Zetasizer, Malvern Instrument) using a DTS1070 disposable 

cell. The measurements were carried out using dilute aqueous colloidal suspensions of the 

particles, 0.01 wt. % in DI water. 

Membrane morphology was studied using scanning electron microscopy (SEM) (FEI Quanta 450 

FEG) at 10 kV. Before viewing the sample under SEM, all samples were gold coated (108 Auto 

Sputter Coater, Ted Pella). Membrane composition was qualitatively analyzed using energy 

dispersive spectroscopy (EDS) integrated with SEM. In order to examine the morphology of 

zeolite nano-Y, transmission electron microscope (FEI TEM Talos F200X) was used. TEM sample 

was prepared by dispersing zeolite nanoparticles in ethanol and putting a droplet of that 

dispersion onto a carbon coated copper grid. 

Nano-Y and nano-Y/PSf membrane surface area was determined through Brunauer–Emmett–

Teller (BET) analysis (NOVA®4200e Quantachrome Instruments) in a relative pressure of 

P/Po = 0.05–0.30, while the pore size distribution was obtained using the Barrett–Joyner–
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Halenda (BJH) method. Membrane porosity was measured by using a wetting liquid 

(Silwick™; surface tension = 22.1 dynes.cm-1) whereby dry and wet (membrane pores filled with 

silwick) membrane weights were measured following a procedure similar to described in [30]. 

Three measurements were made and their average was recorded.

Contact angle measurements (Kruss Drop Shape Analyzer-DSA 100) were taken to examine the 

wettability of the membrane surface to water. 2 μL DI water droplets, with sessile drop technique 

was utilized. Contact angle was evaluated through an image processing software, ADVANCE using 

the tangent method. Five measurements were taken for each membrane, and an average was 

calculated in the end. 

Thermal characteristics of the membranes were studied through thermogravimetric analysis 

(TGA) (TG 209 Tarsus, NETZSCH) and differential scanning calorimetry (DSC) (DSC 214 Polyma, 

NETZSCH). The samples were dried under vacuum at 40 °C overnight before the measurements. 

Sample mass (≈5 mg) was placed in an alumina crucible to study its thermal degradation behavior 

using TGA at a heating rate of 10 °C.min-1 from room temperature to 950 °C under a nitrogen 

flow of 20 mL/min. Glass transition temperature (Tg) of the membranes was evaluated using DSC 

whereby a sample of known mass (≈5 mg) was placed in an aluminium pan next to an empty 

reference pan. The pans were heated under nitrogen flow of 20 mL/min at a rate of 10 °C.min-1 

from room temperature to 500 °C. 

2.4 Ultrafiltration Testing

All filtration experiments were carried out using a laboratory-scale crossflow cell setup (UF 

system Hydra model, Convergence Inspector). Each time, a fresh membrane (immersed in DI 

https://www.sciencedirect.com/topics/materials-science/surface-tension
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water) was used and then placed in a filtration cell with an effective area of 40 cm2. Feed pressure 

and feed flow rate were controlled and monitored through the software. In all experiments, a 

constant feed flow of 10 L.h-1 was used. 

PWF studies for M0 to M1.5 membranes were carried out at constant pressures of 2, 4 and 6 bar. 

Flux was calculated for a known interval of time using the following equation:

 Equation 1Jw =
𝑽(𝒕)

𝑨

Where, Jw (L.m−2.h−1) is the pure water flux, and V(t) is the volume per hour of permeate collected 

for 30 min using a membrane of area A (m2). V(t) was read directly from the software.

In the present study, anionic surfactant, sodium dodecylbenzenesulfonate (SDS), is used for the 

MEUF experiments. The solution for UF experiments was prepared as follows: SDS was first 

dissolved in DI water, after which crystal violet dye (CVD) was dissolved at a concentration of 20 

mg. L−1. The concentration of SDS was chosen above its critical micellar concentration (CMC) of 

2.78 mM  [31] and fixed at 8.2 mM to prepare all the feed solutions. The pH of the solution was 

determined to be 8.1. Permeate flux was calculated at a trans membrane pressure of 6 bar, using 

equation 1. After each run, the cell and the tubing were thoroughly flushed with DI water. 

The following equation was used to measure CVD rejection: 

  Equation 2%𝐑 =  (𝟏 ―  
𝐂𝐩
𝐂𝐟) × 𝟏𝟎𝟎
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Where %R is the dye rejection and, Cp and Cf (mg/mL) are the dye concentrations in permeate 

and feed solutions respectively. Concentration was measured using a spectro-photometer (UV–

3100PC, VWR) at wavelength of 582 nm.

