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Abstract

Background: Research using genomic data opens up new insights into health and disease. Being able to use the data in association
with health and administrative record data held in safe havens can multiply the benefits. However, there is much discussion about
the use of genomic data with perceptions of particular challenges in doing so safely and effectively.

Objective: This study aimed to work toward a risk-utility data governance framework for research using genomic and phenotypic
data in an anonymized form for research in safe havens.

Methods: We carried out a multifaceted review drawing upon data governance arrangements in published research, case studies
of organizations working with genomic and phenotypic data, public views and expectations, and example studies using genomic
and phenotypic data in combination. The findings were contextualized against a backdrop of legislative and regulatory requirements
and used to create recommendations.

Results: We proposed recommendations toward a risk-utility model with a flexible suite of controls to safeguard privacy and
retain data utility for research. These were presented as overarching principles aligned to the core elements in the data sharing
framework produced by the Global Alliance for Genomics and Health and as practical control measures distilled from published
literature and case studies of operational safe havens to be applied as required at a project-specific level.

Conclusions: The recommendations presented can be used to contribute toward a proportionate data governance framework to
promote the safe, socially acceptable use of genomic and phenotypic data in safe havens. They do not purport to eradicate risk
but propose case-by-case assessment with transparency and accountability. If the risks are adequately understood and mitigated,
there should be no reason that linked genomic and phenotypic data should not be used in an anonymized form for research in
safe havens.

(J Med Internet Res 2020;22(5):e16346) doi: 10.2196/16346

KEYWORDS

genomic data; data safe havens; data governance

Introduction

Background
The use of genomic data to revolutionize health research and
clinical care is a major expanding area of investigation and

development. Research using genomic data opens up new
insights into health and disease to inform population health [1]
and to develop precision medicine, namely, treatment based on
a person’s biological constitution, lifestyle, and environment
[2]. Being able to use genomic data in association with health
and administrative record data can multiply the benefits by
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including information such as comorbidities, medication
histories, laboratory tests, education records, social issues, and
lifestyle factors. This creates a more rounded and realistic
picture to avoid genetic determinism and to ground
phenotypically observed phenomena. Genomic data can be
defined as the totality of a person’s DNA sequence, and genetic
data can be defined as the parts of the DNA that code for genes
[3]. In this paper, we will refer to genomic data unless we are
specifically mentioning genetics. We will refer to health and
administrative data as phenotypic data for convenience, while
acknowledging that not all the information in these records is
ultimately or attributably genomic.

By their nature, genomic data are commonly considered to be
among the more sensitive types of personal data for various
reasons. These include their persistence through a person’s life
(barring a degree of plasticity), their role in predicting disease
onset or likelihood, stigmatization for insurance or employment,
and impact on kin [4,5]. This has led some to the concept of
genetic exceptionalism, proposing that genetic data should be
subject to new, particularly stringent use restrictions, whereas
others argue that, although careful control measures are needed,
the fundamental issues are largely the same as for other health
data [6]. At the other end of the perception scale, some believe
that all human genome sequence arising from publicly funded
research should be freely available in the public domain [2].
Crucially, the ability of genomic data to provide in-depth
information about a person is the defining factor in their added
value for research and clinical care. Debates continue, and we
have a conundrum in terms of how to progress the use of
genomic data for public benefit while safeguarding individuals
from harm.

We believe that there is a need for guidance toward a risk-utility
data governance framework to simultaneously mitigate
disclosure risk and retain maximum data utility. This is because
of the nature of the data and ongoing discussions about the
ability to truly anonymize genomic data. Some of this debate
arises from a conflation of unique versus identifiable data, which
we will return to later in this paper. In the absence of absolute
certainty about the anonymization of genomic data beyond a
shadow of a doubt, we propose that the framework needs to be
practical, enabling research while safeguarding against all
manageable risks. In this endeavor, privacy protectionism must
be avoided, that is, the application of superfluous control
measures that do not enhance privacy but do damage data
usefulness [7]. Commonly used nonperturbative disclosure
controls include suppression of variables or entire records,
aggregation (such as age into bands), and masking (such as of
clinic identifiers to protect professional reputation). Further
methods include data perturbation (such as variable swapping
between records), homomorphic encryption (a technique
enabling computations on encrypted data), and other
privacy-enhancing technologies [8]. Many of these are still in
developmental stages and might not ultimately prove suitable
for real-world application without reducing data utility. Even
when algorithms are brought to encrypted data, they might not
be immune to reidentification risk [9,10].

