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Abstract  

This study proposes an automated calibration procedure for bond parameters in bonded 

discrete element modelling. By exploring the underlying physical correlations between 

microscopic parameters of bonds and macroscopic strength parameters of the continuum to be 

modelled, the microscopic shear strength and tensile strength are identified as independent 

variables for calibration purpose. Then a physics-informed iterative scheme is proposed to 

automatically approximate the bond parameters by viewing the micro-macro relation as an 

implicitly defined mathematical mapping function. As a result of highly non-convex features 

of this implicit mapping, the adaptive moment estimation (Adam), which is especially suitable 

for problems with noisy gradients, is adopted as the basic iterative scheme, in conjunction with 

other numerical techniques to approximately evaluate the partial derivatives involved. The 

whole procedure offers a simple and effective framework for bond parameter calibration. A 

numerical example of SiC ceramic is provided for validation. By compared with some existing 

calibration methods, the proposed method shows significant advantages in terms of calibration 

efficiency and accuracy.   

  

Keywords: discrete element method; parallel bond model; automated calibration; adaptive 

moment estimation; brittle solid; physics-informed optimisation  

1 Introduction  

The bonded particle model (BPM) is widely used to investigate the mechanical behaviour of 

solid materials, such as rock [1], concrete [2], ceramic [3], sea ice [4] and so on, because of the 

intrinsic ability of discrete element modelling in terms of directly reproducing the process of 

fracture in a continuum body. For continuum-based models, the properties used in the 

simulation can be derived directly from measurements performed on laboratory specimens. 
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However, the input properties for BPM usually are not known in priori. How to efficiently 

choose reasonable particle-scale parameters to reflect the bulk behaviour of simulated materials 

is still an ongoing challenge.   

The calibration of DEM parameters is a typical inverse problem. As a critical issue in the 

field of the discrete element method (DEM), calibration of particle-scale parameters receive 

extensive attentions. A large number of methods have been developed to address this challenge. 

Some design of experiments (DoE) methods, such as Taguchi methods [5], Plackett– 

Burman(PB) and Central Composite Design (CCD) [6], are used to improve the try-and-error 

calibration process. The probability-based approach, such as the sequential quasi-Monte Carlo 

[7] and the Bayesian approach [8], are used for calibration purposes. The optimisation methods, 

such as the Genetic Algorithm (GA) [9, 10], Stable Noisy Optimisation by Branch and FIT 

(SNOBFIT) functions [11, 12], are used for calibration of bond parameters in bonded particle 

models. Furthermore, the most commonly reported method is the surrogate model. This model 

can be viewed as a “model of model” and utilises the data obtained by running the simulation 

model with different sets of parameters to approximate the relationship between inputs 

(particle-scale parameters) and outputs (macroscopic responses). Many different surrogate 

models, such as direct fitting method [13-15], polynomial response surface [16], artificial 

neural networks [17, 18], Kriging [19], random forest [20], Gaussian process regression and 

multi-adaptive regression-splines (MARS) [21], are utilised to calibrate DEM parameters. One 

challenge of these surrogate models is that the accuracy of the surrogate depends on the number 

and location of sampling points in the available parameter space, whereas the overall 

computational costs increase when a large number of computational models are required.   

Although nearly all the above-mentioned methods are able to calibrate particle parameters 

in DEM, their practical applications are rather limited. Main reasons may be attributed to: (1) 

none of them is sufficiently efficient for an engineering application, as nearly hundreds of 

https://www.sciencedirect.com/science/article/pii/S1674200117300226
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fullscale DEM simulations are often needed, and especially every single determination of 

strength parameters for a cemented material is computationally expensive; and (2) these 

methods normally require complex implementation processes and even involvements of 

multiple software, which becomes a barrier for many DEM users.   

Recently, a hybrid analytical and computational framework has been developed by the 

authors [22, 23] to calibrate the particle-scale linear and non-linear deformation parameters 

within an accuracy of 1% or 2% after a few iterations. In the current paper, we extend this work 

to the calibration of parallel bond parameters with a physics-informed gradient-based 

optimisation method, aiming at addressing more complicated parameter calibration problems 

in DEM. It should be noted that many bonded particle models [1, 24-28] are available in DEM 

to model cohesive grain-based materials; however, this paper mainly focuses on the parameter 

calibration of the parallel bond model [1], which may be the most commonly used bonded 

particle model in DEM.   

The current paper is divided into 5 sections. Following the introduction, Section 2 explores 

the relations between microscopic parameters and some macroscopic strength properties. 

Section 3 provides an automated computational framework to calibrate microscopic bond 

parameters based on both uniaxial compression test (UCT) and three-point bending test 

(TPBT). Section 4 presents an example to verify the reliability of the proposed framework. 

Section 5 discusses the calibration accuracy and the limitation of the current method. Section 6 

offers some comprehensive remarks on the proposed methodology.   

  

2 Microscopic parameters and macroscopic strength for a bonded DEM specimen  

2.1 A brief revisit of the parallel bond model   

The bonded particle, or discrete element, model is implemented by cementing two particles 

together at their contact points with a ‘cement’ (see Fig.1). The parameters that determine the 
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mechanical behaviour of a bonded particle model are micro properties from both particles and 

the cement  

• Particles (assuming the same material): Young’s modulus of particles Ec, the ratio of shear 

to normal stiffness of the grains (ks/kn), the friction coefficient of particles (μ).  

