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Abstract: 14 

The European rabbit (Oryctolagus cuniculus) is a notorious economic and environmental pest 15 

species in its invasive range. To better understand the population and range dynamics of this 16 

species, 41 years of abundance data have been collected from 116 unique sites across a broad 17 

range of climatic and environmental conditions in Australia. We analyzed this time series of 18 

abundance data to determine whether inter-annual variation in climatic conditions can be 19 

used to map historic, contemporary, and potential future fluctuations in rabbit abundance 20 

from regional to continental scales. We constructed a hierarchical Bayesian regression model 21 

of relative abundance that corrected for observation error and seasonal biases. The corrected 22 

abundances were regressed against environmental and disease variables in order to project 23 

high spatiotemporal resolution, continent-wide rabbit abundances. We show that rabbit 24 

abundance in Australia is highly variable in space and time, being driven primarily by inter-25 

annual variation in temperature and precipitation in concert with the prevalence of a non-26 

pathogenic virus. Moreover, we show that inter-annual variation in local spatial abundances 27 

can be mapped effectively at a continental scale using highly resolved spatiotemporal 28 

predictors, allowing “hotspots” of persistently high rabbit abundance to be identified. 29 

Importantly, cross-validated model performance was fair to excellent within and across 30 

distinct climate zones. Long-term monitoring data for invasive species can be used to map 31 

fine-scale spatiotemporal fluctuations in abundance patterns when accurately accounting for 32 

inherent sampling biases. Our analysis provides ecologists and pest managers with a clearer 33 

understanding of the determinants of rabbit abundance in Australia, offering an important 34 

new approach for predicting spatial abundance patterns of invasive species at the near-term 35 

temporal scales that are directly relevant to resource management.   36 
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Introduction: 40 

Long-term datasets are vitally important for the successful management of native and 41 

invasive species (Yoccoz et al. 2001). In a macro-ecological context, such datasets should 42 

ideally report the abundance of the species through time at multiple sites, capturing a broad 43 

range of niche requirements (Magurran et al. 2010). These types of spatiotemporal explicit 44 

datasets, whilst being rare (Whittaker et al. 2005), can help to identify climatic, 45 

environmental and biotic processes that determine species range limits and drive the structure 46 

and dynamics of geographic ranges (Caughley et al. 1988, Gaston 2003). Furthermore, they 47 

can be used to predict spatiotemporal variation in population fluctuations which is crucial for 48 

effective conservation (Channell and Lomolino 2000) and pest and invasive species 49 

management (Strayer et al. 2006).  50 

Differences in duration, methodology, frequency of sampling, spatial grain and spatial 51 

extent within and between studies, makes systematic comparisons of inferences of long-term 52 

population trends, from multiple studies problematic (Magurran et al. 2010, Pagel et al. 53 

2014). Notwithstanding these difficulties, the integration of long-term spatially explicit 54 

datasets from disparate sources, with varying spatial and temporal scales, is becoming more 55 

common in macroecological studies as a means of forecasting patterns of spatial abundance 56 

in time and space (Mellin et al. 2012), and to better understand ecological impacts of invasive 57 

species (Strayer et al. 2006). The development of statistical approaches that allow sampling 58 

and temporal biases (that result in false variation; Martin et al. 2005), among other sources of 59 

uncertainty in abundance time series data (e.g., imperfect detection; Joseph et al. 2009), to be 60 

identified and explicitly modelled, is facilitating better estimates of spatiotemporal variation 61 

in local-to-regional species abundance patterns (Magurran 2007, Joseph et al. 2009, Schurr et 62 

al. 2012). 63 



4 
 

 Although abundance data are still typically analyzed using the average or maximum 64 

count per unit transect (Buckland et al. 2015), N‐mixture models (models with a mixed 65 

binomial-Poisson likelihood), which estimate relative abundance based on replicated counts 66 

(Royle 2004), are being used with increasing frequency to explicitly account for detection 67 

probability in spatially explicit estimates of abundance (Aubry et al. 2012, Guillera-Arroita 68 

2017), including invasive species (Wells et al. 2016b). Such models essentially produce a 69 

bias-corrected abundance estimate, that can then be used to examine trends in population 70 

fluctuations and abundances. To do this, corrected abundance data are combined with 71 

environmental and climatic information, and where available, data on biotic interactions (i.e. 72 

covariate effects; Royle 2004), to determine potential drivers of abundances. These statistical 73 

relationships can then be used to make projections of abundance, providing opportunities to 74 

assess population trends and geographic range limits across space and time (Joseph et al. 75 

2009, Schurr et al. 2012). 76 

The abundances and subsequent ecological impacts of invasive species are 77 

exceedingly variable through time in their invasive range (Sofaer et al. 2018), making them 78 

highly suited for N-mixture modelling approaches (Joseph et al. 2009, Guillera-Arroita 79 

2017). For example, the occupancy and abundance rates of invasive species can change over 80 

short time scales as a result of shifting evolutionary pressures (Phillips et al. 2006, Cox 81 

2013), modifications in community composition (Mutze et al. 2016), and changes in species 82 

interactions (Lurgi et al. 2018). This temporal variability means that invasive species are 83 

typically not in equilibrium with their environment (Elith et al. 2010). Therefore, the 84 

collection of long-term count data at spatiotemporal resolutions that allow for acute and 85 

chronic effects of abiotic and biotic conditions on abundance to be teased apart using robust 86 

statistical approaches is vital for generating estimates of population variation for invasive 87 

species. These estimates will lead to better ecological and economic outcomes if the 88 

mechanisms that affect population fluctuations of invasive species can be identified and 89 

managed accordingly (Strayer et al. 2006). 90 

Abundance, not probability of occurrence, is the currency of invasive species 91 

management. This is because ecological mechanisms of range limits and shifts can be better 92 
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understood using abundance data (Fordham et al. 2012) and spatiotemporal estimates of 93 

abundance and subsequent variability are frequently used to maximize the efficacy of on-the-94 

ground management efforts to control invasive species (Simberloff 2003). For example, 95 

efforts for managing rabbits in their invasive range are often reduced when population size is 96 

perceived to be relatively low, allowing resources to be prioritized elsewhere (Wells et al. 97 

2016a). Moreover, time series abundance estimates are important for the development of 98 

spatially explicit and dynamic population models for invasive species management (Mellin et 99 

al. 2016), enabling management intervention strategies to be directly tested (Fordham et al. 100 

