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Abstract
We show how the tropical variety of an ideal I � K [x1, . . . , xn] over a field K with
non-trivial discrete valuation can always be traced back to the tropical variety of an
ideal π−1 I � R�t�[x1, . . . , xn] over some dense subring R in its ring of integers. We
show that this connection is compatible with the Gröbner polyhedra covering them.
Combined with previous works, we thus obtain a framework for computing tropical
varieties over general fields with valuations, which relies on the existing theory of
standard bases if π−1 I is generated by elements in R[t, x1, . . . , xn].
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1 Introduction

Given a polynomial ideal I over a field K with a non-trivial valuation ν : K →
R∪{∞}, its tropical variety T (I ) is commonly described as the combinatorial shadow
of its vanishing set over the algebraic closure of K . Tropical varieties arise naturally
in many contexts in mathematics [1,22] and beyond, such as phylogenetic trees in
biology [24, §4], product-mix auctions in economics [2,32] or finiteness of central
configurations in the 5-body problem in physics [12].

However, computing tropical varieties is an algorithmically highly challenging task,
requiring sophisticated techniques from computer algebra and convex geometry. The
first techniques were developed by Bogart, Jensen, Speyer, Sturmfels and Thomas
[5] for the rational function field over the complex numbers C(t) using classical
Gröbner basis methods. More recently, Chan and Maclagan [7] generalised the notion
of Gröbner bases to general fields with valuation in order to compute tropical varieties
thereover. The linchpin of both works is the ability to compute initial ideals.Moreover,
significant advances have been made in specific parts of the computations: Chan [6],
Hofmann and Ren [13], Sommars and Verschelde [29] all worked on improving the
main bottleneck that is the computation of tropical links. The first twoworks developed
new algorithms based on projections and intersections, respectively, whereas the latter
improved the computation of so-called tropical prevarieties which was essential for
the original algorithm. At the same time, Vaccon [34] showed thatMatrix-F5 ideas can
be applied to improve the performance of the generalised Gröbner bases computation.

In contrast, this article revisits the problem on a more fundamental level. As in [7],
the overall goal is to develop a framework for general fields with valuation in which the
original algorithms in [5] work almost ad verbum. However, instead of introducing a
new notion of Gröbner bases, we aim to base it on the existing theory of standard bases
[25]. The key idea is to use Cohen’s Structure Theorem and replace the valued field
K with a power series ring R�t� with its natural valuation. This replaces the original
ideal I � K [x] with an ideal in R�t�[x], which is generated by polynomials in both t
and x under mild assumptions on I . Our approach is to a certain extent equivalent to
that of Chan and Maclagan, which can be seen from the fact that we naturally obtain
an algorithm for computing their Gröbner bases. However, we can leverage existing
implementations, such as in the computer algebra system Singular [8], for a better
performance (see Timings 1).

Our framework relies heavily on two previous works: In [19], we introduced stan-
dard bases for ideals in R�t�[x], whose elements are multivariate polynomials in x and
univariate power series in t over a coefficient ring R. In [20], we introduced Gröbner
fans for ideals in R�t�[x], which are a natural amalgamation of the existing notions
of Gröbner fans for power series rings [3,26,33] and Gröbner fans for polynomial
rings over coefficient rings [23]. In both works, special emphasis is put on ideals in
R�t�[x] generated by polynomials in t and x . For those, our standard bases coincide
with the existing notion of standard bases for polynomials over coefficient rings and
our algorithms consist of a finite sequence of basic polynomial arithmetic.

This article is organised as follows: First, in Sect. 2, we recall Cohen’s Structure
Theorem and use it to establish a bijection between the tropical variety of an ideal in
K [x] and the tropical variety of a corresponding ideal in R�t�[x] (see Theorem 4).
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Next, in Sect. 3, we show that this bijection is compatiblewith the polyhedral structures
covering the respective tropical varieties (see Corollary 3). Finally, in Sect. 4, we
explain how the corresponding ideal in R�t�[x] can be computed from the original
ideal in K [x].

Furthermore, modified versions of the algorithms in [5] in our framework have been
implemented in the Singular library tropical.lib [15], relying on gfanlib
[14,16] for computations in convex geometry (see Example 5). They are publicly
available as part of the official Singular distribution, and a detailed account on the
modified algorithms can be found in [27].

2 Tracing Tropical Varieties to a Trivial Valuation

The aim of this section is to show how tropical varieties over a valued field K can be
traced back to tropical varieties over a power series ring R�t� as in Convention 2. The
linchpin is to show how initial ideals over one can be described through initial ideals
over the other, and the remaining results then follow naturally from this. Let us start
by recalling Cohen’s Structure Theorem.stop

Theorem 1 (Cohen’s Structure Theorem, [21, §23Corollary 5])Let R be aNoetherian
ring, P = 〈p〉 � R an ideal and ̂R the P-adic completion of R. Then

̂R ∼= R�t�
/

〈p − t〉 ,

where R�t� denotes the ring of formal power series in t with coefficients in R.

