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Abstract

Time-varying linear matrix equations and inequations have been widely studied in
recent years. Time-varying Sylvester-transpose matrix inequation, which is an impor-
tant variant, has not been fully investigated. Solving the time-varying problem in a
constructive manner remains a challenge. This study considers an exp-aided conver-
sion from time-varying linear matrix inequations to equations to solve the intractable
problem. On the basis of zeroing neural network (ZNN) method, a continuous-time
zeroing neural network (CTZNN) model is derived with the help of Kronecker prod-
uct and vectorization technique. The convergence property of the model is analyzed.
Two discrete-time ZNN models are obtained with the theoretical analyses of trunca-
tion error by using two Zhang et al.’s discretization (ZeaD) formulas with different
precision to discretize the CTZNN model. The comparative numerical experiments
are conducted for two discrete-time ZNN models, and the corresponding numeri-
cal results substantiate the convergence and effectiveness of two ZNN discrete-time
models.
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1. Introduction

Linear matrix equations (LMEs) have been studied widely in recent years be-
cause of their important roles in some fields, such as image processing [1], linear
system analysis [2], and control theory [3]. Specifically, Wei et al. [1] proposed a
robust fast fusion of multiband images method with significantly decreased computa-
tional complexity through explicitly solving an underlying Sylvester equation. The
minimum norm robust pole assignment problem for linear time-invariant systems
was converted to an unconstrained minimization problem in [2] by using a Sylvester
equation-based parametrization. A parametric design algorithm was designed in [3]
for solving periodic Luenberger function observer problems based on two classes of
discrete periodic Sylvester matrix equations. Several numerical methods/algorithms
have been proposed and investigated to solve LMEs and their variants [4–8]. For
example, Peng et al. [5] proposed an iteration method to obtain the symmetric so-
lutions and optimal approximation solution of the matrix equation. In [7], a fuzzy
Sylvester matrix equation was transferred into two crisp Sylvester matrix equations.
Thus, the method can use numerical methods to solve the problem.

Time-varying problems have been attracting considerable attention due to their
emergence in various applications [9–13]. Neural network methods [14–19] have also
been considered valid alternatives to solve time-varying problems because of their ef-
ficiency, accuracy, and distributed fashion. Gradient-based neural network (GBNN)
[14–16], which is a conventional scheme, has been fully studied to solve various im-
portant issues, such as time-varying matrix inversion [15] and LMEs [16]. However,
the residual error always maintains a relatively large value when GBNN is used to
solve a time-varying problem [17]. By contrast, zeroing neural network (ZNN) [17–
19] perfectly exploits the time derivatives of time-varying parameters. The resulting
residual error exponentially converges to zero when solving a time-varying problem.
ZNN has also been widely used to systematically solve diverse time-varying issues,
such as time-varying linear equations or inequalities [20–23], matrix inverse or gen-
eralized inverse [24, 25], and quadratic optimization [26].

Time-varying LMEs (TVLMEs), which combine the properties of time-varying
problem and LMEs and are more difficult than time-invariant LMEs, have been
also widely studied [20–22, 27–31]. Xiao [27] proposed a finite-time convergent ZNN
method to solve a time-varying complex LME. The proposed method makes the error
between the theoretical solution and the actual solution converge to zero in a finite
time. Zhang et al. [31] proposed a varying-parameter ZNN that converges consid-
erably faster than original ZNN to solve time-varying complex Sylvester equations.
Compared with solving TVLMEs, solving time-varying linear matrix inequations
(TVLMIs) is more challenging due to their intractable nature. Notably, linear ma-
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trix inequality conventionally indicates a generalized inequality A � 0, which denotes
that A is positive semidefinite. For comparison, we define linear matrix inequation as
a common inequality A ≥ 0, which denotes that every element of A is nonnegative.
Nearly all neural network methods are designed for solving TVLMEs but not for
TVLMIs. A conversion inspired by a square-function-designed auxiliary matrix was
considered by Guo et al. [32] to reformulate TVLMI as TVLME for solving TVLMI.
The TVLME was solved by the ZNN model with a remarkable performance.

Time-varying Sylvester-transpose matrix inequation (TVSTMI), which has not
been investigated before, is challenging because it contains not only the unknown
matrix-valued variable but also its transpose. This study proposes another conver-
sion inspired by an exponential-function-designed auxiliary matrix, which is differ-
ent from the conversion proposed by Guo et al., to solve the problem. With the
aid of ZNN design formula [19], a continuous-time zeroing neural network (CTZNN)
model is derived. Along with the direction on improving continuous-time models
to facilitate hardware implementation, a class of effective discretization formulas
termed ZeaD formulas [33–36] is considered to discretize the CTZNN model. Thus,
two discrete-time ZNN models with different accuracies are obtained to solve the
TVSTMI through using Euler discretization formula [35] and six-instant ZeaD for-
mula [36] to discretize the CTZNN model.

