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Abstract
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(via contraction principle) an exponential approximation argument to investigate large
deviations for neutral stochastic functional differential equations.
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1 Introduction

As is well known, large deviation principle (LDP for short) is a branch of probability theory
that deals with the asymptotic behaviour of rare events, and it has a wide range of applica-
tions, such as in mathematical finance, statistic mechanics, biology and so on. So the LDP
for SDEs has been investigated extensively; see, e.g., [1, 2, 16] and references therein.

From the literature, we know there are two main methods to investigate the LDPs,
one method is based on contraction principle in LDPs, that is, it relies on approximation
arguments and exponential-type probability estimates; see e.g.,[3, 9, 10, 11, 12, 13, 16, 17]
and references therein. [9, 13, 17, 19] concerned about the LDP for SDEs driven by Brownian
motion or Poisson measure, [10] investigated the LDP for invariant distributions of memory
gradient diffusions. [11] investigated how rapid-switching behaviour of solution Xε

t affects
the small-noise asymptotics of Xε

t -modulated diffusion processes on the certain interval.
The other one is weak convergence method, which has also been applied in establishing

LDPs for a various stochastic dynamic systems; see e.g.,[1, 2, 4, 5, 6, 7]. According to the
compactness argument in this method of the solution space of corresponding skeleton equa-
tion, the weak convergence is done for Borel measurable functions whose existence is based
on Yamada-Watanabe theorem. In [4, 5, 7], the authors study an LDP for SDEs/SPDEs.

Compared with the weak convergence method, there are few literature about the LDP
for SFDEs, [16] gave result about LDP for SDEs with point delay, and large deviations
for perturbed reflected diffusion processes was investigated in [3]. The aim of this paper is
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to study the LDP for neutral stochastic functional differential equations (NSFDEs), which
extends the result in [16].

The structure of this paper is as follows. In section 2, we introduce some preliminary
results and notation. In section 3, we state the main results about LDP for NSFDEs and
give the corresponding proofs.

Before giving the preliminaries, a few words about the notation are in order. Throughout
this paper, C > 0 stipulates a generic constant, which might change from line to line and
depend on the time parameters.

2 Preliminaries

Let (Rd, 〈·, ·〉, | · |) be the d-dimensional Euclidean space with the inner product 〈·, ·〉 which
induces the norm | · |. Let Md×d denote the set of all d × d matrices, which is equipped
with the Hilbert-Schimidt norm ‖ · ‖HS. A∗ stands for the transpose of the matrix A. For a
sub-interval U ⊆ R, C(U;Rd) means the family of all continuous functions f : U→ Rd. Let
τ > 0 be a fixed number and C = C([−τ, 0];Rd), endowed with the uniform norm ‖f‖∞ :=
sup−τ≤θ≤0 |f(θ)|. For fixed t ≥ 0, let ft ∈ C be defined by ft(θ) = f(t + θ), θ ∈ [−τ, 0]. In
terminology, (ft)t≥0 is called the segment (or window) process corresponding to (f(t))t≥−τ .

In this paper, we are interested in the following NSFDE

(2.1) d{Xε(t)−G(Xε
t )} = b(Xε

t )dt+
√
εσ(Xε

t )dW (t), t ∈ [0, T ], Xε
0 = ξ ∈ C ,

where G, b : C → Rd, σ : C → Rd × Rd and {W (t)}t≥0 is a d-dimensional Brownian motion
on some filtered probability space (Ω,F , (Ft)t≥0,P).

The proofs of main results will be based on an extension of the contraction principle in
[8, Theorem 4.2.23]. To make the content self-contained, we recall it as follows:

Lemma 2.1. Let {µε} be a family of probability measures that satisfies the LDP with a good
rate function I on a Hausdorff topological space X , and for m = 1, 2, · · · , let fm : X → Y
be continuous functions, with (Y , d) a metric space. Assume there exists a measurable map
f : X → Y such that for every α <∞,

(2.2) lim sup
m→∞

sup
{x:I(x)≤α}

d(fm(x), f(x)) = 0.

Then any family of probability measures {µ̃ε} for which {µε ◦ f−1m } are exponentially good
approximations satisfies the LDP in Y with the good rate function I ′(y) = inf{I(x) : y =
f(x)}.

We now state the classical exponential inequality for stochastic integral, which is crucial
in proving the exponential approximation. For more details, please refer to Stroock [18,
lemma 4.7].
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Lemma 2.2. Let α : [0,∞)×Ω→ Rd×Rd and β : [0,∞)×Ω→ Rd be (Ft)t≥0-progressively

measurable processes. Assume that ‖α(·)‖HS ≤ A and |β| ≤ B. Set ξ(t) :=
∫ t
0
α(s)dW (s) +∫ t

0
β(s)ds for t ≥ 0. Let T > 0 and R > 0 satisfy d

1
2BT < R. Then

(2.3) P
(

sup
0≤t≤T

|ξ(t)| ≥ R
)
≤ 2d exp

(−(R− d 1
2BT )2

2A2dT

)
.

3 LDP for NSFDE

Let H denote the Cameron-Martin space, i.e.

H =
{
h(t) =

∫ t

0

ḣ(s)ds : [0, T ]→ Rd;

∫ T

0

|ḣ(s)|2ds < +∞
}
,

which is a Hilbert space endowed with the inner product as follows:

〈f, g〉H =

∫ T

0

ḟ(s)ġ(s)ds.

We define

(3.1) LT (h) =

{
1
2

∫ T
0
|ḣ(t)|2dt, if h ∈ H,

+∞ otherwise.

The well-known Schilder theorem (see [8]) states that the laws µε of {
√
εW (t)}t∈[0,T ] satisfies

the LDP on C([0, T ];Rd) with the rate function LT (·).
To investigate the LDP for the laws of {Xε(t)}t∈[−τ,T ], we give the following assumptions

about coefficients.

(H1) There exists a constant L > 0 such that

2〈ξ(0)− η(0) +G(η)−G(ξ), b(ξ)− b(η)〉 ≤ L‖ξ − η‖2∞,

and
‖σ(ξ)− σ(η)‖2HS ≤ L‖ξ − η‖2∞, ξ, η ∈ C ;

(H2) There exists a constant κ ∈ (0, 1) such that

|G(ξ)−G(η)| ≤ κ‖ξ − η‖∞, ξ, η ∈ C ;(3.2)

(H3) There exists a constant M > 0 such that

|b(ξ)| ∨ ‖σ(ξ)‖HS ≤M,∀ξ ∈ C .
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Remark 3.1. The one-sided Lipschitz condition on the drift coefficient in (H1) is different
from the global Lipschitz condition in [2]. Moreover, our method below is different from that
of [2].

