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ABSTRACT Conventional biological-heuristic solutions via zeroing neural network (ZNN) models have
achieved preliminary efficiency on time-dependent nonlinear optimization problems handling. However,
the investigation on finding a feasible ZNN model to solve the time-dependent nonlinear optimization
problems with both inequality and equality constraints still remains stagnant because of the nonlinearity and
complexity. To make new progresses on the ZNN for time-dependent nonlinear optimization problems solv-
ing, this paper proposes a biological-heuristic optimization model, i.e., inequality and equality constrained
optimization ZNN (IECO-ZNN). Such a proposed IECO-ZNNbreaks the conditionality that the solutions via
ZNN for solving nonlinear optimization problems can not consider the inequality and equality constraints
at the same time. The time-dependent nonlinear optimization problem subject to inequality and equality
constraints is skillfully converted to a time-dependent equality system by exploiting the Lagrange multiplier
rule. The design process for the IECO-ZNN model is presented together with its new architecture illustrated
in details. In addition, the conversion equivalence, global stability as well as exponential convergence
property are theoretically proven. Moreover, numerical studies, real-world applications to robot arm active
sensing, and comparisons sufficiently verify the effectiveness and superiority of the proposed IECO-ZNN
model for the time-dependent nonlinear optimization with inequality and equality constraints.

INDEX TERMS Zeroing neural networks (ZNNs), biological-heuristic optimization, nonlinear optimization,
inequality and equality constraints, robot motion control.

I. INTRODUCTION
Solving the static (or to say, time-invariant) nonlinear opti-
mization problems has a mature methodology due to its
simplification and low requirement of real-time computa-
tion [1]–[3]. For examples, Hu and Zhang [1] introduced an
effective recurrent neural network (RNN) model to address
the time-invariant quadratic program problems with the con-
vex condition and the capacity of global convergence. In addi-
tion, Nazemi and Nazemi [3] proposed an effective gradient
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based neural network approach to handle the strict-convex
quadratic program problems with detailed theoretical anal-
yses. Recently, the studies on time-dependent problems
become increasingly desirable and significant because of
the ubiquitous involvement of complexity and require-
ment of real-time computation [4]–[7]. Differing from the
time-invariant problems, time-dependent problems are much
more difficult to be addressed for the fact that the problems
involved, the system coefficients as well as the solutions are
all time-dependent [8]–[11]. The conventional time-invariant
methods and models generating the related time-invariant
solutions would be invalidation due to the inevitable delay
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(or to say, the lagging behind) errors [12], [13]. Note that
the conventional time-invariant methods commonly generate
solutions at current moment based on the present known
information. However, the time-dependent solutions change
all the time. Therefore, the local time solutions would not
be feasible solutions any more at the next time instant.
That is the main reason that developing effective strategies
or approaches for the time-dependent nonlinear optimiza-
tion problems remains a challenging and significant topic in
recent years [14]–[18].

Due to the fundamentality as well as universality of the
time-dependent nonlinear optimization, a number of stud-
ies have been introduced on the development of such an
issue together with different alternative approaches inves-
tigated [19]–[22]. Artificial neural network (ANN), as an
intelligent system, is an important branch of artificial intelli-
gence, which provides a strong impetus for the development
of artificial intelligence. The ANN commonly referred to
the neural network (NN), is a network designed and pro-
duced in imitation of the neural structure of the human
brain and composed of a set of interconnected artificial
neurons [23]. A mathematical model is built to describe
the NN, and a computer program is used to simulate the
learning mode similar to that of human brain. During the
learning process, knowledge is obtained from the NN, and
the obtained knowledge is stored according to the connec-
tion strength between neurons. In other words, the NN is
a kind of biological-heuristic computation and optimiza-
tion network aiming at simulating nerve cells or neurons
in human or biological nervous system, which is an impor-
tant methods to realize artificial intelligence [24]. Owing
to the superiorities such as the parallel processing as well
as feasibility on hardware implementation, the approaches
and models by exploiting ANNs [25]–[32], especially the
RNNs, have been deemed as the systematic solvers for
the time-dependent nonlinear optimization [33]–[36]. Espe-
cially, the neural network models via the negative gradient
direction strategy by constructing the scalar valued energy
functions have been introduced and investigated for some
online scientific problems handling [3], [37], [38]. For exam-
ple, Chen et al. [37] developed an effective neurodynamics
system by utilizing the conventional gradient search direction
strategy to address the Lyapunov-matrix-equation problems.
In addition, Yi et al. [38] developed an effective gradient neu-
ral network (GNN) model to handle the online solution of the
Lyapunov-matrix-equation problems by supplying different
activation functions. However, most solutions via the GNN
models occur the above mentioned lagging behind errors,
and shows a diverging property during the time-dependent
nonlinear optimization problems solving [38].

Being quite different from the GNN by defining a
scalar valued energy function, the zeroing neural net-
work (ZNN) is a new kind of biological-heuristic opti-
mization model [39]–[41]. The ZNN is able to selectively
define a scalar valued, vector valued, or even matrix
valued indefinite error function, which fully utilize the

time-derivative information for handling the time-dependent
problems [42]–[44]. Conventional solutions via ZNN mod-
els have achieved preliminary efficiency on time-dependent
nonlinear optimization, and many systems and models on the
basis of ZNNs have been generalized and developed [12],
[21], [35], [45]–[47]. For instances, as an early attempt,
Jin and Zhang [47] introduced an effective discrete time ZNN
model to handle the time-dependent nonlinear optimization
problems without consideration of inequality constraint or
equality constraint. Afterward, Li et al. [21] developed a gen-
eral square-pattern-discretization formula for the approxima-
tion of the first order derivative to handle the time-dependent
optimization problems solving with only linear-equality con-
straints. Despite the preliminary success in the above stud-
ies on the time-dependent nonlinear optimization problems
solving, the bottleneck still remains in the framework of
ZNN. That is the time-dependent nonlinear optimization can
not be handled acceptably subject to both the inequality and
equality constraints due to the nonlinearity and complexity.
The research on finding a feasible ZNNmodel for solving the
time-dependent nonlinear optimization with inequality and
equality constraints still remains stagnant.

The active sensing (or termed active motion control)
of robot manipulators (or termed robot arms) can usu-
ally be described as the time-dependent nonlinear optimiza-
tion problem solving incorporation with the performance
index optimization, physical limits constraints, and primary
tracking control tasks [48]–[57]. Robot arms change the
real-time posture in order to achieve the effector sensing
objective via the autonomous motion. Therefore, the active
motion control of robot arms can be viewed on their active
sensing. Conventional solutions to handle the active sens-
ing of robot manipulators are usually described the pri-
mal active sensing problem as a time-dependent quadratic
optimization problem, and solved by the primal dual neu-
ral network (PDNN) models [4], [14], [58]. For examples,
Zhang et al. [4] developed an effective tricriteria optimiza-
tion coordination active sensing approach for a dual arm
robot to track different paths by leveraging the PDNN
solver. In addition, Xiao and Zhang [14] introduced an effec-
tive repetitive-motion-planning approach resolved at the joint
acceleration level to handle the so-called non-repetitive prob-
lems using the discrete time PDNN solver. However, it was
theoretically proven that the PDNN solver for the solution
of time-dependent quadratic optimization problem could only
asymptotic converge to the time-dependent theoretical solu-
tion, instead of converging with the exponential property in a
time-efficient manner.