The remainder of the paper is organized as follows. In Section 2, the problem
formulation of TVSTMI is described, and the exp-aided conversion from TVLMI
to TVLME is investigated. In Section 3, the CTZNN model for solving problem is
derived and proposed, and the theoretical analysis is also given to prove the conver-
gence of the ZNN model. Section 4 presents two discrete-time ZNN models and their
theoretical truncation errors. In Section 5, numerical experiments are conducted
to compare the discrete-time ZNN models and a static model for solving TVSTMI,
for substantiating the convergence and effectiveness of the former ones. Section 6
concludes this study with final remarks. The main contributions of this study are
summarized below.

• Different from previous work that solves time-varying Sylvester matrix equa-
tions, this study first investigates the complicated TVSTMI with both the
unknown matrix-valued variable and its transpose.

• A new conversion inspired by an exponential-function-designed auxiliary ma-
trix is first proposed to transform TVLMI to TVLME. Then, the CTZNN
model for solving TVSTMI with convergence analysis is obtained.

• By using two ZeaD formulas with different precision, the CTZNN model is
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effectively discretized into two discrete-time ZNN models with truncation error
analyses.

• Numerical experiments are conducted to compare the discrete-time ZNN mod-
els and the static model. The obtained relative results substantiate the supe-
riority of two discrete-time ZNN models for solving TVSTMI.

2. Problem formulation and conversion

This section presents the formulation of TVSTMI, and displays a convenient
conversion from time-varying matrix inequation to time-varying matrix equation for
further derivation.

2.1. Problem formulation

First, the problem formulation of TVSTMI can be presented as

A(t)X(t)B(t) + C(t)XT(t)D(t) ≤ E(t). (1)

Notably, parameter matrices A(t), B(t), C(t), D(t), and E(t) ∈ Rn×n are smoothly
time-varying, and X(t) ∈ Rn×n is the objective matrix to be solved for. This study
aims to obtain a feasible X(t) that satisfies the inequation. Compared with static
Sylvester-transpose matrix inequation, TVSTMI (1) is a more challenging work.
The experiential scheme for solving time-varying problems is that a continuous-time
model is considered to be obtained by solving the derivative of X(t) [15, 17] given
necessary initial states [e.g., X(t0) with t0 being the initial time]. Moreover, the
continuous-time model is discretized effectively by ZeaD formulas [33–36] to construct
a discrete-time model for easy hardware implementation.

Remark 1. For randomly given parameter matrices A(t), B(t), C(t), D(t), and
E(t), the time-varying inequation may be unsolvable at some instants. Therefore,
suitable parameter matrices are given to make the inequation solvable at any time
instant t for obtaining a continuous solution X(t). Thus, the hypothesis is made
that the matrix J(t) = BT(t) ⊗ A(t) + (DT(t) ⊗ C(t))P is always nonsingular with
the help of a permutation matrix P ∈ Rn2×n2

[4]. This condition is also sufficient
for the solvability of time-varying Sylvester-transpose matrix equation. The following
discussion is oriented to the limited solvable problem.
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2.2. From inequation to equation with an auxiliary matrix

Numerous neural network methods, such as ZNN, perform directly well on TVLME.
However, to the best of our knowledge, solving TVLMI is difficult. Hence, in this
study, a new conversion from inequation to equation inspired by an auxiliary matrix
is investigated to solve the challenging TVSTMI problem. For better understanding,
f(X(t), t) is defined to describe problem (1), which is formulated as

f(X(t), t) = A(t)X(t)B(t) + C(t)XT(t)D(t)− E(t) ≤ 0. (2)

An auxiliary matrix Z(t) ∈ Rn×n with nonnegative elements, is introduced to convert
TVLMI to TVLME. Then, a newly formed equation is obtained through applying
the conversion with the aid of Z(t):

A(t)X(t)B(t) + C(t)XT(t)D(t)− E(t) + Z(t) = 0. (3)

For better constructing Z(t), another simpler time-varying matrix Y (t) ∈ Rn×n is
introduced as follows:

Y (t) =




y1,1(t) y1,2(t) · · · y1,n(t)
y2,1(t) y2,2(t) · · · y2,n(t)

...
...

. . .
...

yn,1(t) yn,2(t) · · · yn,n(t)


 .

Notably, every element yi,j(t) of Y (t) has a domain being R and a continuous first-
order time derivative with i, j = 1, 2, . . . , n. In addition, the image of the composite
function exp(yi,j(t)) is R+, with exp(·) being an exponential function. Accordingly,
Z(t) can be effortlessly constructed via Y (t). Its expression is presented as follows:

Z(t) = F(Y (t)) =




exp(y1,1(t)) exp(y1,2(t)) · · · exp(y1,n(t))
exp(y2,1(t)) exp(y2,2(t)) · · · exp(y2,n(t))

...
...