Remark 3.2. From (H1), (H2), it is easy to see that

(3.3) 2〈ξ(0)−G(ξ), b(ξ)〉 ≤ L2(1 + ‖ξ‖2∞), |G(ξ)|2 ≤ κ2‖ξ‖2∞, ξ ∈ C .

Remark 3.3. Let µ(dθ) ∈P([−τ, 0]) and let

G(ξ) = α1

∫ 0

−τ
ξ(θ)µ(dθ), σ(ξ) = α2

∫ 0

−τ
ξ(θ)µ(dθ),

b(ξ) = −α3ξ(0)− α4

(
ξ(0)− α1

∫ 0

−τ
ξ(θ)µ(dθ)

)1/3
+ α5

∫ 0

−τ
ξ(θ)µ(dθ),

for some constants αi, i = 1, · · · , 5 such that α1 ≤ κ,
(
α3(α1 − 1) + α5(1 + α1)

)
∨ α2

2 ≤ L,

then the assumptions (H1) and (H2) hold true. In fact, by the Hölder inequality, one has

|G(ξ)−G(η)|2 ≤ α2
1

∫ 0

−τ
|ξ(θ)− η(θ)|2µ(dθ) ≤ α2

1‖ξ − η‖2∞
∫ 0

−τ
µ(dθ) = α2

1‖ξ − η‖2∞,

noting that

− α4〈ξ(0)− η(0)− (G(ξ)−G(η)), (ξ(0)−G(ξ))1/3 − (η(0)−G(η))1/3〉 ≤ 0,

so

〈ξ(0)− η(0)− (G(ξ)−G(η)), b(ξ)− b(η)〉
≤ −α3|ξ(0)− η(0)|2 + α3|ξ(0)− η(0)||G(ξ)−G(η)|

+ α5|ξ(0)− η(0)|
∫ 0

−τ
|ξ(θ)− η(θ)|µ(dθ)− α5|G(ξ)−G(η)|

∫ 0

−τ
|ξ(θ)− η(θ)|µ(dθ)

≤ α3(α1 − 1) + α5(1 + α1)‖ξ − η‖2∞,

‖σ(ξ)− σ(η)‖2HS ≤ α2
2

∫ 0

−τ
|ξ(θ)− η(θ)|2µ(dθ) ≤ α2

2‖ξ − η‖2∞.

Therefore, the assumptions hold if the constants αi, i = 1, . . . , 5 satisfy the conditions above.

Let F (h) be the unique solution of the following deterministic equation:

(3.4)


F (h)(t)−G(Ft(h)) = F (h)(0)−G(F0(h)) +

∫ t
0
b
(
Fs(h)

)
ds

+
∫ t
0
σ
(
Fs(h)

)
ḣ(s)ds, t ∈ [0, T ],

F0(h)(θ) = ξ(θ), θ ∈ [−τ, 0].

Herein, Ft(h)(θ) = F (h)(t+ θ), θ ∈ [−τ, 0].
The first main result of this section is stated as follows.
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Theorem 3.1. Under the assumptions (H1)-(H3), it holds that {µε, ε > 0}, the law of
Xε(·) on C([−τ, T ];Rd), satisfies the LDP with the rate function below

(3.5) I(f) := inf
{
LT (h);F (h) = f, h ∈ H

}
, f ∈ C([−τ, T ];Rd),

where LT (h) is defined as in (3.1). That is,

(i) for any closed subset C ⊂ C([−τ, T ];Rd),

lim sup
ε→0

log µε(C) ≤ − inf
f∈C

I(f),

(ii) for any open subset G ⊂ C([−τ, T ];Rd),

lim inf
ε→0

log µε(G) ≥ − inf
f∈G

I(f).

We can extend the result of Theorem 3.1 to the case that b, σ are not necessary to satisfy
the bounded condition (H3). We only assume b is locally Lipschitz with polynomial growth,
that is, there exist constants L > 0, q ∈ N, such that ∀ξ, η ∈ C , we have

|b(ξ)− b(η)| ≤ L(‖ξ‖q∞ + ‖η‖q∞)‖ξ − η‖∞.(3.6)

Let 0 denote the function such that 0(θ) = 0, θ ∈ [−τ, 0]. We can see that b is polynomial
growth

|b(ξ)| ≤ |b(ξ)− b(0) + b(0)| ≤ L‖ξ‖q+1
∞ + |b(0)| ≤ L̂(‖ξ‖q+1

∞ + 1),

where L̂ = max{L, |b(0)|}.
we state the second result as follows.

Theorem 3.2. Under the assumptions (H1), (H2) and (3.6), it holds that {µε, ε > 0}, the
law of Xε(·) on C([−τ, T ];Rd), satisfies the large deviation principle with the rate function
below

(3.7) I(f) := inf
{
LT (h);F (h) = f, h ∈ H

}
, f ∈ C([−τ, T ];Rd),

where LT (h) is defined as in (3.1).

In the sequel, we first finish the proof of Theorem 3.1.
Before giving the proof of Theorem 3.1, we prepare some lemmas.
We construct Xε,n(·) by exploiting an approximate scheme, that is, for a real positive

number s, let [s] = sup{k ∈ Z : k ≤ s} be its integer part. For any n ∈ N0, we consider the
following NSFDE

(3.8) d{Xε,n(t)−G(Xε,n
t )} = b(Xε,n

t )dt+
√
εσ(X̂ε,n

t )dW (t), t ≥ 0, Xε,n
0 = ξ,

where, for t ≥ 0,

X̂ε,n
t (θ) := Xε,n((t+ θ) ∧ tn), tn := [nt]/n, n ≥ 1, θ ∈ [−τ, 0].

According to [14, Theorem 2.2, p.204], (3.8) has a unique solution by solving piece-wisely
with the time length 1/n.

Next, we show that {Xε,n, ε > 0} defined by (3.8) approximates {Xε, ε > 0}.
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Lemma 3.3. Assume (H1), (H2), and (H3) hold, then for any δ > 0, one has

(3.9) lim
n→∞

lim sup
ε→0

ε logP
(

sup
−τ≤t≤T

|Xε(t)−Xε,n(t)| > δ
)

= −∞.