2013a). This is because time series abundance estimates enable key demographic rates to be 101 

estimated, including finite rates of population growth (Hone 1999), and for models to be 102 

calibrated (Cabral and Schurr 2010). Therefore, modelling spatiotemporal abundance patterns 103 

of invasive species provides resource managers with some distinct advantages over modelling 104 

occurrence.  105 

The European rabbit (Oryctolagus cuniculus) is an invasive pest species in several 106 

regions around the world (Cooke 2012); but is a threatened species in its native range on the 107 

Iberian peninsula, where it is a multifunctional keystone species that engineers habitat and 108 

provides prey to consumers (Delibes‐Mateos et al. 2008, Fordham et al. 2013b). In Australia, 109 

O. cuniculus occurs across > 70 % of the mainland (Stodart and Parer 1988) and is well 110 

adapted to the broad range of climatic conditions of the central and southern parts of the 111 

continent (Cooke et al. 2018a), making it one of Australia’s most abundant invasive 112 

vertebrate species (Cooke 2012). It negatively effects Australia’s unique biodiversity directly 113 

through outcompeting native species for food and shelter (Cooke 2012), altering vegetation 114 

composition (Mutze et al. 2016), and, indirectly, by maintaining invasive predator 115 

populations (Lurgi et al. 2018). Furthermore, rabbits adversely affect the agro-economy with 116 

an attributed economic loss of approximately A$200m annually (Cooke et al. 2013). 117 

Recently, more than 50 years of historical and contemporary rabbit abundance survey 118 

data, from across the invasive range of rabbits in Australia, were combined with high 119 

resolution weather, climate and environmental information to create the Australian National 120 

Rabbit Database (Roy-Dufresne et al. 2019a). This dataset provides new and important 121 
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opportunities to better manage rabbits in Australia through a stronger understanding of their 122 

population fluctuations and range dynamics. To date, there has been no Australia-wide 123 

assessment of spatiotemporal rabbit abundances and fluctuations. Such an assessment is 124 

needed to identify where, and under which environmental conditions rabbits attain high and 125 

stable abundances, due to population recruitment and resistance to population perturbations. 126 

Using this information in predictive models to generate high spatiotemporal resolution maps 127 

of rabbit abundance will enable more targeted rabbit management at local-to-regional scales, 128 

enabling the control of invasive rabbits to potentially be better optimized (Fordham et al. 129 

2012, Lurgi et al. 2016).  This is because invasive species management decisions are 130 

typically based on populations in specific habitats and locales, involving time-horizons of 131 

seasons to decades (Rout and Walshe 2013, Wells et al. 2016a). 132 

Here we combine spotlight count data from 116 sites collected over 41 years (1972 – 133 

2012 inclusive) for mainland Australia for O. cuniculus (Roy-Dufresne et al. 2019a). Our 134 

focal period starts approximately 20 years after the introduction of myxomatosis – a highly 135 

infectious and often fatal rabbit disease caused by the myxoma virus –  to mainland Australia 136 

in 1950. The focal period cover the introduction of Rabbit Hemorrhagic Disease Virus 137 

(RHDV) in 1995 (Pech and Hood 1998) and its establishment in rabbit populations. We apply 138 

a multi-level hierarchical N-mixture model to these data to “correct” for important biases 139 

(namely detection error and bias due to seasonal reproduction and abundance fluctuations) in 140 

annual estimates of abundance; and then use machine learning algorithms to determine the 141 

relative influence of climate, environment and disease on spatiotemporal variation in rabbit 142 

abundance in Australia. Our two-step approach provides a computationally efficient method 143 

for generating range-wide, high-resolution spatially (~5 km) and temporally (annual) explicit 144 

projections of abundance for a well-established invasive species, which can then be used to 145 

reveal hotspots of abundance and to elucidate the drivers of the structure and dynamics of 146 

their geographic ranges. Such information is needed to effectively management invasive 147 

species at local-to-regional scales through targeted control measures (Baker and Bode 2016, 148 

Lurgi et al. 2016).  149 
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Methods: 150 

The key steps used to analyze time series count data for rabbits and predict spatiotemporal 151 

‘hotspots’ of abundance are shown schematically in Figure 1.  152 

Spotlight data: 153 

The spotlight data collated in the Australian National Rabbit Database covers the broad range 154 

of climatic and environmental conditions that rabbits inhabit in Australia (Figure 2). These 155 

data were collated from several different sources, mostly regional researchers affiliated with 156 

state-level governmental institutions. We only consider data records with complete 157 

information regarding: (1) geolocation; (2) survey dates; (3) transect length (limited to 158 

plausible values ≥ 1 and ≤ 100km); and (4) rabbit encounters (0 counts were included). This 159 

resulted in 116 unique grid-cell sites (result of aggregating all count data into 5 km2 grid cell 160 

units) which we subsequently used to model rabbit abundances in space and time. 161 

Climate and environmental data 162 

The aggregated site data was matched to gridded 5 km2 data containing information on total 163 

daily precipitation (mm), and minimum and maximum temperature (°C) data from the TERN 164 

e-MAST facility (http://portal.tern.org.au). These climatic variables have been shown to 165 

influence the burrow emergence behavior of rabbits, and therefore affect detection probability 166 

of rabbits during spotlight surveys (Ballinger and Morgan 2002). Furthermore, grid-cell 167 

information on the location and length of the transect, annual climatic conditions (e.g. 168 

previous summer total precipitation, previous winter average minimum temperature), 169 

environmental conditions (e.g. proportion of agricultural land within the 5km2 grid cell, 170 

proportion of clay soils), and disease proxies (e.g. prevalence of non-pathogenic rabbit 171 

calicivirus [RCV-A1]; Liu et al. 2014) was also joined to the aggregated data.  172 

Full details of the climatic and environmental variables used in our analysis are 173 

provided in Appendix S1: Table S1. 174 

Climate zone 175 

To account for regional differences in seasonal rabbit population growth and recruitment 176 

(Poole 1960, Hone 1999, Mutze et al. 2002, Wells et al. 2016b), the spotlight records were 177 

http://portal.tern.org.au/
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grouped into climate zones, where long-term climatic conditions were similar. No 178 

geophysical properties (e.g. elevation) were included in the stratification units as they are not 179 

expected to significantly influence rabbit distributions and abundance in Australia (Cooke 180 

1977, Fordham et al. 2012, Wells et al. 2016b, Roy-Dufresne et al. 2019b). The climate zones 181 

were identified by first doing a principal component analysis on 12 climatic variables (e.g. 182 

30-year mean maximum temperature, precipitation seasonality), and then an iterative test to 183 

identify the number of “climate zones” required to adequately describe the diversity of 184 

climatic conditions. Using a k-means clustering algorithm (R Core Team 2017), the iterative 185 

test involved minimizing the within-cluster sum of squared errors (SSE) for a range of 186 

potential cluster solutions (2 – 12 clusters) and identifying the point of inflection where the 187 

