
Metallointercalator [Ru(dppz)2(PIP)]2+ renders BRCA wild-type triple-negative breast 

cancer cells hypersensitive to PARP inhibition 

 

Nur Aininie Yusoh,† Sze Wei Leong,‡ Suet Lin Chia, ‡,¶ Siti Norain Harun,† Mohd 

Basyaruddin Abdul Rahman, †,║ Katherine A. Vallis,┴ Martin R. Gill,§* and Haslina 

Ahmad†,║* 

 

†Department of Chemistry, Faculty of Science, Universiti Putra Malaysia, 43400 UPM 

Serdang, Selangor, Malaysia 

‡Department of Microbiology, Faculty of Biotechnology and Biomolecular Sciences, 

Universiti Putra Malaysia, 43400 UPM Serdang, Selangor, Malaysia 
¶Institute of Bioscience, Universiti Putra Malaysia, 43400 UPM, Serdang, Selangor, Malaysia 

║Integrated Chemical Biophysics Research Centre, Faculty Science, Universiti Putra 

Malaysia, 43400 UPM Serdang, Selangor, Malaysia. 
┴Oxford Institute for Radiation Oncology, Department of Oncology, University of Oxford, 

Oxford, UK. 

§Department of Chemistry, College of Science, Swansea University, Swansea, Wales, UK. 

 

Abstract 

 

There is a need to improve and extend the use of clinically-approved poly(ADP-ribose) 

polymerase (PARP) inhibitors (PARPi), including for BRCA wild-type triple-negative breast 

cancer (TNBC). The demonstration that ruthenium(II) polypyridyl complex (RPC) metallo-

intercalators can rapidly stall DNA replication fork progression provides the rationale for 

their combination alongside DNA damage response (DDR) inhibitors to achieve synergism in 

cancer cells. The aim of the present study was to evaluate use of the multi-intercalator 

[Ru(dppz)2(PIP)]2+ (dppz = dipyrido[3,2-a:2′,3′-c]phenazine, PIP = (2-(phenyl)imidazo[4,5-

f][1,10]phenanthroline, Ru-PIP) alongside the PARP inhibitors (PARPi) olaparib and 

NU1025. Cell proliferation and clonogenic survival assays indicated a synergistic 

relationship between Ru-PIP and olaparib in MDA-MB-231 TNBC and MCF7 human breast 

cancer cells. Strikingly, low dose Ru-PIP renders both cell lines hypersensitive to olaparib, 

with a 300-fold increase in olaparib potency in TNBC; the largest non-genetic PARPi 

enhancement effect described to date. Negligible impact on the viability of normal human 

fibroblasts was observed for any combination tested. Increased levels of DNA double-strand 



break (DSB) damage and olaparib abrogation of Ru-PIP activated pChk1 signalling is 

consistent with PARPi-facilitated collapse of Ru-PIP-associated stalled replication forks. This 

results in enhanced G2/M cell-cycle arrest, apoptosis and decreased cell motility for the 

combination treatment compared to single-agent conditions. This work establishes that an 

RPC metallo-intercalator can be combined with PARPi for potent synergy in BRCA-

proficient breast cancer cells, including TNBC. 

 

Introduction 

 

Breast cancer remains a leading cause of death in women, and approximately 10-24% of all 

invasive breast cancers are triple negative (TNBC) or basal-like breast cancers (BLBC).1 

TNBC cannot be treated with endocrine therapy or targeted therapeutics such as the anti-

HER2 (human epidermal growth factor receptor 2) agent trastuzumab.2 TNBC can respond to 

chemotherapy, however, relapse is frequent.3 As a result, this subgroup of breast cancer 

accounts for a disproportionately high rate of mortality and new approaches are required to 

improve upon the limited therapeutic options available for TNBC at present.4 

 

