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Abstract

A methodology that combines the advantages of the vertex-centred finite

volume (FV) method and high-order hybridisable discontinuous Galerkin

(HDG) method is presented for the simulation of the transient inviscid two

dimensional flows. The resulting method is suitable for simulating the tran-

sient effects on coarse meshes that are suitable to perform steady simula-

tions with traditional low-order methods. In the vicinity of the aerodynamic

shapes, FVs are used whereas in regions where the size of the element is too

large for finite volumes to provide an accurate answer, the high-order HDG

approach is employed with a non-uniform degree of approximation. The pro-

posed method circumvents the need to produce tailored meshes for transient

simulations, as required in a low-order context, and also the need to produce

high-order curvilinear meshes, as required by high-order methods. Numerical

examples are used to test the optimal convergence properties of the combined

HDG-FV scheme and to demonstrate its potential in the context of simulat-

ing the wind gust effect on aerodynamic shapes.

1Corresponding author: r.sevilla@swansea.ac.uk

Preprint submitted to Computers & Fluids March 4, 2020



Keywords: transient flows, hybridisable discontinuous Galerkin, finite

volumes, coarse meshes, coupling

1. Introduction

Second-order finite volume (FV) methods are still the predominant tech-

nique for industrial computational fluid dynamic (CFD) applications due to

their robustness and efficiency [1, 2]. Both vertex-centred and cell-centred FV

methods form the basis of many industrial and research codes and they have

proved to be extremely competitive when simulating steady flows [3, 4, 5].

However, the need for simulating transient high Reynolds number flows poses

a major challenge for low-order methods, due to the excessively large num-

ber of degrees of freedom required to accurately capture all the flow features.

The meshes used for the simulation of steady state have been automated

and are designed to capture the required aerodynamic forces. However, these

meshes lack the ability to resolve the unsteady features and this results in

high dissipation and dispersion errors if utilised with low-order methods. To

address this limitation, additional meshes that are refined along the path of

all unsteady features have to be generated. For an aircraft configuration,

it is estimated that an order of magnitude increase of the mesh size will be

required to ensure an adequate unsteady solution with the traditional FV

methods. This drawback has motivated the development of different FV

schemes with lower dissipation and dispersion errors [6] as well as a number

of high-order FV extensions [7, 8].

Other high-order methods have gained popularity due to their ability to

accurately capture transient effects with minimum dissipation and dispersion.
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Among these approaches, high-order stabilised finite elements [9] and discon-

tinuous Galerkin (DG) methods [10] have shown potential, not only by re-

ducing the number of degrees of freedom, but also the computational time to

achieve a required accuracy [11, 12, 13, 14, 15, 16]. A particular DG method,

called hybridisable DG (HDG) method [17, 18, 19, 20], has recently become

popular due to the ability to produce accurate solutions with a reduced

number of degrees of freedom when compared to other high-order meth-

ods [21, 22]. The application and performance of HDG for CFD applications

have been studied by many authors, see for instance [23, 24, 25, 26, 27, 28].

When simulating the flow around aerodynamic shapes, it is of major im-

portance not only to accurately represent the solution but also the geometric

description of the boundary of the computational domain [29, 30, 31, 32, 33,

34]. In fact, a low fidelity description of the geometry is known to have a

major impact on the solution accuracy [35, 36, 37, 38] and, in some cases, to

degrade or even prevent convergence to the correct solution [30, 39, 40, 41]. In

this context, the use of curvilinear elements is mandatory to ensure that the

full potential of high-order methods is obtained. This has led to a significant

effort by the mesh generation community to produce fast and robust arbi-

trary order curvilinear mesh generation algorithms [42, 43, 44, 45, 46, 47, 48].

Although some approaches are nowadays available, the generation of high-

quality meshes for complex aerodynamic shapes, in particular to resolve the

highly anisotropic boundary layer region, is still a major challenge [49, 50, 51].

This work proposes a novel scheme that combines the advantages of both

second-order vertex-centred FVs and high-order HDG, to enable the compu-

tation of wind gust effects on two dimensional aerodynamic shapes using the
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same meshes employed to simulate steady flows within a FV framework. The

proposed approach partitions the mesh in a subdomain where the element

size is small enough for a second-order FV to provide the desired accuracy

and a subdomain where the use of high-order methods is required to en-

sure an acceptable accuracy capturing the transient flow features in coarse

elements. A high-order HDG method is employed in the coarser elements,

with different degree of approximation in different elements according to their

characteristic element size. The use of vertex-centred FVs in the vicinity of

the aerodynamic shape ensures a minimum number of degrees of freedom

when compared to cell-centred or face-centred FVs [52] and avoids the need

for generating a high-order curvilinear mesh. Similarly, the use of HDG guar-

antees a lower number of degrees of freedom compared to other DG methods.

It is worth noting that combining low and high-order FV schemes is also an

alternative. This option was not considered here due to the extra difficulty

associated to the design of the large stencils in unstructured meshes to guar-

antee high-order convergence.

The coupling between both techniques is performed by introducing a set

of transmission conditions between the FV and HDG subdomains to weakly

impose the continuity of the solution and the normal flux, thus ensuring

conservation. The time marching is performed using classical backward dif-

ferentiation formulae (BDF) and the resulting non-linear problem is fully

linearised using a Newton-Raphson algorithm, leading to an unconditionally

stable method.

It is worth noting that the coupling of FVs with other high-order methods

was also utilised in [53], where FVs are coupled to high-order finite differences
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for capturing trailing vortex structures and in [54], where FVs are coupled to

DG methods for addressing discontinuities. The coupling of HDG with other

techniques has also been proposed. For instance, in [55] HDG is coupled with

a boundary element method and in [56, 57] HDG is coupled to standard finite

elements in the framework of second-order elliptic problems.

The structure of the paper is as follows. Section 2 briefly recalls the com-

pressible Euler equations and the strategy to introduce gust using a source

term. The proposed coupling is described in detail in Section 3. This includes

the derivation of the weak formulation, with particular emphasis on the in-

terface coupling. In Section 4 the temporal and spatial discretisation are

detailed for both the FV and HDG schemes and the resulting coupled system

of non-linear equations is obtained. The linearisation using Newton-Raphson

is briefly outlined. Section 5 presents numerical studies to verify the imple-

mentation and the optimal approximation properties of the proposed scheme.

In Section 6 two examples involving the simulation of a time-harmonic gust

impinging on a wing and on a wing-tail configuration are presented. The

advantages of the proposed scheme with respect to the classical FV method

are analysed. Finally, Section 7 presents the conclusions of the work that has

been presented.