. . .
...

exp(yn,1(t)) exp(yn,2(t)) · · · exp(yn,n(t))


 ,

where F(·) : Rn×n → Rn×n is a matrix-variable mapping. Evidently, every element
of Z(t), zi,j(t) = exp(yi,j(t)), is a nonnegative variable. The time derivatives of
Y (t) and Z(t) are investigated for further discussion. First, Ẏ (t), which is the time
derivative of Y (t), can be easily presented as

Ẏ (t) =




ẏ1,1(t) ẏ1,2(t) · · · ẏ1,n(t)
ẏ2,1(t) ẏ2,2(t) · · · ẏ2,n(t)

...
...

. . .
...

ẏn,1(t) ẏn,2(t) · · · ẏn,n(t)


 .
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In addition, Ż(t), which is the time derivative of Z(t) and expressed as a Hadamard
product [37] of Ẏ (t) and Z(t), is obtained as

Ż(t) = Ẏ (t) ◦ Z(t) =



ẏ1,1(t)exp(y1,1(t)) · · · ẏ1,n(t)exp(y1,n(t))

...
. . .

...
ẏn,1(t)exp(yn,1(t)) · · · ẏn,n(t)exp(yn,n(t))


 .

For converted equation problem (3), X(t) and Y (t) [Z(t) can be constructed by Y (t)]
are considered as the objective matrix-valued variables. After solving time-varying
equation (3), the solutions of X(t) and Y (t) are obtained. Time-varying inequation
(2) is solved as well. Converted equation (3) can be reformulated as

f(X(t), t) = A(t)X(t)B(t) + C(t)XT(t)D(t)− E(t) = −Z(t) ≤ 0.

In other words, X(t) obtained by solving converted equation (3) is also a feasible
solution of original inequation (2).

Remark 2. The auxiliary matrix Z(t) is introduced to convert time-varying inequa-
tion to time-varying equation, which transforms the problem to the easy one. Many
feasible matrices can be used for constructing effective conversion from time-varying
matrix inequation to time-varying matrix equation. Except for Z(t), which is inspired
by construction function F(Y (t)) = [exp(yi,j)]|i,j=1,2,...n, the auxiliary matrix can be
constructed by other functions with properties consisting of domain being R, image
being (0,+∞) or [0,+∞), and differentiability. Two other construction functions
are introduced here: the square function

F1(Y (t)) = Y (t) ◦ Y (t),

where ◦ is the Hadamard product operation, and the hyperbolic cosine function

F2(Y (t)) =
F(Y (t)) + F(−Y (t))

2
− I,

where I is the matrix of which each element is assigned as 1. Notably, different
construction functions may cause different effects on numerical experiments.

3. Proposed CTZNN model

In this section, a CTZNN model is proposed to solve the converted time-varying
Sylvester-transpose matrix equation (3). To apply the ZNN method [19, 27], a
matrix-valued error function is defined as

ε(t) = A(t)X(t)B(t) + C(t)XT(t)D(t)− E(t) + Z(t) ∈ Rn×n, (4)
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and its time derivative is obtained as

ε̇(t) = Ȧ(t)X(t)B(t) + A(t)Ẋ(t)B(t) + A(t)X(t)Ḃ(t) + Ċ(t)XT(t)D(t)

+ C(t)ẊT(t)D(t) + C(t)XT(t)Ḋ(t)− Ė(t) + Ż(t).
(5)

The ZNN method is used to zero out every element of error function (4), and the
formula ε̇(t) = −γε(t) is utilized to complete the convergence of error function (4),
which is also presented as follows:

ε̇(t) = −γ(A(t)X(t)B(t) + C(t)XT(t)D(t)− E(t) + Z(t)). (6)

Notably, γ is a predefined positive parameter for adjusting the convergence speed.
In general, a large γ signifies a fast convergence speed. By substituting (5) into (6),
the following equation is obtained:

A(t)Ẋ(t)B(t) + C(t)ẊT(t)D(t) + Ż(t) = −Ȧ(t)X(t)B(t)− A(t)X(t)Ḃ(t)

− Ċ(t)XT(t)D(t)− C(t)XT(t)Ḋ(t) + Ė(t)− λε(t).
(7)

In the differential equation (7), Ẋ(t), ẊT(t), and Ż(t), which are the time derivatives
of the objective matrix variables, are arranged in the left part Other variables are
arranged in the right part. For the convenience of presentation, with Q(t) defined as

Q(t) = −Ȧ(t)X(t)B(t)− A(t)X(t)Ḃ(t)− Ċ(t)XT(t)D(t)− C(t)XT(t)Ḋ(t) + Ė(t).

We define U(t) = Q(t) − λε(t), which consists of all matrix variables of the right
part. Therefore, equation (7) is reformulated as

A(t)Ẋ(t)B(t) + C(t)ẊT(t)D(t) + Ż(t) = U(t).

