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Abstract

The aim of this paper is twofold. Firstly, we derive an explicit

expression of the (theoretical) solutions of stochastic differential equa-

tions with affine coefficients driven by α-stable white noise. This is

done by means of Itô formula. Secondly, we develop a detection al-

gorithm for the first jump time in simulation of sampling trajectories

which are described by the solutions. The algorithm is carried out

through a multivariate Lagrange interpolation approach. To this end,

we utilise a computer simulation algorithm in MATLAB to visualise

the sampling trajectories of the jump-diffusions for two combinations
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of parameters arising in the modelling structure of stochastic differ-

ential equations with affine coefficients.
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1 Introduction

Since the pioneer work (23), (22), and (6), affine processes are by now widely

use in financial modeling. Under the assumption of an arbitrage-free market,

affine jump-diffusions and their alike processes were proposed to model fac-

tors in various dynamic asset pricing models. The advantages of affine jump-

diffusions over classic jump diffusion are well documented and attributed to

their flexibility and avoidance of inducing additional volatility (21). With

further development from pioneers (23) and (22), there is substantial litera-

ture on the application of affine jump-diffusions, particularly in three aspects:

credit sensitive financial security modelling, asset pricing model estimation

and option pricing. In more recent research, Wu and Yang utilised affine

jump-diffusions to model the systematic and idiosyncratic risk in Collater-

alised Debt Obligation market (20). Jarrow et al. explored the mispricing in

Credit Default Swap spread in the U.S. market and proposed a trading strat-

egy to capture the abnormal return by using a affine jump-diffusion model

(24). Furthermore, Hain et al. adopted affine jump-diffusion type model

to detect the higher moment risk in crude oil market (25). Campbell et al.

introduced the affine jump-diffusions to vector autoregressive model to res-

cue the classic Capital Asset Price Model. Moreover, Bardgett et al. (2019)

applied a flexible affine model to estimate the risk prima of Chicago Board
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Options Exchange Volatility Index option prices (26). Barletta et al. pro-

posed an affine jump-diffusion based model to hedge European options (27).

On the other hand, with the passage of time, modeling time evolution uncer-

tainty by stochastic differential equations (SDEs) appears in many diverse

areas such as studies of dynamical particle systems in physics, biological and

medical studies, engineering and industrial studies, as well as most recently

micro analytic studies in mathematical finance and social sciences. Modeling

studies with different features of Lévy processes, like distributions with asym-

metric, and/or heavy-tail property, and/or infinite moments, etc. have been

appeared increasingly in the literature, see e.g. Barndorff-Nielsen (1997),

Samorodnitsky and Taqqu (1994), Giacometti et al. (2007), Zopounidis and

Pardalos (2013), Dror, L’Ecuyer, and Szidarovszky (2002) and Fiche et al.

(2013), Campbell, Lo, and MacKinlay 1997, Mandelbrot (1960), Zolotarev

(1986, Leland et al. (1993), Shlesinger, Zaslavsky, and Frisch (1995). In

particular, we refer the reader to (Du, Wu, and Yang 2010) for interest-

ing discussions of utilizing a-stable distributions to model the mechanism of

Collateralised Debt Obligations (CDOs) in mathematical finance. As such,

SDEs with affine coefficients driven by Lévy processes become a good mod-

eling instrument for both theoretical and practical investigations.

On the other hand, from mathematics historical aspect, applicable prob-

ability distributions with infinite moments are encountered in the study of

critical phenomena. For instance, at the critical point one finds clusters of

all sizes while the mean of the distribution of clusters sizes diverges. Thus,

analysis from the earlier intuition about moments had to be shifted to newer

notions involving calculations of exponents, like e.g. Lyapunov, spectral,

fractal etc., and topics such as strange kinetics and strange attractors have

to be investigated. Although Lévy’s ideas and algebra of random variables

3



with infinite moments appeared in the 1920s and the 1930s (cf. Lévy 1925,

1937), it is only from the 1990s that the greatness of Lévy’s theory became

much more appreciated as a foundation for probabilistic aspects of chaotic

dynamics with high entropy in statistical analysis in mathematical modeling

(cf. Samorodnitsky and Taqqu 1994; Shlesinger, Zaslavsky, and Frisch 1995;

see also Mandelbrot 1960; Zolotarev 1986). Indeed, in statistical analysis,

systems with highly complexity and (non linear) chaotic dynamics became

a vast area for the application of Lévy processes and the phenomenon of

dynamical chaos became a real laboratory for developing generalizations of

Lévy processes to create new tools to study non linear dynamics and kinetics.

