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A numerical inverse analysis based on explicit sensitivity coefficients is developed for the simultaneous esti-
mation of heat flux and heat transfer coefficient imposed on different parts of boundary of a general irregular
heat conducting body made of functionally graded materials with spatially varying thermal conductivity. It is
assumed that the thermal conductivity varies exponentially with position in the body. The body considered
in this study is an eccentric hollow cylinder. The heat flux is applied on the cylinder inner surface and the
heat is dissipated to the surroundings through the outer surface. The numerical method used in this study
consists of three steps: 1) to apply a boundary-fitted grid generation (elliptic) method to generate grid over
eccentric hollow cylinder (an irregular shape) and then solve for the steady-state heat conduction equation
with variable thermal conductivity to compute the temperature values in the cylinder, 2) to propose a new
explicit sensitivity analysis scheme used in inverse analysis, and 3) to apply a gradient-based optimization
method (in this study, conjugate gradient method) to minimize the mismatch between the computed tem-
perature on the outer surface of the cylinder and simulated measured temperature distribution. The inverse
analysis presented here is not involved with an adjoint equation and all the sensitivity coefficients can be
computed in only one direct solution, without the need for the solution of the adjoint equation. The accuracy,
efficiency, and robustness of the developed inverse analysis are demonstrated through presenting a test case
with different initial guesses.

© 2019 The Author(s). Published by Elsevier Ltd. This is an open access article under the CC BY-NC-ND

license. (http://creativecommons.org/licenses/by-nc-nd/4.0/)

1. Introduction

Direct heat transfer problems deal with the determination of tem-
perature distribution in a heat conducting body from the known
boundary conditions, the thermo-physical properties, and the geo-
metric configuration of the heat conducting body. Unlike the direct
heat transfer problems, inverse heat transfer problems (IHTPs) are
concerned with the determination of the boundary conditions, the
thermo-physical properties, and the geometric configuration of the
heat conducting body from the temperature measurement taken at
some points inside the body or on some part of the boundary. The
temperature distribution over heat conducting bodies can be
obtained accurately as long as the thermo-physical properties and
the associated boundary conditions are precisely known. However,
accurate knowledge of these parameters relies on conducting expen-
sive experiments with sophisticated instruments. These parameters
may be estimated in an inexpensive manner using inverse methods.
Over the past decades, inverse analysis has been extensively used
to determine the thermal conductivity (constant, temperature-
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dependent, and spatially varying parameter) and the convection heat
transfer coefficient [1-31], the heat flux [32—34], and the boundary
shape of bodies [35—39] using temperature measurement taken at
some points inside the body or on some part of the boundary. How-
ever, the inverse heat transfer problems are ill-posed and mathemati-
cally challenging because the ill-posed problems are inherently
unstable and very sensitive to small errors in input data. With the
advent of high-speed computers, different numerical methods have
been developed to deal with the inverse heat transfer problems and
their ill-posed nature and overcome the instabilities of these prob-
lems. Among such numerical methods are iterative regularization
techniques in which the solution of the inverse problem is improved
sequentially. In these iterative methods, the discrepancy principle
may be used as a criterion to stop the iteration and obtain a reason-
ably stable solution [40,41].

Functionally graded materials (FGMs), a relatively new class of
composite materials, are inhomogeneous composites which are com-
posed of two or more constituents phases [42—44]. These materials
have extensive applications in extremely high temperature environ-
ments such as nuclear reactors, pressure vessel, and chemical plants
[45]. The properties of these materials (such as thermal conductivity,
modulus of elasticity, density, etc.) vary smoothly and continuously
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with position by gradually varying the volume fraction of constituent
materials [42]. Exponential type is one of commonly used material
graduation forms for considering the variation of thermal conductiv-
ity of the functionally graded materials with position. In addition to
the stress analysis, the direct and inverse heat transfer analysis of
functionally graded hollow cylinders has also received much atten-
tion due to extensive use of them in industry [46-49]. In [46], an
inverse transient heat conduction analysis is presented to estimate
the imposed heat flux or the convective heat transfer coefficient on
the inner surface of a long multi-layered functionally graded cylinder
using the measured temperature on the outer surface of the cylinder.
In [47], the unknown space-dependent thermal conductivity of a
functionally graded hollow cylinder is estimated using an inverse
analysis. The conjugate gradient method and the discrepancy princi-
ple were employed and the success of the inverse method depends
on the type of the boundary conditions. In [48], an analytical method
is used to study the transient heat conduction in a cylindrical shell of
functionally graded material. It is assumed that the thermal conduc-
tivity is the power function of the radius of the cylinder. In [49], an
inverse analysis based on the conjugate gradient method is used to
estimate the time-dependent heat flux at the inner surface of a func-
tionally graded hollow cylinder by using the simulated temperature
measurements taken within the cylinder.