2. Governing equations for the simulation of gust in an inviscid

compressible fluid

2.1. Euler equations

The Euler equations of gas dynamics express the conservation of mass,

linear momentum and total energy of a compressible inviscid fluid. The
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strong form of these conservation laws can be expressed as

U t + ∇·F (U) = S in Ω× (0, T ] (1a)

U = U0 in Ω× {0} (1b)

B(U ,U∞) = 0 on ∂Ω× (0, T ] (1c)

where U denotes the vector of conservation variables, the tensor F contains

the hyperbolic flux vector for each spatial dimension xl (l = 1, . . . , nsd), nsd is

the number of spatial dimensions, T is the final time, U0 denotes the initial

condition, B is a generic flux used to define the boundary conditions over the

inflow, outflow and wall boundaries and U∞ denotes the free stream state.

The vector U and tensor F are given by

U =





ρ

ρv

ρE




, F =

[
F 1 . . . F nsd

]
=




ρvT

ρv ⊗ v + pInsd

(ρE + p)vT


 , (2)

where ρ is the density, ρv is the momentum, ρE is the total energy per unit

volume, p is the pressure and Insd is the identity matrix of dimension nsd.

The source term S in Equation (1) usually accounts for the external

volume forces. To simplify the presentation, here it only accounts for the

generated gust and it is described in the next Section.

The system of non-linear hyperbolic equations is closed with an equation

of state, which for a perfect polytropic gas, is

p = (γ − 1)ρ

(
E − 1

2
‖v‖2

)
, (3)

where γ is the specific heat at constant pressure over specific heat at constant

volume, with value γ = 1.4 for air.
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A usual quantity for postprocess of inviscid flow computations is the Mach

number, defined as

M =
‖v‖
c
,

where c =
√
γp/ρ is the speed of sound.

2.2. Gust modelling

The harmonic perturbation of the velocity field is introduced via a source

term that only affects the momentum equation [58]. Contrary to other ap-

proaches where the gust is introduced as a time-dependent boundary condi-

tion, the approach followed here does not require a fine mesh to capture the

propagation of the gust from the far field until it impinges the aerodynamic

shape.

In two dimensions, the source is written as

S(x, t) =
{

0, S1, S2, 0
}T

(4)

with

S1(x, t) = βKg(x1)λ(x2) cos (ωt− βx2 − αxg1) , (5a)

S2(x, t) = Kg′(x1)λ(x2) sin (ωt− βx2 − αxg1) , (5b)

where (xg1, 0) being the centre of the rectangle of dimension a× b where the

gust is generated, α = ω/v∞ and β = α tan θ represent the wave numbers of

the sinusoidal gust in the horizontal and vertical direction respectively, with

θ being the angle of propagation of the gust front with respect to the x1 axis

and v∞ the magnitude of the free-stream velocity. The constant K is defined

as

K = ε
α (α2 − â2) v2

∞

â2
√
α2 + β2 sin

(
ωπ
âv∞

)
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where ε denotes the gust intensity relative to the mean flow and â is used

to define the width of the rectangle where the gust is generated, namely

a = 2π/â. Finally, the functions λ and g are given by

λ(x2) =
1

2

(
tanh

(
3(x2 + b/2)

)
− tanh

(
3(x2 − b/2)

))

and

g(x1) =





1
2

(
1 + cos(â(x1 − xg1))

)
if |x1 − xg1| ≤ a

2

0 otherwise

and they are used to guarantee a smooth transition of the flow field in the

boundary of the gust region.

3. HDG-FV weak formulation

Let us consider a two dimensional open bounded domain Ω with boundary

∂Ω partitioned in two disjoint subdomains Ω1 and Ω2 such that Ω = Ω
1 ∪Ω

2

with common interface ΓI = Ω
1 ∩ Ω

2
as shown in Figure 1(a).

This work considers an HDG discretisation in Ω1 and a vertex-centred

finite volume discretisation in Ω2. To this end, the subdomain Ω1 is parti-

tioned in nel disjoint elements Ω1
e such that

Ω
1

=
nel⋃

e=1

Ω
1

e, (6)

with boundaries ∂Ω1
e, which define an internal interface Γ1

Γ1 :=
[ nel⋃

e=1

∂Ω1
e

]
\ ∂Ω1. (7)

The subdomain Ω2 is partitioned in ncv disjoint control volumes Ω2
i such that

Ω
2

=
ncv⋃

i=1

Ω
2

i . (8)
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Ω1 Ω2

ΓI

∂Ω1

∂Ω2

∂Ω

(a)

Vi

Û Ue

Ω1
e

Ω2
i

(b)

Figure 1: (a) Partition of the domain into the HDG and FV subdomains and (b) partition

of the HDG subdomain in elements and the FV subdomain in dual cells.

As usual in a finite volume context, the control volume Ω2
i , associated with

the node xi of Ω2, is constructed by joining the edge midpoints and the

element centroids of the edges connected to node xi and the elements sharing

xi respectively.

The partition of each subdomain into elements and control volumes re-

spectively is shown in Figure 1(b) near the interface between the HDG and

FV subdomains.
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3.1. Governing equations

The strong form of the Euler equations in the partitioned domain is writ-

ten as

U t + ∇·F (U) = S in Ω1
e × (0, T ] (9a)

JU ⊗ nK = 0 on Γ1 × (0, T ] (9b)

JF (U) · nK = 0 on Γ1 × (0, T ] (9c)

V t + ∇·F (V ) = S in Ω2 × (0, T ] (9d)

JU ⊗ nK = 0 on ΓI × (0, T ] (9e)

JF (U) · nK = 0 on ΓI × (0, T ] (9f)

U = U0 in Ω1
e × {0} (9g)

V = U0 in Ω2 × {0} (9h)

B(U ,U∞) = 0 on
(
∂Ω1

e ∩ ∂Ω
)
× (0, T ] (9i)

B(V ,U∞) = 0 on
(
∂Ω2 ∩ ∂Ω

)
× (0, T ] (9j)

for e = 1, . . . , nel, where U = U |Ω1 , V = U |Ω2 , Equations (9b) and (9c)

are the transmission conditions introduced in the mesh skeleton of the HDG

subdomain Ω1 [20, 59, 60] and Equations (9e) and (9f) impose the continuity

of the solution and the normal fluxes between the two subdomains Ω1 and

Ω2, respectively. The jump operator is defined at the interface between two

elements, Ωi and Ωj, as

J}K = }|Ωi
+ }|Ωj

(10)

and always involving the normal vector n, see [61] for more details.