To make new progresses on the ZNN for time-dependent
nonlinear optimization problems solving, a novel biological-
heuristic optimization model, i.e., inequality and equality
constrained optimization ZNN (IECO-ZNN) is proposed in
this work. The proposed IECO-ZNN breaks the condition-
ality that the solutions via ZNN for nonlinear optimization
problems can not consider the inequality and equality
constraints at the same time. Firstly, the time-dependent
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TABLE 1. Comparisons among different neural network models for optimization problems solving and robot arms active sensing.

nonlinear optimization problem subject to inequality and
equality constraints is skillfully converted to a time-
dependent equality system by exploiting the Lagrange mul-
tiplier rule. Then, the design process for the IECO-ZNN
model is presented together with the new architecture of
the proposed model illustrated in details. Moreover, the-
oretical analyses on the conversion equivalence, global
stability as well as exponential convergence property are
rigorously presented. Finally, numerical studies, compar-
isons as well as the real-world applications to robot arm
active sensing sufficiently verify the effectiveness and
superiority of the proposed IECO-ZNN model for the
time-dependent nonlinear optimization with both inequal-
ity and equality constraints. For better illustration, com-
prehensive comparisons of the proposed IECO-ZNN model
with existing ones [1]–[3], [12], [19], [21], [33], [34] are pre-
sented in Table 1. To the best of the authors’ knowledge,
there is no an existing method or model for handling the
time-dependent nonlinear optimization problem subject to
both inequality and equality constraints, and successfully
applying to robot active sensing with outstanding features of
the proposed one.

The rest of the paper is structured as below. Firstly, the pre-
liminaries of time-dependent nonlinear optimization problem
formulation as well as conventional ZNN solutions are pre-
sented in Section II. Afterwards, the design process of the
proposed IECO-ZNN model is presented together with theo-
retical analyses provided in Section III. Section IV illustrates
numerical studies, real-world applications to robot active
sensing as well as comprehensive comparisons. Section V
concludes the paper. Before ending this section, the main
contributions of the work are summarized and listed as
below.

• This paper proposes a novel IECO-ZNN model for the
first time to make new progresses on the ZNN for
time-dependent nonlinear optimization problems solv-
ing, which breaks the conditionality that the solutions
via ZNN models for nonlinear optimization problems
can not consider the inequality and equality constraints
at the same time.

• The time-dependent nonlinear optimization problem
subject to the inequality and equality constraints is skill-
fully converted to a time-dependent equality systemwith

the conversion equivalence guaranteed by exploiting the
Lagrange multiplier rule.

• Complete theoretical analyses, numerical verifications
as well as real-world robot active sensing applications
sufficiently substantiate the validity, effectiveness and
superiority of the proposed IECO-ZNN model for find-
ing feasible solutions to nonlinear optimization prob-
lems, which makes new progresses in both theory and
practice.

II. NONLINEAR OPTIMIZATION PROBLEMS
AND CONVENTIONAL SOLUTIONS
In this section, by leveraging the Lagrange multiplier rule,
the general description of time-dependent nonlinear opti-
mization problems and the related ZNN solutions are pre-
sented as preliminaries and backgrounds.

Generally, a time-dependent nonlinear optimization prob-
lem can be described as below:

min
x(t)∈Rn

f (x(t), t) ∈ R, t ∈ [0, tf] ⊆ [0,+∞), (1)

where objective function f (·, ·) : Rn
× [0, tf] → R is

a smoothly time-dependent nonlinear optimization func-
tion with the continuous second order derivative. Besides,
f (·, ·) is convex with respect to time-dependent state vec-
tor x(t) ∈ Rn for all t > 0. In addition, vec-
tor x(t) denotes the time-dependent states vector that is
unknown, which needs to be solved. Conventionally, to han-
dle the time-dependent nonlinear optimization problem (1),
a differentiable-nonlinear-mapping function is usually
defined as
below:

3(x(t), t)=
∂f (x(t), t)
∂x(t)

= [
∂f
∂x1

,
∂f
∂x2

, · · · ,
∂f
∂xn

]T

= [31(x(t), t),32(x(t), t), · · · ,3n(x(t), t)]T (2)

with ∂f /∂xi = ∂f (x(t), t)/∂xi(t) = 3i(x(t), t), where
3i(x(t), t) denotes the ith element of 3(x(t), t) and i =
1, 2, · · · , n. The superscript T is the transpose of a matrix or
vector. Afterward, the so-called capture points can be found
via the following time-dependent set depicted in

�∗(t) = {(t, x∗(t))|∂f (x∗(t), t)/∂x∗(t) = 0},
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with the time instant satisfying

∀t ∈ [0, tf] ⊆ [0,+∞).

The conventional solution via the ZNN model is usu-
ally obtained by defining a vector valued indefinite
time-dependent error function as below:

ε(t) = [ε1(t), ε2(t), · · · , εn(t)]T = 3(x(t), t)

with εi(t) = 3i(x(t), t) being the ith element of ε(t), for
all i = 1, 2, · · · , n. Then, by exploring the ZNN design
formula [59], [60]:

dε(t)
dt
= −ζ0(ε(t)) =

d3(x(t), t)
dt

= −ζ0(3(x(t), t)), (3)

which makes each element εi(t) converge to zero. The param-
eter ζ denoting the ZNN predefined parameter for user to
adjustment the convergence rate, and 0(·) : Rn+m+p

→

Rn+m+p denoting an activation-function vector mapping with
each element being a monotonically-increasing odd function.
Note that

d3(x(t), t)
dt

=
∂3(x(t), t)

∂t
+
∂3(x(t), t)
∂x(t)

dx(t)
dt

= 3̇t (x(t), t)+H(x(t), t)
dx(t)
dt

holds true, where vector 3̇t (x(t), t) is the time derivative
vector, and matrix H(x(t), t) ∈ Rn×n denotes the Hessian
matrix defined as below:

3̇t (x(t), t) =
∂3(x(t), t)

∂t
=
∂2 f (x(t), t)
∂x(t)∂t

and

H(x(t), t) =



∂31

∂x1

∂31

∂x2
· · ·

∂31

∂xn
∂32

∂x1

∂32

∂x2
· · ·

∂32

∂xn
...

...
. . .

