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Highlights:  

1. Tunable optical band gap of SnOx films prepared using RF magnetron sputtering at 

different oxygen partial pressures and heat treatment. 

2. Broad optical absorption bands of SnOx thin films covering UVA, UVB and UVC. 

3. Fabrication of UV photodetector based on the SnOx film. 

 

Abstract: SnOx thin films with tunable optical bandgap were prepared using RF 

magnetron sputtering. The bandgap was adjustable between 2.16 and 3.96 eV 

depending on oxygen partial pressure during deposition and heat treatment. The 

structure and properties of the SnOx films were studied. The optical absorption of the 

SnOx films covered multiple ultraviolet bands, such as UVA, UVB and UVC. A 

photodetector based on the annealed SnOx film exhibited a detectivity of 1×1011 Jones 
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(under 365 nm UV light) at room temperature, which demonstrates the important 

potential application of SnOx films for UV detection. 
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1. Introduction 

Ultraviolet (UV) photodetector can find many applications, such as fire detection, 

ozone monitoring, chemical analysis and defense technology etc. Due to the relatively 

large photon energy of UV light, wide bandgap semiconductor materials, such as ZnO1-

3, Ga2O3
4-6, SiC7-8, GaN9-10 and MgO11 etc, are commonly used in the production of UV 

photodetectors. The extensive research into wide bandgap semiconductors has led to 

the emergence of new material systems, such as stannous oxide (SnO) and tin oxide 

(SnO2), suitable for UV photodetection. SnO is a p-type semiconductor material with a 

direct bandgap of 2.7 eV12-13. The main reason for the p-type conductivity of SnO is 

due to the presence of Sn vacancies and the oxidized state of Sn2+ occupying the gap 

position of oxygen atoms. The 2p core level of O and 5s core level of Sn are close to 

the valence band maximum (VBM), hence easing orbital hybridization resulting in the 

enhancement of hole transport14. On the other hand, SnO2 is a typical n-type metal oxide 

semiconductor material with a direct bandgap of 3.6 eV. It has the same elements as 

SnO but in different proportions. Furthermore, it exhibited many excellent properties 

and is widely used in the fields of catalysis15, gas sensor16, energy storage17, solar cell18 

and so on. 

Currently, the main preparation methods of tin oxide include electrospinning19, 

pulsed laser deposition20, hydrothermal21, molecular beam epitaxy and magnetron 

sputtering22 etc. Among these methods, magnetron sputtering has the advantages of 

simple operation, good uniformity as well as excellent repeatability on device 

performance. In this paper, SnOx film was prepared using radio frequency (rf) 

magnetron sputtering combined with high temperature treatment. The use of the film 
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for UV photodetection was investigated.    

2. Experimental 

2.1. Preparation and annealing of SnOx films 

Substrates (Quartz, SiO2/Si, ITO) were cleaned with deionized water, dried with 

high-purity nitrogen, and immediately placed in a vacuum chamber at 4.0×10-4 Pa. SnO 

material was used as target (99.99 %, Zhongnuo New Material (Beijing) Technology 

Co. Ltd.). Different oxygen partial pressure (Opp) of 12, 10, 8 and 0 % were studied by 

controlling the flow of O2 and Ar gas. The thickness of the films can be tuned by 

adjusting sputtering power and time, in this work sputtering power and time of 120 W 

and 40 min was used during deposition, respectively. The deposited film was annealed 

at 300 ℃ for 1 h in a tubular furnace under atmospheric pressure to control the optical 

band gap of the material. After annealing, there was a slight change in the color of the 

sample. The samples were cooled to room temperature before performing 

characterization on the films.  