The HDG method introduces the trace of the solution U , called hybrid

variable and denoted by Û , as an independent variable leading to the final
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strong form

U t + ∇·F (U) = S in Ω1
e × (0, T ] (11a)

U = Û on ∂Ω1
e × (0, T ] (11b)

JF (U) · nK = 0 on Γ1 × (0, T ] (11c)

V t + ∇·F (V ) = S in Ω2 × (0, T ] (11d)

[JU ⊗ nK] = 0 on ΓI × (0, T ] (11e)

JF (U) · nK = 0 on ΓI × (0, T ] (11f)

U = U0 in Ω1
e × {0} (11g)

V = U0 in Ω2 × {0} (11h)

B̂(U , Û ,U∞) = 0 on
(
∂Ω1

e ∩ ∂Ω
)
× (0, T ] (11i)

B(V ,U∞) = 0 on
(
∂Ω2 ∩ ∂Ω

)
× (0, T ] (11j)

for e = 1, . . . , nel, where [J}K] = }̂ + }|Ω2 . It is worth noting that Equa-

tion (9b) does not feature in the final strong form given by Equation (11)

due to the Dirichlet boundary condition of Equation (11b) and the unique

definition of the hybrid variable Û on each face of Ω1.

Remark 1. The strong form of Equation (11) assumes that the hybrid vari-

able Û is defined on the interface between the HDG and FV subdomains, ΓI .

This approach weakly enforces the continuity of the solution at ΓI using the

hybrid variable, that is replacing Equation (9e) by Equation (11e). It is also

possible to produce a slightly different formulation where the hybrid variable

is not defined on ΓI and the continuity of the solution is weakly imposed di-

rectly using the primal variable on the interface (i.e. Equation (9e)). The

approach considered here minimises the changes required in an existing HDG
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solver at the expense of introducing the hybrid variable as an extra unknown

on the interface ΓI . It is worth emphasising that this represents a minimum

overhead due to the small number of degrees of freedom corresponding to the

hybrid variable in the interface compared to the global number of degrees of

freedom in the HDG and FV subdomains.

As usual in HDG methods [20, 59, 60], the problem is solved in two stages.

The so-called local problem, given by Equations (11a)-(11b) is used to write

the primal solution U as a function of the hybrid variable Û . Introducing

this expression into the so-called global problem, given by Equation (11c),

leads to a problem only for the hybrid variable.

3.2. Weak formulation

Following the notation in [62], the following discrete functional spaces are

introduced

Wh,ke(Ωe) :=
{
v ∈ L2(Ω) : v|Ωe ∈ Pke(Ωe) ∀Ωe , e = 1, . . . , nel

}
, (12a)

Ŵh,ki(Γj) :=
{
v̂ ∈ L2(Γ ∪ ∂Ω) : v̂|Γj

∈ Pkj(Γj) ∀Γj ⊂ Γ ∪ ∂Ω
}
, (12b)

Wh,ke
t (Ωe) :=

{
v : v(·, t) ∈ Wh,ke(Ωe),∀t ∈ (0, T ]

}
, (12c)

Ŵh,ki
t (Γj) :=

{
v̂ : v̂(·, t) ∈ Ŵh,ki(Γj), ∀t ∈ (0, T ]

}
, (12d)

where Pke(Ωe) and Pkj(Γj) are the spaces of polynomial functions of complete

degree at most ke in Ωe and kj on Γj respectively. It is worth emphasising that

the current implementation of the HDG method allows to use different degree

of approximation for the solution in different elements/faces. This capability

has been previously exploited to devise degree adaptive procedures within

an HDG framework [25, 38].
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For each element in the HDG domain, Ω1
e, e = 1, . . . , nel, the weak formu-

lation of the HDG local problem, given by Equations (11a)-(11b), is: given

Û on Γ1 ∪ ∂Ω1, find U ∈ [Wh,ke
t (Ω1

e)]
msd that satisfies

(
δU ,U t

)
Ω1

e
−
(
∇δU ,F (U)

)
Ω1

e
+
〈
δU , F̂ (U , Û) · n

〉
∂Ω1

e
=
(
δU ,S

)
Ω1

e
, (13)

for all δU ∈ [Wh,ke(Ω1
e)]

msd , where msd = nsd + 2 is the number of components

of U ,
(
·, ·
)

Ωe
and

〈
·, ·
〉
∂Ωe

denote the standard internal products over an

element and over an element boundary respectively. The numerical normal

flux is defined as

F̂ (U , Û) · n := F (Û) · n+ τ · (U − Û). (14)

where the stabilisation tensor τ is selected to ensure the stability, accuracy

and convergence properties of the resulting HDG method [20, 59, 60, 63, 64,

23]. Here, the stabilisation tensor is selected as

τ (U , Û) = (|v̂n|+ ĉ) Imsd . (15)

where the normal velocity, v̂n = v̂ · n and ĉ are computed from the hybrid

variable Û . This definition of the stabilisation parameter, inspired on the lo-

cal Lax-Friedrichs method, has been previously used in an HDG context [24].

It is worth noting that other numerical fluxes, e.g. the Roe numerical flux,

can be employed but as pointed out in [24], small differences are observed

between different Riemann solvers in a high-order context.

Similarly, the weak formulation of the HDG global problem, given by

Equations (11c) and (11i) is: find Û ∈ [Ŵh,ki
t (Γ1 ∪ ∂Ω1)]msd such that

nel∑

e=1

{〈
δÛ , F̂ (U , Û ) · n

〉
∂Ω1

e\∂Ω
+
〈
δÛ , B̂(U , Û ,U∞)

〉
∂Ω1

e∩∂Ω

}
= 0, (16)
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for all δÛ ∈ [Ŵh,ki(Γ1 ∪ ∂Ω1)]msd .

The weak formulation of the FV problem, given by Equations (11d) and

(11j) is: find V ∈ [Wh,0
t (Ω2

i )]
msd that satisfies

(
δV ,V t

)
Ω2

i
+
〈
δV ,F (V ) · n

〉
∂Ω2

i \∂Ω
+
〈
δV ,B(V ,U∞)

〉
∂Ω2

i∩∂Ω
=
(
δV ,S

)
Ω2

i
,

(17)

for all δV ∈ [Wh,0(Ω2
i )]

msd and for i = 1, . . . , ncv.

To account for the transmission conditions at the interface between the

HDG and FV subdomains, the continuity of the solution is weakly imposed

in the HDG global problem given by Equation (16) and the continuity of

the fluxes is imposed in the FV weak formulation given by Equation (17).