Proof. For notation brevity, we set Zε,n(t) := Xε(t)−Xε,n(t) and Y ε,n(t) := Xε(t)−Xε,n(t)−
(G(Xε

t )−G(Xε,n
t )), t ≥ 0. Noting Xε,n

0 = Xε
0 = ξ, we write Y ε,n(t) as follows:

Y ε,n(t) =

∫ t

0

(b(Xε
s)− b(Xε,n

s ))ds+
√
ε

∫ t

0

(σ(Xε
s)− σ(X̂ε,n

s ))dW (s).

It is easy to see from (3.2) that

|Zε,n(t)| ≤ |Y ε,n(t)|+ |G(Xε
t )−G(Xε,n

t )|
≤ |Y ε,n(t)|+ κ‖Xε

t −X
ε,n
t ‖∞,

and

(3.10) sup
0≤t≤T

|Zε,n(t)| ≤ 1

1− κ
sup

0≤t≤T
|Y ε,n(t)|.

For ρ > 0, we define τ εnρ = inf{t ≥ 0 : ‖Xε,n
t − X̂ε,n

t ‖∞ > ρ}, Zε,nρ = Zε,n(t ∧ τ εnρ),
ξεnρ = inf{t ≥ 0 : |Zε,nρ(t)| ≥ δ}, and compute

P
(

sup
0≤t≤T

|Zε,n(t)| > δ
)

= P
(

sup
0≤t≤T

|Zε,n(t)| > δ, τ εnρ ≤ T
)

+ P
(

sup
0≤t≤T

|Zε,n(t)| > δ, τ εnρ > T
)

≤ P (τ εnρ ≤ T ) + P
(

sup
0≤t≤T

|Zε,n(t)| > δ, τ εnρ > T
)

≤ P (τ εnρ ≤ T ) + P (ξεnρ ≤ T ).

(3.11)

Observe that

Xε,n
t (θ)− X̂ε,n

t (θ) = Xε,n(t+ θ)−Xε,n((t+ θ) ∧ tn)

= (Xε,n(t+ θ)−Xε,n(t+ θ))I{(t+θ)<tn} + (Xε,n(t+ θ)−Xε,n(tn))I{tn≤(t+θ)}

= (Xε,n(t+ θ)−Xε,n(tn))I{tn≤(t+θ)}

= G(Xε,n
t+θ)−G(Xε,n

tn ) +
(∫ t+θ

tn

b(Xε,n
s )ds+

∫ t+θ

tn

√
εσ(X̂ε,n

s )dW (s)
)
.

This, together with (3.2), yields
(3.12)

sup
0≤t≤T

‖Xε,n
t − X̂

ε,n
t ‖∞ ≤

1

1− κ
sup

0≤t≤T
sup

tn−t≤θ≤0

∣∣∣ ∫ t+θ

tn

b(Xε,n
s )ds+

∫ t+θ

tn

√
εσ(X̂ε,n

s )dW (s)
∣∣∣.

Taking (H3) into consideration and utilizing Lemma 2.2, one gets that

P
(

sup
0≤t≤T

‖Xε,n
t − X̂

ε,n
t ‖∞ ≥ ρ

)
≤ 2d exp

(
− (nρ(1− κ)−

√
dM)2

2nM2(1− κ)2dε

)
,
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provided that
√
dM

(1−κ)n < ρ. This, together with the definition of stopping time τ εnρ , implies
that

(3.13) lim
n→∞

lim sup
ε→0

ε logP (τ εnρ ≤ T ) = −∞.

For λ > 0, let φλ(y) = (ρ2 + |y|2)λ, an application of Itô’s formula yields

(3.14) φλ(Y
ε,nρ(t)) = ρ2λ +M ε,nρ(t) +

∫ t∧τεnρ

0

γελ(s)ds,

where M ε,nρ(t) := 2λ
∫ t∧τεnρ
0 (ρ2+ |Y ε,n(s)|2)λ−1

√
ε〈Y ε,n(s), σ(Xε,n

s )−σ(X̂ε,n
s )dW (s)〉 is a mar-

tingale. Moreover, by (H1), we see that

γελ(s) : = 2λ(ρ2 + |Y ε,n(s)|2)λ−1〈Y ε,n(s), b(Xε
s)− b(Xε,n

s )〉
+ 2λ(λ− 1)ε(ρ2 + |Y ε,n(s)|2)λ−2|(σ(Xε

s)− σ(X̂ε,n
s ))∗Y ε,n(s)|2

+ λε(ρ2 + |Y ε,n(s)|2)λ−1‖σ(Xε
s)− σ(X̂ε,n

s )‖2HS
≤ 2Lλ(ρ2 + |Y ε,n(s)|2)λ−1‖Zε,n

s ‖2∞ + λ(2λ− 1)ε(ρ2 + |Y ε,n(s)|2)λ−1‖(σ(Xε
s)− σ(X̂ε,n

s ))‖2HS
≤ C1(ρ

2 + |Y ε,n(s)|2)λ−1‖Zε,n
s ‖2∞ + C2(ρ

2 + |Y ε,n(s)|2)λ−1‖Xε,n
s − X̂ε,n

s ‖2∞,

(3.15)

where C1 = 2Lλ[(2λ− 1)ε+ 1], C2 = 2Lλε(2λ− 1).
Using the Burkholder-Davis-Gundy (BDG for short) inequality, we obtain

E
(

sup
0≤t≤T

M ε,nρ(t)
)

≤ 8
√

2ελ
(
E
∫ T∧τεnρ

0

(ρ2 + |Y ε,n(s)|2)2λ−2|Y ε,n(s)|2‖σ(Xε
s)− σ(X̂ε,n

s )‖2HSds
) 1

2

≤ 1

2
E
(

sup
0≤t≤T∧τεnρ

(ρ2 + |Y ε,n(s)|2)λ
)

+ 64λ2εE
∫ T∧τεnρ

0

(ρ2 + |Y ε,n(s)|2)λ−1‖σ(Xε
s)− σ(X̂ε,n

s )‖2HSds

≤ 1

2
E
(

sup
0≤t≤T∧τεnρ

(ρ2 + |Y ε,n(s)|2)λ
)

+ 128Lλ2εE
∫ T∧τεnρ

0

(ρ2 + |Y ε,n(s)|2)λ−1‖Zε,n
s ‖2∞ds

+ 128λ2εE
∫ T∧τεnρ

0

(ρ2 + |Y ε,n(s)|2)λ−1‖σ(Xε,n
s )− σ(X̂ε,n

s )‖2HSds

≤ 1

2
E
(

sup
0≤t≤T∧τεnρ

(ρ2 + |Y ε,n(s)|2)λ
)

+ 128Lλ2εE
∫ T∧τεnρ

0

(ρ2 + |Y ε,n(s)|2)λ−1‖Zε,n
s ‖2∞ds

+ 128Lλ2εE
∫ T∧τεnρ

0

(ρ2 + |Y ε,n(s)|2)λ−1‖Xε,n
s − X̂ε,n

s ‖2∞ds.