Dye antifouling behavior was analyzed by measuring the flux recovery ratio (FRR), using the 

following equation,

  Equation 3𝐅𝐑𝐑 =  ( 𝐉𝐜
𝐉𝐰) × 𝟏𝟎𝟎

Where, Jw and Jc are the initial PWF (L·m−2·h−1) and the PWF after backwashing (L·m−2·h−1) of the 

membrane respectively.

The fabricated membranes were also tested for CVD dye rejection without the surfactant. Similar 

dye concentration of 20 mg. L−1 was tested at a pressure of 6 bar. Flux and rejection were 

calculated similar to the method adapted for CVD/SDS experiments.

3. RESULTS AND DISCUSSION 

3.1 Zeolite Nano-Y Characterization

Various techniques were used to characterize zeolite nano-Y for its structure, morphology, BET 

surface area and pore diameter.  Figure 2a shows the XRD pattern of zeolite nanoparticles 

produced through the ball milling approach.  All major peaks corresponding to zeolite-Y (2θ˂20°) 

were obtained [25]. The characteristic peaks of zeolite-Y obtained at 2θ values of 6.3°, 12.1°, 

15.9°, 20.7° and 24.1° corresponding to the respective planes at (111), (311), (331), (440) and 

(533) confirmed that the ball milling method did not bring about any structural change in the 

zeolite nanoparticles. The morphology of the nanoparticles as studied through TEM is shown in 
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Figure 2b.  Zeolite nanoparticles can be seen with a somewhat irregular structure due to 

mechanical grinding, with sizes less than 100 nm. This has also been reported [23, 25], where the 

same material produced through a ball milling approach produced similar results. Figure 2c shows 

the N2 adsorption/desorption curves, while the inset shows the pore size distribution of the 

zeolite nanoparticles. In particular, nano-Y displays type IV hysteresis loop which is common in 

mesoporous zeolites [32] possessing a bimodal pore size distribution. Recent studies [33] have 

detailed on the intracrystalline connectivity  between micro- and mesopores in zeolite-Y. The BET 

surface area was calculated to be 1324 m²/g, with the micropore diameter of the microporous 

zeolite centering at 2 nm. The difference in zeta potential for micro and nano-Y is shown in Figure 

2d. The more negative zeta potential of nano-Y of -36.6 mV when suspended in DI water implies 

its stability as a membrane additive. The negative zeta potential can be beneficial in repelling the 

anionic surfactant, while simultaneously attracting any positively charges insolubilized dye 

molecules (section 3.7.2).
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Figure 2: (a) XRD pattern,  (b) TEM image , (c) N2 adsorption/desorption curves with inset of 
BJH pore size distribution for zeolite nano-Y, and (d) Zeta potentials for micro-Y and nano-Y 

particles.

3.2 Effect of Nano-Y on Membrane Structure 

Figure 3a shows the XRD patterns for neat PSf and nano-Y/PSf membranes. An amorphous PSf 

structure was obtained as evident from the broad diffraction peak at 2θ value of approximately 

17° (Figure 3b). M0.2 and M0.4 showed similar XRD patterns to the neat PSf membrane. No 

zeolite peaks were detected in low nano-Y concentrations, indicating good dispersion of the 

nano-Y within the PSf. Similar observation has been reported in [26, 34], where no XRD peaks 
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were obtained for phases with low concentrations. With an increase in nano-Y wt.%, above 0.6 

wt. %, characteristic peaks of zeolite-Y were registered at 2θ values of 6.3° and 12.1°, highlighted 

by the arrow in Figure 3c. M1.5 showed slight peak broadening indicating that the incorporation 

of nano-Y (and more possibly its agglomeration) within the PSF matrix may have caused polymer 

chain disorder. 

Surface chemistry of neat PSf and nano-Y/PSf membranes were determined by FTIR–ATR. FTIR 

allowed the identification of several functional groups present in the membrane. Spectra of PSf 

and nano-Y/PSf membranes in the range from 650 to 4000 cm−1 are shown in Figure 4a, while 

Figure 4b shows the same spectra in a range from 650 to 2000 cm−1 for a clear band identification. 