 

• Cement: Young’s modulus of the cement 
E

c , the ratio of shear to normal stiffness of the  

 

 

cement (
k k

s 
/ 

n ), the radius multiplier λ, the tensile strength 
σ

c and the shear strength  

τc .  

The mechanical equations governing the force and displacement of both particles and 

cements can be referred to [1] for more detail. Specifically, the strength behaviour of a bonded 

particle model is mainly governed by the tensile strength and shear strength of the cement. Once 

the maximum tensile stress or maximum shear stress exceeds the tensile strength or shear 

strength of the cement, the parallel bond between the two particles breaks. At the same time, 

the accompanying force, moment and stiffness are removed from the model. The failure 

envelope of parallel bonds can be referred to Fig. 2. The shear strength is given by:  

  τ σ ϕc = -c n tan  

 (1)  

where c and ϕare the cohesion and friction angle of the parallel bond, respectively; and
σ

n is 

the normal stress at the bond periphery.   

The above BPM is called the parallel bonded model as it can be envisioned as a set of elastic 

springs uniformly distributed over a rectangular cross-section (2D case) or a circular 
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crosssection (3D case) lying on the contact plane and centred at the contact point. When the 

cement shrinks to a point (the size of the cement becomes zero), the BPM reduces to the 

contact bond model, which cannot resist a bending moment or oppose rolling; rather, it can 

only resist forces acting at the contact point. Due to the ability to transfer bending or twisting 

moment, many mechanical behaviours of the grain-based solid can be well reproduced by the 

parallel bond model.   

  

2.2 Microscopic parameters associated with macroscopic strength properties  

Three sets of particle-scale parameters govern the mechanical responses of a bonded particle 

model. The influence parameters with the corresponding dimensions are listed in Table 1.  

According to Buckingham’s theorem [29], an arbitrary physical function ϕ(q1, q2,…qn)=0, 

where qi is the ith variable of n physical variables, can be reformulated as ϕ(π1, π2,…πn-k)=0, 

where πi is one of the dimensionless parameters, and k is the number of independent physical 

units available.   

In Table 1, 14 relevant parameters governing the macroscopic behaviour of a parallel bond 

model are listed. Because 3 independent physical units [L, F, T] are used in a DEM model, 11 

dimensionless parameters should be employed to describe the macroscopic behaviour. 

However, the selection of dimensionless parameters is not unique. For example, one possible 

dimensionless parameters set is: [μ, ϕ, ks/kn, l/r, V E/ c /ρ, 
k k

s 
/ 

n ,ϕ,
σ

c / 
E

c , 
τ σ

c 
/ 

c , λ,  

 

E Ec 
/ 

c ].   

The number of variables required to be considered can be further reduced due to the 

following reasons:  

(1) In most simulations, the moduli and the ratios of normal to shear stiffness for both the 

particles and the cement are set to be the same value to reduce the number of free parameters 
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[1, 30]. For the case that kn and ks of the cement material are not the same as those of the 

particles, the proposed framework in our previous paper [22] still works. The difference is that 

two more independent parameters are required to update in the iterative process, the overall 

computational cost doubles and the calibration accuracy may slightly reduce due to a bigger 

challenge of convergence.   

(2) This paper investigates how to calibrate the compressive strength and tensile strength 

of the bonded particle model. The calibration of elastic parameters (Young’s modulus and 

Poisson’s ratio) can refer to our previous work for linear contact model [22] and non-linear 

contact model [23]. Therefore, the particle-scale deformation parameters are not investigated 

in this study.  

(3) Considering the physical roots of shear and tensile strength of the cemented material, it 

is reported that the ks/kn ratio has measurable influences on the crack pattern and shear strength 

of DEM specimens [31]. Here we hold the opinion that the values of kn and ks are completely 

determined by the macroscopic Young’s modulus and Poisson’s ratio of the DEM specimen, 

rather than by the macroscopic shear strength.   

(4) The existing research shows that the size dependence (specimen size/particle size) has 

a small influence on the compressive strength and tensile strength of a DEM specimen if the 

ratio l/r is sufficiently large [30, 31].  

(5) If numerical simulations are performed under quasi-static loading conditions, the 

loading velocity V is no longer an influencing factor [32].   

 

(6) The radius multiplierλis used to set the length of the cement by multiplying λ to the 

smaller radius of two bonded balls. The calibration is performed under the condition that the 

cement completely fills the throat between the two boned particles in BPM so that the radius  

 

multiplierλis set to be 1.   
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(7) The porosity ϕ and the density ρ are two macroscopic indices to describe particle 

packings. The reported influence factors include the genesis pressure [1], the initial friction 

coefficient [22] and the mineral or material distribution [33]. The porosity ϕ and the density ρ 

are important for determining the mechanical behaviour of a bonded particle model but these 

parameters cannot be directly inputted from simulations. In this paper, we restrict our 

calibration procedure to a model with a predetermined (but can be arbitrary, randomly 

distributed, polydisperse) packing configuration.   

(8) Although the particle friction coefficient is an important strength parameter for 

determining instability of uncemented granular materials [34-36], its influence on the brittle 

failure is physically much more complex. To understand the role of friction in determining 

macroscopic strength properties, the failure mechanism of the bonded particle model is further 

explored below.  