In a previous study, we explored the views of the general public
on access models for genomic data in conjunction with health

data [11]. Because so far genomic analyses have not yet
revolutionized medical care and the majority of testing in clinical
routine is still conventional, the study focused on genomic data
that had been primarily collected for research. The 3 models of
access presented were open (such as via a website), released
externally to approved researchers, and within a data safe haven.
We refer to a data safe haven as an infrastructure enabling data
access within a secure environment subject to procedural,
technical, and physical controls, in combination with disclosure
controls applied to the data, to safeguard data subject privacy
[12]. Although some people were comfortable with data being
open access and more with release to named researchers, the
overall preference was for access via data safe havens [11]. It
can be argued that dangers differ between researcher-hosted
data being unintentionally released externally leading to
disclosure, compared with data hosted in a safe haven being
reengineered to reveal personal data, as the latter is generally
perceived to be more computationally intensive. Even so,
because genomic data (largely) persist over the course of a
lifetime and are passed to the offspring, it is important to
remember that what is impossible today may be achievable
within minutes in the not-too-distant future. Nonetheless, at this
point in time, we acknowledge the appropriateness of all 3
models in their place and ongoing work to strengthen
governance arrangements, for example, in Web-based access
to large-scale genomic sequence for genome-wide associations
and similar studies [13].

Objective
Many countries worldwide are investing in infrastructures that
enable extensive, population phenotypic data to be accessed in
an anonymized form via a data safe haven, and some are also
incorporating genomic data (in various forms) to add to the
research potential [14-16]. Being able to link data at the
individual level while safeguarding privacy is an essential part
of these enterprises, enabling information from multiple
disparate datasets to be used in research. However, because of
the nature of, and perceptions around, genomic data, there are
challenges to be overcome to incorporate genomic data in a
lawful, ethical, and socially acceptable way. Consequently, the
aim of this paper was to work toward a risk-utility data
governance framework for using genomic data in conjunction
with phenotypic data in an anonymized form for research in
data safe havens. We propose that the findings of this study will
have particular value in developing guidelines for safe havens
and augmenting existing operating models and will also be
relevant to some extent for other data access models.

Methods

We took a multifaceted approach drawing upon data governance
arrangements in published research papers, case studies of
organizations working with genomic and phenotypic data, public
views and expectations for the use of genomic data, and example
studies using genomic and phenotypic data. The findings were
contextualized against a backdrop of legislative and regulatory
requirements and used to create a set of recommendations to
inform a risk-utility data governance framework for using
genomic and phenotypic data in safe havens. We set out our

J Med Internet Res 2020 | vol. 22 | iss. 5 | e16346 | p. 2https://www.jmir.org/2020/5/e16346
(page number not for citation purposes)

Jones et alJOURNAL OF MEDICAL INTERNET RESEARCH

XSL•FO
RenderX

http://www.w3.org/Style/XSL
http://www.renderx.com/


considerations of these elements in the Results section to draw
together the findings to inform the recommendations. Ethical
approval was not required for this study because the engagement
with members of the public as research participants took place
in our previous study [11].

Legislation and Literature Review
We carried out a summary (nonexhaustive) review of the
legislative and regulatory backdrop to gain an insight on issues
associated with the use of genomic data in principle. For this,
we focused on the European Union (EU) because wider
consideration was beyond the scope of this paper and would
warrant a separate study. The elements considered were the
European Convention on Human Rights and Biomedicine [17]
and the General Data Protection Regulation (GDPR) [18] of
2016, augmented by national legislation and official guidance,
such as the UK Data Protection Act of 2018 [19] and the work
of the UK Information Commissioner’s Office. We appreciate
that legislation in other jurisdictions will vary, but we use the
ones we have mentioned here as illustrations. In addition to
compliance with data protection legislation, there are ethical
issues to consider and address. The Global Alliance for
Genomics and Health (GA4GH) has several working groups
focusing on particular issues and has produced a high-level
framework for the use of genomic and health data [20] to be
implemented in line with jurisdictional requirements.