There is an obvious broad band at 3500 cm-1 (Figure 4a)  corresponds to –OH. Characteristic bands 

of PSf were registered; 2970 cm−1 1585 cm-1, 1241 cm-1 and 1000-1250 cm-1 corresponds to -CH 

stretching, benzene stretching, C-O-C stretching and --S=O functional groups respectively. Figures 

4(c-d) show FTIR spectra of nano –Y. The characteristic bands of Si-O and Al-O in the 1100–950 

cm−1 range can be clearly observed in Figure 4d. These bands might be considered to be 

overlapped with the C-O stretch band in Figure 4b.
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Figure 3: XRD patterns for (a) Membranes M0 to M1.5 (b) Membrane M0 and (c) Membrane 
M1.5
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Figure 4: FTIR-ATR spectrums for neat (a-b) PSf and nano-Y/PSf membranes (c-d) nano Y 

3.3 Membrane Morphology

Membrane morphology evolution for membrane surface and its cross section was studied 

through SEM at different magnifications. Figure 5 shows SEM images for the membranes M0 to 

M1.5. The first column shows membrane’s top surface; the middle column depicts membrane’s 

bottom surface and the third column is a magnified image of the corresponding bottom image in 

the second column. The top SEM images for all membranes show a dense, more nodule-like 

structure, typical of a phase inversion process for a viscous dope solution. Strong interactions 

between zeolite nanoparticles and PSf due to zeolite’s high surface area and inter-hydrogen 
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bonding resulted in an increase in the casting solution viscosity giving dense top layers, and 

resulting in membranes with smaller pores. In addition, the phase inversion process usually slows 

down and the spinodal de-mixing may be the cause of the formation of a dense, selective top 

layer,  similar to reported in [18]. Zeolite nanoparticles become more visible on the membrane’s 

top surface with increasing nano-Y loading. For M1.0 and M1.5, zeolite nanoparticles were seen 

to be agglomerated more densely compared to the other membranes. This also hints towards 

poor contact between the polymer matrix and the nano-Y, where most of the nanoparticles is 

not embedded within the polymer, producing void defects and thus lowering the membrane’s 

performance. The bottom surface of the membranes as shown in the SEM images of the second 

column reflect a porous structure. Again, this is typical of a phase inversion process, producing 

an asymmetric membrane structure, with a dense selective layer on top, and a porous sub layer 

on the bottom. The third column showing magnified bottom SEM images clearly shows the well-

connected membrane pores. Again, nanoparticle agglomeration is visible for higher nano-Y 

concentrations beyond 0.4 wt.%, such as in M0.6 (Figure S1), where membrane pores can be 

clearly seen to be blocked by nano-Y. Pore blockage indicates the blockage of pores for water 

passage, hence reducing water flux (see section 3.7).

Figure 6 shows SEM images of cross-sections for the membranes M0 to M1.5. For M0 to M0.4, 

atypical cross-sectional microstructure was revealed by the images, where a sponge-like 

structure was formed, instead of finger-like pores.  Again, a dense top layer is clearly visible for 

the membranes, as also highlighted by the arrow in Figure 6a. During the phase inversion process, 

this skin layer limits the penetration of the non-solvent (DI water in this case) into the proceeding 

sublayers and thus prevents further nuclei formation. For low PVP concentrations, the growth 
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rate is fast and macrovoid formation is inevitable. However, for a high concentration and 

molecular weight of PVP such as that used in this study, the growth rate slows down leading to a 

thick, dense top layer. Hence, the slow diffusion rate of the solvent plays a dominant role in this 

case, leading to a more sponge-like structure rather than finger-like pores. For most part of the 

membrane, a sponge-like structure was obtained indicating enough nuclei formation to suppress 

the macrovoids. Matsuyama et al. [35] have reported these structures for PSf and PVP 

concentrations of 15wt.% and 10 wt.% respectively. Kang and Lee [36] have reported similar 

findings where finger-like structures were suppressed by addition of a  high molecular weight 

PVP porogen during polyacrylonitrile membrane formation. This phenomenon is only possible for 

dope solutions made from high polymer concentrations with high molecular weights, which 

would avoid the diffusion exchange rate of solvent and non-solvent in the membrane sub-layer, 

thus slowing the precipitation rate of the sub-layer, while encouraging fast phase separation in 

top layer. 

Interestingly, membrane morphology was observed to change with progressive nano-Y additions 

for membranes M0.6 to M1.5 (Figures 6d-f).  Membrane cross-section changed from a sponge-

like structure to where macrovoid formation was evident. Usually, with nano zeolite additions, 

macrovoids in the sublayer have been reported to become more obvious [13] due to the 

hydrophilic nature of the nano-Y. During phase inversion, as soon as the membrane is immersed 

in the water bath, nano-Y would strongly adsorb water due to its strong interaction with it, 

leading to instantaneous liquid-liquid demixing. Thus, even with high polymer concentration 

solutions, a high content of nano-Y could produce macrovoids in the sublayer. Nevertheless, 

sponge-like structures have been reported to have a positive impact on separation mechanisms 



20

involving large molecular weight contaminant molecules [37] compared to  sublayers involving 

finger-like or macrovoids. 