Following up this point, SDEs driven by Lévy type processes, in particular

α-stable processes or α-stable white noise, and their influence on long time

statistical asymptotic will be unavoidably encountered. Comparing to the

continuity feature of trajectories of diffusions —- solutions of SDEs driven

by Brownian motion or Gaussian white noise, jump-diffusions possess a fea-

ture that sampling trajectories are with jumps which seem to be more natural

when volatile noise influence becomes extremely high. The scenario of sam-

pling trajectories of jump-diffusions is that there are countable jump times

and there are diffusion trajectories between any two adjacent jump times.

For SDEs driven by a-stable noise, the solution trajectories enjoy certain

self similar property. Therefore, from modeling aspect, to detect the first

jump time for sampling trajectories in simulations is crucial, not only for the

comparison of numerical errors, but also for the propose that one can treat

the model as a diffusion model before that time. With self similar property,

one can further infer the structure of sampling trajectories of jump-diffusions

driven by alpha-stable noise. Due to high uncertainty, the first jump time

is of course a random time (also called stopping times). Theoretically, it is
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not possible to get the first jump time analytically, due to infinite volumes

of Lévy measures and the self similarity for α-stable processes, one can evan

argue that the first jump time should be zero, see for instance Theorem 3.2

in (18) for an interesting discussion. However, as performing simulations, the

first jump time does indeed appear in the sampling trajectories as shown in

our work. Therefore, one could try to simulate sampling trajectories to get an

algorithm towards statistical detection of the (random) first jump time. The

motivation of this paper is to obtain a critical link among the parameters in

the SDEs driven by a-stable white noises to develop a detection algorithm for

the first jump time. Very interestingly, this can be further linked to sampling

data analysis after model identifications (i.e., through certain specification of

the parameters in the model equations). In the recent work (19), this prob-

lem was considered and focused on testing two simple SDEs in modeling,

one class is the SDEs with linear drift coefficient and additive a-stable white

noise and the solutions are called a-stable Ornstein-Uhlenbeck processes and

the other class is the linear SDEs (i.e., SDEs with linear drift and diffusion

coefficients or the linear SDEs with multiplicative a-stable noise) and the

solutions are called a-stable geometric Lévy motion. Therein as the chaotic

structure of sample trajectories of a-stable processes are varying for a in the

different intervals (0, 1) and (1, 2) with a = 1 being critical (see, e.g., Janicki

and Weron 1993), respectively, in (19) it was performed the simulations of the

sample solution trajectories with the sample size of 29 = 512, which yields a

clear picture to identify successfully the first jump time for each simulated

trajectory. Furthermore, it was used such sample data to find the critical

link of the parameters arising in the coefficients of the SDEs.

In the present paper, we are concerned with the simulations of SDEs

with affine coefficients driven by α-stable noise. We aim to establish de-
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tecting algorithm for the first jump time for the sampling trajectories. Due

to the affine coefficients in the SDEs, the procedure for trajectories of ex-

plicit solutions of linear SDEs carried out in (19) does not work here. One

needs to have certain explicit expression analytically. To this end, we utilise

Itô formula to get an explicit formulation of our affine SDEs. With this in

hand, we are able to realise our aim to derive an algorithm for detecting the

first jump of the trajectories of solutions of SDEs with affine coefficients, by

virtue of multivariate Lagrange interpolation approach. We hope that our

results obtained in this paper would lead to further investigations for more

general models, such as those determined by SDEs with periodic coefficients

(treated as bounded coefficients over the whole spaces), as well as higher

order representations of the first jump time in terms of the parameters and

rigorous estimates of the first jump time. We will carry out these studies in

our forthcoming papers. To the best of our knowledge, there is not any work

in the literature addressing such problem.

To the best of our knowledge, there is not any work in the literature

addressing such problem. To end up our introduction, we would like to

mention that the study of stochastic differential equations driven by Lévy

processes is well presented in the monograph (1). Numerical solutions and

simulations of α-stable stochastic processes were carried out in (9).