...
∂3n

∂x1

∂3n

∂x2
· · ·

∂3n

∂xn



=



∂2f
∂x1∂x1

∂2f
∂x1∂x2

· · ·
∂2f
∂x1∂xn

∂2f
∂x2∂x1

∂2f
∂x2∂x2

· · ·
∂2f
∂x2∂xn

...
...

. . .
...

∂2f
∂xn∂x1

∂2f
∂xn∂x2

· · ·
∂2f
∂xn∂xn


,

respectively. With the assumption that the Hessian matrix
H(x(t), t) is nonsingular for any time instant t , according
to design formula (3), the ZNN model for handling the
time-dependent nonlinear optimization problem (1) can be
obtain as below:

H(x(t), t)ẋ(t) = −ζ0(3(x(t), t))− 3̇t (x(t), t). (4)

Model (4) can be explicitly rewritten as the dynamical equa-
tion with states vector x(t) as below:

ẋ(t)=−H−1(x(t), t)
(
ζ0(3(x(t), t))+ 3̇t (x(t), t)

)
=H−1(x(t), t)

(
ζ0

(
∂f (x(t), t)
∂x(t)

)
+
∂2f (x(t), t)
∂x(t)∂t

)
, (5)

where superscript −1 denotes an inverse operator of a square
matrix.

Provided that the time-dependent nonlinear optimization
problem is subjective to equality constraints, it can be further
depicted in

min f (x(t), t)

s. t. h(x(t)) = A(t)x(t)+ b(t) = 0, (6)

where h(x(t)) ∈ Rm denotes the equality constraints with
the rank of A(t) ∈ Rm×n being always equal to m as well
as vector b(t) ∈ Rm. The goal of time-dependent non-
linear optimization is to find a feasible solution x(t) such
that (6) with equality constraints holds true at any time instant
t ∈ [0,+∞).
On the basis of the Lagrange multiplier rule [61],

a Lagrange function can be defined in order to find a feasible
solution x(t) of general nonlinear optimization (6):

L(x(t), λ(t), t) = f (x(t), t)+
m∑
i=1

λi(t)hi(x(t))

= f (x(t), t)+ λT(t)(A(t)x(t)+ b(t)), (7)

where state vector λ(t) = [λ1(t), λ2(t), · · · , λm(t)]T ∈ Rm

are the Lagrange multipliers that are corresponding to the
equality constraint.

According to theoretical results related to the Lagrange
multiplier rule [61], to handle the time-dependent of nonlin-
ear optimization (6) with equality constraints equals to han-
dle the following time-dependent of nonlinear optimization
without constraints:

min
x(t),λ(t)

L(x(t), λ(t), t). (8)

Afterwards, the solution x(t) to the general time-dependent
nonlinear optimization (6) can be obtained by solving the
formulary as follows:∇xL =

∂L(x(t), λ(t), t)
∂x

= 0,

∇λL = h(x(t)) = 0,
(9)

which can be written as below:
∂f (x(t), t)

∂x
+ AT(t)λ(t) = 0,

h(x(t)) = 0.
(10)

To handle the time-dependent nonlinear optimization (6) with
equality constraints, an error function is defined still in a
unified framework of ZNN as

ε(u(t), t) =

[
∂f (x(t), t)

∂x
+ AT(t)λ(t)

−A(t)x(t)− b(t)

]
(11)
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with the defending neural network states vector u(t) =
[xT(t), λT(t)]T ∈ Rn+m, and utilizing ZNN design for-
mula (3), one can readily obtain the ZNN model as

dε(u(t), t)
dt

=
∂ε(u(t), t)

∂t
+
∂ε(u(t), t)
∂u(t)

du(t)
dt

= ε̇t (u(t), t)+K(u(t), t)
du(t)
dt

,

with matrix K(u(t), t) describing as follows:

K(u(t), t) =

∂2f (x(t), t)
∂x∂Tx

AT(t)

A(t) 0

 .
Thus, it finally obtains

u̇(t) = −K−1(u(t), t) (ζ0(ε(u(t), t))+ ε̇t (u(t), t)) . (12)

Unfortunately, the time-dependent nonlinear optimization
subject to both inequality and equality constraints described
as

min f (x(t), t)

s. t. hi(x(t)) = 0, i = 1, 2, · · · ,m,

gj(x(t)) ≤ 0, j = 1, 2, · · · , p, (13)

in a unified framework of the ZNN still remains
unsolved.

III. IECO-ZNN SOLUTION AND THEORETICAL ANALYSES
Problem formulations for the time-dependent nonlinear opti-
mization and conventional solutions via ZNN are presented in
Section II without consideration of equality or inequality con-
straints as preliminaries. In this section, a novel IECO-ZNN
model is proposed by consideration of both inequality and
equality constraints. In addition, the conversion equivalence,
global stability and exponential convergence are theoretical
proven.

A. IECO-ZNN MODEL DESIGN
The remaining unsolved time-dependent nonlinear optimiza-
tion (13) subject to both inequality and equality constraints
in a unified framework of ZNN can be reformulated as the
following vector form:

min f (x(t), t)

s. t. h(x(t)) = A(t)x(t)+ b(t) = 0,

g(x(t)) = C(t)x(t)+ d(t) ≤ 0, (14)

where functions h(x(t)) ∈ Rm and g(x(t)) ∈ Rp denote
the equality constraint and inequality constraints, respec-
tively, with the rank of A(t) ∈ Rm×n always equalling
to m, and vector b(t) ∈ Rm, matrix C(t) ∈ Rp×n and
vector d(t) ∈ Rp. The goal of time-dependent nonlinear
optimization with multiple types of constraints is to find a
feasible solution x(t) such that (14) holds true at any time
instant t ∈ [0,+∞).

On the basis of the Lagrange multiplier rule [61], in order
to obtain a feasible solution x(t) for the nonlinear optimiza-
tion (14), a Lagrange function can be defined as

L(x(t), λ(t), κ(t), t)

= f (x(t), t)+
m∑
i=1

λi(t)hi(x(t))+
p∑
j=1

κj(t)gj(x(t))

= f (x(t), t)+ λT(t)(A(t)x(t)+ b(t))

+ κT(t)(C(t)x(t)+ d(t)), (15)

where state vectors λ(t) = [λ1(t), λ2(t), · · · , λm(t)]T ∈ Rm,
and κ(t) = [κ1(t), κ2(t), · · · , κp(t)]T ∈ Rp are Lagrange
multipliers that are corresponding to the equality constraint
as well as the inequality constraint, respectively.