For low nano-Y concentrations, such as in M0.2 and M0.4, zeolite nanoparticles were seen to be 

uniformly distributed within the membrane’s structure. Figure S2 confirms the presence of nano-

Y through SEM-EDS for M0.2, where the different EDS spectra in Figure S2b corresponds to the 

EDS spots in Figure S2a. Figure 7a shows the cross sectional image of M0.4 at a higher 

magnification than Figure 6c, where nano-Y can be observed to be located at the mouth of the 

pores, however, no pore blockage can be observed. Figure 7b confirms the presence of the nano-

Y particles through SEM-EDS analysis where the zeolite nanoparticles were detected at the pore 

entrances. The dashed boxes highlight the nano-Y situated at the abundant pore mouths. A weak 

Si and Al signal in this case can be due to the well dispersed nanoparticles present within the 

matrix, unlike in Figure S1 where strong signals were registered due to agglomeration.  With high 

nano-Y loadings, nanoparticle agglomeration comes into effect which eventually again increases 

the top layer, slowing down the de-mixing effect. Figure S1b shows the cross-sectional SEM image 

of M1.5 where the dotted boxes indicate nano-Y agglomeration, and the corresponding EDS 

spectrum confirms the zeolite presence for the EDS spot indicated on the figure highlighted 

within the dotted box. Agglomeration is common issue with zeolite nanoparticles [24], owing to 

their  high surface energy of the particles, they tend to cluster and hence this causes a limitation 

in their effective surface area. 

Both, the top selective layer, and the porous sub layer hold significant roles in selectivity and 

water transport property. SEM analysis on nano-Y/PSf membranes revealed that zeolite 

nanoparticles were embedded both in the selective layer, as well as throughout with membrane 
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thickness, indicative of fast flow paths formed within the nano-Y nano channels and the whole 

membrane structure.
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Figure 5: SEM images of top, bottom and magnified bottom for (a) M0, (b) M0.2, (c) M0.4, (d) 
M0.6, (e) M1.0, and (f) M1.5 membranes.
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Figure 6: Cross-sectional images for membranes (a) M0, (b) M0.2, (c) M0.4, (d) M0.6, (e) M1.0, 
and (f) M1.5 (inset scale= 5µm).
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Figure 7: (a)Cross-sectional SEM image of M0.4 showing uniform nano-Y distribution, and (b) 
Cross-sectional SEM image of M0.4 at a higher magnification confirming the presence of nano-Y 
through EDS spectrum corresponding to the EDS spot 1 on the image. The dotted boxes highlight 
the presence of nano-y at the pore mouths.

3.4 Membrane Porosity and Pore Size

The variation in membrane porosity with progressive zeolite loading is shown in Figure 8. M0 

gave a porosity of 86 %, which was seen to increase with nano-Y additions. Membranes M0.2 to 

M1.5 gave similar porosities of about 90% within the error range. Porosity increment with nano-Y 

addition may be attributed to the hydrophilic effect of nano-Y which expedited the solvent and 

non-solvent exchange during the phase inversion process. Wang et al. [38] has reported a similar 

observation with their PVDF membranes. 
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Figure 8: Variation in membrane porosity with nano-Y addition

BET method was used to characterize the surface area and pore size distribution in the 

membranes. Figure S3 shows N2 adsorption/desorption isotherms of the membranes from M0 

to M1.5 in the relative pressure (P/Po) range of 0.05 to 0.99. The BET surface area for M0, M0.2, 

M0.4, M0.6, M1.0 and M1.5 was found to be 19, 23, 28, 34, 30 and 34 m2/g respectively. A gradual 

increase in BET surface area was observed with nano-Y addition. Zeolite loadings used in this 

study are quite low and hence an enormous effect in surface area variation is not evident with 

such low loadings where the host polymer is in high concentration, hence defining the major part 

of the surface area. 