However, analytical and numerical solutions of the direct and
inverse heat conduction problems in the functionally graded hollow
cylinders include limitations such as one-dimensional (radial) analy-
sis only, complexity of numerical method, significant implementation
efforts, inability to considering a variety of boundary conditions, solu-
tion of additional equations such as adjoint equation, high computa-
tional cost, separate estimation, and accuracy. So an accurate,
efficient, and easy to implement method to handle the direct and the
inverse heat conduction problems with an ability to consider the
Dirichlet, the Neumann, and the Robin boundary condition to esti-
mate the unknown parameters separately and simultaneously may
be required. The estimation of the unknown parameters simulta-
neously has the advantage that two or more parameters involved in
heat transfer problems may be estimated more efficient than when
the parameters are estimated separately due to the number of the
direct problem solutions. Moreover, due to the importance of eccen-
tricity in heat transfer analysis of hollow cylinders [50,51], in this
study, an eccentricity is added to the functionally graded hollow cyl-
inder problem to reveal the applicability of the proposed method to
the geometries including eccentricity (an irregular geometry). In
other words, the proposed method can be equally applied to the
direct and the inverse heat conduction problems in the functionally
graded hollow cylinders with and without eccentricity.

To our knowledge, simultaneous estimation of boundary condi-
tions imposed on different parts of boundary of FGMs (heat conduct-
ing bodies with spatially varying thermal conductivity) with an
irregular shape using an inverse heat transfer analysis has not been
investigated as yet. In this study, a numerical inverse analysis based
on a new explicit sensitivity analysis scheme is developed for the
simultaneous estimation of applied heat flux and heat transfer coeffi-
cient in a functionally graded eccentric hollow cylinder with spatially
varying thermal conductivity. The thermal conductivity is assumed
to vary exponentially with position in the cylinder. The heat flux is
applied on the cylinder inner surface and the heat is dissipated to the
surroundings through the outer surface. The elliptic grid generation
technique is used to generate a mesh over the irregular body and
then solve for the steady-state heat conduction equation by trans-
forming the cylinder shape (physical domain), the governing equa-
tion and the associated boundary conditions onto the computational
domain. The discretization in the computational domain is carried
out by the finite-difference method, a method chosen for its simplic-
ity and ease of implementation. The novel aspect of the inverse analy-
sis is its very efficient and accurate sensitivity analysis scheme in

which explicit and easy to implement expressions for the sensitivity
coefficients are derived which allow for the efficient and accurate
computation of all sensitivity coefficients in one single direct problem
solution only without the need for the solution of adjoint equation.
The conjugate gradient method is used to minimize the objective
function which is the difference between the computed temperature
on part of the boundary and the measured temperature.

The gradient of the objective function with respect to the
unknown variables (here the heat flux and the heat transfer coeffi-
cient) can be computed using the solution of the adjoint method. In
addition to the mathematical complexity, the computational cost of
the solution of the adjoint equation is comparable to the solution of
the direct heat conduction equation. Hence, the total computational
cost of the computation of the gradient of the objective function with
respect to the variables is roughly equal to the computational cost of
two direct heat conduction equation solution at each iteration. As an
alternative, if the finite-difference method is used to compute the
sensitivity of the objective function to the variables, two (number of
variables here) additional solutions of the direct heat conduction
equation are needed which means a computational cost of three solu-
tions of the direct heat conduction equation at each iteration. As
already mentioned, the explicit sensitivity coefficients derived in this
study allow for the computation of all sensitivity coefficients with a
negligible computational cost thereby computing the gradient of the
objective function in one single direct heat conduction equation solu-
tion only without the need for the solution of adjoint equation or
additional solutions of the direct problem. As the inverse analysis
used in this study involves a large number of iterations to recover the
unknown variables, the use of the proposed sensitivity analysis
scheme decreases the computational cost significantly (due to less
computational cost at each iteration). As will be shown, the sensitiv-
ity analysis scheme is also accurate and robust. Moreover, as the heat
flux is applied at the inner surface of the hollow cylinder and the
temperature measurements are taken on the outer surface (a differ-
ent surface from the applied heat flux surface), one needs to relate
the measured temperatures to the heat flux conveniently. As will be
shown, the chain rule using the variable thermal conductivity com-
ponents may be used to obtain such a relation.