The weak form of the coupled problem is: find (U , Û ,V ) ∈ [Wh,ke
t (Ω1

e)]
msd ×

[Ŵh,ki
t (Γ1 ∪ ∂Ω1)]msd × [Wh,0(Ω2

i )]
msd such that

(
δU ,U t

)
Ω1

e
−
(
∇δU ,F (U)

)
Ω1

e
+
〈
δU ,F (Û) · n

〉
∂Ω1

e

+
〈
δU , τ ·U

〉
∂Ω1

e
−
〈
δU , τ · Û

〉
∂Ω1

e
=
(
δU ,S

)
Ω1

e
, (18a)

nel∑

e=1

{〈
δÛ ,F (Û) · n

〉
∂Ω1

e\∂Ω
+
〈
δÛ , τ ·U

〉
∂Ω1

e\∂Ω
−
〈
δÛ , τ · Û

〉
∂Ω1

e\∂Ω1

−
〈
δÛ , τ · V

〉
∂Ω1

e∩ΓI +
〈
δÛ , B̂(U , Û ,U∞)

〉
∂Ω1

e∩∂Ω

}
= 0, (18b)

(
δV ,V t

)
Ω2

i
+
〈
δV ,F (V ) · n

〉
∂Ω2

i \ΓI +
〈
δV ,F (Û) · n

〉
∂Ω2

i∩ΓI

−
〈
δV , τ ·U

〉
∂Ω2

i∩ΓI +
〈
δV , τ · Û

〉
∂Ω2

i∩ΓI

+
〈
δV ,B(V ,U∞)

〉
∂Ω2

i∩∂Ω
=
(
δV ,S

)
Ω2

i
, (18c)

for all δU ∈ [Wh,ke(Ω1
e)]

msd , δÛ ∈ [Ŵh,ki(Γ1 ∪ ∂Ω1)]msd , δV ∈ [Wh,0(Ω2
i )]

msd

and for e = 1, . . . , nel and i = 1, . . . , ncv.
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4. HDG-FV discretisation

4.1. Temporal discretisation

The time integration is performed using backward differentiation formu-

lae (BDF) [65]. This popular family of implicit multi-step time marching

algorithms approximate the first-order time derivative as

ut ≈
ns∑

s=0

asu
n+1−s (19)

where ur(x) := u(x, tr) and, to shorten the notation, the coefficients as

include the dependence upon the selected time step ∆t.

For steady-state computations, this work employs the first-order BDF

method (BDF1), which is equivalent to the backward Euler method, corre-

sponding to ns = 1, a0 = 1/∆t and a1 = −1/∆t. For transient computations,

a second-order BDF method (BDF2) is employed, corresponding to ns = 2,

a0 = 3/(2∆t), a1 = −2/∆t and a2 = 1/(2∆t).

The semi-discrete weak formulation for the proposed HDG-FV with BDF
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time integration can be written as

ns∑

s=0

as
(
δU ,Un+1−s)

Ω1
e
−
(
∇δU ,F (Un+1)

)
Ω1

e
+
〈
δU ,F (Û

n+1
) · n

〉
∂Ω1

e

+
〈
δU , τ n+1 ·Un+1

〉
∂Ω1

e
−
〈
δU , τ n+1 · Û

n+1〉
∂Ω1

e
−
(
δU ,Sn+1

)
Ω1

e
= 0,

(20a)

nel∑

e=1

{〈
δÛ ,F (Û

n+1
) · n

〉
∂Ω1

e\∂Ω
+
〈
δÛ , τ n+1 ·Un+1

〉
∂Ω1

e\∂Ω

−
〈
δÛ , τ n+1 · Û

n+1〉
∂Ω1

e\∂Ω1 −
〈
δÛ , τ n+1 · V n+1

〉
∂Ω1

e∩ΓI

+
〈
δÛ , B̂(Un+1, Û

n+1
,U∞)

〉
∂Ω1

e∩∂Ω

}
= 0, (20b)

ns∑

s=0

as
(
δV ,V n+1−s)

Ω2
i

+
〈
δV ,F (V n+1) · n

〉
∂Ω2

i \ΓI +
〈
δV ,F (Û

n+1
) · n

〉
∂Ω2

i∩ΓI

−
〈
δV , τ n+1 ·Un+1

〉
∂Ω2

i∩ΓI +
〈
δV , τ n+1 · Û

n+1〉
∂Ω2

i∩ΓI

+
〈
δV ,B(V n+1,U∞)

〉
∂Ω2

i∩∂Ω
−
(
δV ,Sn+1

)
Ω2

i
= 0, (20c)

4.2. Spatial discretisation

The spatial discretisation of the semi-discrete system given by Equa-

tion (20) is considered next.

4.2.1. HDG spatial discretisation

For the HDG subdomain Ω1, an arbitrary order approximation of the

solution U , using Lagrange polynomials, is defined on a reference element,

with local coordinates ξ = (ξ1, . . . , ξnsd), namely

U(ξ, t) ≈ Uh(ξ, t) :=
nen∑

J=1

NJ(ξ)UJ(t), (21)

where nen is the total number of element nodes, uJ(t) are the time-dependent

nodal values of the solution and NJ are the shape functions of degree k.
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Analogously, the hybrid variable Û is approximated on a reference face, with

local coordinates ξ̂ = (ξ̂1, . . . , ξ̂nsd−1), as

Û(ξ̂, t) ≈ Ûh(ξ̂, t) :=
nfn∑

J=1

N̂J(ξ̂)ÛJ(t), (22)

where nfn is the total number of face nodes,

A standard isoparametric formulation [66] is considered, where local and

Cartesian coordinates are linked via the so-called isoparametric mapping

x(ξ) =
nen∑

J=1

NJ(ξ)xJ , (23)

where {xJ}J=1,...,nen are the nodal coordinates of a generic element Ω1
e.

4.2.2. FV spatial discretisation

The vertex-centred finite volume method employs a constant approxima-

tion of the solution in each control volume

V (x, t) ≈ V h(x, t) :=





VJ(t) if x ∈ Ω2
J

0 otherwise

. (24)

When computing the integral of the normal fluxes over the boundary of

the control volume, a linear reconstruction is considered, as classically done

in a FV framework, to ensure second-order convergence of the method.