A leading class of candidates for TNBC treatment are small molecule inhibitors of 

poly(ADP-ribose) polymerase (PARP) enzymes.2 PARPs are DNA repair proteins that play a 

key role in the repair of single-strand breaks (SSB), preventing the generation of cytotoxic 

double-strand breaks (DSBs).5 As cells that contain BRCA1/2 gene mutations possess an 

inherent deficiency in the homologous recombination (HR) repair of DSBs, this results in 

synthetic lethality between BRCA1/2 deficiency and PARP inhibition.6,7 Accordingly, PARP 

inhibitors (PARPi) have been developed as single-agent treatments for BRCA1/2-deficient 

breast, ovarian and prostate cancers.8 The PARPi olaparib (Lynparza) recently passed phase 

III clinical trials for metastatic BRCA1/2-deficient breast cancer, including TNBC subtypes, 

and is now FDA-approved.9 However, response to PARPi treatment is often heterogenous10 

and a relatively low frequency of cancers are BRCA-deficient (thought to be <10% of TNBC 

patients, although inherent BRCA mutations are higher in certain ethnic groups11). Due to 

this, there is an identifiable need to improve the efficacy of clinically-approved PARPi and 

extend their application to BRCA wild-type cancers.12 As such, studies have examined 

PARPi alongside traditional DNA-damaging chemotherapeutics to identify synergistic 

combinations. For example, recent studies have shown olaparib to have a synergistic 



relationship in combination with cisplatin,13 carboplatin,14 or doxorubicin.15 Moreover, 

clinical trials have examined olaparib alongside platinum agents for both breast and cervical 

cancers.16–18 However, significant off-target toxicity from some of these drug combinations 

was noted due to overlapping toxicity profiles, particularly in bone marrow.19 Other 

candidates shown to sensitize BRCA wild-type cancer cells to PARPi in pre-clinical studies 

include other inhibitors of DNA damage response (DDR) proteins such as WEE1,20 ATR 

(Ataxia telangiectasia and Rad3 related)21 or DNA demethylating agents.22 However, all 

these agents generate substantial DSB damage. As PARPi likewise generates DSBs to exert 

their cytotoxic effects, this mechanistic overlap may contribute to unfavourable toxicity and 

myelosuppression observed in clinical trials.23 Towards this end, new synergistic PARPi 

chemical combination strategies for use in BRCA wild-type cancers remain highly 

desirable.24  

 

In addition to the role of PARPs in SSB repair, PARP1 and PARP2 also play a crucial role in 

the stabilization of stalled replication forks and function to promote fork restart.25–27 It 

follows that PARPi alongside replication inhibition can facilitate fork collapse, resulting in 

DSB formation and synthetic lethality.27 As a novel chemical combination strategy for 

PARPi, ruthenium(II) polypyridyl complexes (RPCs) that bind DNA by metallo-intercalation 

(reviewed in reference 28) have been shown to inhibit DNA replication in cancer cells, 

activating DNA damage response (DDR) signaling and preventing cell proliferation by 

interfering with cell-cycle progression.29,30 Of particular interest, the multi-intercalator 

[Ru(dppz)2(PIP)]2+ (dppz = dipyrido[3,2-a:2′,3′-c]phenazine, PIP = (2-(phenyl)imidazo[4,5-

f][1,10]phenanthroline, referred to as Ru-PIP hereafter, Figure 1A) generates high levels of 

stalled DNA replication forks without an associated DSB response or triggering apoptosis, 

indicating stalled forks do not collapse.29 With this in mind, we hypothesized that Ru-PIP 

would be a strong candidate to achieve synergy with PARPi. In this study, we explore Ru-PIP 

in combination with the FDA-approved PARPi olaparib (OLAP, Figure 1A) in BRCA wild-

type human breast cancer cells, including TNBC, and explore the mechanistic basis for this 

novel therapeutic combination strategy. 