The Kronecker product [4] and vectorization technique are used to solve the above-
mentioned equation by reformulating it as

(BT(t)⊗ A(t))vec(Ẋ(t)) + (DT(t)⊗ C(t))vec(ẊT(t))

+ vec(Ż(t)) = vec(U(t)),
(8)

where sign ⊗ denotes the Kronecker product operation, and vec(·) is a vectoriza-
tion operation on matrices. For example, given a matrix M = [m1,m2, . . . ,mn]
with mi being the ith column vector, where i = 1, 2, . . . , n, we obtain vec(M) =
[mT

1 ,m
T
2 , . . . ,m

T
n ]T. vec(Ż(t)) can also be transformed into the form of a matrix
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multiplying a vector to separate the time-derivative variable and the general vari-
able, which is resolved as follows:

vec(Ż(t)) = vec(Z(t) ◦ Ẏ (t)) = F (t)vec(Ẏ (t)) ∈ Rn2

,

where F (t) ∈ Rn2×n2
is a diagonal matrix consisting of all elements of Z(t). F (t) is

formulated as

F (t) =




Z ′1(t) 0 · · · 0
0 Z ′2(t) · · · 0
...

...
. . .

...
0 0 · · · Z ′n(t)


 ,

where Z ′j(t) ∈ Rn×n, with j = 1, 2, . . . , n, is also a diagonal matrix presented as

Z ′j(t) =




z1,j(t) 0 · · · 0
0 z2,j(t) · · · 0
...

...
. . .

...
0 0 · · · zn,j(t)


 .

Notably, zi,j(t), with i, j = 1, 2, . . . , n, is the (i, j)th element of matrix Z(t). By
defining G(t) = BT(t)⊗ A(t) and H(t) = DT(t)⊗ C(t), equation (8) can be briefly
written as

G(t)vec(Ẋ(t)) +H(t)vec(ẊT(t)) + F (t)vec(Ẏ (t)) = vec(U(t)).

To resolve vec(ẊT(t)), a useful lemma [4] is introduced as follows.

Lemma 1. For any matrix X ∈ Rm×n,

vec(XT) = P(m,n)vec(X),

where P(m,n) is uniquely determined by the integers m and n.

Thus, with P = P(n,n), vec(ẊT(t)) is resolved into Pvec(Ẋ(t)), and the following
equation is obtained:

(G(t) +H(t)P )vec(Ẋ(t)) + F (t)vec(Ẏ (t)) = vec(U(t)). (9)
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For brief presentation, we define

x(t) = vec(X(t)), y(t) = vec(Y (t)), ẋ(t) = vec(Ẋ(t)),

ẏ(t) = vec(Ẏ (t)), u(t) = vec(U(t)), J(t) = G(t) +H(t)P.

The simpler formulation of (9) is

J(t)ẋ(t) + F (t)ẏ(t) = u(t),

which can be rewritten in the matrix-vector form:

[
J(t) F (t)

] [ẋ(t)
ẏ(t)

]
= u(t). (10)

With K(t) = [J(t) F (t)] ∈ Rn2×2n2
and w(t) = [xT(t) yT(t)]T ∈ R2n2

, the
CTZNN model is obtained by solving a system of differential equations shown as
follows:

ẇ(t) = K†(t)u(t), (11)

where ẇ(t) is the time derivative of w(t), and K†(t) = KT(t)(K(t)KT(t))−1 denotes
the right pseudoinverse of K(t) (i.e., Moore-Penrose inverse). In the online solving
processing, a discretization formula can be used to obtain X(t) at next time instant
through computing ẇ(t) and w(t) at the current and previous time instants.

Remark 3. As shown in formulation (10), column number is twice as many as row
number for coefficient matrix K(t) = [J(t) F (t)] being of row full rank, which means
that the solution to (10) is not unique. The right pseudoinverse is considered in this
study to obtain one of feasible solutions of x(t) and y(t). Except for the CTZNN
model, other models using different methods (e.g., other generalized inverses) to solve
(10) are also welcome if the obtained solution still satisfies inequation (2).

Notably, the CTZNN model based on ZNN has remarkable properties consisting
of convergence and stability, which can guarantee the solution satisfying equation
(3) after a short computing time. The convergence theorem of the CTZNN model is
given, and the corresponding proof is presented to demonstrate the validity.

Theorem 1. Let smoothly time-varying matrices A(t), B(t), C(t), and D(t) satisfy
the hypothesis mentioned in Remark 1. CTZNN model (11) converges to one of the
feasible solutions of inequation (2) as t→ +∞.
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Proof. Let X̂(t) ∈ Rn×n and Ẑ(t) ∈ Rn×n be the solution obtained by the CTZNN
model. The right pseudoinverse is used to obtain X̂(t) [the matrix form of the first
half part of w(t)]. Accordingly, the following expression is equivalent to equation
(11):

Ȧ(t)X̂(t)B(t) + A(t)
˙̂
X(t)B(t) + A(t)X̂(t)Ḃ(t) + Ċ(t)X̂T(t)D(t)

+C(t)
˙̂
XT(t)D(t) + C(t)X̂T(t)Ḋ(t)− Ė(t) +

˙̂
Z(t)

=− λ(A(t)X̂(t)B(t) + C(t)X̂T(t)D(t)− E(t) + Ẑ(t)).