The rest of the paper is organised as follows. In the next section, Sec-

tion2, we set up preliminaries on analytic framework of the jump SDEs with

affine coefficients and then we briefly discuss solutions for α-stable driven

SDEs with affine coefficients. In Section 3, we perform simulations of the

trajectories of solutions of the concerned SDEs and we further give exam-

ples to illustrate our results. Finally, in Appendix we show trajectories of

solutions of the SDEs considered with different indices.
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2 SDEs with affine coefficients driven by α-

stable noise

Given a complete probability space (Ω,F , P ).Recall that a stochastic pro-

cess {Xt}t≥0 on (Ω,F , P ) is a Lévy process, if X0=0 almost surely, X has

independent and stationary increments, and X is stochastically continuous,

i.e. for all a > 0 and for all s ≥ 0

lim
t→s

P (|Xt −Xs| > a) = 0.

Let {Ft}t≥0 denote the natural filtration of X. Every Lévy process has a

cádlág (i.e., right continuous with left limits) modification. The associated

jump process {∆Xt}t≥0 is defined as ∆Xt = Xt−Xt−, where Xt− stands for

the left limit of Xt at the point t. Fix t ∈ [0,∞) and a Borel measurable set

A ∈ B(R \ {0}), set

N(t, A) = #{0 ≤ s ≤ t; ∆Xs ∈ A} =
∑
0≤s≤t

χA(∆Xs)

where #{...} stands for the cardinal number of set {...} and χA denotes the

indicator function of A. If A is bounded Borel set, then N(t, A) <∞ almost

surely for all t ≥ 0. N is a Poisson random measure with intensity measure

ν(A) = E(N(1, A)) and Ñ is the associated compensated martingale measure

Ñ(t, A) = N(t, A)− tν(A).

Lévy processes enjoy the celebrated Lévy-Itô decomposition, see e.g. (1),

which we state as follows. For any (real-valued) Lévy process X, there exist

a constant b ∈ R, a Brownian motion B and a Poisson random measure N

on [0,∞)× (R \ {0}) which is independent of B such that, for each t ≥ 0,

Xt = bt+Bt +

∫
0<|x|<1

xÑ(t, dx) +

∫
|x|≥1

xN(t, dx).

7



Next, recall that A random variable X is said to have a stable distribution

if there are parameters α ∈ (0, 2], σ ≥ 0, β ∈ [−1, 1], and µ ∈ R such that its

characteristic function is given by

E exp iθX =

exp
{
− σα|θ|α

(
1− iβ(signθ) tan πα

2

)
+ iµθ

}
if α 6= 1

exp
{
− σ|θ|

(
1 + iβ π

2
(signθ) ln |θ|+ iµθ

}
if α = 1

where signθ is the sign function. Such a random variable X is denoted as

X ∼ Sα(σ, β, µ). The parameter α is the index of stability, β is the skewness

parameter, σ is the scale parameter and µ is shift. β is irrelevant when α =2.

When β = µ = 0, X is a symmetric α-stable random variable and is denoted

by X ∼ SαS. We will focus our attention on symmetric case in this paper.

Recall further that a Lévy process {Lt}t≥0 is an α-stable Lévy motion, if

Lt − Ls ∼ Sα((t− s)1/α, β, 0) for any 0 ≤ s < t <∞.

In this paper we are concerned with the following SDE with affine coeffi-

cients driven by α-stable Lévy motion

dXt = [b1(t)Xt + b2(t)]dt+ [σ1(t)Xt− + σ2(t)]dLt, (1)

where b1, b2, σ1 and σ2 are bounded functions, and {Lt}t≥0 is an α-stable

Lévy process with the following Lévy-Ito representation

Lt =

∫ t+

0

dLs =

∫ t+

0

∫
0<|z|<1

zÑ(ds, dz) +

∫ t+

0

∫
|z|≥1

zN(ds, dz)

with N : B([0,∞)×R\{0})→ N∪{0} being the Poisson random (counting)

measure on (Ω,F , P ) and

Ñ(dt, dz) := N(dt, dz)− dtdz

|z|1+α

the associated compensated martingale measure with density EN(dtdz) =

dtdz
|z|1+α , where α ∈ (0, 2) is fixed. Clearly, the affine coefficients of SDE (1)
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fulfil the linear growth and local Lipschitz conditions, thus there is a unique

solution to the above SDE with initial data X0. One can further derive a

closed formula for solutions of SDE (1), which we state as follows

Theorem 2.1. Assume that b1(t)+1 > 0 for t ≥ 0. Then the unique solution

of SDE (1) is given explicitly by

Xt =Ut

{
X0 +

∫ t

0

b2(s)

Us
ds+

∫ t+

0

∫
0<|z|<1

σ2(s)

Us + Usσ1(s)
zÑ(ds, dz)

+

∫ t+

0

∫
|z|≥1

σ2(s)

Us + Usσ1(s)
zN(ds, dz)

}
, t ≥ 0

(2)

where

Ut =U0 exp
{
b1(t) +

∫ t+

0

∫
0<|z|<1

ln
(
1 + b1(s)

)
zÑ(ds, dz)

+

∫ t+

0

∫
|z|≥1

ln
(
1 + b1(s)

)
zN(ds, dz)

+

∫ t

0

∫
0<|z|<1

[ln
(
1 + b1(s)

)
− σ1(s)]

dsdz

|z|1+α
}
, t ≥ 0.