Pore size distribution of the membranes was calculated using the BJH-model. The average pore 

size of neat PSf was found to be around 8 nm, with pore radius range from 2 to 50 nm. Such small 
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pore sizes are consistent with literature where 15 wt.% PSf and 10 wt.% PVP concentrations were 

used to fabricate UF membranes [39]. With such a dope composition, the membrane’s surface 

becomes denser and less porous, as also attributed from the SEM images (section 3.3). Pore radii 

in all other membranes with nano-Y additions were found to be in similar range as PSf, with pore 

radii peaking at 2 nm and 15 nm.. Addition of nano-Y did not significantly alter the mean pore 

diameter of the membrane. Uniform nanoscale dispersion of zeolite nanoparticles in dope 

solution lead to small size nodules, resulting in small average pore sizes. However, the pore size 

distribution was seen to slightly change for high nano-Y loadings. M1.5 showed an enhanced 

%distribution, where most of the pores were in two ranges; 1.5-2 nm and 10-15 nm. The pore 

size range clearly shows a mesoporous membrane character, as also evident by the shape of the 

BET curves. 

3.5 Membrane Wettability

Addition of zeolite nano-Y brought about a change in the membrane’s surface properties in terms 

of its hydrophilic behavior. Figure 9 shows the variation in water contact angle of PSf and nano-

Y/PSf membranes. Neat PSf membrane showed a contact angle of 73.4o. Similar contact angles 

for PSf membranes have been reported in the literature [4, 14]. A decrease in contact angle from 

73.4o to 64.2o and 54.5o was registered with progressive zeolite nano-Y addition of from 0.2 wt. 

% to 0.4 wt. %. The embedment of nano-Y into PSf bulk due to hydrogen bonding interaction 

between the sulfonic group of PSf and –OH group in zeolite [18] gave better hydrophilicity for 

M0.2 and M0.4 membranes. This improved hydrophilicity is suggestive to improve water flow 

through the membranes and hence reduce water flow hindrance along the membrane. A vast 

10o difference in contact angle between M0 and a slight nano-Y addition of 0.2 wt.%, and then 
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0.4 wt.% nano-Y is apparently due to the well-dispersed zeolite within the polymeric matrix as 

also highlighted in section 3.3. In addition, the high SiO2/Al2O3 ratio of 30 used in this study 

usually produced an pronounced effect on membrane hydrophilicity as also reported [26, 40]. 

Almost a constant contact angle was observed after 0.4 wt.% nano-Y addition. Thus, a further 

increase in nano-Y did not bring about a significant decrease in contact angle. 
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Figure 9: Water droplet contact angles for neat PSf and nano-Y/PSf membranes.

3.6 Thermal Stability

Thermal behavior of the membranes, M0 to M1.5 were studied through DSC and TGA methods. 

DSC was used to help us identify any difference in Tg on addition of nano-Y loadings. Tg is 

indicative of the measure of the degree of rigidity of the polymer chains. As Tg is not a fixed value, 
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but rather a range, Table 2 shows the range of Tg values (its onset, middle and end) for the 

membranes synthesized, while Figure 10 shows the DSC curves from 100°C to 250°C temperature 

range, from which these Tg values were obtained. The black dots on the DSC curves correspond 

to the middle Tg values for each respective membrane. The bare PSf membrane showed a Tg of 

185.8 °C. Similar values have been reported in the literature for PSf membranes [18]. The range 

in Tg for each membrane (Tg end-Tg onset) narrowed down from M0 (6.7°C) to M0.4 (5.5 °C), after 

which it again increased, with M1.5 showing a wide range in Tg of about 10°C. A clear decreasing 

trend in Tg can be observed on progressive nano-Y loadings, indicating lower thermal resistance. 

Hence, this indicates that the polymer transition from glassy to rubbery zone is occurring at a 

lower temperature. Hence, with the addition of nano-Y, a more flexible conformation 

rearrangement of PSf macromolecules chains occurred. Nevertheless, the decrease in the Mid Tg 

from M0 to M0.4 membranes is not drastic, but only of a few degrees≈ 5 °C. However, higher 

nano-y loadings such as those in M1.5 showed a much lower Tg compared to PSf, decreasing from 

185.8 °C to 174.7 °C. Above room temperature process during dyeing in textile industries usually 

generates high temperature wastewaters [41]. Thus, membranes with lower Tg, such as those 

with high zeolite loadings become less resistance to such processes for treating dye wastewaters. 

Lower Tg ˂140 °C with other zeolite types have been reported in the literature. 

Figure S4 shows the TGA curves for the membranes from M0 to M1.5. Neat PSf membranes start 

to lose weight at around 450 °C, which remained almost the same for all the other membranes, 

thus indicative of PSf’s thermal decomposition. Zeolites on the other hand is thermally stable up 

to high temperatures above 1000 °C. Hence, from the DSC and TGA studies, it was concluded that 

nano-Y addition did not significantly alter the thermal properties of PSf membranes, especially at 
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lower zeolite loadings. While the thermal decomposition behavior of nano-Y/PSf membranes 

showed no obvious change compared to bare PSf, the Tg for higher zeolite loadings gave much 

lower values, deeming the material unsuitable for UF dye application with high wastewater 

temperatures.