Convention 2 For the remainder of the article, fix a field K with a non-trivial discrete
valuation ν : K → R ∪ {∞}. Without loss of generality, we may assume that K is
complete in the topology induced by the valuation, as in our context we can always
pass to its completion if it is not. Let OK be its ring of integers, and let K denote its
residue field. Fix a uniformising parameter p ∈ OK , and R ≤ OK a subring that is
dense in the topology induced by the valuation, i.e. ̂R = OK . By Theorem 1, we have
two exact sequences

0 〈p − t〉 · R�t�〈p−t〉 R�t�〈p−t〉 K 0,

0 〈p − t〉 · R�t� R�t� OK 0.t 
−→ p
π

Moreover, fix a multivariate polynomial ring K [x] = K [x1, . . . , xn]. By abuse of
notation, we also use π to refer to both the map R�t�[x] → OK [x] as well as the
composition R�t�[x] → OK [x] ↪→ K [x], where R�t�[x] andOK [x] denote the rings
of polynomials in x1, . . . , xn with coefficients in R�t� and OK , respectively.

Example 1 (p-adic numbers) The most interesting example is the field K := Qp of
p-adic numbers with OK := Zp the ring of p-adic integers. Then R := Z ≤ Zp

is a natural dense subring, which is computationally easy to work with. The exact
sequences in Convention 2 merely reflect the presentation of p-adic integers as power
series in p:
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0 〈p − t〉 · Z�t�〈p−t〉 Z�t�〈p−t〉 Qp 0,

0 〈p − t〉 · Z�t� Z�t� Zp 0.
t 
−→ p

π

Example 2 Given the choice of R ≤ OK in Convention 2, choosing R := OK is
always possible. However, in many examples there are natural choices for R, which
are computationally much easier to handle than OK itself:

1. K = k((t)) the field of Laurent series over a field k with OK = k�t� the ring of
power series over k, R = k[t] and p = t ; e.g. k = Fq with q a prime power, as
used in [30, Sect. 7] or [17], or k = Q as considered in [5] (see Example 4).

2. Finite extensions K ofQp andFq((t)), i.e. all local fields with non-trivial valuation,
and also all higher-dimensional local fields.

3. OK any completion of a localisation of a Dedekind domain R at a prime ideal
P � R, p ∈ P a suitable element. Note that p does not need to generate P and
hence OK need not be the completion with respect to the ideal generated by p,
e.g. R = Z[√−5], P = 〈2, 1 + √−5〉 and p = 2.

4. For an odd choice of R, consider K := Q(s)((t)) so that OK = Q(s)�t�. Set
R := S−1

Q[s, t], where S := Q[s, t] \ (〈t − 1, s〉 ∪ 〈t〉) is multiplicatively closed
as the complement of two prime ideals. Then R is a non-catenarian, dense subring
of OK .

To fix the notation, we briefly recall some basic notions in tropical geometry that
are of immediate relevance to us. For an in-depth introduction to tropical geometry, we
refer to the reader to [18]. For a brief survey with a view towards algebraic geometry,
we recommend [9].

Definition 1 (Initial forms, initial ideals, tropical varieties over valued fields) For a
polynomial 0 �= f = ∑

α∈Nn cα · xα ∈ K [x] and a weight vector w ∈ R
n , we define

the valued weighted degree and initial form of f with respect to w to be:

degν,w( f ) := max{w · α − ν(cα) | cα �= 0} ∈ R,

inν,w( f ) := ∑

w·α−ν(cα) maximal cα · p−ν(cα) · xα ∈ K[x].

For an ideal I � K [x] and a weight vector w ∈ R
n , we define the initial ideal of I

with respect to w to be:

inν,w(I ) := 〈inν,w( f ) | 0 �= f ∈ I 〉 � K[x].

We refer to the set of weight vectors for which the initial ideal contains no monomial
as the tropical variety of I ,

Tν(I ) := {

w ∈ R
n

∣

∣ inν,w(I ) monomial free
}

.

Theorem 3 (Structure Theorem for Tropical Varieties, [18, Theorem 3.3.5]) Let I �
K [x] define an irreducible subvariety in (K ∗)n of dimension d. Then Tν(I ) is the
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support of a pure polyhedral complex of the same dimension that is connected through
codimension 1.

Next, we introduce initial forms and initial ideals in for elements and ideals in
R�t�[x] and show how initial ideals of ideals in R�t�[x] can be used to compute the
initial ideals of ideals in K [x].
Definition 2 (Initial forms, initial ideals) Given an element 0 �= f = ∑

β,α cα,β ·
tβxα � R�t�[x] and a weight vector w ∈ R<0 × R

n , we define the weighted degree
and initial form of f with respect to w to be

degw( f ) := max{w · (β, α) | cβ,α �= 0} ∈ R,

inw( f ) := ∑

w·(β,α) maximal cα,β · tβxα ∈ R[t, x],

where R[t, x] denotes the ring of polynomials in t, x1, . . . , xn with coefficients in R.
Given an ideal I � R�t�[x] and a weight vectorw ∈ R<0×R

n , we define the initial
ideal of I with respect to w to be:

inw(J ) := 〈inw( f ) | 0 �= f ∈ J 〉 � R[t, x].

This can be thought of as a natural extension of Definition 1 with trivial valuation on
the coefficients. Note that we only allow weight vectors with negative weight in t , so
that the maximum of all w · (β, α) exists.