  

2.3 Failure mechanism of a cemented specimen   

The bond parameters are usually calibrated by numerically performing some common 

strength experiments to make the numerical outputs agree with the experimental results. 

Normally, the UCT is used to calibrate the shear strength of a specimen by matching the 

experimental compressive strength. The tensile strength of a specimen can be calibrated by 

matching the flexural strength in TPBT or matching the tensile strength in brazil discs tests 

(BDT). Considering the complexities of stress distribution and loading configurations in BDT 

[37], both UCT and TPBT models are used in this study as benchmark experiments to calibrate 

the shear bond and tensile bond parameters.  

Understanding the physics behind a failure phenomenon may be helpful for more effectively 

calibrating the microscopic parameters. The macroscopic failure is attributed to microscopic 

failures, especially in the form of either tensile failure or shear failure in the bonded particle 
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model [38]. For a cemented specimen subjected to uniaxial compression testing, its overall 

failure is normally characterised by three stages (see Fig. 3):  

Stage I is a completely elastic process prior to any contact bond failure. In this stage, the 

deformation is completely recoverable and the influence of the friction coefficient can be 

ignored.  

Stage II is signified by the onset of particle-scale cracking (bond breaks), in which the 

cohesion of the whole specimen is weakened (bonds between grains break gradually) and the 

frictional strength plays increasing influences due to progressive contact slidings involved 

(frictional strengthening) [39, 40]. Although local failure occurs in this stage, the whole 

specimen has not reached a complete failure until the maximum stress that the specimen can 

withstand is reached. This transition from continuum to dis-continuum behaviour is a failure 

sign of the bonded particle model from a brittle to a hybrid brittle and ductile behaviour. 

Irreversible deformation happens inside the specimen during this stage.   

Stage III is a post-peak state where the compressive stress of the specimen passes through 

the maximum stress and declines gradually until a rupture of the whole specimen occurs. The 

frictional strengthing and cohesion weakening continues during this stage. From brittle failure 

(featured as cracks) to ductile failure (frictional strength, featured as a shear band or strain 

localized area), this is a sign that the system gradually evolves toward a granular state.   

For a TPBT model, Fig. 4 shows the specimen that undergoes the maximum bending moment 

at the central line of the specimen. The specimen between the two supporting points bears 

similar shear forces. Therefore, the bottom and top points at the central line of the specimen are 

the most likely locations undergoing compression-induced failure and tensile failure for the 

perspective of loading.   

Table 2 summarises the 
σ

c /
τ

c ratios for commonly simulated grain-based materials. It can  
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be seen that the tensile bond strength is normally less than the shear bond strength. Considering 

the load condition in a TPBT model, the flexural strength is mainly determined by the tensile  

strength 
σ

c for most grain-based models. This conclusion is also supported by our simulation  

results.   

The failure of a TPBT model is initiated from some tensile cracks at the bottom position 

around the central line of the specimen. Once a crack or deterioration happens, other cracks 

will develop one after another until the loading ceases to be applied. In this process, the particle 

friction plays a very limited role.   

To investigate the role of particle-scale friction on the macroscopic strengths, a series of 

TPBT and UCT simulations with different coefficients of friction between particles are 

performed (the same packing configuration is used to eliminate the influences of the granular 

fabric structure). The parameters used in the simulation can be found in Table 3. To facilitate 

the comparison, the strength values are normalised with the corresponding compressive or 

flexural strength determined from the cases with zero particle friction.  

Our numerical results in Fig. 5 show that a friction coefficient of 1.0 may strengthen the final 

compressive strength by around 12% and strengthen the final flexural strength by about 4%, 

compared to the specimen with no friction. It could be concluded that the particle friction has 

limited influences on both uniaxial compressive strength and flexural strength. A similar 

conclusion is also reported in [1, 11, 32, 46]. Wang and Tonon [11] found that a measurable 

effect of the friction angle on the material strength can be observed only when the cohesion is 

relatively low but the overall influence is still limited.   

Considering the complex mechanism involved and the limited influence of particle-scale on 

the overall strength of the specimen, a friction coefficient of 0.5 is recommended as a 

reasonable value for the simulation of a bonded particle model [1]. Now the primary 
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microscopic parameters for determining the compressive and tensile strength of a 

contactbonded specimen are thus reduced to 
σ

c and 
τ

c .  

  

3 An automated calibration procedure for bond parameters  

In DEM models, the microscopic parameters are direct inputs, while the simulated 

macroscopic properties are the emerging outputs of the system. It bears resemblance to a 

mathematical equation, where the independent variables are inputs and dependent variables are 

outputs. By viewing the calibration of DEM parameters as a process of solving an equation, an 

iterative scheme can be developed for the purpose of calibrating parameters. This procedure 

includes the following steps: (1) construct an objective function incorporating calibration 

targets; (2) determine an iterative scheme suitable for calibration problems of bond parameters; 

and (3) derive technical details including feature scaling, gradient approximation, and initial 

estimations of bond parameters. These steps will be individually discussed in detail in Sections 

3.1-3.5. A physics-informed simplification is proposed in Section 3.6 and the overall workflow 

of the calibration procedure is given in Section 3.7.   