SSE levelled off. Since rabbit reproduction and regional population fluctuations are often 188 

highly seasonal (Mutze et al. 2002, Wells et al. 2016b), the spotlight abundance data was 189 

grouped by climatic zones where long-term average climate and resource availability (Noble 190 

1977) is assumed to be similar (Figure 2). In doing so, we assume that all rabbit populations 191 

from a climate zone follow similar seasonal population fluctuations through synchronous 192 

timing of reproduction. Climate zones ranged from warm, humid summer conditions in the 193 

north with austral summer (DJF) dominated rainfall (Zone 8) to mild summers and cool 194 

winters, with winter dominated rainfall conditions in the south (Zone 5). A full description of 195 

the climate zones is provided in Appendix S1: Table S2, with mean (± S.D) for each variable. 196 

The climate zones are available in Data S1: Brown_et_al_RabbitAnalysisOutputs.nc.  197 

Correcting abundance count data: 198 

We established a generalized multi-level hierarchical mixture model in a Bayesian 199 

framework to derive an index of standardized relative yearly rabbit abundance free of well-200 

established and important sampling biases that is comparable across surveys. Specifically, we 201 

used an N-mixture model (Royle 2004) to model spotlight counts c(t,k) for each of the 202 

repeated surveys k during a given year in for cell r at time step t as: 203 

𝑐𝑐(𝑡𝑡,𝑘𝑘)~𝐵𝐵𝐵𝐵𝐵𝐵[𝑁𝑁𝑟𝑟(𝑡𝑡),𝑝𝑝(𝑡𝑡,𝑘𝑘)] 𝑎𝑎𝑛𝑛𝑑𝑑 𝑁𝑁𝑟𝑟(𝑡𝑡) ~ 𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃[𝛬𝛬(𝑟𝑟, 𝑡𝑡)] (1) 204 
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where, we assumed each count to be a random draw based on the underlying true but 205 

unknown abundance Nr(t), governed by the Poisson density Λ(r,t).  206 

We modelled the detection probability p(t,k) with a logit-link function as:  207 

𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙[𝑝𝑝(𝑡𝑡,𝑘𝑘)] =  𝜇𝜇(𝑟𝑟) +  𝜂𝜂(𝑐𝑐) + 𝑣𝑣1(𝑑𝑑𝑑𝑑) + 𝑣𝑣2(𝑡𝑡𝑚𝑚𝑚𝑚𝑚𝑚) + 𝑣𝑣3(𝑡𝑡𝑚𝑚𝑚𝑚𝑚𝑚) + 𝑣𝑣4�𝑝𝑝𝑝𝑝𝑑𝑑𝑑𝑑𝑑𝑑� (2) 208 

where, µ(s) accounts for variation in detection probability between cells (r), η(c) accounts for 209 

variation between climate zones (c), ν(ds), v(tmax), v(tmin), and v(prday) allow for variation 210 

between different data sources (corresponding to different survey teams), and daily weather 211 

variables. Note that Λ(r,t) represents the relative local abundance at the time of observation 212 

and is not corrected for transect length nor seasonal bias in counts. 213 

The spotlight surveys were conducted in different seasons and along transects of 214 

different lengths, therefore, the estimate of detection probability needs to account for 215 

spatiotemporal variability in recruitment (Wells et al. 2016b) and survey efforts (Ballinger 216 

and Morgan 2002, Barrio et al. 2009). Doing so will reduce potentially important sources of 217 

bias in estimates (Link et al. 2018). We used random regression models, following Wilson et 218 

al. (2005), to account for potentially important variation due to seasonal bias and different 219 

transect lengths. For this, we modelled Λ(r,t) on a log-scale (natural logarithm):  220 

ln[Λ(𝑟𝑟, 𝑡𝑡)] =  𝜔𝜔(𝑟𝑟,𝑦𝑦,𝑚𝑚) + ln[𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡(𝑖𝑖)] (3) 221 

where, ω(r,  y, m) is the intercept of the random regression model, which can vary across 222 

cells (r), years (y), and months (m); and transL(i) is the corresponding length of the transect 223 

in km for the respective sample. 224 

We modelled ω(r,  y, m) further based on a two-level mean/hyperprior models with 225 

Gaussian error of the general form Ɲ[𝐻𝐻,𝜎𝜎2] with mean H and variance σ2 in order to derive 226 

an estimate of the most likely yearly abundance independent of the seasonal bias in counts:  227 

𝜔𝜔(𝑟𝑟, 𝑦𝑦,𝑚𝑚) ~Ɲ[𝐻𝐻𝑅𝑅𝑅𝑅.𝜔𝜔(𝑟𝑟,𝑦𝑦),𝜎𝜎𝑅𝑅.𝜔𝜔(𝑟𝑟)2] (4)  228 

and 229 

𝐻𝐻𝑅𝑅𝑅𝑅.𝜔𝜔(𝑟𝑟,𝑦𝑦) ~ Ɲ[𝐻𝐻𝑅𝑅.𝜔𝜔(𝑟𝑟),𝜎𝜎𝑅𝑅.𝜔𝜔(𝑟𝑟)2] (5) 230 

where, HRY.ω(r, y) denotes the population-level annual ‘average’ density distribution for each 231 

site and year, while the respective variance σR.ω(r)2 is a random estimate of the inter-232 

seasonal variance in population fluctuations for each cell (r) according to the variation in 233 
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monthly counts from different sites. HR.ω(r) denotes the site-level ‘average’ relative 234 

abundance and σR.ω(r)2 interannual variance in population fluctuations.  235 

Our model was fitted in a Bayesian framework using Markov Chain Monte Carlo 236 

(MCMC) sampling in the software JAGS 4.3.0, operated via the R software (v 3.5.1; R Core 237 

Team 2017) with the ‘rjags’ package (Plummer 2016). Priors were specified as σ ~ Gamma 238 

(0.01, 0.01) and HR.ω(r) ~ Ɲ(0, 10). 239 

We applied posterior predictive model diagnostics to assess whether the model 240 

assumptions were good approximations of the data generating process. Bayesian P-values 241 

~0.5 indicate a good model fit whereas values close to 0 or 1 indicate an increasing 242 

discrepancy between model predictions and observation data (Gelman et al. 1996). We 243 

calculated 5000 values as posterior distributions for all parameters of interest after mixing 244 

and convergence of two parallel MCMC chains was confirmed visually and with the Gelman-245 