 

Results and Discussion 

 

Single-agent activities. First, the anti-proliferative potency of Ru-PIP and OLAP (IC50 = 5 

nM and 1 nM for inhibiting purified PARP1 and PARP2 enzymes respectively)12 as single-



agents was examined. The first generation PARP inhibitor NU1025 (PARP1 half maximal 

enzyme inhibitory concentration, IC50 = 400 nM)31 was included for comparative purposes 

(Figure 1A). MDA-MB-231 TNBC and MCF7 breast cancer cells, both of which are BRCA 

wild-type,32 were treated with a concentration gradient of the compounds and the resultant 

impact on cell proliferation determined by MTT assay. These experiments indicated that Ru-

PIP caused a dose- and time-dependent decrease in cell viability of both breast cancer cell 

lines, with greater potency towards MCF7 cells compared to MDA-MB-231 TNBC (72 h 

half-inhibitory EC50 concentrations of 7 and 29 M, respectively, Figure 1B and 

Supplementary Table 1). Each PARPi showed low activity, with all EC50 values > 60 M, as 

expected given that BRCA wild-type cells are not sensitive to PARPi in isolation. Treatment 

of the non-malignant normal human dermal fibroblasts (NHDF) cells showed minimal 

inhibitory effect for any compound, with EC50 values >100 µM (Figure 1B, Supplementary 

Table 1). 



 

Figure 1. PARPi synergizes with Ru-PIP. (A) Chemical structures of [Ru(dppz)2(PIP)]2+ 

(Ru-PIP) and the PARP inhibitors olaparib and NU1025. (B) Cell viability of MDA-MB-231 

TNBC, MCF7 breast cancer and normal NHDF fibroblast cells upon treatment with various 

Ru-PIP-PARPi combinations for 24, 48 and 72 h, as determined by MTT assay (described 

within the Supplementary Methods section). Non-cytotoxic doses of OLAP (5 or 10 M) or 

NU1025 (25 or 100 M) were used in the combination treatments. Data is presented as mean 



+/- SD for three independent experiments. (C) Combination indices (CI) for Ru-PIP with 

OLAP or NU1025 in MCF7 or MDA-MB-231 cells for 24, 48 or 72 h treatment. CI values 

were calculated and a heat map generated as described within the Methods section.  

 

Olaparib synergizes with Ru-PIP in breast cancer cells. To assess Ru-PIP in combination 

with PARPi, MDA-MB-231 or MCF7 cells were exposed to sub-cytotoxic doses of OLAP 

and NU1025 alongside a concentration gradient of Ru-PIP. The resultant impact on cell 

viability was determined by MTT assay. In this manner we can show Ru-PIP and OLAP 

combination treatment was able to significantly decrease breast cancer cell viability 

compared to single-agent conditions (Figure 1B). Median-effect analysis based on Chou and 

Talalay33 were performed and combination indices (CI) derived. Applying this method, the 

vast majority of the Ru-PIP/OLAP conditions tested were deemed synergistic (Figure 1C). 

Ru-PIP/NU1025 showcased a range of combination indices, ranging from synergistic to 

antagonistic. The lack of conclusive synergy between Ru-PIP and NU1025 is likely due to 

the reduced potency of NU1025 for PARP inhibition compared to olaparib. Sequential 

treatment experiments of Ru-PIP and OLAP established co-administration to be the most 

effective for synergy in MCF7 cells with no obvious sequential and co-administration 

dependence in MDA-MB-231 cells (Supplementary Figure 1). Negligible effects of any 

combination on non-malignant NHDF cells was observed, with cell viabilities > 70% 

compared to mock-treated at 72 h incubation time (Figure 1B and Supplementary Table 1). 

 

Ru-PIP renders breast cancer cells hypersensitive to olaparib. Next, the impact of Ru-PIP 

and PARPi on long-term cell survival was assessed by clonogenic survival assay. Single-

agent Ru-PIP was not found to impact cell survival at 24 h incubation and low impact of 

NU1025 was observed (survival fractions, S.F. > 80%, Figure 2A). While OLAP had a 

modest impact on survival of MDA-MB-231 cells, an almost total loss of clonogenic 

potential in both cell lines were observed upon co-treatment with Ru-PIP/OLAP (Figure 2A). 