Example 3 ( [6, §3.6]) Consider, over the field of 3-adic numbers Q3, the ideal

I = 〈2x21 + 3x1x2 + 24x3x4, 8x
3
1 + x2x3x4 + 18x23 x4〉 � Q3[x1, . . . , x4] = Q3[x],

and the weight vector w := (1, 11, 3, 19). The initial ideal of I under the 3-adic
valuation is then

inν3,w(I ) = 〈x21 , x1x3x4, x1x22 x3, x1x42 , x43 x24 〉 � F3[x].

Moreover, we have

π−1 I = 〈3 − t, 2x21 + 3x1x2 + 24x3x4, 8x
3
1 + x2x3x4 + 18x23 x4〉 � Z�t�[x],

and for the weight vector (−1, w) ∈ R<0 × R
4 a short standard bases computation

(see Proposition 3) yields

in(−1,w)(π
−1 I ) = 〈3, x21 , t x1x3x4, t3x1x22 x3, t4x1x42 , t3x43 x24 〉 � Z[t, x].

The similarity to the initial ideal of I under the 3-adic valuation is no coincidence.

Proposition 1 For any ideal I � OK [x] and any weight vector w ∈ R
n, we have:

in(−1,w)(π−1 I )|t=1 = inν,w(I ),
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where (·) denotes the canonical projection (·) : R[x] → K[x].
Proof ⊇ Any term s ∈ OK [x] is of the form s = (

∑

β cβ pβ) · xα with p � cβ for all

β ∈ N. Then the element s′ := (
∑

β cβ tβ) · xα ∈ R�t�[x] is a natural preimage
of s under π for which we have

inν,w(s) = cβ0 · xα = in(−1,w)(s′)|t=1, where β0 = min{β ∈ N | cβ �= 0}.

And because the valued weighted degree of s in OK [x], i.e. the left-hand side in
the following equation, and the weighted degree of s′ in R�t�[x], i.e. the right-hand
side of the following equation, coincide,

degw(xα) − ν(
∑

β cβ pβ) = max{w · α − β | cβ �= 0} = deg(−1,w)(
∑

β cβ · tβxα),

this implies that any f ∈ OK [x] has a preimage f ′ ∈ R�t�[x] under π such that

inν,w( f ) = in(−1,w)( f ′)|t=1,

simply by applying the above argument to each of its terms.
⊆ Once again consider a term s = ∑

β cβ pβ · xα ∈ OK [x]with p � cβ for all β ∈ N.

Then any preimage of it under π is of the form s′ = ∑

β cβ tβxα + r for some
r ∈ 〈p − t〉.

If deg(−1,w)(r) > deg(−1,w)(
∑

β cβ tβxα), we have

in(−1,w)(s′)|t=1 = in(−1,w)(r)|t=1 = 0,

since in(−1,w)(r) ∈ in(−1,w)〈p − t〉 = 〈p〉.
And if deg(−1,w)(r) < deg(−1,w)(

∑

β cβ tβxα), we have

in(−1,w)(s′)|t=1 = in(−1,w)(
∑

β cβ tβxα)|t=1 = cβ0 · xα

= inν,w(
∑

β cβ pβ · xα) = inν,w(s),

where β0 := min{β ∈ N | cβ �= 0}.
Now suppose deg(−1,w)(r) = deg(−1,w)(

∑

β cβ tβxα). First observe that because t
is weighted negatively, there can be no cancellation amongst the highest weighted
terms of r and the terms of

∑

β cβ tβxα , as the terms of
∑

β cβ tβxα are not divisible
by p, unlike the terms of the highest weighted terms of r . Therefore, we have

in(−1,w)(s′)|t=1 = in(−1,w)(
∑

β cβ tβxα)|t=1
︸ ︷︷ ︸

=inν,w(
∑

β cβ pβ · xα)

+ in(−1,w)(r)|t=1
︸ ︷︷ ︸

=0

= inν,w(s).
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Either way, we always have in(−1,w)(s′)|t=1 ∈ 〈inν,w(s)〉 for any arbitrary preim-
age s′ ∈ π−1(s), and, as before, the same hence holds true for any arbitrary element
f ∈ OK [x]. ��

Corollary 1 For any ideal I � K [x] and any weight vector w ∈ R
n, we have:

in(−1,w)(π−1 I )|t=1 = inν,w(I ).

Proof The statement follows from inν,w(I ) = inν,w(I ∩OK [x]) and Proposition 1. ��
Finally, we can introduce tropical varieties in R�t�[x] and show how they relate to

tropical varieties in K [x]. In particular, we note how the tropical varieties in R�t�[x]
that are of interest to us are pure and connected through codimension 1. This is not a
given for tropical varieties over coefficient rings [18, §1.6] and very important algo-
rithmically, as it allows us to run over it via a fan-traversal through the facets of the
maximal cones.

Definition 3 (tropical variety) For an ideal I � R�t�[x], we define its tropical variety
to be

T (I ) = cl
(

{w ∈ R<0 × R
n | inw(I ) monomial free}

)

⊆ R≤0 × R
n,

where cl (·) denotes the closure in the Euclidean topology.

Theorem 4 Let I � K [x] be an ideal. The projection R≤0 × R
n → R

n induces a
bijection

T (π−1 I ) ∩ ({−1} × R
n)

∼−→ Tν(I )

(−1, w1, . . . , wn) 
−→ (w1, . . . , wn),

where ν is the valuation on K in Convention 2.