It should be noted that the although the cylinder inner and outer
surface shapes are regular (circular), the eccentric hollow cylinder
shape is irregular. Moreover, the formulations developed in this
study to solve direct and inverse problems are general and can also
be used for irregular inner and outer surface shapes as long as the
general body shape can be mapped onto regular computational
domain.

2. Governing equation

The heat conducting body (eccentric hollow cylinder) shown in
Fig. 1 is made of functionally graded materials in which thermal con-
ductivity varies exponentially with position in the cylinder. In other
words, k = a,e(1t@2Xe(1+0y)_ For this problem, the two-dimensional
steady-state heat conduction equation with no heat generation can
be stated as below

9 T ) T . . .

x <k(x,y) &> + W (k(x,y) @> =0 inphysical domain () (1)
subject to the boundary conditions

o — 9 on (inner) boundary surface I'; (2)
an; k

oT h

=k (Tr, —To ) on (outer) boundary surface I, 3)

where k(x, y) is the thermal conductivity which varies exponentially
over the domain ().
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Fig. 1. Eccentric hollow cylinder made of functionally graded materials is subjected to
convective heat transfer on outer surface and heat flux ¢ on inner surface. The thermal
conductivity k(x, y) varies exponentially with position in the cylinder.

Here as the body shape is irregular, the elliptic grid generation
method is used to discretize the physical domain and then the finite-
difference method is used to approximate the derivatives of the field
variable (temperature) at grid nodes by algebraic ones. This method
is based on mapping the irregular physical domain (Fig. 2a) from the
x and y physical plane onto the ¢ and 1 computational one (Fig. 2b).
Then the heat conduction equation and the associated boundary con-
ditions (Eqs. (1) to (3)) are transformed from the x and y physical
plane to the ¢ and 1 computational plane. More details on the imple-
mentation of the elliptic grid generation technique and solution pro-
cedure for the steady-state heat conduction equation can be found in
[52]. Since the thermal conductivity is not constant and is a spatially
varying parameter, we can expand Eq. (1) as follows

ok oT ,aZT ok oT ka2T

awax Koz Tayay TRy =0
by simplifying, we get
k ﬂ + BZ_T B_kﬂ a_kﬂ — (4)
w2z gy? Xox dyody
B
D

y
A
L,

a)

for the exponential material graduation type

k = a;e(1+%X) g(1+a3Y) 5)
ok

ky = P aya; (11020 p(1+ay) 6)
ok

ky = @ = aza;el1+aMe(1+asy) (7)

Thus Eq. (4) becomes

T 8°T aT
(1+a2x) o(1+a3y) (1+a2x) p(1+a3y)
ae e — +— | +aae e —
1 <8x2 + 8y2) + 4204 X
oT
(1+a2x) p(1+asy) _
asa;e e —=0
+asaq y
or
ale(1+a2x)e(1+azy) 82T+32T +a 37T+a3£ =0 9)
xz  oy? ox ay
Since k = a,e(1t®2X)e(1+%:Y) £ 0, we get
T  8°T oT aT
—+— a—+a3—=0 10
<3x2 +3y2> 2ok " 3y (10)

by substituting for T, T, Tx, and T, using the transformation rela-
tionships and the finite-difference expressions [52], Eq. (4) will be

1 1
[ﬁ(ang—zﬂTén + VTnn)} +ay [j(yr)Ti _yan)}
1
+as b(—xﬂ;— +x¢T,7)} =0

where

fe= %(fiﬂ,j—fm,j)

Fn :%(fi,jﬂ —fij1)
fee =furj=2fij+fa (12)
fm = fijr1 =2fij +fimm

1
fen = Z(fiﬂ,jﬂ —fajr —firja +fa )

C D

N

b)

Fig. 2. Eccentric hollow cylinder (the physical domain) (a) and the corresponding computational domain (b).
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where f=x,y, T. And
=5

B =XeXn +Yeyn
y=x:+y?