2.2. Characterization of the thin film 

The crystallinity of the film was characterized by X-ray diffraction (XRD, model: 

EMPYREAN) and transmission electron microscope (TEM, model: JEM-2100). Its 

elemental composition was studied using X-ray photoelectron spectroscopy (XPS, 

model: K-Alpha+, Mono Al k-alpha). The surface morphology and thickness of the film 

were analyzed using atomic force microscope (AFM, model number: SPA-400). The 

optical properties of the film were characterized using UV-Vis spectrometer (model: 

iHR-320). All measurements were conducted at room temperature. 

2.3. Fabrication and characterization of SnOx photodetector 

A photodetector, consisting of quartz/SnOx/Ag structure, was fabricated and 

characterized. The annealed SnOx film with Opp of 10% was chosen as the 
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photosensitive material. Current density against voltage (J-V) characteristic curve of 

the photodetector were measured using Keithley 2400. This allowed the determination 

of photogeneration current, responsivity rate and detectivity of the photodetector. 

3. Results and discussion 

A schematic diagram of the deposition process of SnOx film using rf magnetron 

sputtering is shown in Fig. 1(a). The film was deposited on quartz substrate in a constant 

pressure of 0.6 pa with regulated Opp by controlling the O2 and Ar gas flow. Fig. 1(b) 

show the optical images of the SnOx film on quartz substrate before (left image) and 

after (right image) annealing at 300 ℃ for 1 h, which the film appeared light purple in 

color and transparent with good transmission of light, respectively. XRD spectra, shown 

in Fig 1(c), were measured from annealed SnOx films deposited on silicon substrates 

with different Opp of 12, 10, 8 and 0 % indicated as Sample 1, 2, 3 and 4, respectively. 

At 0 % Opp (i.e. pure argon with no oxygen), the XRD spectrum of Sample 4 showed 

preferential growth at (110) crystal plane of SnO (JCPDS No24.1342) with relatively 

large half-peak width, which suggests poor crystallinity of the film. With an increase of 

Opp, the half-peak width of the diffraction peak of SnO in the direction of (110) was 

reduced hence indicating an improvement in its crystallinity. Furthermore, the square 

phase of SnO2 (JCPDS No 46.1088) was also evident and revealed selectively growth 

on the (110) crystal surface. The SnOx films deposited on the quartz substrates at 

different Opp were characterized using UV-Vis absorption spectroscopy, which allowed 

the determination of optical bandgap of the films using the geometric Tauc formula 

(Equation 1): 

                   (𝛼h𝑣)2 ∝ (h𝑣 − 𝐸𝑔)                      (1)  

where α is absorption coefficient, h𝑣 is incident photon energy (eV), and Eg is optical 

bandgap. The optical bandgap of the annealed film with different Opp of 0, 8 and 10 % 

can be estimated from fitting the linear part of the curves shown in Fig. 1(d) ℃, ℃ and 

℃, respectively. There was an increase in the optical bandgap after annealing of  
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Fig. 1. (a) Schematic diagram illustrating magnetron sputtering deposition. (b) Optical images of 

SnOx films deposited on quartz substrates. (c) XRD patterns of SnOx films on (100) plane SiO2/Si 

substrate deposited with different OPP. (d) Tauc plots for estimating optical bandgap of SnOx films. 

(e), (f) O1s and Sn3d XPS spectra of the SnOx films, respectively. (g) TEM image of SnO2. (h) 

Line profiles of lattice fringes of SnO2 and SnO are shown in I and II, respectively. (i) TEM image 

of SnO. 

 

the film as well as increasing Opp during film deposition, which suggests that the optical 

bandgap can be adjustable between 2.16 and 3.96 eV. The formation of SnOx crystal 

depends on the bonding of Sn and O atoms. At low Opp, Sn-O bonds are formed in the 

crystal lattice but there are still many Sn atoms that are not bonded with O atoms, hence 

resulting in many vacancy sites in the SnO2 and SnO lattices. These Sn atoms have 

weak localized electrons, which would change the electronic density of state of the film, 

resulting in the decrease of the optical bandgap. After annealing, there was an increase 

in optical bandgap of all samples as pure Sn was volatilized at elevated temperature 

causing more Sn and O atoms to bond covalently. 