With ε̂(t) = A(t)X̂(t)B(t) + C(t)X̂T(t)D(t) + Ẑ(t) − E(t) ∈ Rn×n, the above-
mentioned equation can be reformulated as

˙̂ε(t) = −λε̂(t).
The compact form of this equation can be presented as

˙̂εi,j(t) = −λε̂i,j(t), (12)

where ε̂i,j(t) is the (i, j)th element of ε̂(t), with i, j = 1, 2 . . . , n, and ˙̂εi,j(t) is its time
derivative. A Lyapunov function candidate is defined to analyze the subsystem (12):

li,j(t) = ε̂2i,j(t)/2.

The time derivative of this equation is obtained as

l̇i,j(t) = ˙̂εi,j(t)ε̂i,j(t) = −λε̂2i,j(t).
With design parameter λ > 0, we have

l̇i,j(t) =

{
> 0, if ε̂i,j(t) > 0,

= 0, if ε̂i,j(t) = 0.

Lyapunov stability theory [19] posits that equilibrium point li,j(t) = 0 is glob-
ally asymptotically stable, that is, li,j(t) globally converges to zero for any i, j ∈
{1, 2, . . . , n}. Therefore, ε̂(t) globally converges to zero matrix as well [i.e., ε̂(t)→ 0,
as t→ +∞]. Thus, as time evolves, we have

A(t)X̂(t)B(t) + C(t)X̂T(t)D(t)− E(t) = ε̂(t)− Ẑ(t)→ −Ẑ(t).

As defined previously, Ẑ(t) ≥ 0. Thus, we have

f(X̂(t), t) = A(t)X̂(t)B(t) + C(t)X̂T(t)D(t)− E(t) ≤ 0.

The aforementioned discussion substantiates that the solution X̂(t) satisfies inequa-
tion (2), as time t→ +∞. Accordingly, CTZNN model (11) converges to one of the
feasible solutions of inequation (2) as t→ +∞, and the proof is completed. �
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4. Two different discrete-time models based on ZeaD formulas

Two effective discrete-time ZNN models are proposed based on different ZeaD
formulas [33–36] to verify the effectiveness of discretization of the CTZNN model
and facilitate the implementation of digital circuits [17]. ZeaD formulas feature one-
step-ahead approximation, that is, approximating ẋ(tk) by x(tk+1), x(tk), x(tk−1), . . .,
where k denotes the updating index. The discrete-time models based on different
ZeaD formulas have different accuracies in solving problem. Thus, the discrete-time
ZNN models are numerically experimented to show their results of the accuracy
holding on theories investigated by the previous ZeaD formulas work.

The Euler discretization formula [35] (also viewed as the first and simplest one
of ZeaD formulas) using two instants is presented as

ẋ(tk) =
x(tk+1)− x(tk)

τ
+O(τ), (13)

where tk = kτ, k = 0, 1, 2, . . ., with τ < 1 representing the sampling period, and O(τ)
denotes the truncation error. By using Euler discretization formula (13) to discretize
the CTZNN model, the following equation is obtained:

w(tk+1) = w(tk) + τK†(tk)u(tk) + O(τ 2),

where O(τ 2) ∈ R2n2
denotes a vector with every element being O(τ 2). We define

û(tk) = τu(tk) = vec(τQ(tk) − hε(tk)), where h = τλ, which is termed step size
and must be fixed with a proper value [38]. The Euler discrete-time ZNN (EDZNN)
model is formulated as

wk+1
.
= wk +K†kûk, (14)

where wk denotes w(tk), and wk+1, K
†
k, ûk have similar denotations. In addition,

.
=

denotes the computational assignment operation.
A discretization formula proposed in [36] uses six instants to approximate the time

derivative. The discretization formula with high precision, also termed six-instant
ZeaD formula, is shown as

ẋ(tk) =
x(tk+1)

2τ
− 5x(tk)

48τ
− x(tk−1)

4τ
− x(tk−2)

8τ
− x(tk−3)

12τ
+
x(tk−4)

16τ
+O(τ 3). (15)

Similarly, using six-instant ZeaD formula (15) to discretize the CTZNN model yields

w(tk+1) =
5

24
w(tk) +

1

2
w(tk−1) +

1

4
w(tk−2) +

1

6
w(tk−3)−

1

8
w(tk−4)

+ 2K†(tk)û(tk) + O(τ 4),
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Figure 1: Profiles of elements of solution {Xk} and objective function {fk} with sampling period
τ = 0.1 s, where (a) and (b) are synthesized by EDZNN model while (c) and (d) are synthesized
by 6IDZNN model.

and the six-instant discrete-time ZNN (6IDZNN) model is formulated as

wk+1
.
=

5

24
wk +

1

2
wk−1 +

1

4
wk−2 +

1

6
wk−3 −

1

8
wk−4 + 2K†kûk, (16)

where the notations (e.g., wk) have the same meanings as those in EDZNN (14).