4.2.3. Discrete system

The approximations for the solution in the HDG and FV subdomains,

given by Equations (21) and (24) respectively, and the approximation of

the HDG hybrid variable given by Equation (22) are introduced in the semi-

discrete system of Equation (20). Selecting the spaces of weighting functions
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as the space spanned by the shape functions, leads to the non-linear system

of equations

R(Un+1
h , . . . ,Un+1−ns

h , Û
n+1

,V n+1
h , . . . ,V n+1−ns

h ) = 0, (25)

where the global residual of the coupled HDG-FV problem is obtained by

assembling the contributions from the HDG global and local problems and

the FV problem, namely

Re,i :=





Re(Un+1
h , . . . ,Un+1−ns

h , Û
n+1

h )

R̂
e
(Un+1

h , . . . ,Un+1−ns
h , Û

n+1

h ,V n+1
h , . . . ,V n+1−ns

h )

Ri(Un+1
h , . . . ,Un+1−ns

h , Û
n+1

h ,V n+1
h , . . . ,V n+1−ns

h )





(26)

with

Re
I : =

ns∑

s=0

as
(
NI ,U

n+1−s
h

)
Ω1

e
−
(
F (Un+1

h ),∇TNI

)
Ω1

e
+
〈
NI ,F (Û

n+1

h ) · n
〉
∂Ω1

e

+
〈
NI , τ

n+1 ·Un+1
h

〉
∂Ω1

e
−
〈
NI , τ

n+1 · Û
n+1

h

〉
∂Ω1

e
−
(
NI ,S

n+1
)

Ω1
e

= 0,

(27a)

R̂
e

I : =
nel∑

e=1

{〈
N̂I ,F (Û

n+1

h ) · n
〉
∂Ω1

e\∂Ω
+
〈
N̂I , τ

n+1 ·Un+1
h

〉
∂Ω1

e\∂Ω

−
〈
N̂I , τ

n+1 · Û
n+1

h

〉
∂Ω1

e\∂Ω1 −
〈
N̂I , τ

n+1 · V n+1
h

〉
∂Ω1

e∩ΓI

+
〈
N̂I , B̂(Un+1

h , Û
n+1

h ,U∞)
〉
∂Ω1

e∩∂Ω

}
= 0, (27b)

Ri : =
ns∑

s=0

as
(
1,V n+1−s

h

)
Ω2

i
+
〈
1,F (V n+1

h ) · n
〉
∂Ω2

i \ΓI +
〈
1,F (Û

n+1

h ) · n
〉
∂Ω2

i∩ΓI

−
〈
1, τ n+1 ·Un+1

h

〉
∂Ω2

i∩ΓI +
〈
1, τ n+1 · Û

n+1

h

〉
∂Ω2

i∩ΓI

+
〈
1,B(V n+1

h ,U∞)
〉
∂Ω2

i∩∂Ω
−
(
1,Sn+1

)
Ω2

i
= 0, (27c)

for e = 1, . . . , nel and i = 1, . . . , ncv.
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The FV formulation considered here is stabilised using the so-called Jame-

son–Schmidt–Turkel scheme. In addition, a shock capturing term based on

the traditional pressure switch has been added. The details of both the

stabilisation and the shock-capturing can be found in many FV publica-

tions [67, 68]. For the HDG approach, the stabilisation is controlled by the

stabilisation tensor τ defined in Equation (15). The shock capturing im-

plemented in the proposed approach follows the traditional sub-cell shock

capturing approach introduced for the first time in a DG context in [69].

4.3. Solution strategy

The Newton-Raphson method is applied to linearise the non-linear resid-

ual of Equation (25) and, by truncating the Taylor expansion at first order,

the non-symmetric sparse linear system to be solved at each iteration (m) of

the Newton-Raphson is obtained, namely




Tuu Tuû 0

Tûu Tûû Tûv

Tvu Tvû Tvv




n+1,m


∆U

∆Û

∆V





n+1,m

=





fu

fû

fv





n+1,m

, (28)

where ∆}n+1,m = }n+1,m+1 − }n+1,m denote the increment of the vector of

degrees of freedom. The detailed expression of the tangent matrices Tuu,

Tuû, Tûu, Tûû, Tûv, Tvu, Tvû and Tvv and the right hand side vectors fu, fû

and fv result from the linearisation using a Newton Raphson method, that is
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(Tuu)e,n+1,m
IJ :=

∂Re
I

∂Un+1,m
J

, (Tuû)e,n+1,m
IJ :=

∂Re
I

∂Ûn+1,m
J

, (29a)

(Tûu)e,n+1,m
IJ :=

∂R̂
e

I

∂Un+1,m
J

, (Tûû)e,n+1,m
IJ :=

∂R̂
e

I

∂Ûn+1,m
J

, (29b)

(Tûv)
e,n+1,m
IJ :=

∂R̂
e

I

∂Vn+1,m
J

, (Tvu)i,n+1,m
J :=

∂Ri

∂Un+1,m
J

, (29c)

(Tvû)i,n+1,m
J :=

∂Ri

∂Ûn+1,m
J

, (Tvv)
i,n+1,m
J :=

∂Ri

∂Vn+1,m
J

, (29d)

and

(f eu)n+1,m
I := −Re

I , (f eû)n+1,m
I := −R̂

e

I ,
(
f iv
)n+1,m

:= −Ri. (30a)

It is worth noting that the tangent matrix Tuu has an element by element

block diagonal structure that can be used to obtain a reduced system of

equations 
T̃ûû Tûv

T̃vû Tvv




n+1,m


∆Û

∆V





n+1,m

=





f̃û

f̃v





n+1,m

, (31)

where

T̃ûû : = Tûû −TûuT
−1
uuTuû, T̃vû : = Tvû −TvuT

−1
uuTuû (32a)

f̃û : = fû −TûuT
−1
uu fu, f̃v : = fv −TvuT

−1
uu fu. (32b)

In the current implementation, the linear system given by Equation (31)

is solved using a multi-frontal method for sparse unsymmetric systems [70,

71] and the solution in the HDG domain is recovered by solving a set of

independent local problems in each element, namely

Tn+1,m
uu ∆Un+1,m = fn+1,m

u −Tn+1,m
uû ∆Ûn+1,m. (33)
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Remark 2. As mentioned in Remark 1, the continuity of the solution in the

interface ΓI has been imposed on the global problem, through the hybrid vari-

able Û . If the hybrid variable is not defined on the interface, the alternative

formulation would lead to a tangent matrix of the form




Tuu Tuû Tuv

Tûu Tûû 0

Tvu Tvû Tvv


 . (34)

This alternative formulation leads to a reduced system


T̃ûû T̃ûv

T̃vû T̃vv




n+1,m


∆Û

∆V





n+1,m

=





f̃û

f̃v





n+1,m

, (35)

where

T̃ûv := −TûuT
−1
uuTuv, T̃vv := Tvv −TvuT

−1
uuTuv (36)

When compared to the system of Equation (31), the system of the alternative

formulation given by Equation (35) is slightly smaller but the hybridisation

process requires the extra operations detailed in Equation (36) for each time

step and each non-linear iteration.