Proof For the bijection, we show that

in(−1,w)(π
−1 I ) is not monomial free ⇐⇒ inν,w(I ) is not monomial free.

�⇒ Suppose in(−1,w)(π
−1 I )� R�t�[x] contains a monomial tβxα . By Corollary 1,

we have inν,w(I ) = in(−1,w)(π−1 I )|t=1, which means inν,w(I ) must contain
the monomial xα ∈ K[x].

⇐� Suppose inν,w(I )�K[x] contains amonomial xα . For the remainder of the proof,
we abbreviate (−1, w)-weighted degree and (−1, w)-weighted homogeneous
with weighted degree and weighted homogeneous, respectively. Consider all
r ∈ R[t, x] such that

f := tβ · (

xα + (t − 1) · r) ∈ in(−1,w)(π
−1 I ), for some β ∈ N.

123



Foundations of Computational Mathematics

Such f exist, because, by Corollary 1, in(−1,w)(π
−1 I ) must contain an element of

the form xα + (t − 1) · r + p · s for some r , s ∈ R[t, x], and p lies in in(−1,w)(π
−1 I ).

We may decompose each r into its weighted homogeneous layers,

r = rq1 + . . . + rql .

with deg(−1,w)(rqi ) = qi and qi < qi+1, and we may choose β ∈ N and r ∈ R[t, x]
such that l is minimal. We now use the weighted homogeneity of in(−1,w)(π

−1 I ) to
show that l = 0, which means that in(−1,w)(π

−1 I ) contains the monomial tβxα for
some β ∈ N.

Assume l > 0. Setting d := deg(−1,w)(x
α) and rq = 0 for q /∈ {q1, . . . , ql}, we

obtain the following weighted homogeneous layers of f in weighted degree q − β:

fq−β :=
{

tβ · (

t · rq+1 − rq
)

, if q �= d

tβ · (

xα + t · rd+1 − rd
)

, if q = d.

Since in(−1,w)(π
−1 I ) is weighted homogeneous, all fq−β are contained in this ideal.

Now if ql was strictly bigger than d, we would get fql−β = −tβ · rql ∈
in(−1,w)(π

−1 I ), and thus

tβ · (

xα + (t − 1) · (rq1 + . . . + rql−1)
) = f − tβ(t − 1) · rql ∈ in(−1,w)(π

−1 I ),

contradicting our choice of β and r with minimal l.
Similarly, if q1 was less than or equal to d, we would get fq1−1−β = tβ · t · rq1 ∈

in(−1,w)(π
−1 I ), and thus

tβ+1 · (

xα + (t − 1) · (rq2 + . . . + rql )
) = t · f − tβ+1(t − 1) · rq1 ∈ in(−1,w)(π

−1 I ),

again contradicting our choice of β and r with minimal l.
Hence, ql ≤ d < q1, which, however, contradicts qi < qi+1. ��

Corollary 2 If I � K [x] defines an irreducible subvariety of (K ∗)n of dimension d,
then T (π−1 I ) is the support of a pure polyhedral fan of dimension d + 1 connected
through codimension one.

Proof Follows immediately from Definition 3 and Theorem 4, which imply that
T (π−1 I ) is the polyhedral fan over T ν(I ). And by Theorem 3, the latter is pure
of dimension d and connected through codimension one. ��

We close the section with a couple of examples of tropical varieties over K [x], their
counterparts in R�t�[x] and how they can be computed in Singular.

Example 4 Let K := Q((ε)) be the field of Laurent series, equipped with is natural
valuation ν, and let I �K [x, y] be the principal ideal generated by (x+ y+1) ·(ε2x+
y + ε). Then Tν(I ) is the union of two tropical lines, one with vertex at (0, 0) and one
with vertex at (1,−1). Setting R := Q[t] ⊆ OK = Q�t�, Theorem 4 implies that for
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{−1} × R
2

(0, 0, 0)

T (π−1I)

Tν(I)

Fig. 1 T (π−1 I ) as polyhedral fan over Tν(I )

(−1, 1,−1, 1,−1)

(−2,−1, 1,−1, 1)

(0,−3, 1, 1, 1)

(0, 1, 1,−3, 1)

(0, 1,−3, 1, 1)

(0, 1, 1, 1,−3)

Fig. 2 T (〈x1 − 2x2 + 3x3, 3x2 − 4x3 + 5x4, 2 − t〉)

any weight vector w = (wt , wx , wy) ∈ R<0 × R
2 in the lower open half-space we

have

w ∈ T (π−1 I ) ⇐⇒
(

wx

|wt | ,
wy

|wt |
)

∈ Tν(I ).

Hence T (π−1 I ) is the polyhedral fan over Tν(I ) as shown in Fig. 1. It consists of
6 rays and 8 two-dimensional cones in a way that the intersection with the affine
hyperplane yields Tν(I ).

Example 5 ([6, §3.6]) Consider I := 〈x1 − 2x2 + 3x3, 3x2 − 4x3 + 5x4〉 �
Q[x1, . . . , x4] ⊆ Q2[x1, . . . , x4], whose preimage is given by

π−1 I = 〈x1 − 2x2 + 3x3, 3x2 − 4x3 + 5x4, 2 − t〉 � Z�t�[x1, . . . , x4].