Rubin diagnostic (most values < 1.2) after a burn-in of 50,000 MCMC samples.  246 

Modelling rabbit abundances in space and time: 247 

Modelled corrected abundances (HRY.ω(r, y); Appendix S1: Figure S1) – extracted from the 248 

Bayesian model as the mode of the posterior density distributions – were aligned with the key 249 

predictor variables in Appendix S1: Table S1. To generate predictions of rabbit density we 250 

opted to use a readily available and straight forward machine learning approach, random 251 

forests (RF; Breiman 2001), implemented in the ‘randomForest’ package for R (Liaw and 252 

Wiener 2018). This decision was made because compared to most Bayesian methods, RFs 253 

enable a broad range of model selection and cross-validation procedures that are not 254 

commonly used in an MCMC context due to practical computing time issues (Kéry and 255 

Schaub 2011). Essentially, we use the hierarchical model for correcting abundances for 256 

various sources of bias, while we use RFs for exploring and accounting for any non-linear 257 

patterns between corrected abundances and climate and environmental correlates in spatial 258 

predictions. 259 

For simplicity, we categorized the annual model corrected abundance estimates into 260 

‘low density’ (corresponding to ≤ 45 rabbits/km2, assuming an effective transect width of 0.1 261 
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km) and ‘high density’ (corresponding to > 45 rabbits/km2). These values were chosen as 262 

there was a natural break in the calculated density values, and it has been demonstrated that at 263 

densities < 50 rabbits/km2, damage to perennial native vegetation is minimized across both 264 

temperate and arid environments (Mutze et al. 2016). This binary variable allowed us to use a 265 

two-step regression model (Mellin et al. 2012) to predict rabbit abundance through time and 266 

space (Figure 1). To do this we used a binary classification variable (high/low density) as a 267 

predictor in our regression model in order to make spatiotemporal explicit predictions of 268 

rabbit abundance. Thus, the model generates spatial estimates of abundance conditional on 269 

whether density in a given cell is high or low.  270 

A binary classification RF model was first created using the aforementioned density 271 

classes. Due to the unbalanced nature of the classes a posteriori tuning of the probability 272 

threshold for classification (default = 0.50) was performed to maximize model accuracy. 273 

Using this approach, once the classification RF model had been trained (using the default 274 

threshold), a series of thresholds between 0 and 1 were tested to maximize the area under the 275 

ROC curve (Kuhn 2018). A separate regression RF model was then built which incorporated 276 

the RF predicted density classes as an additional correlate for predicting rabbit abundance. 277 

The two‐step procedure necessitated the use of RF predicted rabbit density for cell r at time 278 

t-1.  279 

To train and assess the performance of our RF models, we used 1,000 repeats of a 280 

Monte-Carlo cross-validation procedure, whereby the data was randomly split (without 281 

replacement) into 80/20 training/test splits. Models consisting of 2001 trees were built on the 282 

80% splits and tested on the 20% holdout test samples. The cross-validation was carried out 283 

using the ‘caret’ package for R (Kuhn 2018). Correlations between the environmental and 284 

climatic correlates (Appendix S1: Table S1) were tested, and with a few exceptions, were not 285 

strongly positive or negatively correlated (Appendix S1: Figure S2). As random forests are 286 

able to deal with correlated variables (Breiman 2001), we did not perform any feature 287 

selection or reduction on the correlates included in the model. Variable importance was 288 

calculated using an unscaled permutation-based method (Liaw and Wiener 2018). Spatial 289 

autocorrelation in the residuals of predicted RF abundance was conducted using Moran’s I 290 
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statistic using an inverse distance relationship with a threshold of 1130 km (the average 291 

pairwise distance between all sampling points). 292 

Spatially and temporally explicit estimates of rabbit density and abundance (i.e. 293 

maps), were then predicted for Australia between 1972 and 2012. Hotspots of high rabbit 294 

abundance were identified for each year that abundance predictions were made by 295 

approximating a cumulative relative frequency distribution (CRFD) curve as a function of 296 

relative rabbit abundance plotted against the relative frequency distribution of abundance for 297 

a given year (Bartolino et al. 2011a). The count data for the CRFD curve was pooled across 298 

all sites within each year. Unlike traditional hotspot identification methods which require a 299 

user-defined threshold (Bartolino et al. 2011a, b, Cayuela et al. 2011), the CRFD method 300 

identifies the hotspot threshold as a function of the CRFD curve. The method involves 301 

calculating the slope of the tangents to the CRFD curve, with the hotspot threshold being 302 

identified as the value where the slope of the tangent is 45° (Bartolino et al. 2011a). Using the 303 

thresholds for each year, the predicted abundance maps were then converted to a series of 304 

binary hotspot maps. The proportion of time spent in “hotspot” conditions across the study 305 

period was then determined for each cell by counting the number of times a cell was 306 

classified as a hotspot, divided by the number of years.  307 

Climate envelope and confidence mask 308 

To constrain predictions of corrected density and abundance to climate conditions used to 309 

train the model and, in doing so, avoid model extrapolation, we identified all cells for 310 

Australia that fell within the extremes (i.e. highest and lowest) of the climatic variables that 311 

were used to define the climate zones. In doing so we constrain our predictions of density and 312 

abundance to cells that fall within the bounds of our long-term climatic variables and limit 313 

extrapolation to “unseen” climatic conditions (Liu et al. 2014). All maps in Data S1: 314 

Brown_et_al_RabbitAnalysisOutputs.nc are clipped to this climate envelope.  315 

To identify regions of “low confidence,” we did a PCA using the top 10 316 

environmental and climatic variables that were considered important for both the 317 

classification and regression RF models, and using the first 3-components as pseudo-3- 318 
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dimensional-coordinates, we identified individual grid cells in 3-dimensional space that were 319 

outside a 3-dimensional convex-hull of the sampling sites within each of the climate zones. 320 

That is, 3-dimensional polygons were constructed, with vertices defined by the pseudo-3- 321 

dimensional-coordinates of all cells for which we had samples within each climate zone. Any 322 

additional cells (i.e. grid cells where no monitoring had occurred) that exist inside the 3-323 

dimensional boundary of this polygon can be considered inside the “environmental space” of 324 

the study sites within each climate zone. Cells outside this 3-dimensional polygon, have 325 

climatic or environmental conditions not seen at the sites used within the climate zone. This 326 

process allowed us to identify grid-cells where our predictions of corrected density and 327 

abundance were outside the environmental and climatic space of all monitoring sites in the 328 

study, essentially creating a mask of low confidence where predictions were likely to have 329 

been extrapolated in environmental and/or climatic space, rather than interpolated. The 330 

confidence mask is supplied in Data S1: Brown_et_al_RabbitAnalysisOutputs.nc. 331 