Table 2: Onset, Mid and End Tg for M0 to M1.5 membranes 

Membrane Tg Onset (°C) Tg Mid (°C) Tg End (°C)
M0 182.4 185.8 189.1

M0.2 177.8 180.8 184.6
M0.4 178.0 180.6 183.5
M0.6 177.5 183.4 183.6
M1.0 176.3 179.2 183.1
M1.5 170.8 174.7 180.3

Figure 10: DSC graphs from M0 to M1.5 membranes, with the black dots highlighting the Mid Tg 
for each membrane.
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3.7 Ultrafiltration Performance

Pure water flux for the membranes M0 to M1.5 for testing pressures 2, 4 and 6 bars is shown in 

Figure S5. All membranes showed an almost linear increase in flux with applied pressure, 

consistent to several previous studies [37, 42]. For a fixed feed concentration, the effective 

driving force for solvent transport increases with increase in pressure. The driving force 

overcomes the membrane resistance hence forcing more water to pass through the membrane 

with for higher pressures. The pure water flux for M0 increased from 100±5 L.m-2.h-1 at 2 bars to 

254±3.5 L.m-2.h-1 at 6 bars. On addition of nano-Y, water permeation of the membrane was 

improved, as shown by increased PWF for the nano-Y/PSf membranes. With increasing nano-Y 

content, the PWF flux increased to 525±5 L.m-2.h-1 for M0.4. This was almost double than the 

initial water flux obtained for neat PSf membrane. This pattern of increasing flux for nano-Y has 

also been reported in [26] for RO application. The maximum water flux was obtained for M0.4 

which might be due to the uniform nano-Y distribution throughout the membrane thickness. The 

micro- and nano-channels in zeolite facilitates easier flow of water molecules when present at 

the mouth of the pores. Beyond 0.4 wt. % nano-Y, flux was observed to gradually decline reaching 

a minimum of 150 L.m-2.h-1 at 6 bar for M1.5. The decrease in flux might be attributed to pore 

blockage due to nanoparticle agglomeration (Figure S1). As the membrane surface is the first 

place to come into contact with the non-solvent phase, the migration of zeolite nanoparticles to 

the top is apparent, and leads to accumulation of nano-Y on membrane’s surface posing 

hindrance to the water passage. Similar decrease in PWF with high nano zeolite loadings have 

been reported for UF membranes by Moradihamedani and Abdullah [19] and Han et al. [13].
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To study the effect of nano-Y addition on CVD dye rejection and corresponding permeate flux, all 

membranes were tested for MEUF experiments at a similar pressure of 6 bar. Surfactant-dye 

interactions have been reported in the literature [43, 44] where spectral studies have concluded 

the importance of  both electrostatic and hydrophobic forces between ionic dyes and ionic 

surfactants. In this study, the negatively charged SDS and the positively charged CVD dye interact 

with each other to form micelles, hence facilitating dye rejection for the small size CVD 

molecules. Figure 11a shows the variation in permeate flux with increasing nano-Y percentage. 

Much lower permeate flux values were obtained compared to the PWF. This is because the 

micelles formed during the dye-surfactant interaction are big in size and hence get accumulated 

on the membrane’s surface consequently resulting in a higher surfactant concentration over 

there. Studies by Sharma and Purkait have reported analogous observations regarding 

concentration polarization [29]. An initial permeate flux of 60 L.m-2.h-1 was obtained for M0, 

which showed a gradual increase to 90 L.m-2.h-1 and 105 L.m-2.h-1 for M0.2 and M0.4 respectively. 

Nano-Y is a FAU zeolite having a 3-D channel structure which provides a high water permeability 

compared to other 1-D zeolite structures such as LTL [26]. Its internal porosity forms preferential 

water pathways, hence enhancing the water permeability through the zeolite. However, the flux 

abruptly dropped to 40 L.m-2.h-1 for M0.6 and M1.0 membranes, reaching a minimum of 30 L.m-

2.h-1 for M1.5. Membrane hydrophilicity and morphology are important factors governing 

membrane permeability and selectivity. The trend in flux decrease is similar to what was 

observed for PWF owing to pore blockage by the nanoparticle aggregates. Apart from 

agglomeration within the membrane structure, the aggregates formed on the membrane’s 

surface also contribute to flux decline by forming an additional resistance layer. Thus, even with 

an increased membrane hydrophilicity, the effect of facial pore blockage comes into play leading 
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to reduced membrane performances. Nevertheless, the obtained flux values in this study for dye 

rejection is greater than those reported in the literature (Table 3). Interestingly, the initial 

permeate flux for the bare PSf membrane for CVD rejection was also higher than those reported 

previously, mostly owing to the high porosity and membrane morphology obtained for the 

present membranes. Nevertheless, similar permeate fluxes have been reported for another 

zeolite/PSf membranes for other contaminant rejections such as Bovine serum albumin [18].