The tropical variety of the preimage is combinatorially of the form shown in
Fig. 2 and invariant by translation under the one-dimensional subspace generated
by (0, 1, 1, 1, 1). Hence, each of the six drawn vertices represents a two-dimensional
cone and each of the five edges represents a three-dimensional cone.

Intersecting with the affine hyperplane {−1}×R
4, we obtain a polyhedral complex

as shown in the top left of Fig. 3, the vertices of Fig. 2 in {0} × R
4 becoming points

at infinity.
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<

<

>

>

(1,−1, 1,−1)

1
2 (−1, 1,−1, 1)

(−3, 1, 1, 1)

(1, 1,−3, 1)

(1,−3, 1, 1)

(1, 1, 1,−3)

Tν2 (I)

− 1
4 (1, 1, 1,−3)

<

<

>

>

(−3, 1, 1, 1)

(1,−3, 1, 1)

(1, 1,−3, 1)

(1, 1, 1,−3)

Tν5 (I)

<

<

>

>

1
2 (−1,−1, 1, 1)

1
2 (1, 1,−1,−1)

(−3, 1, 1, 1)

(1,−3, 1, 1)

(1, 1,−3, 1)

(1, 1, 1,−3)

Tν3 (I)

(0, 0, 0, 0)

<

<

>

>

(−3, 1, 1, 1)

(1,−3, 1, 1)

(1, 1,−3, 1)

(1, 1, 1,−3)

Tνp (I) = T (I) for p > 7

Fig. 3 Tν(I ) for all p-adic valuations and the trivial valuation

SINGULAR /
A Computer Algebra System for Polynomial Computations / Version 4.1.1

0<
by: W. Decker , G.-M. Greuel, G. Pfister , H. Schoenemann \ Feb 2018
FB Mathematik der Universitaet , D-67653 Kaiserslautern \

> LIB "tropical .lib";
> ring r = 0,x(1..4) ,dp;
> ideal I =
. x(1)+2*x(2)-3*x(3),
. 3*x(2)-4*x(3)+5*x(4);
> number p = 2;
> tropicalVariety(I,p);
RAYS
-2 -1 1 -1 1 # 0
-1 1 -1 1 -1 # 1
0 -3 1 1 1 # 2
0 1 -3 1 1 # 3
0 1 1 -3 1 # 4
0 1 1 1 -3 # 5

LINEALITY_SPACE
0 -1 -1 -1 -1 # 0

F_VECTOR
1 6 5

MAXIMAL_CONES
{0 1} # Dimension 3
{0 2}
{0 4}
{1 3}
{1 5}

Fig. 4 Computing tropical varieties over fields with valuation in Singular

Figure 3 further shows the tropical varieties of I �Q[x1, . . . , x4] for other possible
valuations on Q. We see that regardless of the valuation, all tropical varieties share
the same recession fan, as was proven by Gubler [11]. The latter is also necessarily
the tropical variety under the trivial valuation. Note that for p sufficiently large, the
tropical varieties overQp coincide with the tropical variety under the trivial valuation.
This is because p is simply too large for p − t to matter in any of our standard basis
computations that arise in the computation of T (π−1 I ). In the theory of modular
Gröbner bases [4], these p are referred to as good primeswhile the other p are referred
to as bad primes.

Figure 4 shows the input and output of the Singular computation of Tν2(I ). Cur-
rently, the computation of tropical varieties is limited to the fields C{{t}} and Qp and
to ideals defined over Q.
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3 Tracing Gröbner Complexes to a Trivial Valuation

In this section, we show how the Gröbner complexes of ideals in K [x] can be traced
back to the Gröbner fans of ideals in R�t�[x]. We show how the latter induces a
refinement of the former and how to determine whether two Gröbner cones map to
the same Gröbner polyhedron. We close this section with a remark on p-adic Gröbner
bases as introduced by Chan and Maclagan [7].

Definition 4 (Gröbner polyhedra, Gröbner complexes over valued fields) For a homo-
geneous ideal I �K [x] and a weight vector w ∈ R

n , we define itsGröbner polyhedra
to be

Cν,w(I ) := cl
(

{v ∈ R
n | inν,v(I ) = inν,w(I )}

)

⊆ R
n .

We refer to the collection �ν(I ) := {Cν,w(I ) | w ∈ R
n} as the Gröbner complex of

I .

Theorem 5 ([18, Theorem 2.5.3]) Let I � K [x] be a homogeneous ideal. Then all
Cν,w(I ) are convex polytopes and �ν(I ) is a finite polyhedral complex.

Definition 5 For an x-homogeneous ideal I � R�t�[x], i.e. an ideal generated by
elements which are homogeneous if considered as polynomials in x with coefficients
in R�t�, and a weight vector w ∈ R<0 × R

n we define its Gröbner cone to be

Cw(I ) := cl
(

{v ∈ R<0 × R
n | inv(I ) = inw(I )}

)

.

We refer to the collection �(I ) := {Cw(I ),Cw(I ) ∩ {0} × R
n | w ∈ R<0 × R

n} as
the Gröbner fan of I .

Proposition 2 ([20, Theorem 3.19]) Let I�R�t�[x] be an x-homogeneous ideal. Then
all Cw(I ) are polyhedral cones and �(I ) is a finite polyhedral fan.