(3.16)
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Combining (3.15) and (3.16) and reformulating (3.14), one has

E
(

sup
0≤t≤T

φλ(Y
ε,nρ(t))

)
≤ 2ρ2λ + 4Lλ(66λε− ε+ 1)

∫ T

0

E(ρ2 + |Y ε,nρ(s)|2)λ−1‖Zε,nρ
s ‖2∞ds

+ 4Lλε(68λ− 1)

∫ T

0

E(ρ2 + |Y ε,nρ(s)|2)λ−1‖Xε,nρ
s − X̂ε,nρ

s ‖2∞ds

≤ 2ρ2λ + 4Lλ(66λε− ε+ 1)

∫ T

0

E
(

sup
0≤u≤s

(ρ2 + |Y ε,nρ(u)|2)λ−1‖Zε,nρ
u ‖2∞

)
ds

+ 4Lλε(68λ− 1)

∫ T

0

E
(

sup
0≤u≤s

(ρ2 + |Y ε,nρ(u)|2)λ−1‖Xε,nρ
u − X̂ε,nρ

u ‖2∞
)

ds

≤ 2ρ2λ + (C3 + C4)

∫ T

0

E
(

sup
0≤u≤s

(ρ2 + |Y ε,nρ(u)|2)λ
)

ds,

(3.17)

where C3 = 4λ(66λε − ε + 1) L
(1−κ)2 , C4 = 4Lλε(68λ − 1). In the last step, we utilized the

fact that Y ε,nρ(t) = 0, t ∈ [−τ, 0] and (3.10).
Choosing λ = 1

ε
and setting Φε,nρ(t) := (ρ2 + |Y ε,nρ(t ∧ ξεnρ)|

2)1/ε, by the Gronwall in-
equality, we obtain

E
(

sup
0≤t≤T

Φε,nρ(t)
)
≤ 2ρ2λe(C3+C4)T ≤ 2ρ2/εeC5T/ε,

where C5 = L
(

268
(1−κ)2 + 272

)
. Noting that

Φε,nρ(t) = (ρ2 + |Y ε,nρ(t)|2)1/εI{t≤ξεnρ} + (ρ2 + |Y ε,nρ(ξεnρ)|
2)1/εI{ξnερ<t},

so
(ρ2 + (1− κ)2δ2)1/εP (ξεnρ ≤ T ) ≤ E

(
sup

0≤t≤T
Φε,nρ(t)

)
,

then we have

P (ξεnρ ≤ T ) ≤
( 2ερ2

ρ2 + (1− κ)2δ2

)1/ε
eC5T/ε.

Thus,

lim sup
ε→0

ε logP (ξεnρ ≤ T ) ≤ log
( ρ2

ρ2 + (1− κ)2δ2

)
+ C5T.

Finally, given L > 0, choose ρ sufficiently small such that log
(

ρ2

ρ2+(1−κ)2δ2

)
+ C5T ≤ −2L.

Next, utilizing (3.13), choose N such that lim supε→0 ε logP (τ εnρ ≤ T ) ≤ −2L for n ≥ N .

Then, for n ≥ N there is an 0 < εn < 1 such that P (τ εnρ ≤ T ) ≤ e−L/ε and P (ξεnρ ≤ T ) ≤
e−L/ε for 0 < ε ≤ εn, so (3.11) leads to

P
(

sup
0≤t≤T

|Zε,n(t)| ≥ δ
)
≤ 2e−L/ε, 0 < ε ≤ εn.
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Thus,

lim sup
ε→0

ε logP
(

sup
0≤t≤T

|Zε,n(t)| > δ
)
≤ −L, n ≥ N.

The proof of the lemma is complete.

For n ≥ 1, define the map F n(·) : C0([0, T ],Rd)→ Cξ([−τ, T ],Rd) by
F n(ω)(t)−G(F n

t (ω)) = F n(ω)(tn)−G(Ftn(ω)) +
∫ t
tn
b(F n

s (ω))ds

+ σ(F̂ n
s (ω))(ω(t)− ω(tn)), tn ≤ t ≤ tn + 1

n
,

F n(ω)(t) = ξ(t), − τ ≤ t ≤ 0,

where F n
s (ω)(θ) = F n(ω)(s+ θ) and F̂ n

s (ω)(θ) = F̂ n(ω)((s+ θ) ∧ sn).
Notice that, Xε,n(t) = F n(

√
εW )(t), which is a continuous map. Herein, W is a standard

Brownian motion. For h ∈ H, we define

(3.18)


F n(h)(t)−G(F n

t (h)) = F n(h)(0)−G(F n
0 (h)) +

∫ t
0
b
(
F n
s (h)

)
ds

+
∫ t
0
σ
(
F̂ n
s (h)

)
ḣ(s)ds, t ∈ [0, T ],

F n
0 (h)(θ) = ξ(θ), θ ∈ [−τ, 0].

The next lemma shows that the measurable map F (h)(·) can be approximated well by the
continuous maps F n(h)(·).

Lemma 3.4. Under the assumptions of Theorem 3.1, we have

(3.19) lim
n→∞

sup
{h:LT (h)≤α}

sup
−τ≤t≤T

∣∣∣F n(h)(t)− F (h)(t)
∣∣∣ = 0,

where α <∞ is a constant.

Proof. For simplicity, we first let G(0) = 0. Set Mn(t) := F n(h)(t) − G(F n
t (h)), by funda-

mental inequality (a+ b)2 ≤ [1 + η](a2 + b2

η
) and (H2), we derive

|F n(h)(t)|2 = |F n(h)(t)−G(F n
t (h)) +G(F n

t (h))|2

≤ (1 + η)
( |G(F n

t (h))|2

η
+ |F n(h)(t)−G(F n

t (h))|2
)

≤ (1 + η)
(κ2‖F n

t (h)‖2∞
η

+ |F n(h)(t)−G(F n
t (h))|2

)
.