(3)

Proof. Let first b2(t) = σ2(t) = 0, t ≥ 0, then we have the linear SDE

dUt = b1(t)Utdt+ σ1(t)Ut−dLt . (4)

Under the assumption that b1(t) + 1 > 0 for t ≥ 0, the solution of SDE (4)

is a geometric α-stable Lévy motion

Ut =U0 exp
{
b1(t) +

∫ t+

0

∫
0<|z|<1

ln
(
1 + b1(s)

)
zÑ(ds, dz)

+

∫ t+

0

∫
|z|≥1

ln
(
1 + b1(s)

)
zN(ds, dz)

+

∫ t

0

∫
0<|z|<1

[ln
(
1 + b1(s)

)
− σ1(s)]

dsdz

|z|1+α
}
.

Clearly, Ut 6= 0 provided U0 6= 0 and Ut > 0 if U0 > 0. For general b2(t) and

σ2(t), one could seek a solution in the form of Xt = UtVt, with

dUt = b1(t)Utdt+ σ1(t)Ut−dLt
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and

dVt = m(t)dt+ n(t)dLt

for m and n being specified in the sequel. By Itô’s product rule

dXt =UtdVt + VtdUt + dUtdVt

=Ut[m(t)dt+ n(t)dLt] + Vt[b1(t)Utdt+ σ1(t)Ut−dLt]

+ [b1(t)Utdt+ σ1(t)Ut−dLt][m(t)dt+ n(t)dLt]

=Ut[m(t)dt+ n(t)dLt] +Xt[b1(t)dt+ σ1(t)dLt]

+ Ut[b1(t)dt+ σ1(t)dLt][m(t)dt+ n(t)dLt] .

On the other hand, noticing that by Itô formula with vanishing higher terms

over dt

dUtdVt =Ut[b1(t)dt+ σ1(t)dLt][m(t)dt+ n(t)dLt]

=Ut

{
σ1(t)n(t)

∫
0<|z|<1

zÑ(dt, dz) + σ1(t)n(t)

∫
|z|≥1

zÑ(dt, dz)
}

=Utσ1(t)n(t)dLt ,

we then get

dXt =Ut[m(t)dt+ n(t)dLt] +Xt[b1(t)dt+ σ1(t)dLt] + Utσ1(t)n(t)dLt

=[Utm(t) +Xtb1(t)]dt+ [Utn(t) +Xtσ1(t) + Utσ1(t)n(t)]dLt .

By virtue of the uniqueness of Lévy-Itô decomposition for semi-martingales

and by comparing the coefficients, we get

m(t) =
b2(t)

Ut
, n(t) =

σ2(t)

Ut + Utσ1(t)
.

Next, from

dVt = m(t)dt+ n(t)dLt,
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Vt − V0 =

∫ t

0

m(s)ds+

∫ t+

0

∫
0<|z|<1

n(s)zÑ(ds, dz) +

∫ t+

0

∫
|z|≥1

n(s)zN(ds, dz)

=

∫ t

0

b2(s)

Us
ds+

∫ t+

0

∫
1<|z|<1

σ2(s)

Us + Usσ1(s)
zÑ(ds, dz)

+

∫ t+

0

∫
|z|≥1

σ2(s)

Us + Usσ1(s)
zN(ds, dz).

Finally, we get the formula (2), that is

Xt =UtVt

=Ut

{
X0 +

∫ t

0

b2(s)

Us
ds+

∫ t+

0

∫
0<|z|<1

σ2(s)

Us + Usσ1(s)
zÑ(ds, dz)

+

∫ t+

0

∫
|z|≥1

σ2(s)

Us + Usσ1(s)
zN(ds, dz)

}
where

Ut =U0 exp
{
b1(t) +

∫ t+

0

∫
0<|z|<1

ln
(
1 + b1(s)

)
zÑ(ds, dz)

+

∫ t+

0

∫
|z|>1

ln
(
1 + b1(s)

)
zN(ds, dz)

+

∫ t

0

∫
0<|z|<1

[ln
(
1 + b1(s)

)
− σ1(s)]

dsdz

|z|1+α
}
.