The elemental composition and chemical bond of the deposited SnOx film with 

Opp of 10 % was investigated before and after annealing using XPS. Fig. 1(e) shows the 
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fitted curves of O1s XPS spectra of the SnOx film before and after annealing (indicated 

as ℃ and ℃ in the figure, respectively). The as-grown film consisted of a high 

proportion of lattice oxygen (OL), followed by vacancy oxygen (OV) and then adsorbed 

oxygen (OA) at a ratio of 1: 0.41: 0.24 (OL: OV: OA). After annealing, it was evident that 

there was a significant reduction in OV and an increase in the proportion of OL resulting 

in a ratio of 1: 0.22: 0.33 (OL: OV: OA), hence suggesting an increase in the formation 

of Sn-O bonds. Fig. 1(f) shows the fitted curves of Sn 3d5/2 and Sn 3d3/2 XPS spectra of 

the film. The fitted Sn2+ peak was larger than the Sn4+ peak in both conditions. However, 

during annealing oxygen may oxidize a part of Sn2+ to Sn4+, resulting the proportion of 

the Sn4+ peak increased from 0.30 to 0.36 after annealing.   

TEM images of annealed SnO2 and SnO films are shown in Fig. 1(g) and (i), 

respectively. Both films exhibited lattice fringes, which demonstrated good crystallinity 

after annealing. The line profiles of SnO2 and SnO lattice fringes are shown in Fig. 1(h-

℃) and (h-II), respectively. The interplanar spacing of SnO2 was d = 0.335 nm and that 

of SnO was d = 0.266 nm, which is very close to the value of 0.270 nm spacing of PDF 

standard (110). The results were also consistent with those of XRD.  

Fig. 2(a) shows high resolution TEM image of SnOx film, which consisted of SnO 

and SnO2 on the left (shaded in green) and right (shaded in red), respectively. The 

corresponding atomic model diagram of the green shaded area observed from the top is 

shown in Fig. 2(b). The black rectangular line is associated with the position of Sn2+, 

which belongs to the orthorhombic crystal system (a=3.82 nm, b=3.61 nm, c=4.30 nm) 

of pm21n space group. The atomic model diagram corresponding to the red shaded area 

from the top is shown in Fig. 2(c). There is a consistent lattice fringe of SnO2 observed 

from the crystal orientation [001] downward. The crystal plane spacing measured in 

(110) is 0.335 nm, which is consistent with the interplanar spacing measurement from 

the TEM in Fig. 1(g). Another orientation of SnO2 was observed (as shown in Fig. 2(d)) 

similar to the crystal orientation of [010]. The measured spacing at the crystal planes of 

(101) and (200) were 0.264 and 0.237 nm, respectively. As the SnO2 belongs to the 

tetragonal system (a=4.75 nm, b=4.75 nm, c=3.19 nm), an addition of odd index in the   
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Fig. 2. (a) HRTEM image of SnOx films. (b), (c) Schematic atomic model of SnO and SnO2 films 

from top view corresponding to the green and red shaded areas in (a), respectively. (d), (e) 

HRTEM image of SnO2 film and corresponding schematic atomic model from top view, 

respectively. (f) AFM topographical image of as-grown SnOx film. (g) AFM line profile across a 

step edge (green line) of as-deposited SnOx film. (h) AFM topographical image of annealed SnOx 

film. (i) AFM line profile across a step edge (red line) of annealed SnOx film. 

 

crystal plane would result in an extinction phenomenon, which would obscure the (100) 

crystal plane. Fig. 2(e) shows the corresponding atomic model diagram, which Sn4+ 

occupies the vertices and focal points of the orange rectangular line, and O2- exhibits a 

hexagonal arrangement. 