We used our previously conducted literature review on uses of
genomic and routinely collected phenotypic data to guide this
study (Daniels H et al, unpublished data, 2019). As part of the
review, we drew out various pieces of information to categorize
the studies and the details of data governance arrangements to
the extent that they were presented in the publication. The
relevant variables were genomic data and source, phenotypic
data and source, data access model, and details of data
governance. This information enabled us to create examples of
data use to consider relative risks for data access via a safe
haven. We did this using factors including the format of genomic
data being used, the type of health condition being studied, and
the extent of data linkage. We note that many of the published
studies used an external data release model, but we used them
in this context simply as examples of research using genomic
and phenotypic data. We also drew upon a series of interviews
we had conducted with representatives from safe haven
enterprises in Germany, Australia, the United Kingdom, and
Canada to add depth to the information in published studies.
The relevant questions were on types of genomic data integrated
with phenotypic data, main governance challenges encountered
and how they were addressed, main access model, and access
conditions [21].

Public Views
Recognizing that public engagement on the use of health data
and specifically genomic data is an active area of investigation
[22], when we carried out public engagement on the use of
genomic and health data, we focused specifically on access
models, as noted above [11]. The public engagement activities
took the form of 8 workshops with a total of 116 people. As
well as taking part in free-form discussions, the participants
completed an anonymous exit questionnaire to provide their

personal views on the relative benefits and risks of each access
model: open, external release, or data safe haven. This had
previously not been explored and provided new insights into
public preferences to inform this paper.

Results

Legislative and Regulatory Backdrop
The EU has expressly recognized the use of genetic information
in the European Convention on Human Rights and Biomedicine
(1997), which provides for the misuse of biological and medical
advances and sets out prohibitions in respect of bioethics and
the right to a private life [17]. It further bans decisions made
on the basis of genetic characteristics and governs predictive
genetic tests for medicinal purposes. Personal data processing
is largely governed by the GDPR [18] of 2016, augmented by
national legislation and official guidance, such as the UK Data
Protection Act of 2018 [19] and the work of the Information
Commissioner’s Office. Personal data are defined under Article
4 of the GDPR as “any information relating to an identified or
identifiable natural person who can be identified, directly or
indirectly in particular by reference to an identifier such as
name...or to one or more factors specific to the physical,
physiological, genetic specific to that natural person.” Recital
34 of the GDPR defines genetic data as “personal data relating
to the inherited or acquired genetic characteristics of a natural
person which result from the analysis of a biological sample
from the natural person in question, in particular chromosomal,
deoxyribonucleic acid (DNA) or ribonucleic acid (RNA)
analysis or from the analysis of another element enabling
equivalent information to be obtained.” Processing personal
data related to the health of an individual is provided for by the
explicit provisions of GDPR Article 9. This provides differing
lawful bases for processing and covers a range of data that are
considered to be sensitive. Genetic data are expressly included
within Article 9.

The key point in applying data protection legislation is that it
applies to identifiable personal data from living individuals and
not to data from which a person cannot be identified. Although
the majority of the genome is identical in all humans, sequence
variants occur across the genome that can be used to characterize
people and groups. That is not to say that they can be used to
identify an individual, as, although the information may be
unique, this does not necessarily render it legally identifiable.
Within the remit of the GDPR, data from which an individual
cannot be identified are legally anonymous. However, identifiers
as defined by law do not have to be direct and can be formed
from a number of pieces of information. As with any data
source, genetic data linked to other data may give rise to a
greater risk of identity disclosure, such that it is important to
consider whether the combination of available data could lead
to the identification of an individual. For example,
Y-chromosome repeats were mined from the 1000 Genomes
database and could identify people by cross-referencing them
with ancestry databases [20]. As far as the GDPR is concerned,
it is not correct to state that genetic data are always personal
data or will always carry a high risk of disclosure. A proper
legal approach would be to assess each use case with expert
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input to adequately understand the risk of identifiability.
Applying legal governance to genetic data can be perceived as
challenging because of the esoteric nature of the data, which,
furthermore, can be shrouded in scientific terminology. This
can appear to complicate the legal issues; however, in essence,
data protection law governing genetic data is largely the same
as for other health data types.