Ru-PIP and NU1025 in combination also induced a more potent impact on cell survival 

together than as single-agents, although a longer incubation time of 48 h was required to see 

this effect in MCF7 cells (Figure 2A). The greater synergy observed between Ru-PIP and 

OLAP in the clonogenic studies are consistent with the MTT results and may be rationalised 

by the greater PARPi properties of olaparib compared to NU1025.   

 



To investigate whether Ru-PIP altered cell sensitivity to PARPi, cells were treated with 

concentration gradients of OLAP with or without Ru-PIP. As shown in Figure 2B, MDA-

MB-231 cells treated with Ru-PIP were rendered hypersensitive to OLAP, where a >300-fold 

increase in OLAP potency was seen (OLAP EC50 values of 0.06 µM and 23.4 µM in the 

presence and absence of Ru-PIP, respectively). Similar results albeit at a reduced magnitude 

were found in MCF7 cells, with a 60-fold increase in OLAP potency observed due to addition 

of Ru-PIP (OLAP EC50 values of 0.08 µM and 4.8 µM for MCF7 in the presence and absence 

of Ru-PIP, respectively). Single-agent Ru-PIP had low impact on colony formation (S.F.s > 

80%). These data indicate a strong synergistic relationship between Ru-PIP and PARPi in 

impacting cell survival of these two breast cancer cell lines and also reveal the unanticipated 

outcome that Ru-PIP renders these breast cancer cells hypersensitive to OLAP. To the best of 

our knowledge, the 300-fold increase of OLAP efficacy generated by co-treatment with Ru-

PIP in BRCA wild-type TNBC cells is the greatest enhancement of OLAP by a small 

molecule that has been described to date. 



 

Figure 2. Ru-PIP renders breast cancer cells hypersensitive to olaparib. (A) Clonogenic 

survival assays of MDA-MB-231 or MCF7 cells exposed to Ru-PIP (25 M), NU1025 (25 

M), OLAP (5 M) or both (24 h treatment). (B) Clonogenic assays of MDA-MB-231 or 

MCF7 cells treated with a concentration gradient of OLAP in the absence or presence of Ru-

PIP (25 M). 24 h treatment. (C) Quantification of survival fraction of cells treated as in (B). 

Mean +/- SD for three independent experiments. *P < 0.05, **P < 0.01, ***P < 0.001 by 

ANOVA. 

 

Ru-PIP/olaparib increases G2/M arrest and apoptotic cell death. The cell cycle response 

of MDA-MB-231 and MCF7 cells upon treatment with Ru-PIP and/or OLAP for 24 h and 

cell cycle progression was analyzed by flow cytometry. Ru-PIP as a single agent caused a 



small increase in G1/early S phase populations in both cell lines in comparison to control 

(Figure 3A). OLAP as a single-agent was able to arrest the cells in G2/M phase even at a sub-

lethal dose, while the Ru-PIP-OLAP combination treatment further increased cell cycle arrest 

at G2/M phase (Figure 3A). Meanwhile, treatment with the Ru-PIP/NU1025 combination did 

not significantly alter cell-cycle distribution in MDA-MB-231 cells and caused only a slight 

increase in G2/M arrest in MCF7 cells in comparison to control (Supplementary Figure 2). 

We next examined apoptosis by using Annexin V-FITC/PI co-staining. MDA-MB-231 and 

MCF7 cells were exposed to Ru-PIP and/or OLAP for 24 and 48 h. Both Ru-PIP and OLAP 

as single-agents induced low levels of apoptosis in breast cancer cells in comparison to 

control, however, the Ru-PIP/OLAP combination resulted in a substantially higher 

percentage of apoptotic cell death than either single-agent treatment (Figures 3B). 

Additionally, an increase in Trypan blue-positive cells was observed upon Ru-PIP/OLAP 

combined treatment versus single-agent conditions, confirming that Ru-PIP/OLAP 

combinations caused an increase in cell death in comparison to single agents (Supplementary 

Figure 3). These data are consistent with the synergistic effect observed in previous 

experiments and indicates that the combination is cytotoxic rather than cytostatic. 