On the basis of theoretical results related to the Lagrange
multiplier rule [61], to handle the time-dependent of nonlin-
ear optimization with both inequality and equality constraints
equals to handle the time-dependent of nonlinear optimiza-
tion without constraints as below:

min
x(t),λ(t),κ(t)

L(x(t), λ(t), κ(t), t). (16)

Afterwards, the solution x(t) to the time-dependent nonlinear
optimization (14) is obtain by addressing the formulary as
below:

∇xL =
∂L(x(t), λ(t), κ(t), t)

∂x
= 0,

∇λL = h(x(t)) = 0,
g(x(t)) ≤ 0, κ(t) ≥ 0, and κT(t)g(x(t)) = 0,

(17)

which can be written as follows:
∂f (x(t), t)

∂x
+ AT(t)λ(t)+

(
∂g(x(t))
∂x

)T

κ(t) = 0,

h(x(t)) = 0,
g(x(t)) ≤ 0, κ(t) ≥ 0, and κT(t)g(x(t)) = 0.

(18)

As for the time-dependent nonlinear optimization prob-
lem solving, a vector valued indefinite error function can be
defined in a unified framework of ZNN design process:

e(t)=


∂f (x(t), t)

∂x
+ AT(t)λ(t)+

(
∂g(x(t))
∂x

)T

κ(t)

−h(x(t))
ϒ+(g(x(t))+ κ(t))− κ(t)

 (19)

with e(t) ∈ Rn+m+p. Besides, the ith element of
function-mapping ϒ+(·) : Rp

→ Rp depicted in

ϒ+i (vi(t)) =

{
vi(t), if vi(t) > 0,
0, if vi(t) ≤ 0,

with v(t) ∈ Rp denoting a vector. One can further have

d((∂g(x(t))/∂x)Tκ(t))
dt

=

(
∂g(x(t))
∂x

)T

κ̇(t)+
dT(∂g(x(t))/∂x)

dt
κ(t).
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The equation

d(∂g(x(t))/∂x)
dt

=

p∑
i=1

∂2g(x(t))
∂x∂xi

ẋi(t),

always holds true. Afterwards, it has

dT(∂g(x(t))/∂x)
dt

κ(t) =
p∑
i=1

(
∂2g(x(t))
∂x∂xi

ẋi(t)κ(t)
)

=

p∑
i=1

ẋi(t)
(
∂2g(x(t))
∂x∂xi

)
κ(t).

The following variable substitution can be readily made:(
∂2g(x(t))
∂x∂xi

)
κ(t) = ϕi(t),

with

9(t) = [ϕ1(t), ϕ2(t), · · · , ϕi(t), · · · , ϕn(t)].

On can readily obtain

dT(∂g(x(t))/∂x)
dt

κ(t) =
p∑
i=1

ẋi(t)ϕi(t) = 9(t)ẋ(t),

where yields

d((∂g(x(t))/∂x)Tκ(t))
dt

= 9(t)ẋ(t)+
(
∂g(x(t))
∂x

)T

κ̇(t).

According to the above operation and variable substitution,
it can be computed the time-derivative of error function (19)
as below:

ė(t) =
[
ė1(t), ė2(t), ė3(t)

]T
with ė1(t) ∈ Rn, ė2(t) ∈ Rm and ė3(t) ∈ Rp being respective
as follows:

ė1(t) =
∂2f (x(t), t)

∂x2
ẋ(t)+ ȦT(t)λ(t)+ AT(t)λ̇(t)

+9(t)ẋ(t)+
(
∂g(x(t))
∂x

)T

κ̇(t),

ė2(t) = −A(t)ẋ(t)− Ȧ(t)x(t)− ḃ(t),

ė3(t) = 8(t)ϒ+
(
∂g(x(t))
∂x

ẋ(t)+ κ̇(t)
)
− κ̇(t),

where function-mapping 8(t) ∈ Rp×p depicts in

8(t) = diag(φ(g(x(t))+ κ(t)))

with operator diag(v(t)) : Rp
→ Rp×p for generating a p× p

dimensional square matrix with the elements of vector v(t) ∈
Rp on the diagonal, and each element of φ(·) : Rp

→ Rp

denoting as below:

φi(vi(t)) =

{
1, if vi(t) > 0,
0, if vi(t) ≤ 0.

In a unified ZNN design framework, by employing a
dynamical design formula [59], [60]:

ė(t) = −ζ0(e(t)),

the IECO-ZNNmodel for solving the time-dependent nonlin-
ear optimization (14) subject to both inequality and equality
constraints with the following dynamical equation Q(t) AT(t) CT(t)
−A(t) 0 0
M (t) 0 R(t)

ẋ(t)λ̇(t)
κ̇(t)


= −ζ0

e1(t)e2(t)
e3(t)

−
r1(t)r2(t)
r3(t)

 , (20)

which can be written as the following compact matrix form

W (t)ẏ(t) = −ζ0(e(t))− r(t), (21)

where matrix W (t) and vector ẏ(t) denote respectively as
below:

W (t) =

 Q(t) AT(t) CT(t)
−A(t) 0 0
M (t) 0 R(t)

 , ẏ(t) =

ẋ(t)λ̇(t)
κ̇(t)


with matrix Q(t) = ∂2f (x(t), t)/∂x2 + 9(t), matrix M (t) =
8(t)C(t), matrix R(t) = 8(t) − I , vector r1(t) = ȦT(t)λ(t),
vector r2(t) = −Ȧ(t)x(t) − ḃ(t), vector r3(t) = 0 and
vector r(t) = [r1(t), r2(t), r3(t)]T. It is worth pointing out
here that parameter ζ is an important convergence parameter
for the proposed IECO-ZNN. Such a convergence parameter
is predefined by practitioners. Theoretically, arbitrary values
satisfying ζ > 0 ∈ R can be set. For the purpose of shorter
convergence time, the value of predefined parameter ζ can
be set as appropriately large as the hardware would permit in
practical robot active sensing applications [62].

To make the proposed IECO-ZNN model (21) more com-
putable, it can be reformulate as the following explicit form:

ẏ(t) = −W †(t)(ζ0(e(t))+ r(t)), (22)

with the ith (with i = 1, 2, · · · , n + m + p) neuron form of
the proposed ZNN model being depicted as follows:

yi =
∫ p∑

j=1

wij(−ζ0(ei(t))− ri(t))dt, (23)

where yi is the ith neuron of IECO-ZNN model (21), and
time-dependentwij is the ijth element of weight matrixW †(t).
Note that the first n elements of the neural network states y(t)
are the solution of the time-dependent nonlinear optimiza-
tion (14) with both inequality and equality constraints. The
solution can be used as the joint control signals θ̇ (t) if the
practitioners consider the application to the robot active sens-
ing. For intuitively understanding and also for convenience
of practitioners, the architecture of the proposed IECO-ZNN
model (21) for solving the time-dependent nonlinear opti-
mization (14) with both inequality and equality constraints
with application to robot active sensing is illustrated in Fig. 1.
As shown in Fig. 1, the proposed IECO-ZNN model (21) is a
typical kind of RNNs, which is able to effectively handle (14)
as well as the application to the robot active sensing.
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FIGURE 1. Architecture of the proposed IECO-ZNN model (21) for solving time-dependent nonlinear optimization (14) subject to inequality
and equality constraints with application to robot arm active sensing.