The GA4GH framework for the use of genomic and health data
[21] is to be implemented in line with jurisdictional
requirements. The framework establishes a set of foundational
principles, namely, to respect individuals, families, and
communities; advance research and scientific knowledge;
promote health, well-being, and the fair distribution of benefits;
and foster trust, integrity, and reciprocity. Furthermore, it
proposes core elements of responsible data sharing:
transparency; accountability; engagement; data quality and
security; privacy, data protection, and confidentiality;
risk-benefit analysis; recognition and attribution; sustainability;
education and training; and accessibility and dissemination. It
does not relate specifically to data safe havens and is broader
in scope than our aim to work toward a risk-utility data
governance framework for research using genomic data in
conjunction with phenotypic data for research in safe havens.
However, this valuable document formed a part of the backdrop
and, along with the legislation, informed the development of
the recommendations.

Forms of Genomic Data
The literature review on the use of genomic data with phenotypic
data revealed a plethora of studies on many health conditions
and using various forms of genomic data (Daniels H et al,
unpublished data, 2019). Genome-wide association studies
(GWAS) and phenome-wide association studies (PheWAS) use
statistical methods applied to genomic sequence data to explore
and correlate variants and phenotypic traits [22]. However,
further processing often takes place so that data derivatives, or
metadata, can be taken forward for use with phenotypic data
for research or to inform clinical care. This is important when
considering data governance issues because not all genomic
data used in research are composed of sequence. In fact, the
resulting metadata can take many forms of varying complexity.
Some examples are as follows: Binary Alignment Map files, a
compression of the sequence that can be annotated to explain
particular details; Variant Call Format (VCF) files, providing
information on the type, number, and position of nucleotide
variants; single-nucleotide polymorphism (SNP) files detailing
changes in single base pairs in the DNA sequence; risk score
files, which contain information on risks of health conditions
based on single or multiple genes; and among the simplest are
files that detail the presence or absence of a trait of interest
(Daniels H et al, unpublished data, 2019). Using genomic
information in conjunction with additional data can add valuable
detail and provide context in health conditions. However,
importantly, the relative risks will differ depending on the form
of genomic data being used, along with other factors. We take
this into account in the development of the recommendations.

Examples Using Genomic and Phenotypic Data
We provide examples of studies using various forms of genomic
data and phenotypic data to illustrate data use for research with
a view to considering relative risks. As well as GWAS and
PheWAS studies that require the full genome sequence for
large-scale statistical analysis to identify variants of interest,
many studies begin with sequence but subject it to further
processing to create derivatives for linkage to structured
phenotypic data. For example, polygenic risk scores derived
from GWAS and SNPs then linked to an index of deprivation
and individual postcodes to explore factors influencing alcohol
dependence [23]. Genotyping at particular loci has been used
with the number and duration of in-patient events in
schizophrenia [24]. Gene expression profiling has been used in
conjunction with electronic health records (EHRs) to compare
breast cancer treatments and predict chemotherapy efficacy and
outcomes across health care systems [25].

SNPs are among the forms of genomic data commonly used in
conjunction with phenotypic data. These were used in a study
on major depressive disease with linkage to health service data,
including diagnoses, history of antidepressant prescribing, and
referrals to secondary care for specialist treatment [26]. A study
on dementia used a set of 6 SNPs linked to EHRs to establish
and monitor the dementia status of participants [27]. A further
example is the use of SNPs to study herpes zoster linked to
EHRs to determine diagnosis in adults [28]. EHRs are often the
source of phenotypic data, but information may also be drawn
from registries [29,30], and in some cases, area-based measures,
such as indices of deprivation, are included [27].