Remark 4. With step size h set in the effective domain and in accordance with
[35] and [36], the EDZNN and 6IDZNN models are proven to be zero-stable, con-
sistent, and convergent with the orders of truncation error being O(τ 2) and O(τ 4),
respectively.
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Figure 2: Profiles of elements of solution {Xk} and objective function {fk} with sampling period
τ = 0.01 s, where (a) and (b) are synthesized by EDZNN model while (c) and (d) are synthesized
by 6IDZNN model.

With residual error defined as

‖AkXkBk + CkX
T
k Dk − Ek + Zk‖F,

the maximal steady-state residual error, abbreviated as MSSRE, is defined as

lim
k→+∞

sup‖AkXkBk + CkX
T
k Dk − Ek + Zk‖F,

where ‖ · ‖F denotes the Frobenius norm. MSSRE is the largest value of residual
error after a model converges.

Theorem 2. The MSSRE synthesized by the EDZNN model is of order O(τ 2).
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Figure 3: Profiles of elements of solution {Xk} and objective function {fk} with sampling period
τ = 0.001 s, where (a) and (b) are synthesized by EDZNN model while (c) and (d) are synthesized
by 6IDZNN model.

Proof. Let X∗k and Y ∗k be the theoretical solution of the CTZNN model, with
Z∗k = exp(Y ∗k ), the following equation holds true:

lim
k→+∞

sup‖AkX∗kBk + CkX
∗T
k Dk − Ek + Z∗k‖F = 0.

Let Xk and Yk be the solution obtained by the EDZNN model. We define that
Xk = X∗k + O(τ 2) and Yk = Y ∗k + O(τ 2), where O(τ 2) ∈ Rn×n consists of elements
being O(τ 2). With Zk = F(Yk), the following equation is obtained:

lim
k→+∞

sup‖AkXkBk + CkX
T
k Dk − Ek + Zk‖F

= lim
k→+∞

sup‖Ak(X∗k +O(τ 2))Bk + Ck(X
∗T
k +O(τ 2))Dk − Ek + F(Y ∗k +O(τ 2))‖F.

(17)
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Figure 4: Residual errors synthesized by EDZNN and 6IDZNN models with different values of
sampling period: (a) τ = 0.1 s; (b) τ = 0.01 s; (c) τ = 0.001 s.

Notably, the Taylor expansion [39] of exp(x) is read as exp(x) = 1 + x+O(x2). We
have F(O(τ 2)) = I +O(τ 2) +O(τ 4), where I ∈ Rn×n denotes the matrix with each
element being 1. With O(τ 4) absorbed into O(τ 2), we have F(O(τ 2)) = I +O(τ 2).
Moreover, F(Y ∗k +O(τ 2)) has the property of being resolved into F(Y ∗k ) ◦F(O(τ 2)).
Accordingly, the following transformation is obtained:

F(Y ∗k +O(τ 2)) = F(Y ∗k ) ◦ F(O(τ 2)) = Z∗k ◦ (I +O(τ 2)) = Z∗k + Z∗k ◦ O(τ 2).

With limk→+∞ sup‖ · ‖ defined as ‖ · ‖s, the MSSRE (17) is deduced as

‖AkXkBk + CkX
T
k Dk − Ek + Zk‖s

≤‖AkO(τ 2)Bk + CkO(τ 2)Dk + Z∗k ◦ O(τ 2)‖s + ‖AkX∗kBk + CkX
∗T
k Dk − Ek + Z∗k‖s

=‖AkO(τ 2)Bk + CkO(τ 2)Dk + Z∗k ◦ O(τ 2)‖s
≤‖Ak‖s‖O(τ 2)‖s‖Bk‖s + ‖Ck‖s‖O(τ 2)‖s‖Dk‖s + ‖Z∗k ◦ O(τ 2)‖s
≤(‖Ak‖s‖Bk‖s + ‖Ck‖s‖Dk‖s + ‖Z∗k‖s)O(τ 2).

The matrices Ak, Bk, Ck, and Dk are uniformly norm bounded. Notably, ‖Z∗k‖s ≤
max(‖Z∗(t)‖F), t ∈ [0,+∞), where ‖Z∗(t)‖F is free from τ . Thus, the MSSRE
synthesized by the EDZNN model (14) is O(τ 2). The proof is thus completed. �
Theorem 3. The MSSRE synthesized by the 6IDZNN model is of order O(τ 4).

Proof. The proof can be generalized from the proof of Theorem 2. �

5. Numerical experiments and verification

In this section, two comparative numerical experiments are given to verify the
convergence, effectiveness, and accuracy of two discrete-time ZNN models. For guar-
anteeing the solution of problem existing, the hypothesis is considered to design the

15

                  



Table 1: Detailed information of residual errors synthesized by EDZNN and 6IDZNN models with
sampling period τ = 0.1, 0.01, or 0.001 s, where convergence time is obtained as the time instant,
from initial time 0 s, when the monotonic decrease of residual error ceases.