 

 
Figure 3. Ru-PIP/olaparib combination results in G2/M arrest and enhanced apoptosis. (A) 

Cell-cycle distributions of MDA-MB-231 or MCF7 cells incubated with Ru-PIP (25 M), 

OLAP (5 M), or both, for 24 h. DNA content was quantified using propidium iodide (PI) 



and cell-cycle phase analyzed by flow cytometry, as described in the Materials and Methods. 

(B) Flow cytometric analysis of MDA-MB-231 or MCF7 cells treated with Ru-PIP (25 M), 

OLAP (5 M), or both together, for 24 h. Cells were stained with Annexin V–FITC/PI and 

analyzed by flow cytometry to determine levels of apoptotic cell death. The percentage of 

cells in each quadrant is depicted in each scatterplot. Right, quantification of apoptotic cells. 

Mean +/- SD for three independent experiments. *P < 0.05, **P < 0.01, ***P < 0.001 by 

ANOVA. 

 

Ru-PIP/olaparib enhances DSB damage and abrogates pChk1 signaling. To examine 

whether the synergy between Ru-PIP and olaparib was accompanied by increased DNA 

damage, we assessed the levels of H2AX (H2AX phosphorylated at Ser139) as an early 

response to DSB formation.34 Single-agent treated and untreated cells were used for 

comparison. In both MDA-MB-231 and MCF7 cells, combination treatment with Ru-PIP and 

olaparib demonstrated greater levels of H2AX than single-agent treatments (Figures 4A,B). 

Single-agent Ru-PIP treatment resulted in comparable H2AX levels to untreated cells in 

both cell lines (Figures 4A,B), indicating low DSB damage generated by Ru-PIP. This 

finding is consistent with our previous study.29 

 

Examining Chk1 signaling, a clear increase in pChk1 (Chk1 phosphorylated at Ser345) was 

observed at early time points in MDA-MB-231 cells treated with Ru-PIP (Figure 4C), 

consistent with the presence of Ru-PIP stalled replication forks.29 However, for cells treated 

with Ru-PIP in the presence of OLAP, much lower pChk1 levels were detected (Figure 4C). 

These results are consistent with PARPi abrogation of Ru-PIP-activated Chk1 and is also in 

agreement with the observation that PARPi can prevent replication fork restart and 

stabilization in a Chk1-dependent manner.35 

 

In addition to PARPi facilitated fork collapse, chromatin-bound “trapped” PARP-DNA 

complexes can generate DSBs upon colliding with active replication forks.36 To explore the 

possibility that RuPIP was increasing trapped PARP levels, we examined levels of 

chromatin-bound PARP1 in MDA-MB-231 cells. While an increase in chromatin-bound 

(trapped) PARP1 was seen for OLAP-treatment, no evidence of an increase in trapped PARP-

DNA complexes was observed in cells treated with the combination (Figure 4D). Together 

with the previous section, these results are consistent with a mechanism of synergy whereby 



PARPi results in collapse of Ru-PIP-stalled replication forks, leading to increased levels of 

DSB damage before culminating in G2 arrest and ultimately triggering cell death by 

apoptosis.  

 

 

 
Figure 4. Ru-PIP/olaparib results in enhanced DNA damage versus single-agent treatment. 

(A) CLSM images of MDA-MB-231 or MCF7 cells treated with Ru-PIP (25 M), OLAP (5 

M), or the combination of both, for 24 h. Immunofluorescence staining with anti-H2AX 

(green) provides visualization of DNA damage (DSB breaks). DNA (DAPI) staining 

including for reference. (B) Quantification of H2AX foci for cells treated as in (A). Data 

expressed as the % of total cell population containing 10 or more foci/nucleus. Mean +/- SD 

of three (MDA-MB-231) or two (MCF7) independent experiments where a minimum of 400 



(MDA-MB-231) or 300 (MCF7) nuclei were counted per condition. (C) Immunoblotting of 

whole cell extracts of MDA-MB-231 cells treated with Ru-PIP (100 M, 3 or 6 h) in the 

absence or presence of OLAP (5 M) for activated p-Chk1 (Chk1 phosphorylated at Ser345). 