As for any studies using individual-level health data, risks will
vary depending on the specifics of the use case. In relation to
genomic data with phenotypic data, variables that may influence
risk include forms of genomic data, common versus rare
conditions, studying sensitive or stigmatizing conditions, and
the extent of data linkage to phenotypic data. These are in
addition to demographic factors such as extremes of age and
small geographies, and all may combine to create the risk
profile. As such, the degree of disclosure risk varies, but the
repercussions of reidentification also vary. For example, the
unauthorized disclosure that someone’s close blood relative
carries a high risk of developing a strongly hereditary condition
such as Huntington disease will have serious implications for
themselves and their kin. On the other hand, conditions such as
heart disease and diabetes are multifactorial and, as such, are
more complex and indefinite in terms of disease prediction.
These and a myriad of other considerations lead us to propose
that the risks and benefits of planned data uses should be taken
into account on a case-by-case basis.

Data Governance Arrangements
We used information from the literature review and the series
of interviews with representatives of safe havens on data
governance arrangements in place. We refer only to governance
arrangements in relation to the use of genomic data, rather than
the work of these enterprises in general. We found that differing
solutions have been put in place to enable genomic data to be
used in conjunction with phenotypic data. Examples are given
here to show variety.
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The German Medical Informatics Initiative is a major
infrastructural investment that has created multiple university
hospital consortia to integrate clinical data, including genomics
[31]. In terms of genomic data, the work of this new initiative
is beginning with biosample collection before the results of
genomic analyses will be shared across consortia. Germany is
subject to the GDPR but also has stringent national privacy
regimens for general and genomic data processing [32,33].
Moreover, apart from repositories holding data locally, methods
for cross-center distributed analyses, such as DataSHIELD, are
being employed [34]. These will bring the analysis to the data
and avoid the need to share data where this is deemed
unacceptable to oversight committees. Subject to approval, data
can be used within consortia, across consortia, and by any
approved researcher. However, as noted, this might not involve
direct access to data but might depend on privacy-preserving
analysis methods. There is a network of committees and working
groups for the establishment of agreed standards.

The Sax Institute in Australia manages the 45 and up study, a
longitudinal cohort of over 250,000 people, including phenotypic
and genomic data [35]. Sax works in partnership with the Garvan
Institute of Medical Research, which acts as a genome
sequencing facility and makes data available for research subject
to conditions [36]. Sax operates as a repository for health and
self-report data, whereas Garvan acts as a repository for the
genomic data. Although the full genome data are generally too
large to move, other data such as VCF files could be transported;
thus, the decision to use a distributed model is based on data
governance reasons. Researchers need to apply to both
institutional data access committees before access to genomic
and phenotypic data can be granted. Linked data can be accessed
by public and private sector researchers via a portal subject to
ethical and other relevant approvals. Following analysis,
outcomes are released externally but not row-level data.

The UK Secure Research Platform (SeRP) is a data
infrastructure housing the Secure Anonymised Information
Linkage (SAIL) databank and various other initiatives [15,37].
UK SeRP can be customized to implement the data governance
model required by particular programs of work. To date, SAIL
has integrated genomic data on a project basis but is working
to incorporate more genomic data as part of standard data feeds,
along with phenotypic data from health and administrative
records. Example projects involve a psychosis cohort and an
epilepsy study. As the genomic data were brought into SAIL
for particular projects, separate ethical approval including
participant informed consent was obtained. The psychosis cohort
brought in polygenic risk scores and copy number variants; the
epilepsy study brought in VCF files. In both cases, the data were
only made available to project researchers because of regulatory
approvals. But in general, SAIL allows data access to any
approved public sector researcher; the commercial sector must
work with a SAIL analyst or another public organization to
access data on their behalf. All proposals to access data for
research must be approved by an information governance review
panel that co-opts additional experts in assessing particular data
types, such as genomic. Some data providers also reserve the
right to review data use proposals, in addition to the panel.