B. THEORETICAL ANALYSES
To investigate the problem conversion equivalence, global
stability and convergence property for the proposed
IECO-ZNN model (21), theoretical analyses are presented
in details. References [59], [60], [63]–[65] can be the sup-
plementary materials. Firstly, two lemmas are presented to
guarantee the existence of an optimal solution to general
time-dependent nonlinear optimization (14).
Lemma 1 [64]: If and only if there exist two vectors

λ∗(t) ∈ Rm and κ∗(t) ∈ Rp such that the integrated vec-
tor y∗(t) = [x∗T(t), λ∗T(t), κ∗T(t)]T ∈ Rn+m+p makes the
Karush-Kuhn-Tucker (KKT) condition hold true:
∂f (x(t), t)

∂x
|x(t)=x∗(t) + AT(t)λ∗(t)+ CT(t)κ∗(t) = 0,

A(t)x∗(t)+ b(t) = 0,
C(t)x∗(t)+ d(t) ≤ 0, κ∗(t) ≥ 0,
κ*T(t)(C(t)x∗(t)+ d(t)) = 0,

(24)

vector x∗(t) ∈ denotes a KKT point as well as an
optimal solution to general time-dependent nonlinear
optimization (14).

Proof: It can be generalized from [64]. �
Lemma 2 [65]: Provided that general time-dependent

nonlinear optimization objective function f (x(t), t) is a con-
vex (or to say, time-dependent convex) at each time instant
te with the domain of x(te) denoted as 5e being a convex set
for each te for all x1(te), and x2(te) in the domain and all
0 ≤ ν ≤ 1 for the objective function satisfying the convexity
inequality as

f (νx1(te)+ (1− ν)x2(te), te)

≤ νf (x1(te), te)+(1− ν)f (x2(te), te), (25)

for any two points x1(te) and x2(te) in the domain 5e, and
their line segment also belonging to 5e, i.e., 5x1(te)+ (1−
5)x2(te) ∈ 5e for all 0 ≤ 5 ≤ 1, then vector x∗(t) is
the optimal solution to general nonlinear optimization (14)
if and only if x∗(t) is a KKT point of general time-dependent
nonlinear optimization (14).

Proof: It can be generalized from [65]. �
Theorem 1 (Equivalence of Primal-Dual Problems Con-

version for IECO-ZNN): Solving the formulary depicted
in (18) for time-dependent nonlinear optimization (14) is
equivalent to solving the set of equality system depicted in

∂f (x(t), t)
∂x

+ AT(t)λ(t)+
(
∂g(x(t))
∂x

)T
κ(t) = 0,

h(x(t)) = 0,
ϒ+(g(x(t))+ κ(t)) = κ(t),

(26)

where the ith element of function mapping ϒ+(·) : Rp
→ Rp

denotes as

ϒ+i (vi(t)) =

{
vi(t), if vi(t) > 0,
0, if vi(t) ≤ 0,

(27)

with v(t) ∈ Rp denotes a vector, and vi(t) is the i the element
of v(t).

Proof: It is required to prove that solving

g(x(t)) ≤ 0, κ(t) ≥ 0, and κT(t)g(x(t)) = 0, (28)

is equivalent to solving

ϒ+(g(x(t))+ κ(t)) = κ(t), (29)

where is divided into two part as below.
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Part I (Sufficiency): Let us denote vectors g(x(t)) and κ(t)
respectively as below:

g(x(t)) =


g1(x(t))
g2(x(t))

...

gp(x(t))

 , and κ(t) =


κ1(t)
κ2(t)
...

κp(t)

 ,
with i = 1, 2, · · · , p. Provided that gi(x(t)) ≤ 0, κi(t) ≥ 0 as
well as

∑p
i=1 κi(t)gi(x(t)) = 0 hold true, it has

κi(t)gi(x(t)) ≤ 0, ∀i = 1, 2, · · · , p,

and further leads to
p∑
i=1

κi(t)gi(x(t)) ≤ 0.

Note that
∑p

i=1 κi(t)gi(x(t)) = 0 holds true. One can readily
have

κi(t)gi(x(t)) = 0

with i = 1, 2, · · · , p, otherwise
∑p

i=1 κi(t)gi(x(t)) < 0. It has
κi(t) = 0 or gi(x(t)) for all i. Case 1: If κi(t) = 0, then

ϒ+i (gi(x(t))+ κi(t)) = ϒ
+

i (gi(x(t))) = κi(t) = 0

with gi(x(t)) ≤ 0, which makes that (29) can be derived
from (28). Case 2: If gi(x(t)) = 0, then

ϒ+i (gi(x(t))+ κi(t)) = ϒ
+

i (κi(t)) = κi(t)

with κi(t) ≥ 0, which also makes that (29) can be derived
from (28). Part I thus completes.
Part II (Necessity): Provided thatϒ+(g(x(t))+κ(t)) = κ(t)

with each element being ϒ+i (gi(x(t)) + κi(t)) = κi(t) holds
true, it has κi(t) ≥ 0 for ϒ+i (·) ≥ 0 with i = 1, 2, · · · , p.
Case 1: If gi(x(t))+ κi(t) ≥ 0, then

gi(x(t))+ κi(t) = κi(t)

with ϒ+i (gi(x(t)) + κi(t)) = gi(x(t)) + κi(t). Thus, it has
gi(x(t)) = 0 and κi(t) ≥ 0 with gi(x(t))+ κi(t) ≥ 0. Case 2:
If gi(x(t))+ κi(t) ≤ 0, then

ϒ+i (gi(x(t))+ κi(t)) = κi(t) = 0,

which further leads to gi(x(t)) ≤ 0 with gi(x(t))+ κi(t) ≤ 0.
By summarizing the above two cases, it has:

gi(x(t)) = 0, and κi(t) ≥ 0,

and κi(t)gi(x(t)) = 0, or

gi(x(t)) ≤ 0, and κi(t) = 0,

and further yields κi(t)gi(x(t)) = 0, ∀i = 1, 2, · · · , p. Thus,
one can obtain

∑p
i=1 κi(t)gi(x(t)) = 0 and κT(t)g(x(t)) = 0

with g(x(t)) ≤ 0 and κ(t) ≥ 0. Part II completes, and the
whole proof is thus completed. �
Theorem 2: (Global Stability and Convergence of IECO-

ZNN): Consider the time-dependent nonlinear optimiza-
tion (14) subject to inequality and equality constraints. If a

positive design parameter ζ > 0 and a monotonically
increasing-odd activation function 0(·) are utilized, starting
from an arbitrary initial neural network state y(0), then the
closed-loop IECO-ZNN model (21) is globally stable in the
sense of Lyapunov with the first n elements of state y(t)
converges to an exact time-dependent solution x∗(t) of the
involved nonlinear optimization problem (14).