Results: 332 

Drivers of detection 333 

Coefficient estimates for the drivers of detection varied in magnitude and sign across climate 334 

zones (Table 1). Within 5 of the 9 climate zones (1, 2, 4, 6, and 7) an increase in maximum 335 

daily temperature decreased the probability of detection (mean = -0.23, S.D. = 0.11), whilst 336 

for the remaining 4 zones (3, 5, 8, and 9) it resulted in an increase in detection probability 337 

(mean = 0.28, S.D. = 0.18). Increases in minimum daily temperature (except for climate zone 338 

4) and daily total precipitation, resulted in slight increases in detection probability (minimum 339 

daily temperature: mean = 0.04, S.D. = 0.03; precipitation: mean = 0.05, S.D. = 0.02).  340 

Gelman-Rubin diagnostics for hyperpriors indicated good convergence of the 341 

detectability model: (i) maximum daily temperature = 1.08 (upper CI = 1.32); (ii) minimum 342 

daily temperature = 1.17 (upper CI = 1.59); (iii) daily precipitation = 1.09 (upper CI = 1.31). 343 

Determinants of spatiotemporal patterns of density and abundance 344 

The five most important predictor variables, as calculated using permutation importance, for 345 

the classification RF model of rabbit density (high/low) were: temperature seasonality, 346 
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proportion of irrigated agriculture within the grid-cell, two-year lagged average temperature, 347 

distance to permanent water, and the prevalence of the benign RCV-A1 calicivirus (Appendix 348 

S1: Figure S3). Evaluation of these variables with Accumulated Local Effects (ALE; Apley 349 

2016) plots (Appendix S1: Figure S4) suggests that at sites with lower temperature 350 

seasonality and lower mean annual temperatures in the years (n = 2) prior to the survey, there 351 

was an increased probability of high rabbit densities. Furthermore, at the few sites that were 352 

sampled on irrigated land, sites with as little as ~7.5% irrigated agriculture within a 5km grid-353 

cell were 60% more likely to have high rabbit densities than a conditional averaged site 354 

(Appendix S1: Figure S4). The probability of a site having high density decreased with 355 

distance from permanent water until ≳ 20km.  Although some sites that had high densities 356 

were situated very far away from permanent water sources (> 150km; Appendix S1: Figure 357 

S4). As benign RCV-A1 prevalence increased above ~20% the probability of a site having 358 

high abundance was ~25% greater than the average site (Appendix S1: Figure S4). Taken 359 

together the results from the classification RF model suggest that at sites with stable, cool 360 

temperatures, with abundant pastures (owing to irrigation, and proximity to permanent water 361 

sources), and prevalent RCV-A1, rabbit densities will be higher. Cross-validated performance 362 

of the classification model was excellent across climate zones and in most cases fair to 363 

excellent within climate zones (Table 2). The mode of the predicted rabbit densities and the 364 

mean prediction probability confidence (1972 – 2012) is shown in Figure 3. The complete 365 

time series of density maps is shown in Data S1: Brown_et_al_RabbitAnalysisOutputs.nc. 366 

 The five most important variables influencing model predictions of rabbit abundance 367 

(excluding rabbit density class from the previous year; Appendix S1: Figure S3) were: 368 

precipitation the year prior, average winter minimum temperature the year prior, two-year 369 

lagged total precipitation, precipitation seasonality, and the prevalence of benign RCV-A1. 370 

These variables exhibited similar importance within the regression RF model (Appendix S1: 371 

Figure S3). ALE plots of the regression model (Figure 4) suggest that at sites where one-year 372 

lagged precipitation was ≳ 400mm the year prior, and one-year lagged minimum winter 373 

temperatures ≳ 4°, there was an increase in rabbit abundance. As for the classification model, 374 

examination of two year lagged average temperature suggests that at sites with lower mean 375 
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annual temperatures (≲ 16° C) rabbit abundances are higher. Like with the classification RF, 376 

this suggests that in cool, wet areas rabbit abundances will be higher. However, for the 377 

regression RF the effects of precipitation are likely acting as a proxy for pasture availability. 378 

In contrast to the classification model, the plot of the association between abundance and the 379 

prevalence of benign RCV-A1 suggests that as virus prevalence increases, abundances will 380 

decrease (Figure 4). Regression model performance was excellent across climate zones and in 381 

most cases fair to excellent within climate zones (Table 1). With some exceptions, the 95% 382 

prediction intervals of the regression RF model were able to capture the variability in the 383 

corrected abundance counts (Figure 5). Moran’s I suggested no residual spatial 384 

autocorrelation (I = 0.002, z = 0.166, p = 0.87). The mean of the predicted rabbit abundances 385 

and the mean standard deviation of the abundances through time (1973 – 2012) are shown in 386 

Figure 3. All abundance maps are available in Data S1: 387 

Brown_et_al_RabbitAnalysisOutputs.nc. 388 

Variable interactions 389 

Examination of second-order interactions for the regression model (Figure 4b) suggest that 390 

for sites with > 20% prevalence of benign RCV-A1 and with mean annual temperatures 391 

below ~16° C, the combined effects are positive on abundance. Conversely, second-order 392 

interactions between precipitation and RCV-A1 (Figure 4c) suggest that at sites with ≲ 20% 393 

prevalence, and annual precipitation is > 600mm/year, there is a net positive effect on rabbit 394 

abundance suggesting increased precipitation, and therefore an increase in potential pasture 395 

availability, could lead to higher abundances at sites where there is low immunity to lethal 396 

RHDV. Furthermore, after the main effects of the variables (namely precipitation and RCV-397 

A1 prevalence) have been accounted for, there is a negligible effect of RCV-A1 prevalence 398 

on rabbit abundance in areas of high rainfall (> 600mm/year) as illustrated by the relative 399 

“flatness” and values of the interaction surface (Figure 4c).  400 

Hotspots of abundance 401 

Predicted maps of rabbit density and abundance show high levels of interannual variation 402 

along the east coast of Australia, with density classes and abundances fluctuating between 403 
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high and low levels inland from the coast for a distance of ~300km (Figure 3). Hindcasts of 404 

abundance for the southern coastline of mainland Australia showed lower inter-annual 405 

variability compared to the eastern coastline. Inland areas tended to be relatively stable, 406 

however, these areas were generally inside the low-confidence mask.  407 

Analysis of temporal hotspot conditions suggest small inter-annual variability in the 408 

threshold used to identify hotspots of rabbit abundance across time (mean = 12, S.D. = 2.5; 409 