Levels of total Chk1 protein independent of phosphorylation status are shown.  actin 

employed as a loading control. (D) Immunoblotting of nuclear soluble and chromatin-bound 

fractions prepared from MDA-MB-231 cells treated with Ru-PIP (100 M), OLAP (5 M), 

or both (3 h) for PARP1 levels. Chk1 and H3 provide an indication of the successful isolation 

of nuclear soluble and chromatin-bound fractions respectively. pChk1/Chk1 and PARP1 

quantification based on densitometry. NT = not treated. 

 

Ru-PIP/olaparib impedes cell motility. Finally, in addition to its role in DNA repair, sub-

lethal doses of olaparib can inhibit migration of cancer cells.37 Employing a wound “scratch” 

assay to examine the role of OLAP and Ru-PIP on cell migration, MDA-MB-231 or MCF7 

cells treated with the combination of OLAP and Ru-PIP had decreased cell migration 

compared to a mock-treated control (Figures 5A,B). Single-agent treatment with OLAP had 

negligible impact on cell migration, while the effects of single-agent Ru-PIP were 

significantly weaker than the combination. This indicates that the combination of OLAP and 

Ru-PIP acts to interfere with the invasive potential of breast cancer cells in addition to 

increasing DNA damage. 

 

 



 
Figure 5. Ru-PIP/olaparib combination impedes cell migration. (A) Representative images of 

wound-healing assay for MDA-MB-231 or MCF7 cells treated with OLAP (5 M), Ru-PIP 

(25 M), or both. Cells migration was monitored by optical microscopy at the indicated time 

points. Scale bar, 50 µm. (B) Quantification of percentage of wound closure for cells treated 

as in (A), as determined by analysis using ImageJ software. Mean +/- S.D. of three 

independent experiments. *P < 0.05, **P < 0.01, ***P < 0.001 by ANOVA. 

 

 

Conclusions. Recent years has seen growing interest in the anti-cancer potential of RPCs as 

single-agents,38–40 in combination with light for photodynamic therapy, PDT,41 and also as 

radiosensitizers for ionizing radiation, IR.42 However, utilizing RPCs in combination therapy 

with targeted therapeutics is a relatively unexplored strategy.  

These mechanistic studies indicate the observed synergy between the DNA replication 

inhibitor Ru-PIP and PARP inhibitor olaparib to be the result of enhanced DSB DNA 

damage, G2/M arrest and apoptosis compared to single-agent conditions. These results are 

consistent with olaparib acting to facilitate the collapse of Ru-PIP-induced stalled or 

stabilized replication forks, with the resultant DSB damage then triggering apoptosis. This 

mechanism of action is similar to a recent study showing PARPi can abrogate the effects of 

another potent DNA replication inhibitor hydroxyurea (HU) via interfering with PAR 



(supplied by PARP) binding Chk1 at stalled replication forks.35 Considering that 

pharmacological inhibition studies have indicated that both PARP (this work) and Chk129 are 

required for stabilisation of Ru-PIP-stalled replication forks, it would be interesting to 

examine PAR recruitment and Chk1 binding to forks stalled by Ru-PIP to explore this in 

more detail. 

Of course, new synergistic combinations identified still need to have cancer-specificity or 

they risk having low clinical benefit. Although the low impact on normal fibroblasts from the 

combination treatment isolated by this study is encouraging, fibroblasts can exhibit relatively 

high resistance to DNA damage and cellular stress.43 Further work examining a greater range 

of cell lines, including normal epithelial cells, and in vivo studies would be required to fully 

explore the therapeutic window of this novel combination.  