Proof: As for handling the time-dependent nonlin-
ear optimization (14) subject to inequality and equality
constraints, the neurodynamic equation of the closed-loop
IECO-ZNN model (21) is depicted as

ė(t) = −ζ0(e(t)), (30)

and the ith sub-system of (30) is further described as below:

ėi(t) = −ζ0(ei(t)) (31)

with predefined parameter ζ > 0, and 0(·) being a
monotonically increasing-odd activation function with index
i = 1, 2, · · · , p. Define a Lyapunov function candidate as

L(t) =
e2i (t)

2
. (32)

Note that L(t) is positive definite in view of L(t) > 0 for
ei(t) 6= 0, and L(t) = 0 for ei(t) = 0 only. Afterwards,
the time derivative of L(t) is calculated:

L̇(t) =
dL(t)
dt
= ei(t)ėi(t) = −ηei(t)0(ei(t)).

Due to the fact that 0(·) is a monotonically increasing-odd
activation function, one can readily obtain:

−0(ei(t)) = 0(−ei(t)),

which further yields:

−ηei(t)0(ei(t))

{
< 0, if ei(t) 6= 0,
= 0, if ei(t) = 0.

Therefore, it can be asserted the result that L̇(t) is negative
definite for time t ∈ [0,+∞) with predefined parame-
ter ζ > 0. By applying the Lyapunov stability theory [63],
the closed-loop IECO-ZNN model (21) is globally stable
with each element of the error function ei(t) globally con-
verging to 0. That is to say that the first n elements of
state y(t) converges to an exact time-dependent solution x∗(t)
of the involved nonlinear optimization problem (14). This
completes the proof. �
Theorem 3: (Exponential Convergence Property of IECO-

ZNN): Consider the time-dependent nonlinear optimiza-
tion (14) subject to inequality and equality constraints. If a
positive design parameter ζ > 0 and a linear activation
function, i.e., 0(ei(t)) = ei(t), are utilized, starting from
an arbitrary initial neural network state y(0), then the first
n elements of neural network state y(t) of the proposed
IECO-ZNN model (21) is exponentially converges to an
exact time-dependent solution x∗(t) of the involved nonlinear
optimization problem (14).
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FIGURE 2. Numerical results synthesized by the proposed IECO-ZNN model (21) to handle the time-dependent nonlinear optimization problem (33)
subject to inequality and equality constraints. (a) Neural network states x(t) subject to inequality constraints. (b) Neural network states λ(t) and
κ(t). (c) Profiles of A(t)x(t) with equality constraint. (d) Profile of residual error ‖x(t)− x∗(t)‖2E .

Proof: Let us review the the ith sub-system of (30) as
below:

ėi(t) = −ζ0(ei(t)),

with a linear activation function, i.e., 0(ei(t)) = ei(t), uti-
lized, it readily obtains:

ėi(t) = −ζei(t),

of which the analytical solution is obtained as follows:

ei(t) = ei(0) exp(−ζ t),

which evidently indicates that each element of error func-
tion e(t) is exponentially converges to zero with conver-
gence rate being the predefined parameter ζ for the proposed
IECO-ZNN model (21) activated by the linear activation
function, with the first n elements of neural network state
y(t) of the model (21) is exponentially converges to an exact
time-dependent solution x∗(t) of the involved nonlinear opti-
mization problem (14). This completes the proof. �

IV. NUMERICAL STUDIES, ROBOT APPLICATIONS
AND COMPREHENSIVE COMPARISONS
Numerical studies are conducted via two time-dependent
nonlinear optimization problems subject to inequality and
equality constraints by exploiting the proposed IECO-ZNN
model (21) in this section. Afterward, the real-world appli-
cations of time-dependent active sensing of PA10 robot arm
under inequality and equality constraints is resolved. Finally,
the comparisons with the conventional ZNNmodel as well as
the GNN model are provided.

A. TIME-DEPENDENT NONLINEAR OPTIMIZATION
Example 1: Let us consider the time-invariant nonlinear
optimization problem subject to inequality and equality
constraints as below:

min. (sin(t)/8+ 1/2)x21 (t)+ (cos(t)/8+ 1/2)x22 (t)

+ cos(t)x1(t)x2(t)/2+ sin(3t)x1(t)+ cos(3t)x2(t)

s. t. sin(4t)x1(t)+ cos(4t)x2(t) = 0.8 sin(2t),

− 1 ≤ x1(t), x2(t) ≤ 1. (33)

The above time-invariant nonlinear optimization problem
can be rewritten as the following compact-matrix form with

time-dependent coefficients:

f (x(t), t)= (sin(t)/8+ 1/2)x21 (t)+ (cos(t)/8+ 1/2)x22 (t)

+ cos(t)x1(t)x2(t)/2+sin(3t)x1(t)+cos(3t)x2(t),

x(t)=
[
x1(t), x2(t)

]T
, A(t) =

[
sin(4t), cos(4t)

]
,

b(t)=
[
−0.8 sin(2t)

]
, C(t) =

[
I
−I

]
,

d(t)=
[
−1,−1,−1,−1

]T
.

In this time-dependent case, without loss of gener-
ality, note that the initial states vector is set to be
[0.5, 0, 5, 5,−100,−100,−100,−100]T. The predefined
parameter is set to be ζ = 20. The related numerical
results synthesized by the proposed IECO-ZNN model (21)
to handle the time-dependent nonlinear optimization prob-
lem (33) subject to inequality and equality constraints are
shown in Fig. 2. First, Fig. 2(a) illustrates the neural net-
work states x(t) synthesized by the proposed IECO-ZNN
model (21). Such solution strictly comply with the inequality
constraint depicted in −1 ≤ x1(t), x2(t) ≤ 1 during the
whole time-dependent nonlinear optimization problem (33)
solving process. The other time-dependent neural network
states, i.e., the dual vectors λ(t) and κ(t) are illustrates
in Fig. 2(b). One can readily find that the time-dependent
profiles of A(t)x(t) comply with the equality constraint,
i.e., sin(4t)x1(t) + cos(4t)x2(t) = 0.8 sin(2t) (see Fig. 2(c)).
Furthermore, the residual errors synthesized by the proposed
IECO-ZNN model (21) during the problem handling pro-
cesses show the exponential convergence property together
with the convergence time within around 0.25 second (see
Fig. 2(d)). The numerical results in the above example ver-
ify that the time-dependent solutions x(t) are the feasible
solutions to the nonlinear optimization problem (33) under
the both inequality as well as equality constraints, which
sufficiently demonstrates the validity as well as the effective
of the proposed IECO-ZNN model (21).
Example 2: Consider another time-dependent nonlinear

optimization problem as follows:

min. (cos(0.1t)+ 2)x21 (t)+ (cos(0.1t)+ 2)x22 (t)

+ 2 sin(t)x1(t)x2(t)+ sin(t)x1(t)+ cos(t)x2(t)

s. t. sin(4t)x1(t)+ cos(4t)x2(t) = sin(4t),

x1(t)+ x2(t) ≤ 1.2. (34)
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FIGURE 3. Numerical results synthesized by the proposed IECO-ZNN model (21) to handle the time-dependent nonlinear optimization problem (34)
subject to inequality and equality constraints. (a) Neural network states x(t). (b) Neural network states λ(t) and κ(t). (c) Profiles of A(t)x(t) with
equality constraint. (d) Profile of C(t)x(t) with inequality constraint.