  

3.1 Constructing an objective function  

The calibration of bond parameters is conceptually equivalent to finding roots for an 

equation:  

   fDEM (στc, c)-fexperiment = 0  (2)  

When the exact solutions of the equation are not available, the calibration problem is converted 

to a problem of finding approximate solutions or to a minimisation problem. For the current 

http://www.baidu.com/link?url=1xq4ls-YConPR0vygOg1r6FW5fzkAbvLFdtZJrQGsdrEgGNWq8TaHOKnbjUY1fsSNTGWhELWGW9_nsd63V8sWo0MOUxu353jy1HRDEYxiMKI6BG8RyfixSyTByGkTK6w&wd=&eqid=8861c3ce0001b6e6000000065df4db34
http://www.baidu.com/link?url=-zhnvIsjyqaDmckyK7MB1slXfACOlZ0I5oPS6kVx1Zl49FsnQEmBJfb3mO0Reuv1Oa0HzsaCR1Mc6J-dJvSBHTzO8kEMFfDkA8xIMfWN9ffKyJSMkzd4xQxe_BW3Wxo5&wd=&eqid=884fc7af000112b3000000065df4db57
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problem concerned, an objective function, that combines the calibrations of both uniaxial 

compressive strength and flexural strength together, is given as follows:  

   L(στc, c) =λσ σ1( cct −1) +2 λσ σ2( fft −1)2 

 (3)  

where σc and σf are the uniaxial compressive strength and flexural strength to be determined  

for a bonded particle model; 
σ

ct and 
σ

ft are the targeted compressive strength and flexural 

strength, respectively; λ1 and λ2 are two positive weighting coefficients with λ1 + λ2 = 1. 

Different combinations of λ1 and λ2 can lead to placing different degrees of emphasis on σc and  

σf . When both compressive strength and flexural strength are to be calibrated with equal 

importance, λ1=λ2=0.5.   

  

3.2 The iterative algorithm  

Many iterative algorithms, such as the Newton-Raphson Method, Gradient descent methods 

etc., are able to solve a nonlinear equation. However, the calibration problem has its own special 

features: (1) objective functions in calibration problems cannot be explicitly expressed (no 

analytical forms available) and are usually discontinuous; (2) The grain-based bond specimen 

is highly heterogeneous [47] and the relationship between the microscopic bond parameters and 

the macroscopic strength is a non-convex function. To address the first issue, a finite-difference 

based scheme is used to approximate the gradient of the objective function [48]. It is 

computationally expensive to use the difference method to approximate a secondorder 

derivative, thus the Newton-Raphson method is not a good choice. To address the second issue, 

the adaptive moment estimation (Adam) algorithm [49, 50], which works well in problems with 

very noisy gradients (non-convex function), are applied in this study to calibrate the bond 

parameters.   

https://brilliant.org/wiki/newton-raphson-method/
https://brilliant.org/wiki/newton-raphson-method/
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Adam is a first-order gradient-based optimisation algorithm. The implementation of Adam 

requires computing an exponentially decaying average of past gradients (the first moment, say 

Mt) and an exponentially decaying average of past squared gradients (the second moment, say  

Gt) as follows:  

 Mt =β1Mt−1 + −(1 β1)gt  (4)  

   Gt =β2Gt−1 + −(1 β2 )gt ⊗gt  (5)  

where gt denotes the gradient of the objective function at the tth iterative step; the subscript t 

represents the iterative number (starting from 1); the symbol  represents element-wise 

multiplication; β1 and β2 are the decay rates of the first-moment and the second-moment of the 

gradient; and their values are typically initialised to be 0.9 and 0.99, respectively.   

The moment estimates (both Mt and Gt) are biased towards zero at the initial timesteps and 

especially when both decay rates are close to 1 [49] because the moving averages are initialised 

as zero vectors. This initialisation bias is practically corrected with bias-corrected moment 

estimates as follows:  

   Mˆ t = Mt t  (6)  

1−β1 

   Gˆt = Gt t 

 (7)  

1−β2 

To find solutions or the minimum of a function using the Adam algorithm, independent 

variables involved (say θi) are iteratively updated by:  

α ˆ 

   θ θi := −iMt  (8)  

Gˆt +ε 

where the symbol “:= ” means assignment; the symbol ε is a smoothing term usually initialised 

to a tiny number such as 10-8; and α is the learning rate. The selections of α will affect the 

https://en.wikipedia.org/wiki/Local_minimum
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iterative process (including the convergent rate and accuracy). Empirically, the learning rate 

can be chosen from 0.1, 0.01, and 0.001 to see their influences on the optimisation process.   

To facilitate the convergence of iterations, the value of the objevtive or cost function L is 

used to multiply the original increments in each iteration, as follows:  

αL ˆ 

   θ θi := −iMt  (9)  

Gˆt +ε 

The reasons of making such a multiplication are: 1) the iterative increments will be 

downscaled to reduce the risk of the overshoot problem when the iterative predictions are near 

the calibration target (the value of L will converge towards 0); and 2) the iterative increment 

will be upscaled to accelerate the converge if the current iterative values are far from the 

calibration target (the value of L is larger than 1.0).   