Finally, while Ru-PIP has not been examined in vivo, a growing number of RPCs have been 

examined in this context and no adverse effects have been noted.44,45 It is particularly 

noteworthy that Ru-PIP induces replication stress without DSB damage or triggering 

apoptosis and sensitizes cells to olaparib at doses with minimal single-agent impact on 

clonogenic survival. This property of Ru-PIP may be advantageous in reducing unfavourable 

mechanistic overlap with PARPi, particularly as the majority of DNA-targeting agents 

explored in combination with PARPi to date all act via the generation of substantial levels of 

cytotoxic - and potentially genotoxic - DSB damage. Further studies will examine Ru-PIP - 

and derivatives - alongside other DDR inhibitors and also examine the potential for applying 

identified combination therapies in dual drug-delivery applications to further improve cancer-

specificity. 

 

Methods 

Chemicals and reagents. [Ru(dppz)2(PIP)]2+, Ru-PIP, was synthesized and characterized as 

reported previously.29 Olaparib (OLAP) was purchased from Sigma-Aldrich and NU1025 

from Enzo Life Sciences. Stock solutions of Ru-PIP (100 mM), NU1025 (10 mM) and OLAP 

(10 mM) were prepared in 100% dimethyl sulfoxide (DMSO) and further diluted using 

Dulbecco’s modified Eagle’s medium (DMEM) or phosphate buffer saline (PBS). Final 

DMSO concentration employed in cell studies < 0.5%. All negative controls, blanks and “not 

treated” conditions contained 0.5% DMSO. Antibodies (Company, Lot no.): H2AX 

(Millipore, 3108494), PARP1 (Atlas, E115837, a gift from Dr S. Hopkins), -actin (AbCam, 



GR3251792-1), pChk1(Ser345) (Cell Signaling, 02/2019 8), Chk1 (Santa Cruz, 1013), H3 

(Invitrogen, 865R2, a gift from Dr G. De Gregoriis).  

 

Cell lines. MCF7 and MDA-MB-231 cell lines were cultured in DMEM supplemented with 

10% fetal bovine serum (FBS) and 1% penicillin/streptomycin antibiotic. Normal human 

dermal fibroblasts (NHDF) were cultured with DMEM supplemented with 5% FBS. All cell 

lines were maintained at 37 C under a humidified atmosphere containing 5% CO2 and 

routinely sub-cultured with Trypsin. 

 

Drug interaction analysis. Dose-effect curves for single agents and their combinations were 

generated from MTT assay data and the combination index (CI) values calculated using 

CalcuSyn and Compusyn software (Biosoft, Cambridge, UK) as established by Chou and 

Talalay.33 CI < 0.8 indicates synergism, CI = 0.8-1 indicates additive and CI > 1 indicates 

antagonism. Microsoft Excel was used to generate a 3-color scale based on CI values 

obtained, where synergism is represented by green color, additive by yellow and antagonism 

by red. The color of each CI value were interpolated in-between these constraints 

accordingly. 

 

Clonogenic survival assay. Cells were seeded at 1 x 105 cells/well in 6-well plates and 

allowed to adhere for 24 h. Cells were treated with the stated single-agent or combination for 

the required time of incubation (24 and 48 h). After treatment, solutions were removed and 

cells were trypsinized, re-seeded in a new 6-well plate at a density of 1x10³ cells/well, and 

cultured in compound-free medium. Cells were incubated for 7-10 days to allow colony 

formation. Cells were then fixed with fixation solution [methanol:glacial acetic acid, 3:1 

(v:v)] for 15 mins and stained with 0.4 % methylene blue for 20 mins. The staining solution 

was washed with water and images were photographed with a digital camera. Individual 

colonies were counted using Image J software, and the survival fraction was determined 

(normalized to controls). Experiments were repeated three independent times. 