This completes the proof.

3 Simulations and examples

We generate sample trajectories of SDE with affine coefficients driven by

α-stable white noises by applying simulation methods in MATLAB. A mul-

tivariate Lagrange interpolation method is utilised to derive links among

coefficients in SDE towards the first jump time (19). Simulations of the sam-

ple trajectories are with the sample size of 29 = 512, which yields a clear

picture to identify successfully the first jump time for each simulated trajec-

tory. Two cases of the following SDE are considered in this paper (α1 < 1
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and α2 > 1, see Figure 1, 2 and 3; α1 > 1 and α2 < 1, see Figure 4, 5 and 6

).

dXt = λXtdt+ µ1Xt−dL
α1
t + µ2dL

α2
t (5)

where λ > 0, µ1 > 0, µ2 > 0 and t ≥ 0.

Remark 3.1. If µ1 � µ2 or µ2 � µ1, the trajectories will perform as geometric

α-stable Lévy motion and α-stable Ornstein-Uhlenbeck process respectively,

presented in (19).

We could clarify the model into different perspectives by observations and

general characteristics of trajectories are summarised as follows,

1. Fix λ, µ1, µ2 and α1, sample trajectories {Xt}t≥0 become more tem-

pered as the stability index α2 increases, but the jump size becomes

smaller and smaller so that the trajectories become less and less volatile.

If fix λ, µ1, µ2 and α2, instead, the trajectories obtain similar proper-

ties.

2. Fix µ1, µ2, α1 and α2, trajectories tend to show deterministic expo-

nential paths along with the increase of λ. The trajectories are more

tempered for bigger α1 or α2.

3. Fix λ, α1, α2 and µ2, increasing the volatility parameter µ1 indicates

higher chaoticity.

3.1 Case when α1 < 1 and α2 > 1

For the set (λ, µ1, µ2, α1, α2), there is a link among the five parameters λ, µ1,

µ2, α1 and α2 towards first jump point detection of the sample trajectories.

By substantial amount of simulations, we randomly choose the situations
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and keep records of values of the parameters λ, µ1, µ2, α1 and α2 when the

first jump appears (see Table 1). Especially, the degree 1 linear relation-

ship among these five parameters is useful in data modelling for uncertainty

targeted problems in reality.

Table 1: Data processed for sample trajectories when α1 < 1 and α2 > 1

λ µ1 µ2 α1 α2 t Xα
t

10 1 100 0.5 1.5 0.08203 -63.86

1 0.25 100 0.75 1.25 0.1855 -303.2

1 100 1 0.75 1.75 0.1035 122.5

1 100 0.25 0.75 1.5 0.207 -896.1

10 100 0.25 0.5 1.25 0.3301 252.1

100 100 1 0.25 1.75 0.1934 -3028000

10 1 0.25 0.25 1.25 0.5762 533.7

We have degrees n = 1, variables m = 6, so terms=
( 1 + 6

1

)
= 7. If we

have g = f(h, j, k, l,m, n) which is a degree 1 function with 6 parameters,

and

gi = β1hi + β2ji + β3ki + β4li + β5mi + β6ni + β7
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where β1, β2, · · · , β7 are coefficients, 1 ≤ i ≤ 7.

−63.86 = 10β1 + 1β2 + 100β3 + 0.5β4 + 1.5β5 + 0.08203β6 + β7

−303.2 = β1 + 0.25β2 + 100β3 + 0.75β4 + 1.25β5 + 0.1855β6 + β7

122.5 = β1 + 100β2 + β3 + 0.75β4 + 1.75β5 + 0.1035β6 + β7

−896.1 = β1 + 100β2 + 0.25β3 + 0.75β4 + 1.5β5 + 0.207β6 + β7

252.1 = 10β1 + 100β2 + 0.25β3 + 0.5β4 + 1.25β5 + 0.3301β6 + β7

−3028000 = 100β1 + 100β2 + β3 + 0.25β4 + 1.75β5 + 0.1934β6 + β7

533.7 = 10β1 + β2 + 0.25β3 + 0.25β4 + 1.25β5 + 0.5762β6 + β7

By calculation

g = 3432.78j − 37385.2h+ 3445.58k − 1342799l + 1189.85m+ 18000.5n+ 693929.