  

3.3 Feature scaling  

Since the range of a microscopic bond strength may vary widely, data normalisation or 

feature scaling is necessary to facilitate the converge of the iterative process. In this study, both  

microscopic shear bond strength 
τ

c  and tensile bond strength 
σ

c are normalised by the  

corresponding targeted compressive strength 
σ

ct and flexural strength 
σ

ft , and the resulting  

normalised microscopic shear bond strengthτ
ˆ

c and tensile bond strength σ
ˆ

c are denoted as:   

 τ σ 

   τˆc = c ,σˆc = c  

 σct σft 

Then the objective function can be rewritten as:  

(10)  

   L(στ στc, c)= (F ˆc, ˆc)  (11)  
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σ 
≈ 

3.4 Gradient approximation  

Although the closed-form relationship between the microscale bond parameters and the 

macroscopic strength parameters are not known, the gradient of the objective function can still 

be approximated by using the finite-difference method. Let the gradient of the objective 

function, gt, be:  

gt ( , )  (12) σ τc

 c 

Then the partial derivatives of the objective function can be approximated as:  

∂F σ 

  ≈ ft [L(σ στc +∆ c, c )−L(στc, c )] 

∂σ σˆc ∆ c 

     (13)  

∂F ct [L(στ τc, c +∆ −c ) L(στc, c )] 

∂τ τˆc ∆ c 

where ∆
σ

c  and ∆
τ

c are two (small) increments of the microscopic bond parameters. The 

computations of the partial derivatives in the above procedure can be carried out independently, 

and therefore can be fully parallelised.  

  

3.5 Initial estimations  

Good initial approximations are important to reduce the risk of falling into the trap of a local 

optimum and to facilitate obtaining a global optimum during the iterations. Although the 

microscopic bond strength is different from the macroscopic strength, some underlying 

connections between them exist: (i) The contact-scale tensile or shear failure does not mean the 

failure of the whole specimen, but the macroscopic failure is fundamentally caused by 

microscopic bond failures; (ii) In the case that all the cement strengths are the same, the bond 
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failure starts from the cement undergoing a larger contact force. Although the contact forces 

between particles are different from each other because the granular assembly transfers external 

loads in force chains [51-55], the magnitude of the contact force for most contacts is distributed 

within a narrow range [56]; and (iii) Not rigorously verified though, the stress experienced by 

the cement is similar to a stress component perpendicular to the contact plane, from the 

perspective of continuum mechanics. All the underlying connections may explain that the 

differences between the contact-scale bond strength and the macroscopic strength are limited 

in the literature [1, 3].  

In this study, the macroscopic strength parameters determined from laboratory experiments 

are used as a starting point for the calibration of the particle-scale bond parameters, namely:  

   τ σ σ σc := ct 
, 

c := ft 

 (14)  

The same initial estimation is used in [13, 45]. The research in [14] also shows that a linear 

relationship between the macroscopic tensile strength and the microscopic tensile strength 

under the conditions that all the packing parameters and deformation parameters are kept the 

same. Furthermore, larger microscopic bond parameters intuitively will give rise to larger 

macroscopic strengths. Inspired by this idea and the parametric analysis conducted in [14], the 

second estimation of microscopic parameters are developed as follows:  

   τc :=σct τ σ, c :=σft σc  (15)  
c 

 σc σf 

After determining the first and second estimations of the microscopic parameters, the 

gradient of the objective function can be approximated by Eq.(13). The microscopic bond 

parameters can be iteratively updated by Eq.(9) until a satisfactory calibration accuracy is 

achieved.   

http://www.baidu.com/link?url=6qtXv669BsoqyRXX1682zFXeY56nunTOlQKGm3mfvYw_YX5gsr0lsMe8E8bmbjHqVRU1AvZV31yl8bzNnsMNEX9RojkMB1sqvRXKrORfp3YEnxXIzItc1AJZg1h_IIVJ
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3.6 Possible simplification by considering more underlying physics mechanisms  

From the perspective of continuum mechanics, the uniaxial compressive strength determined 

from uniaxial compressive tests (UCT) is due to the shear failure of the specimen, while the 

tensile failure dominates the flexural strength in three-point bending tests (TPBT). We thus 

infer 

that 

the 

microscopic tensile bond is independent of the 

compressive strength in UCT and that the shear bond is irrelevant to the flexural strength in 

TPBT. The procedure to find the value of the objective function can thus be simplified as 

follows:  

   UCT(σ στc +∆ c, c)≈ UCT(στc, c)  (16)  

where UCT() and TPBT() represent the compressive strength obtained from the UCT and the 

flexural strength obtained from the TPBT with the input parameters in brackets.   

The original iterative procedure requires 3 sets of full DEM simulations at each iteration (3  

UCT and 3 TPBT). By using the above simplification, only one set of simulations (1 UCT and 

1 TPBT) is needed. Thus the computational cost can be reduced by three times. Considering 

the fact that the microscopic σc /τc ratios in the modelling of common brittle materials are less 

than 0.8 (see Table 2), such a simplification scheme is practically useful.  

The problem of this simplified method is that the particle-scale bond failure is highly 

complex compared to the continuum due to heterogeneous features in a grain-based model and 

thus the foundation of making such a simplification may not be rigorous. A number of 

 UCT(σ στ τc +∆ c , c +∆ ≈c )UCT(στ τc , c +∆ c )  
(17)  

  TPBT(στ τc , c +∆ c ) ≈ TPBT(στc , c )  (18)  

  TPBT(σ στ τc +∆ c , c +∆ ≈c )TPBT(σ στc +∆ c , c )  (19)  
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numerical tests were performed to evaluate the relations between the micro bond strength and 

macro compressive strength. The micro shear bond strength basically determines the  

compressive strength in UCT for the model with a relatively low σc /τc ratio (less than 1.0), 

while both shear failure and tensile failure affect the compressive strength of the specimen  

(both shear failure and tensile failure exist) for the bonded particle model with a high σc /τc 

ratio (larger than 1.0). For the models with the σc /τc ratio around 1.0, the random packing 

structure in a DEM model may affect the microscopic failure mode. For the sake of 

rigorousness, here we restrict the use of this simplified scheme to the bonded particle model  

with a relatively low σc /τc ratio (lower than 0.8). In contrast, the original scheme is valid for  

the bonded particle models with any σc /τc ratio.  