Surface morphology of the SnOx film with Opp of 10 % was studied using AFM to 

determine the quality of film formation as it will affect the optical properties of the 

material. Fig. 2(f) shows the AFM topographical image of the as-grown SnOx film. The 

root-mean-square (RMS) roughness of the film was 2.8 nm. Wet etching was carried 

out on the as-grown film in order to perform step measurements to determine the film 

thickness. Fig. 2(g) shows the AFM line profile across the step and revealed a film 

thickness of 240 ± 4.9 nm. The AFM image of the film after annealing is shown in Fig. 

2(h). There was no obvious change in the RMS roughness of the annealed film. 
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However, the film thickness was reduced by 40 nm after annealing as shown in Fig. 

2(i). This could be due to densification and crystallization, which would result in a much 

denser film23. Such phenomena would have certain impact on the optical and electrical 

properties of the film. 

UV photodetectors based on the SnOx films were fabricated and have a device 

structure of quartz/SnOx/Ag as shown in Fig. 3(a). The SnOx films were deposited with 

0 % , 8% and 10% Opp on quartz substrates and annealed at 300 °C for 1 h, it was found 

that only 10% Opp may lead to a stable device performance, thus it has been chosen to 

fabricate the photodetector. Fig. 3(b) illustrates the working principle of the 

photodetector using an energy band diagram. A p-n junction was formed between p-

type SnO (Eg = 2.7 eV) and n-type SnO2 (Eg = 3.6 eV) semiconductor materials. When 

the device is exposed to 365 nm UV light, electrons would migrate from SnO to SnO2 

(and holes migrate from SnO2 to SnO) hence resulting in a potential difference that 

would generate a photocurrent in a closed circuit. J-V and log J-V characteristic curves 

of the device are shown in Fig. 3(c) and (d), respectively. Both plots showed that the 

photocurrent (under 365 nm UV light at a power density of 0.185 mW/cm2) was larger 

than the dark current, thus the device was suitable for UV detection. Responsivity (R) 

is an important parameter that reflects the performance of photodetector. It can be 

determined using the following formula (Equation 2): 

                      𝑅 =
𝐽𝑝ℎ

𝑃𝑜𝑝𝑡
                        (2) 

where Jph is photocurrent density and Popt is photo power density. For a photo power 

density of 0.185 mW/cm2, the maximum responsivity of the photodetector exceeded 

0.9 A/W as shown in Fig. 3(e). Another important parameter is the detectivity (D*), 

which can be determined using the following expression (Equation 3): 

                𝑫∗ =
𝑹

𝟐𝒒√|𝑱𝒅𝒂𝒓𝒌|
                     (3) 

where Jdark is dark current density, q is unit charge (1.6×1019 C). As shown in Fig. 3(f),  
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Fig. 3. (a) Schematic diagram of SnOx based UV photoconductive detector. (b) Energy band 

diagram of the photodetector. (c), (d) Plots of J–V and log J–V characteristic curves of the 

photodetector based on SnO/SnO2 film under 365 nm illumination, respectively. (e), (f) Plots of 

responsivity (R) -V and detectivity (D*) – V curves of the UV photodetectors based on the 

SnO/SnO2 film. 

 

D* was stable at 1010 Jones (1 Jones = 1 cm· Hz1/2·W-1) and its highest value could 

reach 1011 Jones. Both the responsivity and detectivity of the photodetector were much 

higher under forward bias voltage24-25. 

4. Conclusion 

SnOx thin films were prepared by magnetron sputtering. The bandgap of the film 

can be adjustable between 2.16 and 3.96 eV depending on the percentage of OPP during 

film deposition and heat treatment after growth. An unoptimized UV photodetector, 

consisting of quartz/SnOx/Ag, was fabricated and exhibited a detectivity of 1011 Jones 

under 365 nm UV light. The adjustable bandgap of the SnOx film would allow its use 

in UV light-emitting diodes and sunblind UV detectors.  
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