τ (s) MSSRE Convergence time (s) MSSRE pattern

0.1 4.066× 10−1 3.800

EDZNN 0.01 1.045× 10−2 1.240 O(τ 2)

0.001 1.146× 10−4 0.142

0.1 6.037× 10−2 4.600

6IDZNN 0.01 2.400× 10−5 1.370 O(τ 4)

0.001 3.407× 10−9 0.227

parameter matrices that J(t) = BT(t) ⊗ A(t) + (DT(t) ⊗ C(t))P is not singular.
Accordingly, parameter matrices A(t), B(t), C(t), D(t), and E(t) are presented as
follows:

A(t) =

[
exp(cos(t)) + 1 sin(t)

cos(t) exp(sin(t)) + 1

]
, B(t) =

[
sin(2t) + 2 sin(t)

cos(t) cos(2t) + 2

]
,

C(t) =

[
exp(
√

2sin(t+ π
4
)) + 2 1

2
sin(t)

1
2
cos(t) exp(

√
2sin(π

4
− t)) + 1

]
,

D(t) =

[
sin(2t) + 1 cos(t)

sin(t) cos(2t) + 1

]
, E(t) =

[
exp(sin(t)) + 1 exp(cos( t

2
))

exp(cos( t
2
)) exp(sin(t)) + 2

]
.

5.1. Simulation of discrete-time ZNN models

The initial states are set without loss of generality to X0 = [0, 0; 0, 0] and Y0 =
[0, 0; 0, 0] to perform the numerical experiments for discrete-time ZNN models. For
desirable convergence of two discrete-time models, the step size h must be set in
effective domain, and h = 0.1 in this study. Besides, the value of sampling period τ
is set to 0.1, 0.01, or 0.001 s (i.e., the value of λ is set to 1, 10, or 100) to substantiate
MSSRE conforming to the correct order. The experimental duration is set to 10 s.

16

                  



0 5 10 15 20
−15

−10

−5

0

5

10

15

t (s)
 

 

ZZ11
ZZ21
ZZ12
ZZ22
zero

(a)

0 5 10 15 20
−15

−10

−5

0

5

10

15

t (s)
 

 

ZZ11
ZZ21
ZZ12
ZZ22
zero

(b)

0 5 10 15 20

−2

−1

0

1

2

t (s)
 

 

ZZ11
ZZ21
ZZ12
ZZ22
zero

(c)

Figure 5: Profiles of elements of objective function {fk} synthesized by three models with sampling
period τ = 0.1 s by (a) EDZNN model, (b) 6IDZNN model, and (c) static model.

The numerical results synthesized by the EDZNN and 6IDZNN models are dis-
played in Fig. 1 through Fig. 4 and Table 1. As shown in Fig. 1 through Fig. 3,
{Xk} [i.e., {X(t)}, with t = kτ and k = 1, 2 . . .] synthesized by two discrete-time
ZNN models converge to slightly different values, and each element of {fk} is lower
than zero, which substantiates the convergence and effectiveness of two discrete-time
ZNN models for solving TVSTMI. The comparative results of residual errors are
shown in Fig. 4 for verifying the accuracy of two discrete-time ZNN models. De-
tailed information of residual errors is presented in Table 1. From Fig. 4 and Table
1, we can conclude that, with a small sampling period τ , that is, a large design
parameter λ, indicates that the convergence time of residual error is correspondingly
less. After the curves of numerical results are stable, the MSSREs synthesized by
the EDZNN and 6IDZNN models are 4.066× 10−1 and 6.037× 10−2 with τ = 0.1 s,
1.045 × 10−2 and 2.400 × 10−5 with τ = 0.01 s, and 1.146 × 10−4 and 3.407 × 10−9

with τ = 0.001 s, respectively. The MSSREs of the EDZNN model converge with
order O(τ 2), and those of the 6IDZNN model converge with order O(τ 4). The above-
mentioned analyses substantiate the accuracy of two discrete-time ZNN models con-
forming to Theorem 2, Theorem 3, and the ZeaD formula theories [35, 36]. That
is, the 6IDZNN model with small MSSREs produces the highly similar results to
the theoretical results produced by the CTZNN model compared with the EDZNN
model. Thus the 6IDZNN model is likely to meet the requirement.