Corollary 3 The map {−1} × R
n ∼−→ R

n, (−1, w) 
−→ w is compatible with the
Gröbner fan �(π−1 I ) and the Gröbner complex �ν(I ), i.e. it maps the restriction of
a Gröbner cone C(−1,w)(π

−1 I ) ∩ ({−1} × R
n
)

into the Gröbner polytope Cν,w(I ).

Proof Follows directly from Proposition 1, as two weight vectors with the same initial
ideal of π−1 I � R�t�[x] yield the same initial ideal of I � K [x]. ��

Note that it may happen that several cones are mapped into the same Gröbner
polytope, i.e. that the image of the restrictedGröbner fan is a refinement of theGröbner
complex (see Example 6).

We now recall the notion of initially reduced standard bases of ideals in R�t�[x]
from [19] and how they determine the inequalities and equations of Gröbner cones as
shown in [20]. We then use these to decide whether two Gröbner cones are mapped
to the same Gröbner polytope and, by doing so, show that no separate standard basis
computation is required for this.
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Definition 6 (initially reduced standard bases) Fix the lexicographical ordering >

such that x1 > . . . > xn > 1 > t . Given a weight vector w ∈ R<0 × R
n , we define

the weighted ordering >w to be

tβxα >w tδxγ :⇐⇒ w · (β, α) > w · (δ, γ ) or

w · (β, α) = w · (δ, γ ) and tβxα > tδxγ .

For g ∈ R�t�[x], the leading term LT>w(g) is the unique term of g with maximal
monomial under >w and for I � R�t�[x], the leading ideal LT>w(I ) is the ideal
generated by the leading terms of all its elements. A finite subset G ⊆ I is called a
standard basis of I with respect to >w, if the leading terms of its elements generate
LT>w(I ).

Suppose G = {g1, . . . , gk} with gi = ∑

α∈Nn gi,α · xα , gi,α ∈ R�t�. We call G
initially reduced, if the set

G ′ :=
{

∑

α∈N
LT>(gi,α) · xα

∣

∣

∣ i = 1, . . . , k
}

⊆ R[t, x],

is reduced in the classical sense, i.e. no term in the tail of an element of G ′ is in the
ideal generated by the leading terms of the elements in G ′.

Proposition 3 ([20, Algorithm 4.6]) Let I � R�t�[x] be an x-homogeneous ideal and
w ∈ R<0 × R

n a weight vector. Then an initially reduced standard basis G of I with
respect to >w can be computed using a finite sequence of arithmetic operations in
R�t�[x]. Moreover, if I is generated by elements in R[t, x], then it can be computed
using a finite sequence of arithmetic operations in R[t, x].
Proposition 4 ([20, Proposition 3.8, 3.11]) Let I � R�t�[x] be an x-homogeneous
ideal, let w ∈ R<0 × R

n be a weight vector and let G an initially reduced standard
basis of I with respect to >w. Then {inw(g) | g ∈ G} is an initially reduced standard
basis of inw(I ) with respect to >w, and the Gröbner cone of I around w is given by

Cw(I ) = cl
(

{v ∈ R<0 × R
n | inv(g) = inw(g) for all g ∈ G}

)

.

We now show that our standard bases of π−1 I � R�t�[x] yield Gröbner bases of
initial ideals of I � K [x], allowing us to immediately decide whether two Gröbner
cones of the former are mapped to the same Gröbner polytope of the latter.

Corollary 4 Let I � K [x] be a homogeneous ideal, let w ∈ R
n be a weight vector

and let G be an initially reduced standard basis of π−1 I with respect to the weighted
ordering >(−1,w). Then

{

in(−1,w)(g)|t=1

∣

∣

∣ g ∈ G
}

is a standard basis of inν,w(I ) with respect to the fixed lexicographical ordering >

restricted to monomials in x.
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Proof By Proposition 4, the set in(−1,w)(G) := {in(−1,w)(g) | g ∈ G} is an initially
reduced standard basis of in(−1,w)(π

−1 I ) with respect to >(−1,w). And because it is
homogeneous with respect to the weight vector (−1, w), it is also an initially reduced
standard basis with respect to >. By choice of >, the set in(−1,w)(G)|t=1 remains a
standard basis of in(−1,w)(π

−1 I )|t=1 with respect to the restriction of > to mono-
mials in x . And since p ∈ in(−1,w)(G)|t=1, in(−1,w)(G)|t=1 is a standard basis of

in(−1,w)(π−1 I )|t=1 with respect to the restriction of >. ��
Example 6 Consider the preimage π−1 I �Z�t�[x, y, z] of the ideal I = 〈2y+ x, z2+
y2〉 � Q2[x, y, z] and the two weight vectors w = (1, 3, 7), v = (1, 10, 5) ∈ R

3. Fix
a lexicographical tiebreaker > with x > y > z > 1 > t .

The initially reduced standard basis of π−1 I with respect to >(−1,w) and >(−1,v)

is the following two sets, respectively (initial forms underlined):

G(−1,w) = {2 − t, t y + x, z2 + y2}, G(−1,v)

= {2 − t, t y + x, xy − t z2, t2z2 + x2, y2 + z2},

yielding the following Gröbner basis of inν,w(I ) and inν,v(I ) under >:

Gν,w = {y, z2}, Gν,v = {y, xy, z2, y2}.