J =2Xzyy—X;ys (Jacobian of transformation) (13)

are the coefficients obtained from the elliptic grid generation
method. By knowing the values for a;, I=1, 2, 3 as well as x;; and y;;
(nodal coordinates) from the elliptic grid generation step, Eq. (11)
may be solved using an algebraic solver such as Maple to obtain an
expression for T;; in the body, as follows

-0.5
=@y (—oTig j—aTiq j+ 2BTey =y Tiji1 —¥Tija
—aoJynT: + axJy Ty + as)x, Tz —azJx:Ty) (14)

The term 2 at a boundary surface in the physical domain is related
to % and/or % at the corresponding transformed boundary surface in
the computational domain. At the inner surface I'; and the outer sur-
face I',, we have [52]

ar -1

at inner surface I'; : o~ va (aTz—BTy) (15)
at outer surface I, : o1 (aT:—BTy) (16)
o an, 7]\/& < n

Thus, the boundary condition equation at the outer surface I, for
the exponential material graduation type is written as

qconduction‘rg = (:Iconvection h‘g (17)
oT
%%7h(TF07TOO) (18)
1
K[ T BTy | = h(Tr, ~T) (19)
at the outer surface I',, we have
1
Te = 5 (3T =A4Tw1 + Twa ) (20)
1
T, = 5 (T js1—Tmj1) (21)

Therefore, Eq. (19) becomes

1 3Twi—4Tvai+Tvai  oTvjrn—Tm
‘kM.j[,i( M,j le,j w2j_g M.]+12 M,Hﬂ

NG o
=h(Tyj—Tw) (22)

where the coefficients J, y, and g defined in Eq. (13) are computed
using the finite-difference coefficients associated with the outer sur-
face I',. Solving Eq. (22) for Ty; gives the temperature distribu-
tion on the boundary surface I', as follows

_ k(40T —0Tyaj + BTmje1 —BTwj) + 2hj/aT,,
3ky jor + 2h] /o

TM,j

(23)
or

aqe1+02%) 14 0Vu) (4o Ty j— Ty + BT j1 — BTw 1) + 2hvaT

T j = 3a; el @) ey g 1 2h] /o

(24)

In a similar fashion, we can compute the temperature distribution
on the inner surface I';. At the inner surface I';, we have

. oT
g= ka—nl_ (25)
. -1
q:kGVEWQ—ﬂnO (26)
where
1
1
T, = Q(Tuﬂ ~Ti 1) (28)
Therefore, Eq. (19) becomes
=k, % (a*3Tl‘j +‘21T2,j*T3,jiﬁ T],jHZ*Tl.H)} (29)

where the coefficients J, o, and 8 are computed using the finite-dif-
ference coefficients associated with the inner surface I';. Solving Eq.
(22) for T j gives the temperature distribution on the boundary sur-
face I'; as follows

_ ki j(4aTyj—aTs ;=BT + BTija) + 2q/vVa

Ty 30
Li 3’(171'0[ ( )

or

T ale(ualej)e(wagyl.ﬂ(40,]'2‘]._0,]'3‘]._,437'1#1 + BT1j1) + 24V
1j=

3a,e1+ax1))e(1+asy1)) oy
31)
Since the branch cut (AB or CD in Fig. 1a) is inside the physical
domain, the same procedure employed to obtain an algebraic expres-
sion for T; ; (Eq. (14)) can also be used to obtain an expression for the
temperature on the branch cut, T;; (and hence Tin, as T;1 =Tin, i=1,
..., M). However, some changes are needed in the terms discretized
by the finite-difference method (Eq. (12)) as follows (Fig. 3)

fe= %(fi+l.1 —fi11)

fy =5 a—finr)
Jee =fir11—2fi1 +fiaa (32)
frm :fi,Z*zfi.l + fina

1
fen = a (fir12—fir2—fiana +fiana)
where f=x,y,T.
3. The inverse analysis
3.1. Objective function
The aim of this study is to simultaneously identify the heat flux

applied at the inner surface I';, g, and the heat transfer coefficient at
the outer surface I',, h. To do so, an inverse analysis is used so that

0,2
[ J

11 0l
° ©

branch cut

[ ]
i, N-1

Fig. 3. Definition of nodes on the branch cut.
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the square of the difference between the computed temperature of
the outer surface I', and the measured temperature of the same sur-
face is minimized. This can be mathematically expressed as

min{ 7 :=C|| Tp, — T I1? : Eq. (1) in ), BCsinEgs. (2)—(3)}
gatTi,hatT,

(33)

where T, is the measured temperature and C is a positive constant
and can be considered as C=10",n=0, 1, 2, .. .. The inverse analysis is
used to minimize the following objective function expression:

N-1

3=CY" (Twj—Tmj, ) (34)
j=2

3.2. Sensitivity analysis

Computation of derivative of objective function with respect to
unknown variables is required in gradient-based optimization meth-
ods. Here the inverse problem is concerned with the calculation of
the sensitivity of the objective function J defined by Eq. (34) to g and
h. Thus, we can write

—203 (T, RIS A L (35)
Z Mj— MJ)m oh £ Mj = 4 (M.j)y oh
=
F) i 8T i Ty
7 _ 20 (Twj~Tonj,) ’V’f 23" (Tuj—Tag,) C—2 (36)
9q =2 = q

In Egs. (35) and (36), CaTM‘# and CBTM‘ai. are called the sensitivity
coefficients and may be explicitly expressed by taking derivative of
Eq. (23) with respect to the heat transfer coefficient h and the heat
flux q as follows

Ty _ 2JvVokn, (4T + @Toaj— BTwjer + Blij +30T)
ah Bk jor + 2h)Va&)?