Then

Xα
t = 3433λ− 37385µ1 + 3446µ2 − 1342799α1 + 1190α2 + 18001t+ 693929

If we take the average value of t, we have

t̄ = 0.23968

and average value of Xα
t , we have

Xα
t = −432622

Therefore

3433λ− 37385µ1 + 3446µ2 − 1342799α1 + 1190α2 = −1130865

We summarise our derivation as

Proposition 3.1. The link among parameters for first jump point detection

of the sample trajectories of SDE with affine coefficients driven by α-stable

noise (α1 < 1 and α2 > 1) is given by the following liner equation

3433λ− 37385µ1 + 3446µ2 − 1342799α1 + 1190α2 = −1130865
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3.2 Case when α1 > 1 and α2 < 1

Similarly, for he set (λ, µ1, µ2, α1, α2) described in Equation (5), we are work-

ing on determining a link among these three parameters towards first jump

time detection. The data (see Table 2) and calculations have been processed

to obtain the degree 1 linear relationship are as follows.

Table 2: Data processed for sample trajectories when α1 > 1 and α2 < 1

λ µ1 µ2 α1 α2 t Xα
t

10 0.25 1 1.5 0.5 0.1973 -91.87

10 1 100 1.5 0.25 0.01953 95.72

1 100 1 1.25 0.5 0.04492 305.9

100 1 0.25 1.5 0.25 0.1211 346

1 1 100 1.75 0.5 0.09766 311.1

100 1 100 1.5 0.5 0.05273 -242.9

10 1 0.25 1.75 0.75 0.5742 -105.1

We have degrees n = 1, variables m = 6, so terms=
( 1 + 6

1

)
= 7. If we

have g = f(h, j, k, l,m, n) which is a degree 1 function with 6 parameters,

and

gi = β1hi + β2ji + β3ki + β4li + β5mi + β6ni + β7
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where β1, β2, · · · , β7 are coefficients, 1 ≤ i ≤ 7.

−91.87 = 10β1 + 0.25β2 + β3 + 1.5β4 + 0.5β5 + 0.1973β6 + β7

95.72 = 10β1 + β2 + 100β3 + 1.5β4 + 0.25β5 + 0.0.01953β6 + β7

305.9 = β1 + 100β2 + β3 + 1.25β4 + 0.5β5 + 0.04492β6 + β7

346 = 100β1 + β2 + 0.25β3 + 1.5β4 + 0.25β5 + 0.1211β6 + β7

311.1 = β1 + β2 + 100β3 + 1.75β4 + 0.5β5 + 0.09766β6 + β7

−242.9 = 100β1 + β2 + 100β3 + 1.5β4 + 0.5β5 + 0.05273β6 + β7

−105.1 = 10β1 + β2 + 0.25β3 + 1.75β4 + 0.75β5 + 0.5742β6 + β7

By calculation

g = 0.3089h+ 9.00913j − 3.0498k + 2482.95l − 1358.81m− 804.747n− 2980.41

Then

Xα
t = 0.3089λ+9.00913µ1−3.0498µ2+2482.95α1−1358.81α2−804.747t−2980.41

If we take the average value of t, we have

t̄ = 0.158206

and average value of Xα
t , we have

Xα
t = 88.407143

Therefore

0.31λ− 9.01µ1 + 3.05µ2 + 2482.95α1 − 1358.81α2 = 3196.13

We summarise our derivation as

Proposition 3.2. The link among parameters for first jump point detection

of the sample trajectories of SDE with affine coefficients driven by α-stable

noise (α1 > 1 and α2 < 1) is given by the following liner equation

−0.0017124λ− 0.066287µ+ 0.15752α = −0.3949911.
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Remark 3.2. Here we only consider linear Lagrange interpolation. One can

extend to higher order polynomial interpolation in which more computation

is needed. Our consideration gives a simple yet efficient calculation.

17



Appendices

A Case when α1 < 1 and α2 > 1
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Figure 1: Fix λ=1, µ1=1 and µ2=10
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Figure 2: λ changes when α1=0.5 and α2=1.5
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Figure 3: µ2 changes when α1=0.25 and α2=1.75
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B Case when α1 > 1 and α2 < 1
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Figure 4: Fix λ=1, µ1=1 and µ2=10
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Figure 5: Fix λ=1, µ1=10 and µ2=1
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Figure 6: µ2 changes when α1=1.5 and α2=0.5
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