The above problem is reformulated as the compact-matrix
form with time-dependent coefficients as

f (x(t), t) = (cos(0.1t)+ 2)x21 (t)+ (cos(0.1t)+ 2)x22 (t)

+ 2 sin(t)x1(t)x2(t)+ sin(t)x1(t)+ cos(t)x2(t),

x(t) =
[
x1(t), x2(t)

]T
, A(t) =

[
sin(4t), cos(4t)

]
,

b(t) =
[
− sin(4t)

]
, C(t) =

[
1, 1

]
, d(t) =

[
−1.2

]
.

The related numerical results synthesized by the proposed
IECO-ZNN model (21) to handle the time-dependent nonlin-
ear optimization problem (34) subject to inequality and equal-
ity constraints are illustrated in Fig. 3. Figure 3(a) and 3(b)
present all the neural network states, i.e., x(t), λ(t) as well
as κ(t) of the proposed IECO-ZNN model (21) during the
time-dependent nonlinear optimization problem (34) han-
dling. One can readily find that the time-dependent profiles
of A(t)x(t) also comply with the equality constraint that is
sin(4t)x1(t)+ cos(4t)x2(t) = sin(4t) in Fig. 3(c). In addition,
the profile of C(t)x(t) strictly complies with inequality con-
straint, i.e., C(t)x(t) = x1(t) + x2(t) ≤ 1.2 during the whole
solving process (see Fig. 3(d)). The numerical results in this
example verify that the time-dependent solutions x(t) synthe-
sized by the proposed IECO-ZNNmodel (21) are the feasible
solutions to the nonlinear optimization problem (34) subject
to both inequality and equality constraints, which further
demonstrates the effectiveness of the proposed IECO-ZNN
model (21).

B. APPLICATION TO ROBOT ARM ACTIVE SENSING
1) APPLICATION 1
Let us consider a robot control problem in real world,
i.e., the PA10 robot arm active sensing. It can be described
as time-dependent nonlinear optimization problem subject to
inequality and equality constraints as

min.
‖θ̇ (t)‖2E

2
s. t. J (θ (t))θ̇ (t) = ṙd(t),

θ̇− ≤ θ̇ (t) ≤ θ̇+, (35)

where θ̇ (t) is the joint control signal, and J (θ (t)) ∈ Rm×n

is the Jacobian matrix of end-effector, and the joint-velocity
limits of robot are respectively set to be θ̇− = −0.4 rad/s and

θ̇+ = 0.4 rad/s. The end-effector is controlled to track a rose-
curve-shaped path rd(t) = [rdX(t), rdY(t), rdZ(t)]T with each
element in X-, Y-, and Z-axes are

rdX(t) = ςcos(4πsin2(0.5π t/Td))cos(2πsin2(0.5π t/Td))

− ς + 0.6891,

rdY(t) = ςcos(π/6)cos(4πsin2(0.5π t/Td))

· sin2(2πsin(0.5π t/Td))+ 0.0069,

rdZ(t) = ςsin(π/6)cos(4πsin2(0.5π t/Td))

· sin(2πsin2(0.5π t/Td))+ 0.1778,

where the geometry parameter is set as ς = 0.06 m in this
application. The above time-dependent nonlinear optimiza-
tion problem subject to inequality and equality constraints
can be reformulated as the compact-matrix form with coef-
ficients as follows:

f (x(t), t) =
‖θ̇ (t)‖2E

2
,

x(t) =
[
θ̇1(t), θ̇2(t), · · · , θ̇n(t)

]T
, A(t) = J (θ (t)),

b(t) = ṙd(t), C(t) =
[
I
−I

]
,

d(t) =
[
−0.4,−0.4,−0.4,−0.4

]T
,

The corresponding numerical experiment results of
PA10 robot arm to track the rose-curve-shaped path syn-
thesized by IECO-ZNN model (21) are presented in Fig. 4.
Firstly, Fig. 4(a) presents motion process in the 3D view for
the PA10 robot arm stably to track the rose-curve-shaped
path during the whole task execution with the tracking task
described as the equality constraint J (θ (t))θ̇ (t) = ṙd(t) and
the joint-velocity limits described as the inequality constraint
θ̇− ≤ θ̇ (t) ≤ θ̇+. Starting from an initial position, Fig. 4(b)
illustrates the actual trajectory moves according with the
predefined path and almost overlaps it in steady state, which
verifies that the desired rose-curve-shaped path tracking
task is completed well. This also indicates that the equality
constraint is achieved successfully. In addition, Fig. 4(c)
illustrates the joint control signal profiles that are constrained
by the joint velocity limits, which depicted as the inequality
constraint θ̇− ≤ θ̇ (t) ≤ θ̇+. Finally, the position errors
shown in 4(b) illustrate the high tracking control accuracy
of the solution model. The above numerical experiment
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FIGURE 4. Active sensing results of PA10 robot arm via IECO-ZNN model (21) to handle the time-dependent nonlinear optimization problem (35) subject
to inequality and equality constraints. (a) Motion process in 3D view. (b) Predefined path and actual trajectory. (c) Profiles of joint control signals.
(d) Profiles of position errors.

FIGURE 5. Active sensing results of PA10 robot arm via IECO-ZNN model (21) to handle the time-dependent nonlinear optimization problem (36)
subject to inequality and equality constraints. (a) Motion process in 3D view. (b) Predefined path and actual trajectory. (c) Profiles of joint control
signals. (d) Profiles of position errors.

results of PA10 robot arm in real-world application verify
the effectiveness and availability of the proposed IECO-ZNN
model (21) for the time-dependent nonlinear optimization
problem subject to inequality and equality constraints, which
possesses significant potential applications.