Figure 6). A Mann-Kendall trend test suggested a very small but non-significant increase in 410 

the hotspot threshold across all years (τ = 0.05, p = 0.70) suggesting rabbit numbers are 411 

decreasing as the threshold used to identify a hotspot has increased. Broadly, hotspots of 412 

rabbit abundance followed similar patterns to maps of predicted abundance (Figure 6). All 413 

hotspot maps are provided in Data S1: Brown_et_al_RabbitAnalysisOutputs.nc, with code to 414 

reproduce the analysis and Figure 6 provided in Data S1: RabbitHotpotAnalysis.R. 415 

Discussion: 416 

We show that combining multi-level hierarchical Bayesian models with simple machine 417 

learning methods is an effective, and computationally tractable, method for modelling the 418 

structure and dynamics of the geographical distribution of a wide-ranging invasive vertebrate 419 

species. By allowing us to project, effectively, spatiotemporal variation in the abundance of 420 

rabbit populations across their invasive range in Australia, our approach provides an 421 

important new approach for identifying hotspots of persistently high rabbit abundance at 422 

timescales (annual to decadal) that are directly relevant to resource management in Australia 423 

(Hobday et al. 2010, Cooke 2012). The identification of potential past and future hotspots 424 

will allow pest managers to better plan for and conduct control actions for rabbits in areas and 425 

at times of greatest need (Simberloff 2003).  426 

A robust understanding of spatiotemporal variability in abundance patterns across an 427 

invasive species range is invaluable for studying the processes of invasion and for pest 428 

management (Strayer et al. 2006). However, this requires spatial abundance estimates that 429 

account for inherent biases in long-term count data (Joseph et al. 2009, Link et al. 2018). Our 430 

use of a hierarchical Bayesian N-mixture model, coupled with a hyperprior-based model, 431 
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allowed us to explicitly account for important variation in detection probability in long-term 432 

estimates of abundance from sites covering a large spatiotemporal extent. Although similar 433 

approaches have been applied to rabbit spotlight count data before (Aubry et al. 2012, Wells 434 

et al. 2016b), they have not then been extended to account for seasonal bias in counts from 435 

multiple surveys at multiple sites, and have not been used to for predictions of spatiotemporal 436 

abundance. Daily precipitation has previously been found to drastically decrease surface 437 

activity of rabbits and therefore detectability (Ballinger and Morgan 2002), whilst the results 438 

of our analysis suggest very small increases in detectability with increased rainfall on the day 439 

of the survey. We found that increases in daily maximum temperature could either increase or 440 

decrease the probability of detection across climate zones – this variability could be attributed 441 

to differences in climate, or differences in survey time. For example, in climate zone 9 442 

(warm, semi-arid conditions; Appendix S1: Table S2) increases in maximum daily 443 

temperature increased detection probability, but if these surveys were mainly conducted in 444 

the Austral winter (June, July, August) then maximum daily temperatures would be lower 445 

than in, for example, climate zone 8 (warm, summer rainfall; Appendix S1: Table S2) (where 446 

increases in maximum temperature decreased detection probability) if surveys in that zone 447 

were mainly conducted in the Austral summer (DJF). Time of day and year has been shown 448 

to influence counts during spotlight surveys (Ballinger and Morgan 2002, Williams et al. 449 

2007, Barrio et al. 2009), with seasonal variations in Mediterranean environments also 450 

reported (Martins et al. 2003). These variations have largely been attributed to changes in 451 

foraging activities and seasonal variations in population abundances. Whilst information on 452 

spotlight survey time (dawn, dusk, hour etc.) is missing from the database, we attempted to 453 

overcome seasonal variability by using random regression models (Wilson et al. 2005) which 454 

accounted for the month of survey mainly to control for seasonal birth pulsing (Wells et al. 455 

2016b). 456 

Our Bayesian hierarchical N-mixture model, employed at multiple sites across the 457 

invasive range of rabbits in Australia, generated a standardized relative yearly rabbit 458 

abundance across space and time, corrected for ‘false variation’ as a result of imperfect 459 

detection and seasonal fluctuations in abundance (due to seasonal birth pulses) in some areas. 460 
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Using these corrected abundances in a machine learning framework (random forest models; 461 

RF) provided a highly computationally efficient method for identifying the spatiotemporal 462 

drivers of heterogeneity in rabbit abundance across their invasive range. Furthermore, the use 463 

of RF permitted the analysis of non-linear relationships between, and within, predictor 464 

variables, that may have otherwise been missed (Breiman 2001, Apley 2016). 465 

The comprehensive nature of the statistical modelling undertaken here, covering 41 466 

years and approximately 3.8 million square kilometers, which is unique for a terrestrial 467 

invasive vertebrate, allowed us to directly model potential drivers of rabbit abundance in 468 

space and time. Our results support previous research, showing that rabbit populations are 469 

influenced by pasture availability and the water content of pastures (Cooke 2012), 470 

temperature (attaining higher densities in cooler temperatures; Gilbert et al. 1987) and to an 471 

extent, the effects of RCV-A1 (Cooke et al. 2018b). The effects of pasture availability and 472 

water content (e.g. the presence of irrigated pastures), combined with cooler temperatures and 473 

stable seasonal rainfall could potentially be driving the high predicted densities inland along 474 

the southern coastline (Figure 3). The classification RF shows that RCV-A1 prevalence was 475 

positively correlated with high rabbit densities (high/low), because RCV-A1 provides partial 476 

protection from lethal RHDV (Strive et al. 2013). Since the prevalence of RCV-A1 is 477 

strongly correlated with rainfall (Liu et al. 2014), rabbits in cooler, wetter areas are likely to 478 

be found in higher abundances due to food availability, and these same populations are likely 479 

to be more resistant to infection with lethal RHDV. Although, RCV-A1 also influenced 480 

estimates of abundance from the regression RF, prevalence of RCV-A1 was negatively 481 

associated with rabbit abundance – a result likely due to complex interactions between rabbit 482 

populations, climatic conditions, disease vectors, and epizootics (Cooke 1983, Liu et al. 483 

2014). This result requires further investigation, using new approaches that can directly tease 484 

apart these interactions, which are often mutually reinforcing (Wells et al. 2018). The 485 

presence of European rabbit fleas was not important in determining either density or 486 

abundance, but has been shown previously to decrease rabbit numbers as a vector of the 487 

myxoma virus (Cooke 1983). These results are likely a result of a lack of spatial and 488 
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temporally explicit data on the release, establishment and expansion of European fleas over 489 

the study period.   490 

Spatial and temporally explicit estimations of abundance are an important component 491 

in ecological modelling, because a change in population abundance over time and space is 492 

brought about by changes in movement and/or birth and death rates. Identifying and 493 

quantifying the temporal variability in populations of invasive species can help to better 494 

target management actions (Simberloff 2003) – particularly when responses to removal of 495 

invasive species happen on varying time scales (Strayer et al. 2006, Cooke 2012, Lurgi et al. 496 