5. Numerical studies

This section presents a set of numerical studies to verify the optimal

approximation properties of the proposed HDG-FV scheme. First, the de-

veloped FV and HDG schemes are tested separately to verify their optimal

convergence both in space and time and the coupled scheme is then assessed

and compared to the FV and HDG schemes.
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(a) Mesh 1 (b) Mesh 2 (c) Mesh 3 (d) Mesh 4

Figure 2: Triangular meshes of the domain Ω = [0, 1]2 used to test the optimal convergence

properties of the FV, HDG and HDG-FV methods.

To test the optimal convergence of the spatial discretisation, the Ringleb

flow problem [72] is considered. This classical test case features a steady-state

problem that has analytical solution and it is often employed to verify the

optimal approximation properties of newly developed spatial discretisation

schemes. To test the optimal convergence of the implemented BDF methods,

a synthetic transient problem with analytical solution is defined using the

method of manufactured solutions. The exact solution is selected to be

U =
{

1, cos(π/6), sin(π/6), 4 + sin(100t)
}T

, (37)

and a source term is imposed so that Equation (37) is a solution of the Euler

equations.

Four uniform meshes of the domain Ω = [0, 1]2 are considered to test the

spatial convergence, with 256, 1,024, 4,096 and 16,384 triangular elements,

respectively, as shown in Figure 2. When the combined scheme is used, the

mesh is partitioned as Ω2 = [0.375, 0.625]2 and Ω1 = Ω \Ω2, as illustrated in

Figure 2.
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k=1
k=2
k=3
k=4

(a) Spatial convergence (b) Temporal convergence

Figure 3: Convergence properties of the FV and HDG methods. (a) Mesh convergence

of the error of the density in the L2(Ω) for the Ringleb flow problem and (b) temporal

convergence of the error of the density in the L2(Ω) for the manufactured problem.

5.1. Optimal convergence of the FV and HDG methods

First the convergence of the FV and HDG methods under mesh refinement

is studied. Figure 3(a) shows the relative error in the L2(Ω) norm as a

function of the characteristic element size h. For the HDG scheme a degree

of approximation ranging from k = 1 up to k = 4 is considered.

The results show the expected second-order convergence of the vertex-

centred FV scheme and nearly the optimal rate of convergence k + 1 for

the HDG method. It is worth noting that Figure 3(a) illustrates the extra

accuracy of the HDG scheme with linear approximation when compared to

the standard second-order FV method.

The temporal convergence for the FV and HDG schemes using BDF1

and BDF2 time integrators is shown in Figure 3(b) for the problem with

manufactured solution. The relative error in the L2(Ω) norm is displayed

as a function of the time step ∆t. The results show the expected first and
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k=1
k=1

(a) Spatial convergence (b) Temporal convergence

Figure 4: Convergence properties of the proposed HDG-FV method. (a) Mesh convergence

of the error of the density in the L2(Ω) for the Ringleb flow problem and (b) temporal

convergence of the error of the density in the L2(Ω) for the manufactured problem.

second order convergence of the BDF1 and BDF2 methods respectively, for

both FV and HDG.

5.2. Optimal convergence of the coupled HDG-FV method

Next, the spatial and temporal convergence properties of the proposed

HDG-FV scheme are verified using the same numerical examples described

in Section 5.1.

For the spatial convergence, Figure 4(a) shows the relative error in the

L2(Ω) norm as a function of the characteristic element size h for the Ringleb

flow. The combined scheme shows the expected second order convergence.

In addition, the results for both HDG with linear approximation and FV

have been added to the figure to enable a visual comparison of the gain of

accuracy induced by the HDG formulation when compared to the FV. In

this example the accuracy of the combined scheme is almost identical to the
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accuracy of a standard HDG solver.

Finally, Figure 4(b) shows the relative error in the L2(Ω) norm as a

function of the time step ∆t for the problem with manufactured solution.

The expected order of convergence is observed for both the BDF1 and BDF2

schemes with the combined HDG-FV approach. The accuracy is identical

in both cases to the accuracy obtained with HDG or FV. This is expected

because for studying the temporal convergence the mesh is selected to be fine

enough so that the error is controlled by the temporal integrator.

5.3. Handling shocks across and aligned with the HDG-FV interface

The classical shock tube problem is considered here to show the ability

of the proposed coupling strategy to handle shocks that cross and that are

aligned with the HDG-FV interface.

The computational domain is Ω = [0, 1]× [0, 0.1] and the initial condition

is defined as [73]

U0 =




{3, 0, 0, 3/(γ − 1)}T if x ≤ 0.5

{1, 0, 0, 1/(γ − 1)}T if x > 0.5.

The FV subdomain is Ω2 = [0.375, 0.625] × [0.025, 0.075] and the HDG

subdomain is Ω1 = Ω\Ω2. This choice ensures that from t = 0 to t < 0.0685,

the a shock is crossing the HDG-FV interface and at time t = 0.0685, the

shock is aligned with the HDG-FV interface.

The density, computed with the proposed HDG-FV scheme, at three dif-

ferent instants, is displayed in Figure 5. The thick line denotes the interface

between the HDG and FV subdomains. At t = 0.0225, the shock is crossing

the top and bottom part of the HDG-FV interface and it can be seen that the
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(a) t = 0.0225 (b) t = 0.0685

(c) t = 0.1145

Figure 5: Density at three different instants computed with the proposed HDG-FV scheme

showing the ability to handle the shock at different stages.

position of the shock is captured correctly by both schemes, with no artefacts

on the interface. At t = 0.0685, the shock is perfectly aligned with the inter-

face and again, the solution is captured correctly with no artefacts. Finally,

at time t = 0.1145 the shock is in the HDG subdomain. No artefacts are

present due to the transition between subdomains and all the flow features

are well represented.

It is worth mentioning that the focus here is in the ability to handle shocks

across the interface between the HDG and FV subdomains and shocks that

are perfectly aligned with the interface. In addition, this example shows the

ability to also handle contact discontinuities and rarefactions waves across

the two subdomains.
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6. Numerical examples

Two numerical examples involving the simulation of the gust impinging

on aerofoils [74, 75] are considered. The first example is used to show the effi-

ciency of the proposed combined HDG-FV method compared to a traditional

FV method and the second example shows the potential and applicability of

the proposed method to a more challenging problem involving a two-aerofoil

configuration.