  

3.7 The workflow of the proposed calibration methodology  

The proposed framework to conduct a standard calibration procedure is displayed in Fig. 6. 

The first step is to obtain the calibration target and is normally completed by performing 

laboratory experiments of TPBT and UCT. After determining the flexural strength and 

compressive strength of the simulated specimen, a set of initial approximations on the selected 

microscopic bond parameters is made (Eq.(14)). By performing numerical TPBT and UCT, the 

second estimation is made on the basis of the numerical flexural strength and compressive 

strength (Eq.(15)). By performing numerical TPBT and UCT with the second estimation, the 

microscopic bond parameters can be iteratively updated following Eq.(4)-(13). A check on the 

value of the objective function is required at each step, and the iterative process is performed 
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until the predefined accuracy is achieved. A detailed discussion about the tolerance (or 

calibration accuracy) is given in Section 5.  

  

4 Numerical verification  

A 2D case of calibrating a bonded discrete model of SiC ceramics is used to verify the ability 

of the proposed calibration framework. The flexural strength in TPBT and the compressive 

strength in UCT are experimentally determined as the calibrating targets: the flexural strength 

is 0.78 GPa and the compressive strength is 2GPa. The TPBT and UCT models (see Fig. 7) 

include 22507 and 66743 disc particles, respectively. As the purpose of this study is to calibrate 

bond parameters, the deformation parameters and model size reported in [57, 58] are directly 

adopted. The calibration methods for deformation parameters can be found in our recent work 

[22, 23].   

By following the calibration procedures summarised in Section 3.5, both the original scheme 

and the simplified scheme are performed. A learning rate of 0.01 is used in both schemes. As 

Fig. 8 shows, both schemes are able to obtain a reasonable estimation in a few iterations. The 

original version slightly outperforms the simplified version in terms of the accuracy achieved. 

The best prediction accuracy of the original version reached in 6 iterations is around 2.7% for 

the flexural strength in TPBT and 1.6% for the compressive strength in UCT. The 

corresponding best prediction accuracy that the simplified version can achieve in 6 iterations is 

around 1.5% for the flexural strength in TPBT and 3% for the compressive strength in UCT  

(in the third iteration step). The microscopic bond parameters at each iterative step are given in 

Table 4 for the original version and in Table 5 for the simplified version. This case shows that 

the proposed procedure is able to calibrate the microscopic bond parameters in a few iterations.   

  



20  

  

5 Discussion  

5.1 The calibration efficiency and accuracy  

5.1.1 A comparison between the proposed methodology and other reported calibration methods  

A summary of calibration efficiency and accuracy of microscopic bond parameters is given 

in Table 6. Considering the fact that each calibration method is conducted in various DEM 

models with different particle numbers and loading conditions, the calibration efficiency of 

each method is evaluated with the number of numerical experiments required. The calibration 

performance of our proposed method is also added for comparison. The results demonstrate 

that the proposed physics-informed adaptive moment algorithm (Adam) (both the original and 

simplified iteration schemes) outperforms existing calibration methods in terms of calibration 

accuracy and efficiency. Furthermore, the proposed algorithm has strong adaptability to the 

specimen with varied fabric configurations whereas surrogate-based models may lose some 

accuracy when predicting the microscopic parameters in models beyond existing experiences.   

  

5.1.2 The acceptable level of calibration accuracy  

For a closed-form equation, numerical methods can obtain a high-accuracy solution, but it is 

not the case for the calibration problem. The accuracy of parameter calibration in DEM may be 

affected by the following factors:   

(1) high heterogeneity in a grain-based system  

In bonded particle models, a failure either in tension or shear form is generally initiated from 

those highly stressed contact bonds and then propagates gradually. The heterogeneity may lead 

to some local small defects within materials (such as the area with a relatively large void). 

Local failures usually start and develop around these initial defects, and thus the recorded 

strength values are highly dependent on the conditions of these defects. Furthermore, high 

heterogeneity in a grain-based system may cause high-stress intensity at some local areas. 

These features give rise to a significant non-convex relationship between the macroscopic 
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strength and microscopic bond parameters and thus similar sets of the microscopic parameters 

may produce the macroscopic responses within a stochastic fluctuation range.  

(2) slight packing differences between TPBT and UCT models  

The bond parameters are calibrated with TPBT and UCT models at the same time; however, 

inevitable inconsistency exists in these two models in terms of the packing structure. A set of 

microscopic parameters suitable for a TPBT model may not perform well in a UCT model. The 

final microscopic parameters are required to enable the two different models to match the 

respective experiment well. A large difference between the packing structures in the two 

models may deteriorate the final calibration precision.  