5.2. Comparisons between discrete-time models and static model

The initial states are set toX0 = [1, 0; 0, 1], Y0 = [0, 0; 0, 0], and parameter h = 0.1
to perform the numerical experiments for discrete-time ZNN models differently. For
comparison, we consider a static model for solving TVSTMI. First, when t = tk with
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Figure 6: Profiles of elements of objective function {fk} synthesized by three models with sampling
period τ = 0.01 s by (a) EDZNN model, (b) 6IDZNN model, and (c) static model.

k being the updating step and tk = kτ , we have the following equation with constant
coefficients:

A(tk)XkB(tk) + C(tk)X
T

kD(tk)− E(tk) + S = 0,

where Xk is the objective solution and S is the slack matrix variable with every
element being positive or zero. Corresponding to initial state Y0 = [0, 0; 0, 0] of
discrete-time models, S is set as F(Y0), that is, si,j = 1. Then, Xk can be obtained
through solving the time-invariant Sylvester-transpose matrix equation as follows:

A(tk)XkB(tk) + C(tk)X
T

kD(tk) +G(tk) = 0,

where G(tk) = −E(tk)+S. The original problem (1) is time-varying. Thus, when the
theoretical solution Xk of the above-mentioned equation is computed, time variable
t varies and is within (tk,+∞). For the consistency of sampling period, solution Xk

should be verified by TVSTMI at t = (k + 1)τ , that is, Xk+1 = Xk, we obtain the
static model for TVSTMI (1) with a defect of delay.

The value of sampling period τ is set to 0.1 or 0.01 s (i.e., the value of λ is set as 1
or 10). The experimental duration is set to 20 s. The numerical results synthesized by
the EDZNN, 6IDZNN and static models are displayed in Figs. 5 and 6. As shown in
Fig. 5, one can see that the values of elements of the objective function synthesised by
the discrete-time ZNN models decrease in the first few seconds and remain below-zero
after 2.4 s. However, some values of elements of the objective function synthesized
by the static model are larger than zero periodically. This finding implies the static
model is inappropriate for TVSTMI with τ = 0.1 s. As shown in Fig. 6, the values
of objective function synthesized by discrete-time models remain below-zero after a
short time and have fast convergence speed. In addition, the values of elements of
objective function synthesized by the static model are below-zero. That is, the static
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model is not particularly suitable for the time-varying problems especially when each
update takes a long computation time. The discrete-time ZNN models effectively
overcome the delayed phenomenon usually existing in conventional static methods
for solving time-varying problems, which has been considerably studied [17, 40].

6. Conclusions

In this paper, we have presented the problem formulation of TVSTMI. The exp-
aided conversion has been proposed to transform TVLMI to TVLME to solve the
TVSTMI. TVLME can be handled effectively by neural network methods. Then,
the CTZNN model based on the ZNN method has been derived with the aid of Kro-
necker product and vectorization technique. The convergence of the CTZNN model
has been analyzed as well. Moreover, the EDZNN and 6IDZNN models have been
derived using Euler discretization formula and six-instant ZeaD formula to discretize
the CTZNN model. The MSSREs of two ZNN discrete-time models have been proven
with the orders being O(τ 2) and O(τ 4), respectively. Furthermore, illustrative and
comparative examples have been provided for performing the numerical experiments
of two discrete-time ZNN models and the static model. The corresponding numeri-
cal results have substantiated the convergence, effectiveness, and superiority of two
discrete-time ZNN models. The derivation and analyses have been discussed under
a relatively strong condition of non-singularity (Remark 1). Thus, new results may
be inappropriate for some singular situations. This topic should be given additional
discussions before using the proposed method. Thus, solving the problem under
weak conditions is one of our future directions.
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[16] P. S. Stanimirović, M. D. Petković, Gradient neural dynamics for solving matrix
equations and their applications, Neurocomputing 306 (2018) 200–212.

[17] L. Jin, S. Li, B. Liao, Z. Zhang, Zeroing neural networks: A survey, Neurocom-
puting 267 (2017) 597–604.

[18] Y. Zhang, D. Jiang, J. Wang, A recurrent neural network for solving Sylvester
equation with time-varying coefficients, IEEE Transactions on Neural Networks
13 (5) (2002) 1053–1063.

[19] Y. Zhang, C. Yi, Zhang Neural Networks and Neural-Dynamic Method, Nova
Science Publishers, Inc., New York, 2011.

[20] Y. Shen, P. Miao, Y. Huang, Y. Shen, Finite-time stability and its application
for solving time-varying Sylvester equation by recurrent neural network, Neural
Processing Letters 42 (3) (2015) 763–784.

[21] L. Xiao, A finite-time recurrent neural network for solving online time-varying
Sylvester matrix equation based on a new evolution formula, Nonlinear Dynam-
ics 90 (3) (2017) 1581–1591.

[22] L. Xiao, B. Liao, S. Li, K. Chen, Nonlinear recurrent neural networks for finite-
time solution of general time-varying linear matrix equations, Neural Networks
98 (2018) 102–113.

[23] L. Xiao, Y. Zhang, Different Zhang functions resulting in different ZNN models
demonstrated via time-varying linear matrix-vector inequalities solving, Neuro-
computing 121 (2013) 140–149.

[24] S. Qiao, X. Wang, Y. Wei, Two finite-time convergent Zhang neural network
models for time-varying complex matrix Drazin inverse, Linear Algebra and its
Applications 542 (2018) 101–117.
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