 

Cell cycle analysis. Cells were seeded at 1 x 105 cells/well in 6-well plates and allowed to 

adhere for 24 h. Cells were then treated with with Ru-PIP (25 M), NU1025 (25 M), and 

OLAP (5 M) alone and in combination for 24 h. After treatment, cells were trypsinized and 

washed with PBS twice. Cells were then fixed with 70% ice-cold ethanol for at least 



overnight at 4°C. Following fixation, fixed cells were centrifuged at 13,000 rpm for 5 mins 

and the resulting pellet were washed with PBS twice. The samples were then resuspended in 

500 l PBS and treated with 50 l RNase A solution (1 mg/ml). After 15 mins of incubation, 

the samples were stained with 200 l of 50 µg/ml propidium iodide (PI) solution at RT. 

Samples were acquired and analyzed with NovoCyte flow cytometer (ACEA Biosciences, 

San Diego, CA, USA) and NovoExpress software. For each sample, a minimum of 10,000 

cells were counted.  

 

Apoptosis Annexin V/FITC assay. Cells were seeded at a density of 1 x 105 cells/well in a 

6-well plate and allowed to adhere for 24 h. Cells were treated with Ru-PIP (25 M) and/or 

OLAP (5 M) for 24 h. After treatment, cells were trypsinized, washed with PBS and 

followed by the addition of 500 l of 1x binding buffer and 5 l Annexin V-FITC 

(Invitrogen). The cell-containing mixture was then incubated for 20 mins at room 

temperature (RT). PI (5 l) was added prior to flow cytometric analysis using NovoCyte flow 

cytometer, and results were analyzed using NovoExpress software. For each sample, a 

minimum of 10,000 cells were counted. 

 

Immunoblotting and immunofluorescence. Whole cell lysates of treated samples were 

prepared as described previously.30 For isolation of nuclear soluble and chromatin-bound 

subcellular fractions, treated cells were processed with the Subcellular Protein Fractionation 

kit for Cultured Cells (Thermo) according to the manufacturer’s instructions. Isolated nuclear 

soluble and chromatin-bound fractions for each treatment group were obtained and protein 

concentration quantified by BCA assay. Aliquots of cell lysates or fractions were prepared in 

standard Laemmli buffer, heated at 95 °C for 5 mins and resolved by NuPAGE® 4–12% pre-

cast Bis-Tris gels and LDS-PAGE. Gels were transferred onto nitrocellulose membrane and 

probed with primary antibodies in 5% BSA (bovine serum albumin) solutions. Reactions 

were visualized with a suitable secondary antibody conjugated with horseradish peroxidase 

(1/5000 dilution, Thermo). WesternSurePREMIUM (Li-Cor) chemiluminescent substrates 

with digital analysis (LiCor C-Digit Blot Scanner) were used to visualize protein expression. 

Densitometry data was acquired using Image Studio™ Software supplied with the C-Digit 

Scanner. Immunofluorescence (H2AX foci) was performed as described previously.30 

 



Scratch “wound” assay. Cells were seeded at 5x105 cells/well in 6-well plates and left in the 

incubator until a confluent monolayer of cells formed. By using a sterile 200 l pipette tip, a 

straight scratch was made in each well and was washed with PBS twice. Cells were then 

treated with Ru-PIP (25 M) and/or OLAP (5 M). The migration of the cells in the wound 

scratch area was analyzed and photographed at 0 h, 6 h, 12 h, and 24 h. Images were 

photographed at 10x magnification using a microscope attached to a digital camera and the 

images captured were analyzed using ImageJ software. The percentage of wound scratch 

closure was determined by measuring the reduction in the area of the wound at each time 

point and compared to 0 h (100%). 

 

Statistical analysis. Statistical analysis of the data and the representation of figures were 

done using GraphPad Prism software. By using GraphPad Prism software, statistical analysis 

of the data was analyzed by using one-way analysis of variance (ANOVA), and the 

differences between the groups studied were considered significant when P values generated 

were less than 0.05. 

 

Supplementary Methods. MTT assay and Trypan Blue exclusion assay methods are in the 

Supporting Information. 
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