37
For the exponentially varying thermal conductivity k = ae(1+%¥)
e(1+6y) we can write Eq. (37) as

My _ 2vaa e(+axu))e(1+0m)) (4orTy 4 j + Ty 2 j— BT jit + BTwjt + 30T )
oh (3ay e(1+92xuy) e(1+avm)) o 4 2h) /r)?

(38)

As the heat flux ¢ is applied at the inner surface and the tempera-
ture measurements are taken on the outer surface (a different surface
from the applied heat flux surface), chain rule (using the thermal con-
ductivity components such as a, or as) may be used to relate the sim-
ulated measured temperature Ty;; to the heat flux g as follows

Ty i
s _ 334 (39)
aq oq

aa;

we can write Eq. (26), as follows

a=k(j g eT-A1) \F
1

=a e1+a2x1 j) o(1+a3y1 j) G_
Va

i

@T:-p1,) )| (40)

i

Hence, the denominator of Eq. (39) can be written as

aq -1
o = alx],je“*‘lz"‘-l)e(”aﬂ‘1) <[\/_ (aT:— BT, )) (41)

where the terms T¢, T, J, , and B are computed using the finite-

difference coefficients associated with the inner surface I'; (as in
Eq. (29)). Moreover, the numerator of Eq. (39) can be obtained

by taking derivative of Ty; with respect to a, using Eq. (24), as
follows

3TMJ‘ o 2a1xM,je“*“ZXM-J)e(”WMﬂh]\/&(4aTM,1_j—aTM,2J + ﬁTM.j+1 7BTm_'ﬁ1 730[Too)
da, (3aye+@xune(+am) g + 2h]/a)?

(42)
Therefore, the expression in Eq. (39) can be computed by dividing
the expression in Eq. (42) by the one in Eq. (41):

My 2axy el @ mie( 0 ) /o (4aTy 1 j— 0Ty o) +
e

BTy —BTuj1—3aT)

(3are(+axupe(+asni)q + 2h]y/a)? (aulig(l*ﬂm’)emam / (/71& (“Té"*ﬂTw) ‘1‘ )

(43)

Therefore, the sensitivity coefficients CTy, #; and CaTy, J; can be
computed in only one single direct problem solution without the
need for solving an adjoint equation. The sensitivity matrix Ja can be
explicitly written as

T2 [ 0Ty
oh oq
9Tw 3 9Tm3
Jay=C| oh | Ja,=C| (44)
BTM.N—1 aTM‘N,l
oh 12«1 R

3.3. The conjugate gradient method (CGM)

The conjugate gradient optimization method (a gradient-based opti-
mization method) is used here to solve the inverse heat transfer prob-
lem. The objective function given by Eq. (34) is minimized by searching
along the direction of descent d™ using a search step length  B%.

f(k+l) :f(k) —,B(k)d(k) (45)

where f = h,q. The direction of descent of the current iteration is
obtained as a linear combination of the direction of descent of the
previous iteration and the gradient direction V7). Therefore,

d® = v gk 4 R gkD (46)

The Polak—Ribiere formula [53] is used to compute the conjuga-
tion coefficient:

® {V](k)]'r(vj(k)_ v;(m)) [Vj(k)]T(vj(k)_vj(k,l))
- - 47
’ vty vyt o (47)

The search step-length is given as follows [41]

a0 dw)" {TM, i 7T<M~j>m]
[Jatod]T [Jalodo]

IB(k) _

3.3.1. Optimization algorithm

The following algorithm presents the direct and inverse analysis
steps used to simultaneously determine the heat flux applied at the
inner surface of a functionally graded eccentric hollow cylinder and
the heat transfer coefficient at the outer surface of the cylinder:

1. Specify the physical domain, the boundary conditions, and the
measured outer surface temperature.

2. Generate the boundary-fitted grid using the elliptic grid gener-
ation method.

3. Solve the direct problem of finding the temperature values at
any grid points of the physical domain using an initial values
for the heat flux and the heat transfer coefficient (initial guess
for h and q).
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4. Using Eq. (34), compute the objective function (7).