One immediately sees that both initial ideals coincide, meaning that the two Gröbner
cones C(−1,w)(π

−1 I ) and C(−1,v)(π
−1 I ) are mapped to the same Gröbner polytope

Cν2,w(I ) = Cν2,v(I ).

Remark 1 (p-adic Gröbner bases) By [18, Sect. 2.4], a Gröbner basis of an ideal
I � K [x] over valued fields with respect to a weight vector w ∈ R

n is a finite
generating set whose initial forms generate the initial ideal inν,w(I ). By Corollary 4,
π(G) is such a Gröbner basis if G ⊆ π−1 I � R�t�[x] is a standard basis under the
monomial ordering >w.

Lines 1 to 6 in Fig. 5 illustrate the computation of a Gröbner bases over the 2-
adic numbers in Singular: Line 3 creates the Katsura(4) ideal in x1, . . . , x4, Line 5
homogenises it on x0 and adds the generator 2 − t , and Line 6 computes its standard
basis. Note that ds is aweighted orderingwithweight vector (−1, . . . ,−1,−1)which

1 LIB "poly.lib"; LIB "gfan.lib"; // for katsura() and initial() commands
2 ring r = 0,(x1,x2,x3,x4),dp;
3 ideal I = katsura (4);
4 ring s = integer ,(t,x0,x1,x2,x3,x4),ds;
5 ideal I = homog(imap(r0 ,I),x0), 2-t;
6 ideal stdI = std(I);
7 option(infRedTail);
8 stdI = reduce(stdI ,2-t);
9 ideal inI = initial (stdI ,intvec (-1,0,0,0,0 ,0));

10 inI = subst(inI ,t,1);
11 ring r2 = 2,(x0,x1,x2,x3,x4,x5 ,x6),dp;
12 ideal inI = imap(r1,inI);

Fig. 5 Computing Gröbner bases over valued fields in Singular
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Table 1 Timings in seconds
unless aborted after 1 CPU day

Examples gfan Macaulay2 Sage Singular

Cyclic(4) – 1 10 1

Cyclic(5) – – – 1

Cyclic(6) – – – 2

Katsura(3) 1 1 1 1

Katsura(4) – – 10 1

Katsura(5) – – 190 1

Katsura(6) – – 2900 –

Chan 1 1 4 –

is equivalent to a weighted ordering with weight vector (0, . . . , 0,−1) since the ideal
is homogeneous in x0, . . . , x4. Substituting t with 2 in stdI yields a Gröbner basis,
however the monomials will be out of order since the ordering ignores the 2-adic
valuation.

Lines 7 to 12 in Fig. 5 construct the initial ideal: Line 7 forces Singular to do
tail reductions even though this might cause infinite loops in non-global orderings.
Line 8 reduces stdI with respect to 2− t , so that the minimal degrees in t reflect the
2-valuations. Line 9 computes the desired initial form, and Line 10 replaces all t with
1 so that Line 12 can safely pass to a polynomial ring without t over the residue field.

Table 1 shows timings of the gfan command gfan_padic –groebnerBasis
by Anders Jensen [14], the Macaulay2 Package GroebnerValuations by
Andrew Chan [7,10], an implementation of a p-adic Matrix-F5 algorithm by Tris-
tan Vaccon in Sage [28,34], and the standard basis engine of Singular over integers
under mixed orderings [8]. We consider the following examples:

Cyclic(n) InQ2[x0, . . . , xn], the cyclic ideal in thevariables x1, . . . , xn , homogenised
using the variable x0, and weight vector (0, . . . , 0).

Katsura(n) In Q2[x0, . . . , xn], the Katsura ideal in the variables x1, . . . , xn ,
homogenised using the variable x0, and weight vector (0, . . . , 0).

Chan InQ3[x0, . . . , x4], the ideal 〈2x21+3x1x2+24x3x4, 8x31+x2x3x4+18x23 x4〉
and weight vector (−1,−11,−3,−19) taken from [6, §3.6].

All computations were done on a server running Gentoo-3.16.5 with Intel Xeon E5-
2690 processors. Computations exceeding 1 CPU day were aborted. Note that the
computations in Sage were done up to a finite precision of p50 and that the cor-
rectness of the result could only be verified for the examples for which either gfan,
Macaulay2 or Singular finished.

4 Computing the Preimage

This article was dedicated to show how Tν(I ) can be computed via T (π−1 I ), however
until nowwe have not addressed how to determine the preimageπ−1 I in the first place.
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We therefore end the articlewith two results: The first shows thatπ−1 I can be obtained
by a saturation, and the second describes how to compute it.

Lemma 1 Let I �K [x] be an ideal, and let { f1, . . . , fk} ⊆ I ∩OK [x] be a generating
set over the valuation ring. Since π : R�t�[x] → OK [x] is surjective, there are
f ′
1, . . . , f ′

k ∈ R�t�[x] such that π( f ′
i ) = fi ∈ R[x]. Then

π−1 I =
(

〈 f ′
1, . . . , f ′

k〉 + 〈p − t〉
)

: p∞ � R�t�[x],

where (·) : p∞ denotes the saturation of the ideal with respect to p.