Considering the inherent features of the grain-based model, to achieve a perfect calibration 

match is not realistic. Then what level of calibration accuracy is acceptable in the practical 

term? Actually, the calibration target, namely experimental results, also suffer from typical 

experimental scatters. Wang and Tonon [11] choose a tolerance criterion at 5%. Wang and Cao 

[59] and Chen et al [61] set the maximum error to be 10%. Based on the authors’ calibration 

and experimental experiences, an accuracy of 5% may be reasonable due to the scattering nature 

of experimental measurements. Also, it is unnecessary to calibrate the bond parameters 

meticulously. Furthermore, an accuracy of 1% is very hard to be achieved due to a fluctuation 

of the system and the packing difference between the two models.   

  

5.2 The ratio of compressive strength (
σ

c ) to tensile strength (
σ

t )  

The proposed calibration procedure works well in the verification case. However, it seems 

to have an intrinsic limitation in calibrating a bonded particle model for a high σ σc / t ratio 

material such as brittle rocks [1]. The reasons may be attributed to the limitation of sphere or 

circular elements in DEM models in reproducing significant grain interlocking in low-porosity 

hard rocks [63].   
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A simple but useful remedial measure is to generate a slightly overlapped particle 

configuration with a higher genesis pressure [31, 64]. The genesis pressure (σo) tends to be used 

during specimen preparation and is applied to the specimen before particle bonds are added. 

The main purpose of such a genesis pressure is to compact the granular packing before adding 

bonds between particles. Potyondy and Cundall [1] initially reported that a suitable selection of 

the genesis pressure is helpful to reduce the magnitude of the locked-in forces that will develop 

after the parallel bonds are added. Later on, the genesis pressure is found to be related to the 

mechanical response of cemented materials. A relatively large genesis pressure can be used to 

create a small contact overlap between disks. This small overlap is helpful for obtaining a more 

realistic friction angle and a ratio of compressive to tensile strength of the simulated DEM 

material [64]. It is also found that the use of a high genesis pressure enables a more realistic 

failure envelope and tensile strength to be simulated, while it was not possible previously by 

using a circular element with zero genesis pressure [31].  

Apart from the slightly overlapped particle model, many other methods are also employed 

to overcome the shortcomings of a circular or spherical particle configuration, such as particle 

clusters [1, 33], rigid particle clumps [65-67], stochastic distribution of material properties [68], 

other bonded particle model [69], and polygonal particles [70].   

The slightly overlapped particle model cannot be directly determined by using the input 

parameters in DEM and it is also not clear what overlapping degree is sufficient to achieve a 

certain 
σ σ

c 
/ 

t ratio. Furthermore, the methods of cluster or clump particles may suffer from a 

disagreement between the simulated size and the real size distribution of constituent 

components [15]. The current study aims to provide calibration procedures for particle or 

discsbased parallel bond models, and thus other remedial measures are not considered here.   

The current calibration procedure, therefore, will be restricted to its predictive capability for 

cemented materials with a low σ σc / t  ratio (typically 3-5), such as ceramics and weak cemented 
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soils or rocks. Automatically calibrating bond parameters with a capacity of reproducing any 

material with a realistically high σ σc / t ratio is out of the scope of this study but will be explored 

in the future.  

  

6 Conclusion remarks  

An automated computational methodology has been proposed to calibrate the bond 

parameters in the parallel bond model in DEM. The possible microscopic factors associated 

with macroscopic strength parameters have been investigated first with the dimension analysis 

method. On the basis of underlying physical relations between microscale bond parameters and 

macroscopic strengths of the material, the first and second estimations of both shear bond and 

tensile bond parameters are given. After performing the UCT and TPBT models with the 

improved Adam algorithm in a few iterative steps, the approximation of bond parameters is 

proven to be able to match the predefined macroscopic bond parameters satisfactorily for the 

bonded particle model with a low σ σc / t ratio. A comparison between the proposed method 

and existing methods shows that the proposed methodology is able to achieve a higher 

calibration accuracy with fewer iterations.   

The success of the proposed calibration procedure can be attributed to two factors: (i) the 

underlying physics relationships between the microscopic and macroscopic parameters are 

fully exploited and used. This is the fundamental reason that the proposed calibration procedure 

is effective; and (ii) the proposed iterative algorithm is particularly suitable for problems with 

noisy gradients. This exactly matches the inherent features of calibration problems in DEM.  

Although the proposed methodology, in principle, can be applied to calibration problems of 

other bonded particle models, more numerical investigation with specified BPMs and specific 

materials are required before some concrete conclusions can be drawn.   
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In the present study, we assume that the grain-based cemented material is composed of only 

one material type and one bond strength. This is not the general case as many cemented 

materials, such as rocks, often consist of several components. In our future work, a 

multicomponent bonded particle model will be explored. Furthermore, a framework aiming to 

calibrate the bond parameters with a capacity of reproducing any material with a realistically 

high σ σc / t ratio will also be developed.   
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Figures  
  

  
Fig.1 Two particles with the cement between them  
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Fig. 2 Failure envelope for the parallel bond   
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Fig.3 Failure process of a bonded particle model subjected to axial compression (adapted from 

[39])  
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Fig. 4 A beam subjected to three-point bending testing (F is a load at the central point, L is 

the support span, H is the height of the specimen, 
σ

cmax and 
σ

tmax denote the maximum  

compressive stress and tensile stress, respectively)   
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Fig. 5 The influences of particle friction on macroscopic compressive strength and flexural 

strength   
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Fig. 6 Flow chart of the calibration procedure for bond parameters   

  