The Institute for Clinical Evaluative Sciences (IC/ES) operates
in Ontario, Canada [38], and holds a highly phenotyped cohort
of over 2000 children and young people with a neurological
development disorder, most frequently, autism. DNA samples
were collected for whole genome sequencing from the entire
cohort, and the ones who consented to linkage have their VCF
file data linked to IC/ES health and administrative data. As such,
this is a project-level development, but it is anticipated that
linkage of genomic data to phenotypic data will become more
routine in future. The privacy approval group at IC/ES was
concerned about identifiability because the genomic data are
often unique, particularly where there are rare variants. Owing
to this, the arrangement at IC/ES has been to hold the genomic
data separately and not on the main analysis platform. As the
linked data are considered highly sensitive, only an IC/ES
analyst has access. The project lead prepares queries to be
executed on the data and receives the results from the IC/ES
analyst.

From these examples, it can be seen that data safe havens are
at different stages of development in terms of integrating
genomic data, they are working with various formats of genomic
data, and they have varying perceptions of risk leading to
differing requirements for data access. These are just some
examples, with others underway such as the Swiss Personalized
Health Network and its associated BioMedIT project. Through
this, there is a network of core facilities for the secure processing
of biomedical data across Swiss universities, enabling research
within a secure environment [39]. However, although models
differ, one of the common beauties of safe havens (over open
access or external release of data) is that they are able to apply
a suite of disclosure controls directly to the data (in totality or
at a project level) and across the whole environment, thus
managing risk across all stages from data incorporation to
archiving [14,15,38]. We used the information gained from
these various models to guide the development of the
recommendations.

Public Views
Having previously reported public perspectives on 3 models of
accessing genomic data [11], here we draw upon the views
gained on data use in safe havens, in line with the focus of this
paper. In general, workshop participants were less concerned
about the use of genomic data in safe havens than external
release or open access. However, there were some provisos in
relation to safe havens. Participants wanted to be properly
informed on the purpose of data use and for analyses to be
conducted by approved researchers, with concern expressed on
misuse by commercial companies. They wanted to be reassured
that appropriate safeguards would be in place, with data use
being auditable and controlled. The need for consent to reuse
genomic data that had been primarily collected for research
emerged strongly (for all access models) and led us to propose
wording for the information sheet and consent form in
prospective studies [11]. The use of anonymized data in safe
havens was also seen as a way to mitigate risks of discrimination
because access is limitable by systematic controls. The public
viewpoints on the use of genomic data in safe havens guided
us in the creation of recommendations.
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Discussion

Principal Findings
Having considered the legislative backdrop in the EU, it can be
seen that there is nothing inherently different in the EU GDPR
about the lawful provisions for genomic data processing
compared with other health data: all are classed as special
category data. However, there is much debate about the
effectiveness of anonymization processes for genomic data, and
some consider that it is particularly difficult to produce genomic
data that are both anonymous and useful [3,10]. This is not a
new thought as it has long been noted in relation to demographic
and health data [40], but it has been specifically applied because
of the nature of genomic data leading to the concept of genetic
exceptionalism [6]. Some of this is because of factors such as
persistence, discrimination, and impact on kin, but there is an
apparent mystique around genomic data that is proving
challenging even if it is nonempirical, as beliefs play a
significant role in policy making. The perceived complexities
surrounding genomic material and data can lead to an overly
cautious and proscriptive approach to the detriment of research
[3]. We fully acknowledge that there are risks to be mitigated
for safe data use and that data misuse can cause harm to
individuals and professional reputations. However, it is also
true that serious harm occurs because of data nonuse, far more
than the missed benefits of proper data usage and leading to
hundreds of thousands of lost lives and billions of dollars in
financial burdens to societies [41]. In fact, it has been postulated
that nonuse is often a greater problem than unauthorized data
use [42].

A particularly important issue is the problem of conflating
unique and identifiable. It cannot be overstressed that just
because data are unique, this is not the same as being identifiable
per se. If research had to rely on using only the data present in
equivalence classes (ie, where there are no unique records, only
sets of records [minimally 2] with identical variables), progress
would be hampered. Even the fact that a person’s full genome
is unique does not render it identifiable without considerable
effort, interpretation, and additional information to confirm
identity. This has been shown in the debunking of a study
purporting to identify individuals from genomic data, revealing
that the work only narrowed down the information to a category
of people based on phenotypic traits [43,44]. That is not to say
that new insights on current limited knowledge of the genome
will not change the likelihood of identifiability. Future proofing
is important in the use of all personal data but more so in relation
to genomics where successive new understandings are being
revealed from previously unknown data content as the genomic
revolution advances apace.