6.1. Gust impinging on a NACA0012 aerofoil

The simulation of a sinusoidal gust impinging on a NACA0012 aerofoil

immersed in an inviscid subsonic flow is considered. The free stream Mach

number is M∞ = 0.5 and the angle of attack is 2 degrees. The problem setup

is illustrated in Figure 6, showing the aerofoil of chord length c = 1 and the

rectangular box of dimension a × b at a distance d from the aerofoil where

the gust is introduced as a source term, as detailed in Section 2.2. The far

field boundary is situated at 10 chord lengths from the aerofoil.

First, four unstructured triangular meshes are used to select the level of

mesh refinement required to accurately compute the quantities of interest,

namely lift and drag, for the steady state solution of the Euler equations.

A detailed view of the first three meshes near the aerofoil is depicted in

Figure 7. The generated meshes contain 2,295, 7,701, 35,425 and 133,459

elements, respectively, and the aerofoil is discretised with 101, 179, 375 and

725 points in each case.

Figure 8 shows the computed lift as a function of the number of elements.

From this study, it can be concluded that the second mesh provides the re-
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Figure 6: Illustration of the problem setup for the simulation of wind gust impinging on

a NACA0012 aerofoil. A sinusoidal gust is generated in the region enclosed by the box of

width a and height b, which is located at a distance d upstream to the aerofoil of chord

length c.

(a) Mesh 1 (b) Mesh 2 (c) Mesh 3

Figure 7: Meshes used in the select the level of mesh refinement required to accurately

capture the steady state solution.

quired accuracy as the lift coefficient is within five lift counts of the reference

value. A detailed view of the Mach number and pressure distributions near

the aerofoil is displayed in Figure 9.
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Figure 8: Convergence plot of the lift coefficient CL as a function of the number of elements.

The shaded area represents the region with an error of maximum five lift counts compared

to the reference solution.

(a) Mach (b) Pressure

Figure 9: Steady state solution computed on the mesh displayed in Figure 7 (b).

Next, the simulation of the sinusoidal gust impinging in the NACA aero-

foil is considered. To speed up the convergence to the time harmonic steady

state, the computed steady state solution is used as the initial condition for

the transient gust simulation. The non-dimensional parameters of the source

term required to introduce the gust are the frequency, ω = 4, the angle of

propagation of the gust front, θ = 45◦, the gust intensity, ε = 0.1, the di-

mensions of the box where the gust is generated, a = 1 and b = 4, and the

29



(a) Mesh 1 (b) Mesh 2 (c) Mesh 3

(d) Mesh 4 (e) Mesh 5

Figure 10: Unstructured triangular meshes employed to simulate the wind gust impinging

in a NACA0012 aerofoil.

distance to the aerofoil, d = 2.

Five meshes are considered to show the benefits of the proposed HDG-

FV approach for capturing the transient gust effect. First, the mesh used

to compute the steady state solution, shown in Figure 10 (a), is considered

to perform a standard FV simulation. Second, a mesh where the whole

region of interest, namely Ω̃ = [−4, 4]× [−2, 2], is refined by using a desired

element size equal to h? = 0.08. The resulting mesh, displayed in Figure 10

(b), has 24,851 elements. The third mesh corresponds to a mesh where the

region of interest is refined using a desired element size equal to h? = 0.04.
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The resulting mesh, displayed in Figure 10 (c), has 83,229 elements. The

fourth mesh corresponds to a mesh where the region of interest is refined

using a desired element size equal to h? = 0.02, which corresponds to the

largest element size on the aerofoil used in the steady state simulation.. The

resulting mesh, displayed in Figure 10 (d), has 265,237 elements.

Finally, the same mesh considered in the steady state simulation is par-

titioned in two regions. The FV region Ω2 consists of elements with size less

or equal to 3h?/2, whereas the rest of the mesh defines the HDG region Ω1.

In the HDG region, the degree of the functional approximation employed in

elements lying in the region of interest Ω̃ is adapted based on the wavelength

of the impinging gust, λ = π/2. For elements with size less than or equal

to λ/5, a quadratic approximation is employed, whereas in the remaining

elements a cubic approximation is used. For elements outside the region of

interest a linear approximation is used. The mesh is depicted in Figure 10

(e), including the degree of approximation used in the different elements.

In all the simulations, 32 time steps per cycle of the gust are considered.

This corresponds to a CFL number of approximately 442 in the coarsest mesh

and 478 in the finest mesh.

Figure 11 shows the Mach number distribution after the time harmonic

steady state has been reached for the three computations using three of the

meshes of Figure 10. In all cases the second order BDF2 time integrator

described in Section 4.1 is employed.

The solution obtained with the FV method on the mesh of Figure 10 (a)

shows, as expected, the large dissipation introduced by the traditional FV

scheme on coarse meshes. This experiment confirms that meshes designed for
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(a) FV Mesh 1 (b) FV Mesh 4 (c) HDG-FV Mesh 5

Figure 11: Mach number distribution for the simulation of the wind gust impinging in a

NACA0012 aerofoil after the time harmonic steady state is reached.

steady state simulations are not suitable for transient simulations in a low-

order framework. Figure 11 (b) shows the FV solution computed on the fine

mesh of Figure 10 (d). The solution computed with the proposed HDG-FV

scheme on the coarse mesh used for the steady state simulation and with a

variable degree of approximation in the HDG region is depicted in Figure 10

(e), showing a good agreement with the reference solution computed with

FV in the finest mesh.

To better illustrate the accuracy of the proposed scheme, Figure 12 shows

the evolution of the lift coefficient in time for the solutions computed on the

five meshes shown in Figure 10. The computation using FV in the finest

mesh is taken as the reference solution and the accuracy of the computations,

using FV in the first three meshes and the computation using HDG-FV in

the coarse mesh with non-uniform degree of approximation, is measured by

means of the dissipation and dispersion error.

The dissipation error is estimated by comparing the amplitude of the

oscillations in the lift coefficient against the reference results. For the FV
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Figure 12: Variation of the lift coefficient with respect to the steady state solution as

a function of the non-dimensional time for the simulations computed on the five meshes

shown in Figure 10.

simulations, the estimated dissipation error is 85.8%, 5.7% and 0.8% in the

first three meshes respectively, whereas the computation with the proposed

HDG-FV scheme produces a dissipation error of 0.3%. Similarly, the disper-

sion error is estimated by comparing the phase of the oscillations in the lift

coefficient against the reference value. In this case, the FV computations

produce a dispersion error of 57.5◦, 13◦ and 2.5◦ respectively, whereas the

combined HDG-FV approach produces an error below 0.3◦.