  
                                               (a) TPBT                                                   (a) UCT  

Fig .7 The numerical models used for bond parameter calibration   
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Fig. 8 Evolution of the objective function during iterations  
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Tables  
  

Table 1 Particle-scale parameters and their dimensions (note: L, F, and T represent the 

primary dimensions of length, force, and time, respectively)  

Group  Parameter  Symbol  Dimension  

Geometrical 

and  

physical 

parameters  

Average particle radius  r  L  

Porosity  ϕ    

Density  ρ  FL-4T2  

Geometry characteristics of the specimen  l  L  

Constitutive 

parameters  

Grain 

parameters  

Young’s modulus of particles  

The ratio of shear to normal 

stiffness of the grains  

Ec  

ks/kn  

FL-1  

  

Friction coefficient  μ    

Cement 

parameters  

Young’s modulus of cements   

Ec  
FL-2  

The ratio of shear to normal 
stiffness of the cements  

Tensile strength  

k ks / n 

σc  

  

FL-2  

Shear strength  τc  FL-2  

Frictional angle  ϕ    

  radius multiplier   
λ  
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Initial or  

boundary 

conditions  

Loading velocity  V  LT-1  

  
  

  

Table 2 The values of 
σ

c /
τ

c in several brittle materials  

Specimen type  2D model  3D model  

Lac du Bonnet granite  0.764 [1]  0.505 [11]，and 0.5 [1]  

Beishan (BS) granite    1.0 [41]  

red sandstone  0.627 [42], and 0.628 [43]    

concrete  0.551 [44]  0.313 [45]  

sea ice    0.5 [4]  

SiC ceremics  0.125 [3]    
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Table 3 Microscopic parameters used in simulations  

Variable  Value  Remarks  

Particle radius (m)  4.5e-6 to 6.75e-6  Uniform distribution  

Density (kg/m3)  2600    

Effective modulus (Pa)  211e9  For both particles and bonds  

Normal-to-shear stiffness 

ratio  
1.21  For both particles and bonds  

Shear bond strength (Pa)  7.8e8    

Tensile bond strength (Pa)  5e9    

Initial friction coefficient  0.7  

Before loading, the coefficient 

of particle friction is changed  

from 0 to 1.0  

Bond gap  2e-7    
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Table 4 The convergence history of the original full version  

 Particle-scale parameters  Macroscopic strength  

Iterative  Flexural  Compressive  

 tensile  shear  flexural  compressive  

numbers  strength error  strength error  

 strength (Pa)  strength (Pa)  strength (Pa)  strength (Pa)  

0 780000000  2000000000  483187287  1412539673  -38.1%  -29.4%  

1 1259139087  2831778870  630918442  1901278790  -19.1%  -4.9%  

2 1259291059  2831389198  808304937  1782465166  3.6%  -10.9%  

3 1259329214  2831291492  763528681  1925063036  -2.1%  -3.7%  

4 1259332906 2831286456 605471455 2023346510 -22.4% 1.2% 5 1259247913 2831572616 

895699459 1990474860 14.8% -0.5%  

 6  1259193451  2831687578  758825095  1996876485  -2.7%  -0.2%  
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Table 5 The convergence history of the simplified version  

 Particle-scale parameters  Macroscopic strength  

Iterative  Flexural  Compressive  

 tensile  shear  flexural  compressive  

numbers  strength error  strength error  

 strength (Pa)  strength (Pa)  strength (Pa)  strength (Pa)  

0 780000000  2000000000  483187287  1412539673  -38.1%  -29.4%  

1 1259139087  2831778870  630918442  1901278790  -19.1%  -4.9%  

2 1251371869 2811779011 631324376 1928287161 -19.1% -3.6% 3 1256778352 2826577761 

791682779 1939762947 1.5% -3.0% 4 1251833604 2848432059 702274563 1831369247 -

10.0% -8.4%  

5 1255654758  2861930486  820511252  2052768684  5.2%  2.6%  

6 1258923303  2873820570  772275118  1825236495  -1.0%  -8.7%  
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Table 6 Comparison of efficiency and accuracy for different calibration methods  

 

 Calibration  Publish  

 Method  Calibration error  Efficiency  

 experiments  year  
A hybrid DEM codes and SNOBFIT 

optimisation method [11]  
Triaxial tests  5%  

95 iterations, 

570 models  
2010  

Improved Simulated Annealing 

Algorithm [59]  
UCT  9.4%  2739 iterations  2017  

Surface fitting method [60]  Brazilian tests  10%  80 models  2017  
Ant-colony optimization algorithm  

[61]  
TPBT and UCT  5% (UCT), 10% (TPBT)  200 iterations  2019  

Surface fitting method [14]  
Uniaxial tensile 

test  
1%-7%(Brizilian test), 2% 

(UCT)  
6400 models  2019  

Deeping learning network [62]  
UCT, Direct 

tensile test,  
Triaxial test  

3.493%-12.031% (UCT),  
1.527% to 27.985%  

(Triaxial test )  
288 models  2019  

Physics-informed adaptive moment 

optimization (the original iterative  
scheme)  

UCT and TPBT  
2.7%(TPBT) and 1.6% 

(UCT)  
6 iterations, 19 

models   
  

Physics-informed adaptive moment 

optimization (the simplified iterative  
scheme)  

UCT and TPBT  
1.5%(TPBT) and 3.0% 

(UCT)  
3 iterations, 4 

models  
  

  

  