5. If value of the objective function obtained in step 4 is less than
the specified stopping criterion, the optimization is finished.
Otherwise, go to step 6.

6. Compute the sensitivity matrices Ja, and Ja, from Eq. (44).

7. Compute the gradient directions v 1 and v ]f.lk) from Egs. (35)
and (36), respectively.

8. Compute the conjugation coefficients y\’ and ygk) from Eq.
(47).For k=0, set ¥ =0.

9. Compute the directions of descent d;lk) and dék) from Eq. (46).
10. Compute the search step lengths ﬁﬁlk) and ﬁf.lk) from Eq. (48).
11. From Eq. (45), evaluate the new values for h and g separately,

namely h®* D and g+,
12. Set the next iteration (k=k+ 1) and return to the step 2.

3.4. Stopping criterion

Without measurement errors, the inverse problem can be termi-
nated if

Table 1
Data used for the heat conduction problem involving
exponential material graduation.

@) k%) h(G#)
1000 10e(1+002%)¢(1:00%) 10 30

T (90)

where ¢ is a small specified number. In this study, for the case of no mea-
surement error, ¢=10"> and &=10"% (depending on the value of C).
However, the measured temperatures will contain errors. In this case, the
objective function value will not be zero at the end of the iterative pro-
cess. As the computed temperatures approach the measured tempera-
tures containing errors, during the minimization of the objective function
(Eq. (34)), large oscillations may appear in the inverse problem solution
resulting in an ill-posed character for the inverse problem. However, the
conjugate gradient method may become well-posed if the Discrepancy
Principle is used to terminate the iterative procedure. In the Discrepancy
Principle, if the difference between computed and measured tempera-
tures is of the order of magnitude of the measurement errors, then the
solution is assumed to be sufficiently accurate, that is,

g0 <g (49)
tel ture distributi
e it
r T,,,=49.52528(°C) I —49.
i ThoF108.2722(C) - T e Seoace)
10 10
5 5~
> 0fF > 0OfF
5 5
-10 -0
e apag e s J99 69 06455 04954 Loy
-10 -5 0 5 10 -10 -5 0 5 10
X X
a) b)
temperature distribution temperature distribution
(grid size: 100*80) (grid size: 200*150)
I T,.,=49.84571(°C I T,,,=49.87788(°C]
L 'r"‘,,"_"x=11o.1oas((°c)) L r’“m'_';=11o.z(°c)(e !
10 10 r T(0)
L I 105
a L 100
L | 95
- - 90
5F 55 85
a 80
| | 75
i i 70
> o > OofF gg
: i 55
5 5=
-10 -0
T T T N TR T TN [T NI [T N A NN >\|\\\Allwwwllllwlwwlllliww
-10 -5 0 5 10 -10 -5 0 5 10
X X
c) d)

Fig. 4. Grid independency study of heat conduction equation solution for exponential material graduation. The temperature distribution using four different grid sizes of 40 x 30 (a),

60 x 50 (b), 100 x 80 (c), and 200 x 150(d).
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™ 5 10} 1 degC
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& 100
4 - ar 1
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- L 2F 4 90
o I~ i 1
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.87 B -8 1
- - -10F B 50
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Fig. 6. The comparison of temperatures obtained from the software COMSOL and our method. The points (20 points are used in COMSOL) on the branch cut (a) and the comparison
of the temperatures on the branch cut (b).

| Tcomputed — Tieasured| = O (50) 5 thermal conductivity distribution, k(x,y)

where o is the standard deviation of the measurement errors, which | k (Wim."C)

is assumed constant in the present analysis. We can obtain the fol-
lowing value for ¢ by substituting Eq. (50) into Eq. (34) (objective -
function definition)

¢ =C(N-2)o? (51) I

Then the iterative procedure is terminated when the following > ofF
criterion is satisfied .

g9 <e (52) sk

4. Results

Since the numerical procedure explained here is concerned with N IR BN
an irregular shape (eccentric hollow cylinder) with different bound- 5 X
ary conditions, we first validate the results of the heat conduction
equation solution with the ones from the finite element analysis soft-
ware COMSOL due to its capability to define analytical expression for Fig. 7. Exponential graduation of thermal conductivity.
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the spatially varying thermal conductivity easily. To do so, a grid
independency study is initially carried out for the exponential mate-
rial graduation using four different grid sizes of 40 x 30, 60 x 50,
100 x 80, and 200 x 150. In the grid size of M x N, M and N are the
number of nodes in the radial and angular directions, respectively.
The numerical values of the coefficients involved are listed in Table 1.