Figure 11b shows CVD rejection for MEUF experiments. M0 gave a rejection of around 60%, which 

increased with progressive nano-Y addition to 88% and 99.5% for M0.2 and M0.4 respectively. 

The rejection obtained by M0 in this study is quite high for an UF membrane, and thus can be 

attributed to the membrane’s tighter structure and the fact that the dye molecules were 

solubilized on the surfactant micelles and hence retained by the UF membrane. Only a small wt. 

% of nano-Y was sufficient to enhance the UF performance, unlike several of the previous studies 

which report high zeolite loadings for optimum performances [13, 19]. Figure 12 shows a 

schematic of the various possible dye-membrane interactions which can occur. Globular micellar 

sizes for SDS have been reported to be around 2.5nm with an aggregation number of 70 [45] 

which defines the number of molecules present in a micelle once CMC has been reached. Thus, 

the UF membranes rejects the surfactant micelles through the size exclusion principle, and hence 

does not let the bigger, aggregated molecules pass through the membrane pore. In addition, the 

nano-Y situated on the pore entrances blocks the micelles from entering the membrane pores as 

the zeolite micro- and mesopores are smaller than the dye molecules. A uniform distribution of 

nano-Y in M0.4 accounted for a high dye rejection of 99.5%; apart from size exclusion, 

electrostatic interactions where due to similar charges, the anionic surfactant molecule repels 
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the negatively charged zeolite particles present at the pore openings increases the rejection. For 

the insolubilized cationic dye molecules, these can either pass through the membrane, or get 

adsorbed on the zeolite particles. Thus dye adsorption helps in further rejection. Moreover, the 

high surface area of the nano-Y provides better accessibility to the active sites and hence ion 

exchange increases further helping with a higher rejection. With a further increase in nano-Y 

content beyond 0.4 wt. %, the rejection was seen to progressively decrease to 81%, 40% and 23% 

for M0.6, M1.0 and M1.5 membranes respectively. Such a trend of decrease in rejection with 

increasing doping content is also reported in previous studies for various different nanofillers 

embedded in PSf membranes [18, 46]. This decrease again might be associated with nanoparticle 

agglomeration. Agglomeration also causes defects in the membrane, especially on its surface 

where the interaction of nano-Y and the polymer is the lowest, hence leading to low separation 

efficiencies. Secondly, the decrease in rejection an also be due to a change in membrane 

morphology for M0.6 to M1.5 (section 3.3) with increasing nano-Y, we observed formation of 

more macrovoids, and hence it is well reported in the literature that for most large molecular 

weight contaminant molecules, sponge like structures are more favorable for high contaminant 

rejections  [37].

Dye rejection experiments were also carried out without SDS. Figure S6 shows the flux and dye 

rejection for CVD when no surfactant was used. Low rejections were obtained as expected. 

Interestingly, an increasing rejection trend was obtained contrary to when the feed was mixed 

with SDS. This increase in CVD rejection with increasing nano-Y addition might be attributed to 

dye adsorption, which increases with the loading. The adsorption for organic contaminants is 

more pronounced in FAU type zeolites with higher Si/Al ratio [47]. The cationic dye readily 
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adsorbs onto zeolite, however, with the lack of enough adsorbing sites and its low molecular size, 

the rejection of CVD is quite low. Hence, it is clear that the dye molecules become solubilized on 

surfactant addition, and the micelles formed are much bigger in size to enhance dye retention. 

Another interesting result was the permeate flux obtained for CVD rejection (Figure S6a). Higher 

flux was obtained compared to when SDS was used. This may again be due to the formation of 

micelles which are bigger in size than the membrane pores and hence get accumulated on the 

membrane surface, consequently leading to increased surfactant concentration near the surface 

than the bulk, and participating in flux reduction. In addition, the flux for CVD showed a similar 

pattern to CVD/SDS, where the highest flux was recorded for M0.4 for the reasons already 

discussed in this section. Over the period of time, overlapping double layers may develop due to 

ion adsorption. Since, the rejection increases with zeolite addition, we can conclude increasing 

ion adsorption, and hence increase in the charged layers which can slow down water transport 

due to the polarized water molecules interaction with the immobile charged surface.