Letting η = κ
1−κ , we then have

sup
0≤t≤T

|F n(h)(t)|2 ≤ κ

1− κ
‖ξ‖2∞ +

1

(1− κ)2
sup

0≤t≤T
|Mn(t)|2.(3.20)

On the other hand, it is easy to see that

(3.21) |Mn(t)|2 ≤ (1 + κ)2‖F n
t (h)‖2∞.
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By (H1), (H2), we obtain from (3.18) that

|Mn(t)|2 ≤ (1 + κ)2‖ξ‖2∞ +

∫ t

0

2〈Mn(s), b(F n
s (h)) + σ(F̂ n

t (h))ḣ(s)〉ds

≤ (1 + κ)2‖ξ‖2∞ + L2

∫ t

0

(1 + ‖F n
s (h)‖2∞)ds+

∫ t

0

|Mn(s)|2ds+

∫ t

0

|σ(F̂ n
t (h))ḣ(s)|2ds

≤ (1 + κ)2‖ξ‖2∞ + L2

∫ t

0

(1 + ‖F n
s (h)‖2∞)ds+

∫ t

0

|Mn(s)|2ds

+ L2

∫ t

0

(1 + ‖F̂ n
t (h)‖2∞)|ḣ(s)|2ds.

Noting that ‖F̂ n
t (h)‖∞ = sup−τ≤θ≤0 F

n(h)((t + θ) ∧ tn) ≤ sup−τ≤θ≤0 F
n(h)(t + θ), which

together with (3.20),(3.21), yields that

sup
−τ≤t≤T

|F n(h)(t)|2

≤ ‖ξ‖2∞ + sup
0≤t≤T

|F n(h)(t)|2

≤ ‖ξ‖2∞ +
κ

1− κ
‖ξ‖2∞ +

1

(1− κ)2
sup

0≤t≤T
|Mn(t)|2

≤ 1− κ+ (1 + κ)2

(1− κ)2
‖ξ‖2∞ +

1

(1− κ)2

[
(L2 + (1 + κ)2)

∫ T

0

‖F n
s (h)‖2∞ds

+ L2

∫ T

0

‖F n
s (h)‖2∞|ḣ(s)|2ds+ L2

∫ T

0

|ḣ(s)|2ds
]
,

by the Gronwall inequality, we get

sup
n≥1

sup
−τ≤t≤T

∣∣∣F n(h)(t)
∣∣∣2

≤
(1− κ+ (1 + κ)2

(1− κ)2
‖ξ‖2∞ +

2L2LT (h)

(1− κ)2

)
exp

{(L2 + (1 + κ)2)T + 2L2LT (h)

(1− κ)2

}
≤ C1(1 + LT (h)) exp{C2(1 + LT (h))},

where C1 =
(

1−κ+(1+κ)2

(1−κ)2 ‖ξ‖2∞
)
∨
(

2L2

(1−κ)2

)
, C2 =

(
(L2+(1+κ)2)T

(1−κ)2

)
∨
(

2L2

(1−κ)2

)
.

In particular,

(3.22) Mα = sup
{h;LT (h)≤α}

sup
n≥1

sup
−τ≤t≤T

∣∣∣F n(h)(t)
∣∣∣2 ≤ C1(1 + α) exp{C2(1 + α)} <∞.
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Hence, in the same way as the argument of (3.12), we arrive at

sup
0≤t≤T

‖F n
t (h)− F̂ n

t (h)‖∞ ≤
1

1− κ
sup

0≤t≤T
sup

tn−t≤θ≤0

∣∣∣ ∫ t+θ

tn

b(F n
s (h))ds+

∫ t+θ

tn

σ(F̂ n
s (h))ḣ(s)ds

∣∣∣
≤ 1

1− κ
sup

0≤t≤T

(∫ t

tn

|b(F n
s (h))|ds+

∫ t

tn

|σ(F̂ n
s (h))ḣ(s)|ds

)
≤ CαMα

( 1

n

)1/2
→ 0, as n→∞

(3.23)

uniformly over the set {h;LT (h) ≤ α}.
For notation brevity, we set Dn(h)(t) := F n(h)(t) − F (h)(t) − (G(F n

t (h)) − G(Ft(h))),
similarly, it is easy to see from (H1),(H2) that

(3.24) sup
0≤t≤T

|F n(h)(t)− F (h)(t)|2 ≤ 1

(1− κ)2
sup

0≤t≤T
|Dn(h)(t)|2,

and

(3.25) |Dn(h)(t)|2 ≤ (1 + κ)2‖F n
t (h)− Ft(h)‖2∞.

Using (3.4) and (3.18), we deduce

|Dn(h)(t)|2 ≤
∫ t

0

2|〈Dn(h)(s), b(F n
s (h))− b(Fs(h))〉|ds

+

∫ t

0

2|〈Dn(h)(s), [σ(F̂ n
s (h)− σ(F n

s (h)) + σ(F n
s (h))− σ(Fs(h))]ḣ(s)〉|ds

≤ L

∫ t

0

‖F n
s (h)− Fs(h)‖2∞ds+

∫ t

0

|Dn(h)(s)|2ds

+ L

∫ t

0

|F n(h)(s)− F (h)(s)|2|ḣ(s)|2ds+ L

∫ t

0

‖F̂ n
s (h))− F n

s (h))‖2∞|ḣ(s)|2ds,

(3.26)

which, together with (3.23), (3.24) and (3.25), yields that

sup
−τ≤t≤T

|F n(h)(t)− F (h)(t)|2 ≤ 1

(1− κ)2

{
(L+ (1 + κ)2)

∫ T

0

‖F n
s (h)− Fs(h)‖2∞ds

+ L

∫ T

0

‖F n
s (h)− Fs(h)‖2∞|ḣ(s)|2ds+ 2LαCαMα

( 1

n

)1/4}
,

it follows from the Gronwall inequality that,

sup
−τ≤t≤T

|F n(h)(t)− F (h)(s)|2 ≤
2LαCαMα

(
1
n

)1/4
(1− κ)2

exp
{(L+ (1 + κ)2)T + 2Lα

(1− κ)2

}
.
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Hence, the desired assertion is followed by taking n→∞.
If G(0) 6= 0, by (H2) and the fundamental inequality, for any ξ ∈ C and ε > 0, we have

|G(ξ)|2 ≤ |G(ξ)−G(0) +G(0)|2 ≤ (1 + ε)|G(ξ)−G(0)|2 + (1 + 1/ε)|G(0)|2

≤ κ2(1 + ε)‖ξ‖2∞ + (1 + 1/ε)|G(0)|2.