2018), and different control measures will have differing population level effects (Wells et al. 497 

2016a). Just as importantly, quantifying variability in population abundances across the range 498 

of a species can unlock the ecological mechanisms responsible for spatiotemporal variation in 499 

abundance across a species geographic distribution (Caughley et al. 1988). This information 500 

is essential for optimizing management actions aimed at controlling invasive species (Mellin 501 

et al. 2016). The clustered nature of the spotlight survey data (Figure 2; Roy-Dufresne et al. 502 

2019a) resulted in large areas of our predicted density and abundance values falling inside 503 

our low confidence mask (Figure 3). However, we still have faith in the predicted values at 504 

these sites due to the results of our random forest models, and the climatic mask that was 505 

used to prevent any extrapolation in our predictions. Due to the highly fluctuating nature of 506 

rabbit populations, we believe that managers should still utilize such information to guide 507 

potential future monitoring and management activities. The results also demonstrate that 508 

despite using the most extensive dataset available, accurate spatio-temporal predictions of 509 

population density and abundance of highly fluctuating species is an ongoing challenge. 510 

The concept of a hotspot is focused on the stability of a species population, or a 511 

measure of biodiversity, across space and over time (Mittermeier et al. 2011). Since 512 

identifying priority areas for control activities is a key component in managing invasive 513 

species (Lurgi et al. 2016), our hindcasts of areas where a higher than expected number of 514 

rabbits can be found historically (hotspots), reveal priority sites for rabbit management. 515 

Efforts towards eradication and control of rabbits in areas that are consistently identified as 516 

hotspots (i.e. high proportion of time as a hotspot) should be given top priority (Lurgi et al. 517 
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2016), and rabbits of all age classes should be targeted (Wells et al. 2016a). Near-term 518 

climate forecasts from regional climate models are now readily available at the temporal and 519 

spatial resolutions needed to effectively manage biodiversity in response to global change 520 

(Tabor and Williams 2010). Integrating these forecasts into our hotspot analysis would allow 521 

areas for future rabbit management to be prioritized, based on knowledge of what the 522 

abundance pattern is projected to be given forecast climate conditions, with the caveat that 523 

inter-warren population competition and structure can occur at finer spatial resolutions than 524 

the 5km2 spatial scale used in this study (Lurgi et al. 2016). A comparable approach is 525 

commonly used in fisheries management to set catch rates in space and time, with good 526 

success (Hobday et al. 2010). Furthermore, these same spatiotemporal estimates of density 527 

and abundance can be integrated into spatially explicit models for informing pest 528 

management (Mellin et al. 2016), examining multispecies interactions (Lurgi et al. 2018), or 529 

for inferring patterns of spatial variation in demographic rates (Hone 1999).  530 

Beyond rabbits, our method of detecting hotspots could be used to strengthen theory 531 

underpinning important concepts in invasion biology, including whether species’ populations 532 

with high but variable abundance are more sensitive to control interventions than populations 533 

with high and less variable abundances (Wells et al. 2016a). The hypothesis being, that 534 

populations that are consistent hotspots of abundance, are likely to be more resilient to 535 

environmental fluctuations and, therefore, better able to recover from management 536 

interventions if not completely eradicated (Mutze et al. 2010). Likewise, the method could be 537 

used to test whether hotspots of abundance tend to occur more frequently at the center of the 538 

range of an invasive species, as would be expected, based on theory (i.e., species abundance 539 

distribution; Lawton 1993) 540 

The spotlight count data in the Australian National Rabbit Database includes some 541 

studies set up to record trends in rabbit population abundances after active (e.g. warren 542 

ripping) or passive (e.g., release of RHDV) population control. The timing and extent of these 543 

management actions are not extensively documented, potentially biasing abundance records 544 

used in this analysis. While we tried to account for this variation by using data source as a 545 

detectability covariate, the absence of detailed information on type and timing of 546 
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management intervention prevented a more thorough analysis of this potential source of 547 

uncertainty. This bias could possibly have resulted in lower frequencies of high abundance 548 

records for some areas, and therefore it is possible that some sites were not correctly 549 

identified as hotspots in years directly following management intervention. However, our 550 

CRFD hotspot thresholds are well below those shown to influence vegetation community 551 

composition (Mutze et al. 2016), and as such any identified hotspots are still valuable for 552 

management as these areas would still be identified as priority control sites at abundances 553 

lower than those known to alter, for example, vegetation communities.  554 

Our modelling approach for rabbits is applicable to any species for which long-term 555 

spatially explicit monitoring data and high temporal resolution climate data are available. It is 556 

flexible with regards to spatial grain and extent, and benefits from the utilization of 557 

computationally efficient machine learning methods for generating maps of spatial 558 

abundance, and for estimating variable interactions that link patterns of abundances to 559 

potential drivers and processes. The long-term management of invasive species relies on 560 

informed future projections of abundance and a good understanding of the processes that 561 

underpin the structure and dynamics of a species past and present-day distribution in its 562 

invasive range. Model-based approaches such as those created in this study promise to help 563 

guide adaptive management approaches by permitting inferences to be made regarding likely 564 

future population trends at scales relevant to management. 565 
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Data Accessibility Statement: 805 

All output maps (netcdf format) and R code to reproduce the hotspot analysis and Figure 6 is 806 

available in Data S1. Spotlight data used for the analysis is available in Roy-Dufresne et al. 807 

(2019a).  808 
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Tables: 809 

Table 1: Coefficient estimates (± S.D) for the climatic covariates used to model detection 810 

probability of rabbits during spotlight surveys in different climate zones. Geographic 811 

locations of the climate zones can be found in Figure 2. Descriptions of the climate zones are 812 

provided in Appendix S1: Table S2. 813 

Climate Zone Daily maximum 
temperature 

Daily minimum 
temperature 

Daily 
Precipitation 

1 -0.02 (0.10) 0.08 (0.11) 0.05 (0.05) 

2 -0.34 (0.15) 0.04 (0.11) 0.03 (0.05) 

3 0.52 (0.17) 0.00 (0.11) 0.07 (0.13) 

4 -0.30 (0.21) -0.02 (0.14) 0.04 (0.12) 