Figure 11c shows the variation in permeate flux and dye rejection for M0.4 over time. An initial 

increase in dye rejection was observed with time from 99.2 to about 99.5%. This small increase 

might be due to dye solubilization within the surfactant micelles, which were in turn retained 

over the membrane’s surface due to its larger size. Rejection and flux were both stabilized after 

a certain time, with the flux initially dropping from 107.5 to about 105.0 L.m-2.h-1 after 80 min 

and remaining constant thereafter. During dye filtration, reduction in membrane flux is 

unavoidable due to the effect of fouling. Fouling may be caused by the adsorption of dye 

molecules [48] on the membrane surface and its pores. FRR is a measure of the antifouling 

property of the membrane, which indicates the ability of a membrane to recover its initial water 
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flux after cleaning with DI water. Figure 13 shows the FRR for the membranes M0 to M1.5. M0 

and M0.2 registered similar FRRs, while a slightly higher FRR of 90% was obtained for M0.4. The 

FRR dropped drastically to 66% for higher nano-Y concentration of 1.5 wt. %. The uniform 

distribution of the nano-Y on the membrane’s skin layer results in improved hydrophilicity, and 

hence increased antifouling ability for M0.4. Hydrophilic surfaces do not adsorb dye molecules 

easily and thus restricts membrane fouling. In addition, MEUF Zeolite nano-Y possess special 

functional properties including its nano-size, abundant flow channels, high surface area, a 

negative charge and it small pore sizes allowing water molecules to pass through it while 

restricting the passage of micelles rendering high solute rejections through steric exclusion and 

donnan principle. Figure S7 shows the M1.0 membrane after filtration. Both membrane top and 

bottom SEM images show no obvious change in membrane morphology. The EDS spots in Figure 

S7b and their corresponding spectra in Figures S7(c-d) confirm the presence of nano-Y after 

membrane use.



36

Figure 11: (a) Flux and (b) Dye Rejection with increasing nano-Y loadings (c) Variation in flux and 
dye rejection over time for M0.4 membrane

Table 3: Literatures related to CVD removal.

Membrane Type/ Reference Flux (L/m2.h) Pressure (kPa) Rejection (%) Reference

Nanofiltration membrane 7.55 415 95 [49]

Microfiltration prior to 
advanced oxidation process 

13.2 276 100 [50]

Nanofiltration membrane 11 700 98 [51]

Hollow fiber nanofiltration 
membrane 

5.57 70 99.2 [52]

PSf with Dextro-tartaric acid and 
DL-tartaric acid additives 
(MEUF) 

13.2 150 99 [29]

Nano-Y/PSf UF membrane 
(MEUF)

107 600 99.5 This study
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Figure 12: Schematic representing possible membrane-dye interactions
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Figure 13: Flux recovery ratio of PSf and nano-Y/PSf membranes.
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4. Conclusion

MEUF is an important technique that can facilitate the removal of many of the industrial 

pollutants such as heavy ions, organics and dyes. In the present study, UF membranes made from 

PSf and nano-Y zeolite were fabricated through the phase inversion method. Nano-Y with a high 

SiO2 to Al2O3 ratio of 30 was produced through ball milling of micron-sized zeolite-Y particles. 

Membrane morphology through SEM revealed a sponge-like pore structure, with the nano-Y 

uniformly distributed throughout the membrane structure and the opening of the pores for low 

zeolite concentrations. Membrane hydrophilicity was enhanced with nano-Y addition, with 0.4 

wt. % nano-Y loading giving a contact angle of 54.5o. Dye rejection experiments were conducted 

for MEUF, whereby dye molecules were successfully rejected by nano-Y/PSf membranes giving a 

higher flux and rejection of about 105 L.m-2.h-1 and 99.5% respectively compared to neat PSf 

membrane with 60 L.m-2.h-1 flux and 60.0% rejection. Thus, addition of nano-Y in PSf matrix had 

a strong impact on the phase de-mixing of the casting suspension, forming a thin dense layer on 

the top for small loadings, and a uniform nano-Y distribution at the pore openings which 

restricted the passage of dye through electrostatic interactions. The membranes also showed 

good resistance to fouling as evaluated from their high flux recovery ratios reaching almost 90%.
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Highlights:

1. Micellar enhanced ultrafiltration for the removal of low molecular weight dye molecules
2. Nano-Y/PSf UF membranes with improved hydrophilicity
3. Uniform nano-Y distribution, with particles situated at the pore openings
4. Membranes breaking through the trade-off of selectivity and permeability with high rejection and 
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