Taking ε sufficiently small such that κ(1 + ε) < 1, the proof can be complete by repeating
the one above.

We now complete the
Proof of Theorem 3.1. Notice that Xε,n(s) = F n(

√
εW )(s), where W is the d-dimentional

Brownian motion. Then by the contraction principle in large deviations theory, we get that
the law of Xε,n(s) satisfies an LDP. Then Lemma 3.3 states that Xε,n(s) approximates expo-
nentially Xε(s). Furthermore, Lemma 3.4 shows that the extension of contraction principle
to measurable maps F (h)(·) can be approximated well by continuous maps F n(h)(·), i.e.
Lemma 3.3, so the proof of Theorem 3.1 follows from Lemma 2.1. �

In the sequel, we will finish the proof of Theorem 3.2.

Lemma 3.5. Under (H1) and (H2), then for R > 0 we have

(3.27) lim
R→∞

lim sup
ε→0

ε logP
(

sup
−τ≤t≤T

|Xε(t)| > R
)

= −∞.

Proof. For notation brevity, we set Y ε(t) := Xε(t) − G(Xε
t ), from (H2) and fundamental

inequality, it yields that

(3.28) |Y ε(t)|2 ≤ (1 + κ)2‖Xε
t ‖2∞,

and

sup
−τ≤t≤T

|Xε(t)|2 ≤ 1

1− κ
‖ξ‖2∞ +

1

(1− κ)2
sup

0≤t≤T
|Y ε(t)|2.(3.29)

For λ > 0, applying the Itô formula, (H1), (H2) and (3.3) yield

(1 + |Y ε(t)|2)λ ≤ (1 + (1 + κ)2‖ξ‖2∞)λ + λ

∫ t

0

(1 + |Y ε(s)|2)λ−12〈Y ε(s), b(Xε
s)〉ds

+ 2λ(λ− 1)ε

∫ t

0

(1 + |Y ε(s)|2)λ−2|σ(Xε
s)Y

ε(s)|2ds

+ λε

∫ t

0

(1 + |Y ε(s)|2)λ−1‖σ(Xε
s)‖2HSds+M ε,λ(t)

≤ (1 + (1 + κ)2‖ξ‖2∞)λ +M ε,λ(t)

+ λL2(1 + 2λε− ε)
∫ t

0

(1 + |Y ε(s)|2)λ−1(1 + ‖Xε
s‖2∞)ds

≤ (1 + (1 + κ)2‖ξ‖2∞)λ +M ε,λ(t)

+ λL2C1(1 + 2λε− ε)
∫ t

0

(
sup

0≤u≤s
(1 + |Y ε(u)|2)λ

)
ds,

(3.30)
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where C1 = (1+ ‖ξ‖2∞
(1−κ))∨ ( 1

(1−κ)2 ), M ε,λ(t) = 2λε
∫ t
0
(1+ |Y ε(s)|2)λ−1〈Y ε(s), σ(Xε

s)dW (s)〉, and

in the last step, we used (3.29).

Noting that ‖Xε
s‖2∞ ≤ ‖ξ‖2∞ +

(
sup0≤u≤s |Xε(u)|2

)
, by (H1), (3.29) and the BDG in-

equality, we obtain

E
(

sup
0≤t≤T

M ε,λ(t)
)

≤ 8
√

2ελ

(
E
∫ T

0

(1 + |Y ε(s)|2)2λ−1‖σ(Xε
s)‖2HSds

)1/2

≤ 1

2
E
(

sup
0≤t≤T

(1 + |Y ε(s)|2)λ
)

+ 64L2λ
2εE

∫ T

0

(1 + |Y ε(s)|2)λ−1(1 + ‖Xε
s‖2∞)ds

≤ 1

2
E
(

sup
0≤t≤T

(1 + |Y ε(s)|2)λ
)

+ 64L2λ
2C1εE

∫ T

0

(
sup

0≤u≤s
(1 + |Y ε(u)|2)λ

)
ds.

(3.31)

Substituting (3.31) into (3.30), and reformulating (3.30), we arrive at

E
(

sup
0≤t≤T

(1 + |Y ε(t)|2)λ
)

≤ 2(1 + (1 + κ)2‖ξ‖2∞)λ + 2L2C1λ[66λε+ 1− ε]
∫ T

0

E
(

sup
0≤u≤s

(1 + |Y ε(u)|2)λ
)

ds.

(3.32)

For R > 0, we define ξεR = inf{t ≥ 0 : |Xε(t)| > R}, utilising BDG’s inequality yields that

E
(

sup
0≤t≤T

(1 + |Y ε(t ∧ ξεR)|2)λ
)
≤ 2(1 + (1 + κ)2‖ξ‖2∞)λ exp{2L2C1λ[66λε+ 1− ε]T},

which implies that

E
{(

sup
0≤t≤T

(1 + |Y ε(t∧ ξεR)|2)λ
)
I{ξεR≤T}

}
≤ 2(1 + (1 +κ)2‖ξ‖2∞)λ exp{2L2C1λ[66λε+ 1− ε]T},

P
(

sup
−τ≤t≤T

|Xε(t)| > R
)
≤ P(ξεR ≤ T ) ≤ 2(1 + (1 + κ)2‖ξ‖2∞)λ exp{2L2C1λ[66λε+ 1− ε]T}(

1 + [R− κ
1−κ‖ξ‖2∞](1− κ)2

)λ ,

choosing λ = 1
ε

yields that

ε logP
(

sup
−τ≤t≤T

|Xε(t)| > R
)
≤ log

2(1 + (1 + κ)2‖ξ‖2∞)(
1 + [R− κ

1−κ‖ξ‖2∞](1− κ)2
) + ε2L2C1λ[66λε+ 1− ε]T

≤ log
2(1 + (1 + κ)2‖ξ‖2∞)(

1 + [R− κ
1−κ‖ξ‖2∞](1− κ)2

) + 2L2C1(67− ε)T,

lim
R→∞

lim sup
ε→0

ε logP
(

sup
−τ≤t≤T

|Xε(t)| > R
)

= −∞.