Proof The ⊇ inclusion is obvious, as p − t is mapped to 0 and p is invertible in K .
For the converse inclusion, let g ∈ π−1 I . Then there are q1, . . . , qk ∈ K [x] such

that

π(g) = q1 · f1 + . . . + qk · fk ∈ K [x],

which means that for a sufficiently high power l ∈ N we have

pl · π(g) = plq1
︸︷︷︸

∈OK [x]
· f1 + . . . + plqk

︸︷︷︸

∈OK [x]
· fk ∈ OK [x].

Since the map π : R�t�[x] → OK [x] is surjective, there exist q ′
1, . . . , q

′
k ∈ R�t�[x]

such that

pl · π(g) = π(q ′
1 · f ′

1 + . . . + q ′
k · f ′

k),

or rather

pl · g − q ′
1 · f ′

1 + . . . + q ′
k · f ′

k ∈ ker(π) = 〈p − t〉.

Thus pl · g ∈ 〈 f ′
1, . . . , f ′

k〉 + 〈p − t〉, and hence

g ∈ (〈 f ′
1, . . . , f ′

k〉 + 〈p − t〉) : p∞. ��

The next example shows that 〈 f1, . . . , f ′
k〉 in Lemma 1 is not necessarily saturated

with respect to p, which is why Proposition 5 shows how to compute it.

Example 7 Consider I = 〈 f1, f2〉 � Q2[x, y], where f1 = x2 + 1
2 y, f2 = y2 + 1

2 y.
Then g = x2 − y2 ∈ I ∩ Z2[x, y] and 2g ∈ 〈 f1, f2〉 � Z2[x, y], but g /∈ 〈 f1, f2〉 �
Z2[x, y].
Lemma 2 Given the same conditions as in Lemma 1, we have

π−1 I =
(

〈 f ′
1, . . . , f ′

k〉 + 〈p − t〉
)

: t∞ � R�t�[x].
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Proof Follows directly from Lemma 1, since p − t ∈ 〈 f ′
1, . . . , f ′

k〉 + 〈p − t〉 implies
that its saturation with respect to p coincides with the saturation at t . ��

The following proposition shows how to compute the a standard basis of the preim-
age. It requires the notion of strong standard bases as in [25, Definition A.1.1.8]. The
result and its proof is a straightforward generalisation of [31, Lemma 12.1].

Proposition 5 Let I � K [x] be an ideal, and let { f1, . . . , fk} ⊆ I ∩ OK [x] be a
generating set of I in the valuation ring. Since π : R�t�[x] → OK [x] is surjective,
there are f ′

1, . . . , f ′
k ∈ R�t�[x] such that π( f ′

i ) = fi ∈ OK [x].
Let G ⊆ 〈 f ′

1, . . . , f ′
k〉 + 〈p − t〉 be a strong standard basis with respect to some

weighted ordering >w with weight vector w := (−1, 0, . . . , 0). Then

{ g

tk

∣

∣

∣ g ∈ G, tk highest power of t dividing g
}

is a strong standard basis of π−1 I with respect to >w.

Proof By Lemma 2, we have G ⊆ π−1 I . It remains to show that for any f ∈ π−1 I
there exists a g ∈ G such that LM>w(g) divides LM>w( f ). For that, observe that for
any f ∈ R�t�[x] our ordering satisfies

t divides LM>w( f ) ⇐⇒ t divides f .

Let f ∈ π−1 I . By Lemma 2, t l f ∈ 〈 f ′
1, . . . , f ′

k〉 + 〈p − t〉 for l ∈ N sufficiently big.
Since G is strong, there is a g ∈ G such that LM>w(g) divides LM>w(t l f ). Let tk be
the highest power of t dividing g, so that g/tk ∈ G. Then LM>w(g/tk) has no common
divisor with t l , as by our first observation that would contradict the maximality of k.
Hence it divides LM>w( f ). ��
Example 8 Let I be the ideal Katsura(4) from Remark 1. Figure 6 shows the ini-
tially reduced standard basis of the computation in Fig. 5. By Proposition 5, dividing
stdI[6] and stdI[7] by t yields a standard basis of the preimage. This shows
that stdI does not generate the entire preimage in Z�t�[x1, . . . , x4].

> stdI;
stdI[1]=2-t;
stdI[2]=x0 -x1-tx2 -tx3-tx4
stdI[3]=x1x2 -tx2^2-tx2x4+tx3x4
stdI[4]=x2^2-x0x3+tx1x3+tx2x4
stdI[5]=x1^2x3+tx0x2x3 -3 tx1x2x3 +tx2^2x3-tx0x3 ^2+tx1x3^2

+tx0x2x4 -tx0x3x4 +tx1x3x4 -tx2x3x4 -t^2x2^2x4
stdI[6]=tx3^2+tx1x4 -tx4^2+t^2 x2x3
stdI[7]=tx1^3x4-tx1^2x4^2+t^2x1^2x2x3 -t^2x0x2x3 ^2+3t^2x1x2x3 ^2

-t^2x2^2x3^2+t^2x0x3^3-t^2x1x3^3-t^2 x0x2x3x4 +t^2x0x3^2x4
-t^2x1x3^2x4+t^2x2x3^2x4+t^3x2^2x3x4

Fig. 6 Standard basis for computing a preimage Singular
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