5 0.02 (0.41) 0.03 (0.17) 0.05 (0.14) 

6 -0.28 (0.23) 0.00 (0.10) 0.05 (0.09) 

7 -0.20 (0.17) 0.01 (0.13) 0.01 (0.10) 

8 0.26 (0.17) 0.09 (0.12) 0.08 (0.11) 

9 0.30 (0.13) 0.07 (0.10) 0.07 (0.09) 
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Table 2: Performance of the random forest regression and classification models. Cross validated model performance was assessed using 1000 814 

repeats of Monte-Carlo cross validation with an 80/20 (train/test) split. Accuracy of both the regression and classification models was excellent 815 

across climate zones and in most cases fair to excellent within climate zones (Hosmer et al. 2013). For climate zones 5 and 7, mean balanced 816 

accuracy and true skill statistics could not be calculated as the classification model predicted all samples as belonging to the same class.  817 

 Classification  Regression 
 

Sensitivity Specificity 
Mean  

Balanced  
Accuracy 

True Skill 
Statistic  Mean  

observed 
Mean  

predicted 
Mean 

absolute error 

Overall 0.86 0.85 0.86 0.71  6.4 (±11.9) 4.9 (± 6.4) 1.5 
Climate Zone         

1 0.68 0.76 0.72 0.44  8.7 (±13.9) 6.2 (±6.6) 2.6 
2 0.87 0.50 0.68 0.37  5.7 (±9.9) 4 (±5.8) 1.7 
3 0.60 1.00 0.80 0.60  14.7 (±20.1) 10 (±8.2) 4.7 
4 0.49 0.87 0.68 0.36  11.5 (±16.3) 8.6 (±6.4) 2.9 
5 NA 1.00 NA NA  7.4 (±7.3) 6.2 (±1.9) 1.2 
6 0.67 0.90 0.78 0.57  5.3 (±6.9) 5.2 (±4.3) 0.1 
7 1.00 NA NA NA  1.6 (±2.5) 1.4 (±1.1) 0.1 
8 0.88 0.68 0.78 0.56  12.9 (±15.4) 11 (±11) 2.0 
9 0.99 0.50 0.75 0.49  2.1 (±4.1) 1.6 (±1.4) 0.6 
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Figure legends: 818 

Figure 1: The modelling approach used to correct records of abundance from spotlight 819 

surveys and produce maps of rabbit density, abundance, and hotspots. The hierarchical 820 

Bayesian N-Mixture model was created using abundance records from spotlight survey data 821 

and covariates linked to detection probability (a). The bias-corrected outputs of this model 822 

were then used to make spatiotemporal explicit predictions of rabbit density (b) and 823 

abundance (c). Note that the random forest abundance estimation (c) was dependent on the 824 

random forest density classification (b) as both a point based measure (i.e. for training the 825 

abundance model), and as a continuous spatial coverage (i.e. for predicting maps of estimated 826 

abundance). Items with a dashed outline represent point-based (i.e. individual grid-cell) data, 827 

solid outlines represent continuous spatial coverage (i.e. pixels over the entire grid). Arrows 828 

show the connections between the various elements. 829 

 830 

Figure 2: Map showing the location of all spotlight rabbit abundance records (1971-2012) 831 

and the sites used in the final analysis. Column plots show the relative magnitudes for 832 

observed (dark grey) and Bayesian model corrected abundance (light grey) for a selection of 833 

sites. The different colors represent the nine climatic zones that were used in our analysis. 834 

Descriptions of the climate zones are in Appendix S1: Table S2. The beige color represents 835 

areas that are outside of the climatic envelope of our sampling sites. Map is projected in GDA 836 

1994 Australian Albers (EPSG:3577). 837 

 838 

Figure 3: Spatial predictions of rabbit densities and abundances inferred from the random 839 

forest models. (a) Spatial variation in the mode of predicted corrected densities between 1972 840 

and 2012. (b) Mean corrected abundance (rabbits/km of transect) between 1973 and 2012. (c) 841 

The probability of a correct model classification (low/high), with darker colors (dark 842 

green/dark red) indicative of high confidence in the predicted class. (d) The standard 843 

deviation of the predicted corrected abundances between 1973 and 2012. All maps are 844 

masked to the climatic envelope of the climate zones shown in Figure 2. The muted colors 845 
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represent areas with low prediction confidence i.e., pixels where the model is forced to 846 

extrapolate beyond the climate and environmental envelope used to calibrate the model. 847 

Maps are projected in GDA 1994 Australian Albers (EPSG:3577). 848 

 849 

Figure 4: Accumulated Local Effects (ALE) plots of four important variables depicting the 850 

variation in rabbit abundance across environmental gradients. Values on the y-axes represent 851 

changes in abundance from the average sample conditional on the values on the x-axes (a). 852 

The rug plots on the inside of the x-axis show the distribution of sites across that variable. 853 

The 3-dimensional plots (b, c) show the second-order effects of benign RCV-A1 calicivirus 854 

with two climatic variables; average temperature two years prior to the survey (b), and total 855 

precipitation the year prior to the survey (c), after removing the main effects of the features. 856 

In other words, panels b and c only show the additional interaction effect of the two features. 857 

The colors correspond to the values on the z-axis, with reds indicating a more positive effect 858 

on abundances. 859 

 860 

Figure 5: Empirically corrected abundance estimates (i.e. corrected; black line) and projected 861 

(blue line) abundance estimates of rabbits for nine selected climate zones in Australia. Points 862 

display the median estimates of corrected abundance estimates and predicted abundances 863 

(based on the random forest regression model) across all sites within a climate zone for a 864 

given year. The lines are for connecting points between sampling years, but do not represent 865 

the estimates between years, and show the discontinuous nature of the sampling within some 866 

climate zones. The blue bandings represent the 95% (light blue) and 50% (dark blue) 867 

prediction intervals for the regression model predictions within each zone. 868 

 869 

Figure 6: Percent time spent in hotspot conditions for high rabbit abundances. Values for 870 

each cell (a) represent the proportion of time (between 1973 and 2012) that cells were 871 

considered “hotspots” of rabbit abundance. The map is masked to the climatic envelope of 872 

the climate zones shown in Figure 2. Muted colors represent areas with low prediction 873 

confidence i.e., pixels where the RF model was forced to extrapolate beyond the climate and 874 
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environmental envelope used to calibrate the model. Map is projected in GDA 1994 875 

Australian Albers (EPSG:3577). The cumulative relative distribution frequency plots (b) 876 

show the inter-annual variability in rabbit populations for the RF predicted abundances that 877 

were used to define hotspot thresholds.  878 
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Figures: 879 
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