To further illustrate the benefits of the proposed approach, Figure 13

shows a one dimensional section, at y = c/2, of the vertical velocity field for

the five simulations computed on the five meshes shown in Figure 10. The

results clearly show an excellent agreement between the solution computed

using the proposed scheme and the reference solution. Using the coarsest

mesh with a FV scheme the flow features are not captured due to an excessive

dissipation. The dissipation and dispersion errors when the FV scheme is
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Figure 13: One dimensional section, at y = c/2, of the vertical velocity field for the five

simulations computed on the five meshes shown in Figure 10.

used in the second mesh are clearly visible, whereas the simulation using FV

in the third mesh provides a much better agreement.

From a computational point of view, the simulation using the proposed

HDG-FV scheme requires the solution of a linear system of equations with

96,652 degrees of freedom within each Newton-Raphson iteration whereas

the solution computed on the reference mesh requires the solution of a linear

system of equations with 530,832 degrees of freedom within each Newton-

Raphson iteration. It is worth noting that the substantial decrease in number

of degrees of freedom also corresponds to a save in computational time. The

time required to compute the solution using the proposed HDG-FV approach

is almost one order of magnitude lower than using the standard FV method

on the fine mesh. Using the FV scheme in the third mesh leads to a linear

system of equations with 166,816 degrees of freedom to be solved within each

Newton-Raphson iteration. This simulations takes twice the time required by

the proposed HDG-FV scheme and, as detailed earlier, produces less accurate
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results.

It is also worth emphasising that the benefit of the proposed approach,

in addition to the save in computational cost, is that it avoids the generation

of meshes tailored to specific transient simulations.

6.2. Gust impinging on a two-aerofoil configuration

The simulation of the wind gust effect on two-aerofoil configurations is of

major importance as it corresponds to a two dimensional representation of

a canard-wing or wing-tail configuration [76]. In this scenario, it is not only

important to accurately capture the gust impinging on the first aerofoil but

it is also relevant to accurately represent the flow disturbances produced by

the first aerofoil that impinge on the second aerofoil.

The simulation of a sinusoidal gust impinging on a wing-tail configuration

immersed in an inviscid transonic flow at free stream Mach number M∞ = 0.8

and with angle of attack equal to 4.4844 degrees with respect to the wing

is considered. The problem setup is illustrated in Figure 14, showing the

aerofoil of chord length c and the rectangular box of dimension a × b at a

distance d from the aerofoil, where the gust is introduced as a source term.

As in the previous example, the far field boundary is situated at 10 chord

lengths from the aerofoil and the same intensity. The frequency and intensity

of the gust and the angle of propagation of the gust front are taken as in the

previous example. The dimensions of the box where the gust is generated

are a = 1 and b = 4 and the distance to the aerofoil is d = 3.04.

An unstructured triangular mesh with 12,504 elements was generated,

with localised mesh refinement around the wing and tail. This mesh, suitable

for a steady state simulation is then partitioned in two regions as done in
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Figure 14: Illustration of the problem setup for the simulation of wind gust impinging on

the transverse section of wing and tail configuration. A sinusoidal gust is generated in

the region enclosed by the box of width a and height b, which is located at a distance d

upstream to the wing.

the previous example. In the region where the elements are small enough to

capture the gust perturbation a standard FV scheme is employed whereas

in the rest of the domain an HDG approach is used. In the HDG region,

the degree of the approximation is adapted following the same strategy as

in the previous example. The resulting spatial discretisation, including the

degree of approximation used in each element of the HDG region is displayed

in Figure 15. Two detailed views of the mesh around the wing and tail are

are displayed in order to show the regions where the standard FV scheme is

used.

As in the previous example, 32 time steps per cycle of the gust are con-

sidered. This corresponds to a CFL number of approximately 56.

The solution after the time harmonic steady state is achieved for both

the standard FV scheme and the proposed HDG-FV method are shown in

Figure 16. The results illustrate the substantial dissipation introduced by the
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Figure 15: Unstructured triangular mesh employed to simulate the wind gust impinging

in a wing-tail configuration. The two detailed views around the wing and tail show the

partition in HDG and FV regions.

(a) FV (b) HDG-FV

Figure 16: Mach number distribution for the simulation of the wind gust impinging in a

wing-tail configuration after the time harmonic steady state is reached.

FV scheme when the coarse mesh, suitable for a steady state simulation, is

used. Instead, the solution with the proposed HDG-scheme is able to capture

the perturbation of the velocity induced by the gust not only impinging in the

aerofoil but also arriving to the tail and interacting with the strong shocks

on both the aerofoil and the tail.
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(a) Wing (b) Tail

Figure 17: Variation of the lift coefficient with respect to the steady state solution as a

function of the non-dimensional time for the simulations displayed in Figure 16 for the

wing and the tail.

To further illustrate the benefits of the proposed approach, Figure 17

shows the evolution of the lift coefficient computed on the aerofoil and tail

separately. The results clearly show the dissipation introduced by the FV

scheme in coarse meshes and how the proposed scheme is able to capture the

amplitude of the oscillations of the lift coefficient on both the aerofoil and

the tail without the need to produce a tailored mesh for this application, just

re-using the mesh that is generated to perform a steady state simulation.

7. Concluding remarks

A new methodology that combines the advantages of the vertex-centred

FV and the HDG methods has been presented and applied to the simulation

of the transient wind gust effect on aerodynamic shapes with meshes suitable

for steady state simulations.

The method avoids the need to generate high-order curvilinear meshes, re-

quired in an HDG context, and to generate meshes tailored for each transient
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simulation as required in a FV framework. Instead, the proposed scheme uses

low order FV elements in regions where the mesh is fine enough to capture

the transient effect and high-order HDG elements in regions where the mesh,

suitable for the steady state simulation, is not fine enough to capture the

transient effects. Both schemes are coupled through the weak imposition of

the continuity of the solution and the normal fluxes. The resulting scheme

is fully implicit and linearisation is performed using a Newton Raphson al-

gorithm.

Two numerical test cases have been used to demonstrate the optimal con-

vergence properties of the proposed scheme, both in space and time. Finally,

two numerical examples involving the transient simulation of the wind gust

effect in an aerofoil and a wing-tail configuration have been presented to show

the benefit and potential of the proposed approach. The proposed method

is capable of accurately capturing the transient flow effects and reducing the

computational cost by an order of magnitude compared to the computation

with a standard FV scheme in a sufficiently fine mesh.
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