The proof is therefore complete.
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In order to prove our theorem, we shall use the truncated method. For R > 0, set

bR(ξ) =

{
b(ξ), if ‖ξ‖∞ ≤ R;

b
(

Rξ
‖ξ‖∞

)
, if ‖ξ‖∞ > R.

Similarly, we can define σR.
In the following, we prove that bR and σR satisfy the Lipschitz condition under the

condition (3.6). We only give the proof for bR.
Case (i), if ‖ξ‖∞ ∨ ‖η‖∞ ≤ R, then

|bR(ξ)− bR(η)| = |b(ξ)− b(η)| ≤ 2LRq‖ξ − η‖∞.

Case (ii), if ‖ξ‖∞ ≤ R, ‖η‖∞ > R, then

|bR(ξ)− bR(η)| =
∣∣∣∣b(ξ)− b( Rη

‖η‖∞

)∣∣∣∣ ≤ 2LRq

∣∣∣∣ξ − Rη

‖η‖∞

∣∣∣∣
≤ 2LRq

(
‖ξ − η‖∞ + ‖η‖∞ −R

)
≤ 4LRq‖ξ − η‖∞.

Similarly, we can show that bR satisfies the Lipschitz condition if ‖η‖∞ ≤ R, ‖ξ‖∞ > R.
Case (iii), if ‖ξ‖∞ ∧ ‖η‖∞ > R, then

|bR(ξ)− bR(η)| = |b( Rξ

‖ξ‖∞
)− b( Rη

‖η‖∞
)|

≤ 2LRq‖ Rξ

‖ξ‖∞
− Rη

‖ξ‖∞
+

Rη

‖ξ‖∞
− Rη

‖η‖∞
‖

≤ 4LRq R

‖ξ‖∞
‖ξ − η‖∞ ≤ 4LRq‖ξ − η‖∞.

Since bR and σR satisfy the Lipschitz condition, it is easy to verify that bR and σR satisfy
the assumptions (H1) and (H3).

Let Xε,R(·) be the solution to the NSFDE

d{Xε,R(t)−G(Xε,R
t )} = bR(Xε,R

t )dt+
√
εσR(Xε,R

t )dW (t), t > 0,

with the initial datum Xε,R
0 = ξ(θ), θ ∈ [−τ, 0].

We recall a Lemma in [8], which is a key point in the proofs of following Lemmas.

Lemma 3.6. Let N be a fixed integer. Then, for any aiε ≥ 0,

(3.33) lim sup
ε→0

ε log
( N∑
i=1

aiε

)
=

N
max
i=1

lim sup
ε→0

ε log aiε.

The lemma below states that Xε,R(·) is the uniformly exponential approximation of Xε(·)
on the interval [−τ, T ].
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Lemma 3.7. Assume (H1) and (H2) hold, then for any T > 0, δ > 0, one has that:

(3.34) lim
R→∞

lim sup
ε→0

ε logP
(

sup
−τ≤t≤T

|Xε(t)−Xε,R(t)| > δ
)

= −∞.

Proof. For notation simplicity, we set Zε,R(t) := Xε(t) − Xε,R(t) and Y ε,R(t) := Xε(t) −
Xε,R(t)− (G(Xε

t )−G(Xε,R
t )).

From (H2), it is easy to see that

sup
0≤t≤T

|Zε,R(t)| ≤ sup
0≤t≤T

( 1

1− κ
|Y ε,R(t)|

)
.

Define ξεR1
:= inf{t ≥ 0 : |Xε(t)| ≥ R1}. For any R ≥ R1, we have

Y ε,R(t ∧ ξεR1
) =

∫ t∧ξεR1

0

(bR(Xε
s)− bR(Xε,R

s ))ds+
√
ε

∫ t∧ξεR1

0

(σR(Xε
s)− σR(Xε,R

s ))dW (s).

(3.35)

Setting Zε
R1

(t) := Zε,R(t ∧ ξεR1
), Y ε

R1
(t) := Y ε,R(t ∧ ξεR1

) and ξεR,δ := inf{t ≥ 0 : |Zε
R1

(t)| ≥ δ}.
Then, we have

P
(

sup
−τ≤t≤T

|Zε,R(t)| > δ
)

= P
(

sup
−τ≤t≤T

|Zε,R(t ∧ ξεR1
)| > δ, I{ξεR1

≥T}

)
+ P

(
sup
−τ≤t≤T

|Zε,R(t ∧ ξεR1
)| > δ, I{ξεR1

≤T}

)
≤ P (ξεR1

≤ T ) + P (ξεR,δ ≤ T ) ≤ P
(

sup
−τ≤t≤T

|Xε(t)| > R1

)
+ P (ξεR,δ ≤ T ).

(3.36)

By mimicking the argument in Lemma 3.3 for t ≤ T ∧ ξεR1
, one gets

E
(

sup
0≤t≤T

(
ρ2 + |Y ε

R1
(t)|2

)1/ε) ≤ 2ρ2/εeCT/ε.

This implies that

P (ξεR,δ ≤ T ) ≤
( 2ερ2

ρ2 + (1− κ)2δ2

)1/ε
eCT/ε.

Taking Logarithmic function into consideration, we have

lim sup
ε→0

ε logP (ξεR,δ ≤ T ) ≤ log
( ρ2

ρ2 + (1− κ)2δ2

)
+ CT.

This, together with (3.27),(3.33) and (3.36), implies

lim
R→∞

lim sup
ε→0

ε logP
(

sup
−τ≤t≤T

|Zε,R(t)| > δ
)

≤ lim
R→∞

lim sup
ε→0

ε log
(
P
(

sup
−τ≤t≤T

|Xε(t)| > R1

)
+ lim

R→∞
lim sup
ε→0

P (ξεR,δ ≤ T )
)

≤ lim sup
ε→0

ε logP
(

sup
−τ≤t≤T

|Xε(t)| > R1

)
∨
{

log
( ρ2

ρ2 + (1− κ)2δ2

)
+ CT

}
.