Another important factor to consider is what is meant by
genomic data when special processing rules are suggested. As
we have seen from the literature review and case study
interviews, genomic data are used in various forms along with
a variety of phenotypic data. Although GWAS and PheWAS
studies rely on DNA sequence, many other studies use only
DNA derivatives, or metadata, of varying complexity. We
propose that it is not appropriate to bundle genomic data into

one category and assume a uniformly high level of privacy risk.
Even so, there is more than legislation to consider when seeking
to use personal data for research, including ethical and social
implications. Among the safe havens currently working with
genomic data, there is a variety of approaches to data governance
in accordance with their jurisdictional frameworks and
interpretations. Depending on how the genomic data were
collected, there may be a requirement for informed consent or
data may be incorporated via standardized feeds along with
health and administrative records based on sharing agreements
with data providers. Data access might be limited to institutional
employees or the public sector or might be open to all sectors.
Researchers might be provided with direct access to linked data
or to be limited to distributed queries. Genomic data are
sometimes stored with the phenotypic data, but they might be
on separate platforms and are sometimes held by separate
organizations with access provided on a distributed model or
with only limited derivative data imported. Commonly, safe
havens do not generally release row-level data but export
products of analysis following disclosure risk scrutiny. In terms
of social acceptability, at least from our previous work, the
public were generally favorable toward the use of genomic data
in safe havens, subject to provisos including privacy safeguards
and being provided with information about data uses.

Recommendations
We use the findings of the various elements of this study to
propose a set of recommendations toward creating a risk-utility
data governance framework and to augment existing operating
models for using genomic and phenotypic data for research in
an anonymized form in safe havens. We present the
recommendations as overarching principles and practical control
measures to mitigate risks and retain maximum data utility.

Principles
We propose that these principles be applied in general as part
of the data governance framework for safe havens incorporating
genomic data. We align the principles with the core elements
presented in the high-level framework for the use of genomic
and health data developed by the GA4GH [20], with the main
relevant elements shown in italic text. The principles are as
follows:

• Jurisdictional data protection legislation for general data
processing, any specific provisions for genomic data
processing, and relevant authoritative guidance and codes
of practice should be examined and properly interpreted,
with the input of legal expertise to ensure due compliance,
transparency, and accountability.

• The need for regulatory approvals (including research ethics
and informed consent) and data provider permissions for
incorporating genomic data should be assessed, and all due
diligence should be followed to demonstrate transparency
and accountability and to support recognition and
attribution in data provision.

• Members of the public should be provided with the
opportunity to be properly engaged and involved at the
strategic level to contribute their views to informing
developments for the systematic incorporation of genomic
data. The respectful need for a measure of education and
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training and the dissemination of information in accessible
forms should be accommodated for transparency and
accountability to the public, from whom the data arise.

• There is a need for a flexible, proportionate approach to
consider proposed uses of genomic data, as they come in
many formats with varying privacy risks, and (at least at
present) it is incorrect to assume that genomic data are
identifiable simply by reason of being unique. Assessment
should be made on a case-by-case basis using risk-benefit
analysis and with education and training to support data
access committees.

• Safe havens should use their combination of data
environment, physical, technical, and procedural controls,
coupled with disclosure controls applied directly to the data,
to maximize data quality and security, privacy, and data
protection and confidentiality.

• As knowledge in the field of genomics is advancing rapidly,
it is especially important to ensure future proofing of
individual privacy, data protection, and confidentiality of
genomic information. For accountability and sustainability
of data use, we recommend that the practice of only
exporting products of analysis should be the general policy,
particularly for linked genomic and phenotypic data.
Exceptions could be made if all relevant approvals are in
place and the data are to be moved to another safe haven.