2) APPLICATION 2
Another time-dependent nonlinear optimization problem
subject to inequality and equality constraints with application
to PA10 robot arm can be reformulated as the compact-matrix
form with time-dependent coefficients as

f (x(t), t) =
‖θ̇ (t)‖2E

2
,

x(t) =
[
θ̇1(t), θ̇2(t), · · · , θ̇n(t)

]T
, A(t) = J (θ (t)),

b(t) = l̇d(t), C(t) =
[
I
−I

]
,

d(t) =
[
−4.5,−4.5,−4.5,−4.5

]T
, (36)

with helix-shaped path l̇d(t) = [ldX(t), ldY(t), ldZ(t)]T, and
each element in X-, Y-, and Z-axes are respectively defined
as

ldX(t) = τcos(8πsin2(0.5π t/Td))− τ + 0.6891,

ldY(t) = τcos(π/3)sin(8πsin2(0.5π t/Td))+ 0.0069,

ldZ(t) = τ sin(π/3)sin(8πsin2(0.5π t/Td))+ 0.2t/Td
+ 0.1778,

where the geometry parameter is set as τ = 0.15 m in
this application. Similarly, Fig. 5(a) shows motion process
in the 3D view for the PA10 robot arm stably to track the

helix-shaped path with the tracking task described as the
equality constraint J (θ (t))θ̇ (t) = l̇d(t) and the joint-velocity
limits described as the inequality constraint θ̇− ≤ θ̇ (t) ≤ θ̇+.
Starting from an initial position, Fig. 5(b) illustrates the actual
trajectory moves according with the predefined path and
almost overlaps it verifying that the desired helix-shaped path
tracking task is also completed well, which illustrates that
the equality constraint is achieved successfully. Moreover,
the joint control signal profiles that are constrained by the
joint velocity limits, which is depicted as the inequality con-
straint θ̇− ≤ θ̇ (t) ≤ θ̇+ (see Fig. 5(c)). Finally, the related
position errors show the high tracking control accuracy of
the proposed solution model (see Fig. 5(d)). The above
numerical experiment results of PA10 robot arm in real-world
application verify the effectiveness and availability of the
proposed IECO-ZNN model (21) for the time-dependent
nonlinear optimization problem subject to inequality and
equality constraints.

C. COMPARISONS WITH EXISTING SOLUTIONS
To show the superiority of the proposed IECO-ZNN
model (21) for solving the time-dependent nonlinear opti-
mization problem (14) in the case of inequality and equality
constrained, the comparisons with the solutions via other
existing neural network model are conducted. The conven-
tional ZNN model for comparison is depicted in (12). Note
that as a typical kind of RNN, many GNN models have
been introduced and investigated as a feasible alternative
for the online scientific problems solving. Specifically, for
solving the time-dependent nonlinear optimization problem,
a scalar-valued energy function is usually defined as E(t) =
‖e(t)‖2E/2. Then, the GNN model can be constructed as
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FIGURE 6. Numerical results on neural network states via existing ZNN
model (12) and via GNN model (37) in comparison with IECO-ZNN
model (21) in time-dependent nonlinear optimization problem (33)
solving. (a) Neural network states via ZNN model (12). (b) Neural network
states via GNN model (37).

FIGURE 7. Numerical results on C(t)x(t) via existing ZNN model (12) and
via GNN model (37) in comparison with IECO-ZNN model (21) in
time-dependent nonlinear optimization problem (34) solving. (a) Profile
of C(t)x(t) via ZNN model (12). (b) Profile of C(t)x(t) via GNN model (37).

follows:

ẏ(t) = −ρ
∂E(t)
∂y(t)

= −ρ

(
∂e(t)
∂y(t)

)T

e(t), (37)

where ρ is a predefined parameter for the GNN model.
The compared results illustrated by neural network states
x(t) and inequality constraints C(t)x(t) via the conventional
ZNN model(12) and the GNN model (37) for solving the
time-dependent nonlinear optimization problems (33) and
(34) are shown in Fig. 6 as well as Fig. 7. As shown in
these figures, the neural network states x(t) via both the
conventional ZNN model(12) and the GNN model (37) do
not comply with the inequality constraints with the profiles
pass over the inequality constraints as the time instants such
as t ∈ [0.9, 1.1] s and t ∈ [2.1, 2.2] s as well as t ∈
[2.1, 2.3] s, which is contrary to those results via the proposed
IECO-ZNN model (21) in Fig. 2(a). Similarly, the profiles of
x1(t) + x2(t) also pass over the inequality constraints as the
time instants such as t ∈ [2.6, 2.7] s for ZNN model(12) and
t ∈ [0, 0.2] s for GNN model (37), which is contrary to those
results via the proposed IECO-ZNN model (21) in Fig. 3(d).
Furthermore, the comparisons are also conducted in two
real-world robot active sensing applications. As illustrated
in Fig. 8 as well as Fig. 9, both the synthesized joint control
signals exceed the joint-velocity limits via the conventional
ZNN model (12) and the GNN model (37), which is contrary
to those results via the proposed IECO-ZNN model (21)
in Fig. 4(c) and Fig. 5(c) in two applications. The above
comparison results all verify that the proposed IECO-ZNN

FIGURE 8. Application results on joint control signals via existing ZNN
model (12) and via GNN model (37) in comparison with IECO-ZNN
model (21) in time-dependent nonlinear optimization problem (35)
solving. (a) Joint control signals via ZNN model (12). (b) Joint control
signals via GNN model (37).

FIGURE 9. Application results on joint control signal via existing ZNN
model (12) and via GNN model (37) in comparison with IECO-ZNN
model (21) in time-dependent nonlinear optimization problem (36)
solving. (a) Joint control signals via ZNN model (12). (b) Joint control
signals via GNN model (37).

model (21) that is able to effectively handle the inequality
and equality constraints simultaneously is superior to the
conventional ZNN model (12) and the GNN model (37).

V. CONCLUSION AND FUTURE WORK
To make new progresses on the ZNN for time-dependent
nonlinear optimization problems solving, this paper has pro-
posed a novel biological-heuristic optimization model, the
IECO-ZNN (21), which breaks the conditionality that the
solutions via ZNN for nonlinear optimization problems can
not consider the inequality and equality constraints at the
same time. The time-dependent nonlinear optimization prob-
lem subject to the inequality and equality constraints has
been skillfully converted to a time-dependent equality sys-
tem by exploiting the Lagrange multiplier rule. The design
process for the IECO-ZNN model (21) has been provided
together with the new architecture of the proposed model
illustrated in details. In addition, theoretical analyses on the
conversion equivalence, global stability as well as exponen-
tial convergence property have been rigorously presented.
Furthermore, numerical studies, real-world applications to
robot arm active sensing together with comprehensive com-
parisons have sufficiently substantiated the effectiveness as
well as superiority of the proposed IECO-ZNNmodel (21) for
the time-dependent nonlinear optimization with inequality
and equality constraints.

Future work lies in the following facts: i) in-depth inves-
tigation on the robustness as well as the convergence per-
formance of the proposed IECO-ZNN for the active sensing
of robot arms; ii) further implementation of the proposed
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IECO-ZNN on hardware via the field programmable gate
arrays as the advanced controllers for active sensing of
robot arms; and iii) further development of a complete
biological-heuristic optimization models library with differ-
ent biological-heuristic algorithms. As a final remark of the
paper, to the best of authors’ knowledge, this is the first
research to simultaneously address both the inequality and
equality constraints for the time-dependent nonlinear opti-
mization problem in a unified framework of ZNN with suc-
cessful applications to robot active sensing.
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