The conclusion follows from letting first ρ→ 0 and then R1 →∞ by Lemma 3.5.
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Proof of Theorem 3.2
For h with LT (h) <∞, let FR(h) be the solution of the equation below

FR(h)(t)−G(FR
t (h)) = FR(h)(0)−G(FR

0 (h)) +

∫ t

0

bR(FR
s (h))ds+

∫ t

0

σR(FR
s (h))ḣ(s)ds

with the initial datum FR
0 (h)(θ) = ξ(θ), θ ∈ [−τ, 0]. Define

IR(f) = inf
{1

2

∫ T

0

|ḣ(t)|2dt; FR(h) = f
}
,

for each f ∈ C([−τ, T ];Rd). If
(

sup−τ≤t≤T |F (h)(t)|
)
≤ R, then F (h) = FR(h).

I(f) = IR(f), for all f with
(

sup
−τ≤t≤T

|f(t)|
)
≤ R.

Proof. For R > 0, and a closed subset C ⊂ C([−τ, T ];Rd), set CR := C ∩ {f ; ‖f‖∞ ≤ R}.
Cδ
R denotes the δ-neighborhood of CR. Denote by µε,R the law of Xε

R. Then we have

µε(C) = µε(CR1) + µε

(
C, sup
−τ≤t≤T

|Xε(t)| > R1

)
≤ µε(CR1) + P

(
sup
−τ≤t≤T

|Xε(t)| > R1

)
≤ P

(
sup
−τ≤t≤T

|Xε(t)−Xε,R(t)| > δ
)

+ µRε

(
Cδ
R1

)
+ P

(
sup
−τ≤t≤T

|Xε(t)| > R1

)
.

Taking the large deviation principle for {µRε , ε > 0} yields from 3.6 that

lim sup
ε→0

ε log µε(C)

≤ lim sup
ε→0

ε log
{
P
(

sup
−τ≤t≤T

|Xε(t)−Xε,R(t)| > δ
)

+
(
− inf

f∈CδR1

IR(f)
)

+ P
(

sup
−τ≤t≤T

|Xε(t)| > R1

)}
≤
(
− inf

f∈CδR1

IR(f)
)
∨
(

lim sup
ε→0

ε logP
(

sup
−τ≤t≤T

|Xε(t)| > R1

))
∨
(

lim sup
ε→0

ε logP
(

sup
−τ≤t≤T

|Xε(t)−Xε,R(t)| > δ
))
.

Then we obtain the upper bound (i) in Theorem 3.1, that is

lim sup
ε→0

ε log µε(C) ≤ − inf
f∈C

I(f),

by taking first R→∞, and δ → 0, then R1 →∞. Let G be an open subset of C([−τ, T ];Rd).
Then for any φ0 ∈ G, and taking δ > 0, we define B(φ0, δ) = {f ; ‖f −φ0‖∞ ≤ δ} ⊂ G. Then
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using the large deviation principle for {µRε ; ε > 0}, one gets

−IR(φ0) ≤ lim inf
ε→0

ε log µRε

(
B(φ0,

δ

2
)
)

≤ lim inf
ε→0

ε log
{
P
(

sup
−τ≤t≤T

|Xε,R(t)− φ0| ≤
δ

2
, sup
−τ≤t≤T

|Xε(t)−Xε,R(t)| ≤ δ

2

)
+ P

(
sup
−τ≤t≤T

|Xε,R(t)− φ0| ≤
δ

2
, sup
−τ≤t≤T

|Xε(t)−Xε,R(t)| ≥ δ

2

)}
≤
(

lim inf
ε→0

ε log µε(G)
)
∨
(

lim inf
ε→0

ε logP
(

sup
−τ≤t≤T

|Xε(t)−Xε,R(t)| ≥ δ

2

))
.

Noting that IR(φ0) = I(φ0) provided that ‖φ0‖∞ ≤ R. Then we have

−I(φ0) ≤ lim inf
ε→0

ε log µε(G), as R→∞.

Owing to the arbitrary of φ0, it follows that

− inf
f∈G

I(f) ≤ lim inf
ε→0

ε log µε(G),

which is the lower bound (i) in Theorem 3.1, thus, the proof of Theorem 3.2 is complete.

Acknowledgement

The authors would like to thank the associated editor and referees for their helpful comments
and suggestions.

References

[1] Bao, J., Yin, G., Yuan, C., Asymptotic analysis for functional stochastic differential
equations, Springer, Cham, (2016).

[2] Bao, J., Yuan, C., Large deviations for neutral functional SDEs with jumps, Stochastics.
87 (2015), no. 1, 48-70.

[3] Bo, L., Zhang, T., Large deviations for perturbed reflected diffusion processes, Stochas-
tics: An International Journal of Probability and Stochastics Processes, 2009, 81(6):
531-543.

[4] Budhiraja, A., Chen, J., Dupuis, P., Large deviations for stochastic partial differential
equations driven by Poisson random measure, Stochastic Process. Appl. 123 (2013), no.
2, 523-560.

[5] Budhiraja, A., Dupuis, P., Fischer, M., Large deviation properties of weakly interacting
processes via weak convergence methods, Ann. Probab. 40 (2012), no. 1, 74-102.

[6] Budhiraja, A., Dupuis, P., Ganguly, A., Large deviations for small noise diffusions in a
fast Markovian environment, https://arxiv.org/abs/1705.02948.

17



[7] Budhiraja, A., Nyquist, P., Large deviations for multidimensional state-dependent shot-
noise processes, J. Appl. Probab. 52 (2015), no. 4, 1097-1114.

[8] Dembo,A., Zeitouni,A., Large deviations techniques and applications, Springer-Verlag,
Berlin Heidelberg, 1998.

[9] Freidlin, M., Random perturbations of reaction-diffusion equations: the quasidetermin-
istic approximation, Trans. Amer. Math. Soc. 305 (1988), no. 2, 665-697.

[10] Gadat, S., Panloup, F.; Pellegrini, C., Large deviation principle for invariant distribu-
tions of memory gradient diffusions, Electron. J. Probab. 18 (2013), no. 81, 34 pp.

[11] Huang, G., Mandjes, M., Spreij, P.,Large deviations for Markov-modulated diffusion
processes with rapid switching, Stochastic Process. Appl. 126 (2016), no. 6, 1785-1818.

[12] Liptser, R.S., Pukhalskii, A.A., Limit theorems on large deviations for semimartingales,
Stochastics Stochastics Rep. 38 (1992), no. 4, 201-249.

[13] Liu, K., Zhang, T., A large deviation principle of retarded Ornstein-Uhlenbeck processes
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