Practical Control Measures
The following is a selection of practical control measures that
can be applied to specific cases where genomic and phenotypic
data are used in combination to mitigate risk and retain
maximum utility. They are not sequential or hierarchical but
can be used in various combinations. The proposed control
measures are as follows:

• All relevant project-level regulatory approvals for the
collection and processing of genomic data should be
checked by the data access committee, as part of their
assessment of data use suitability.

• Researchers should consider opportunities for public
engagement on their proposed use of genomic data to gain
input on direction and preliminary findings.

• Along with the standing membership of the data access
committee, a genomics expert should be co-opted to review
particular proposals.

• Case-by-case review should take into account factors
including the form and extent of genomic data to be used
and the rarity and sensitivity of health and lifestyle factors
to be studied, in addition to the criteria generally used by
the data access committee.

• Reviews should include who will be permitted to access
the data, depending on perceived risk and regulatory and
data provider requirements. If deemed necessary, data
access should be limited to the project team, a single
researcher, or only to an analyst employed by the safe haven
host, tasked with producing results to share with the project
team.

• Many safe havens provide remote data access for approved
researchers at their desktop, wherever they are based. If
deemed necessary, data access should be physically
restricted to a designated safe room so that a researcher has

to be present on site when analyzing the data, and data
access should be subject to stringent monitoring.

• Data granularity can be curtailed using a variety of
disclosure control techniques applied to the data. The choice
of methods should be selected with care in discussion with
the researcher to retain maximum utility and safeguard the
data.

• If available to the safe haven, the option of using distributed
queries where the researcher is not provided with a view
of the data but sends their query to the server and receives
results should be considered for proposals deemed
particularly risky.

• Where genomic data cannot be moved from the source, a
hybrid model should be considered. Instead of incorporating
the genomic data into the data safe haven, a federated access
model may be used. However, the feasibility of this will
depend on available technology and resources.

From our findings we anticipate that, in many cases, genomic
data can be used safely and appropriately in conjunction with
phenotypic data within a safe haven without many (if any) major
changes to the current operating models, making use of the suite
of controls available. The use of various forms of genomic data
with phenotypic data will often be unlikely to present significant
additional risks over and above those posed by the use of
multiple linked health and administrative records within the
safe haven. Provided that a case-by-case assessment is made,
and proportionate controls are applied to mitigate risks while
transparently acknowledging that they might not be totally
eradicated, there should be no reason for not permitting the use
of genomic data for research in safe havens.

What This Study Adds
This is the first known study to propose recommendations
toward a risk-utility data governance framework for the use of
genomic and phenotypic data in safe havens. It has brought
together findings from published research, case studies of data
safe havens, and public views against a backdrop of (EU) data
protection legislation to inform the perspectives presented. It
is a novel, evidence-based study that can be used to guide
existing and newly developing data safe havens on working
with genomic data to safeguard the data without falling into the
trap of privacy protectionism [7], but still ensuring risks are
properly mitigated while retaining maximum data utility. We
do not claim to have solved all the challenges or that risk can
be totally eradicated, but the study has shed new light on routes
toward a risk-benefit data governance framework to use genomic
and phenotypic data safely and effectively.

Limitations
We acknowledge limitations to this study. It is based on a
nonexhaustive literature review, views of a limited number of
people based on a variety of settings in Wales, case studies of
some data safe havens, and the main EU data protection
legislation. It is possible that various other pieces of information
pertaining to other jurisdictions, organizations, and cultures
may differ. However, we are not proposing that our findings
are ultimately definitive but that they can be used toward a data
governance framework, taking necessary differences into
account.
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Conclusions
This study acknowledges the benefits and challenges in using
genomic data in conjunction with phenotypic data and the need
for guidance to promote the safe, socially acceptable use of data
in data safe havens. We used a multifaceted approach to propose
evidence-based recommendations toward a risk-utility data

governance framework based on a suite of controls applied to
and around the data to mitigate risks and retain data utility. They
do not purport to eradicate risk but propose case-by-case
assessment with transparency and accountability. If the risks
are adequately understood and mitigated, there should be no
reason that linked genomic and phenotypic data should not be
used in an anonymized form for research in safe havens.
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