The result of the developed numerical method to solve heat con-
duction equation with the associated boundary conditions given in
Table 1 is shown in Fig. 4 and the result from the solver COMSOL is
depicted in Fig. 5. A comparison of the temperatures of the nodes on
the branch cut (see Fig. 3) is depicted in Fig. 6. In this comparison the
results obtained from the software COMSOL (using 20 points on the
branch cut) and our code using the grid size of 200 x 150 is plotted.
The comparison of the results from both numerical methods reveals
an excellent agreement thereby confirming the correctness of the
implementation and the accuracy of the proposed method. Moreover,

the spatially varying thermal conductivity distribution over the body
(FGM) is shown in Fig. 7.

Then the computed temperature distribution Ty; (j=2,...,N—1)
is used as the simulated measured temperatures to recover the ini-
tially used heat flux and the heat transfer coefficient. In other words,
the temperature distribution Ty (j=2, ..., N — 1) obtained by solving
the heat conduction equation using the numerical values specified in
Table 1 is used to recover ¢ = 1000(¥) and h = 10( ). To facili-
tate the computation of the sensitivity’ matrix coefficients using the
central finite-difference relations, the grid nodes (M, 1) and (M, N)on
corners of the outer surface I', are excluded from computing the
temperature distribution. In the inverse analysis, the square of the
difference between the temperature distribution of the outer surface
I', (obtained from the solution the direct problem at each iteration)
and the simulated measured temperature distribution of the same
surface (I',) is to be minimized.
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Test case: Using the problem data given in Table 1, the known

(desired) values of g; = 1000 (% and hy = 10( ) are to be recov-

ered by the proposed inverse analysis using the following three different
initial guesses to demonstrate the robustness of the inverse analysis:

. A\ A\

Qinitiat, = 500 (ﬁ)  Rinitial, = 2 <m>
. A\ A\
Qinitiat, = 2500 <ﬁ) s Biniial, = 25 <m>

. A\ A\
Qinitiat, = 100 <ﬁ>  Binitial, = 30 <m>

o . ~ W W
Initialguess 1:  §ipjtiar, = 500 <ﬁ>’hi“ma‘1 - 2<m>

e p W W
Initialguess 2 : iy, = 2500 <E)7hinitialz =25 <mz'oc)

o . ~ W W
Initial guess 3:  Gipigia, = 100 (ﬁ)vhinitialz =30 <m2fc>

Initial guess 2 (with measurement error) : iz, = 2500 <W>

\
initial, = 25 <m>

In this study, the measured temperature containing random
errors, Ty j™ (j=2, ..., N— 1), is generated by adding an error term
wo to the exact temperature Ty j¢*3¢ to give

TS = T 4 wo (53)

where w is a random variable with normal distribution, zero mean,
and unitary standard deviation. Assuming 99% confidence for the
measured temperature, w lies in the range — 2.576 < w < 2.576 and
it is randomly generated by using MATLAB. o is the standard devia-
tion of the measurement errors. In this study, o = 0.5. The second ini-
tial guess, Gipitial, = 2500(%),%1&&12 =25 (mzic) is considered to
initiate the optimization process.

2500 |- 251
“ 2000} __ 20|
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2 I :E. i
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Fig. 9. History of heat flux g (a), heat transfer coefficient h (b), and objective function for the initial guess giyitia, = 2500 (%), hinitiat, = 25 () (C)-
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Three different initial guesses are used to analyze the inverse
analysis presented here. The initial guesses are selected so that they
can reflect the accuracy, efficiency, and robustness of the inverse
analysis. The convergence histories of the heat flux and the heat
transfer coefficient for all three initial guesses are depicted in
Fig. 8a,b, Fig. 9a,b, Fig. 10a,b, and Fig. 11a,b (for the measurement
error case), respectively. As shown in Figs. 8c—10c, a 100% reduction
in the objective function and complete recovering of the values for g
and h (the heat flux and the heat transfer coefficient, respectively) are
achieved by starting the optimization process from the initial guesses
which are numerically far from the desired ones thereby confirming
the robustness of the developed numerical procedure. Despite the
large number of iterations for recovering the unknown variables,
short computation time reveals the efficiency of the developed
method. The details of the results, including the initial and final val-
ues for g and h, the initial and final values of the objective function,
the computation time, the number of iterations, and the percentage
of the decrease in the objective function, are given in Table 2 (for

F. Mohebbi and B. Evans / International Journal of Thermofluids 1-2 (2020) 100009

both cases of no measurement error and a measurement error). In
case of the measurement error (o =0.5), there is also a significant
reduction (82.7%) in the objective function value (Fig. 11c). As shown
in Table 2, for o = 0.5 the errors in recovering the parameters h and ¢
are 12% and 11.9%, respectively. The results are obtained by a FOR-
TRAN compiler and computations are run on a PC with Intel Core i5
and 6 G RAM. A tolerance of 1077 is used in iterative loops to increase
the accuracy of results.

5. Conclusion

By developing an efficient, accurate, robust, and easy to imple-
ment explicit sensitivity analysis scheme, we presented in this study
an inverse analysis to simultaneously determine boundary conditions
in a steady-state heat conduction problem in a functionally graded
eccentric hollow cylinder. The boundary conditions of interest here,
namely, the heat flux and the heat transfer coefficient, were imposed
on two different parts of the cylinder boundary. The heat flux was
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Fig. 10. History of heat flux g (a), heat transfer coefficient h (b), and objective function for the initial guess Ginisia1, = 100(:%), hinitiat, = 30(75%¢) (C).
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Table 2
A summary of results for the simultaneous determination of the heat flux ¢ and the heat transfer coefficient h.
Grid size Desired value Initial (guess) Final value Temperature Initial value Minimum value of § Reduction in objective
value measurement error of J function & computation time
= -7 0/
q= 1000'0(ﬂ2) 4 = 500. 0( ) 4= 1000. O(ﬂz) o=0 5249371.48 9.98 x 10 100%
50 x 40 m m (C=100) (€=100) (31m: 04s)
w _ w (2360 iterations)
117100<m2AC) h72.0( ) 7100(m2 ac>
- 7(C= o
é]:]OO0,0(ﬂz) q:ZSO0.0(ﬂ) q710000(¥> o=0 5226.19 9.99 x 10~/ (C=100) 100%
50 x 40 m m (C=100) (47m: 02s)
w w _ w (2956 iterations)
117100< Z.C) h= 250( 5 c) 100(mz c)
- 6 o/
Q:]OOOO( 2) qflOOO(ﬂJ q710000(¥> o=0 22463354.18 9.99 x 10 100%
50 x 40 m (C=1000) (C=1000) (111m)
_ w w (22829 iterations)
h= 100( .c) h= 300( > c) Aoo(mz c)
4= 1000.0 (ﬂz) { = 2500. 0(%) 4=11189 (ﬂ) =05 4939.79 853.99 82.7% (1714 iterations)
50 x 40 m (C=100) (€C=100)
— 107
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Fig. 11. History of heat flux g (a), heat transfer coefficient h (b), and objective function for the initial guess Gy, = 2500 (#) Ninitial, = 25(%) (c) by considering measurement
error (0=0.5).
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applied on the inner surface of the cylinder and the heat transfer
coefficient was imposed at the outer surface. The cylinder was made
from a functionally graded material in which the thermal conductiv-
ity was exponentially a function of position in the cylinder. Although
the proposed numerical inverse analysis is applicable to general
irregular heat conducting bodies, the hollow cylinder was chosen to
analyze due to the importance of such a geometry in heat transfer
analysis. In order to solve the steady-state heat conduction equation,
the two-dimensional irregular heat-conducting body (eccentric hol-
low cylinder) was transformed into a regular computational domain
to perform all computations related to the direct and inverse heat
conduction solution. The discretization of the physical domain was
performed by the elliptic grid generation and the approximation of
the derivatives of the field variable (temperature) at the grid nodes
by algebraic ones was performed by using the finite-difference
method, a method chosen for the simplicity and the ease of imple-
mentation. The novelty of the inverse analysis lies in proposing an
accurate and efficient explicit sensitivity analysis scheme with an
advantage that it is not involved with an adjoint equation and addi-
tional solution of direct problem if the finite-difference method is
used to calculate the sensitivity coefficients, and all the sensitivity
coefficients can be computed efficiently in only one direct problem
solution, without the need for the solution of the adjoint equation (to
compute the gradient of the objective function with respect to the
variables). As the heat flux was applied at the inner surface of the hol-
low cylinder and the temperature measurements were taken on a dif-
ferent surface, the chain rule using the variable thermal conductivity
components was used to obtain an explicit relation between the tem-
perature on the outer surface and the heat flux applied on the inner
surface. The conjugate gradient method was used to minimize the
objective function and recover the desired parameters accurately.
The accuracy, efficiency, and robustness of the proposed numerical
procedure were demonstrated through presenting a test case with
three different initial guesses. Moreover, the results revealed that the
retrieved parameters were not too much affected by introduction of
a significant measurement error.
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