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Color dressed unitarity and recursion for Yang-Mills two-loop
all-plus amplitudes
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We present a direct computation of the full color two-loop five-point all-plus Yang-Mills amplitude
using four dimensional unitarity and recursion. We present the SU(N,.) amplitudes in compact analytic
forms. Our results match the explicit expressions previously computed but do not require full two-loop

integral methods.
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I. INTRODUCTION

Computing perturbative scattering amplitudes is not only
a key tool in confronting theories of particle physics with
experimental results but is also a gateway for exploring the
symmetries and properties of theories which are not always
manifest in a Lagrangian approach. Since the standard
model of particle physics and many of its potential
extensions are gauge theories, gauge theory amplitudes
are of particular interest. Within a Yang-Mills gauge theory
an n-gluon amplitude in may be expanded in the gauge
coupling constant,

-An — gn—ZZafA’(f)

>0

(1.1)

where a = g?e77¢¢/(4x)*=¢. Each loop amplitude can be
further expanded in terms of color structures, C*,

A =3"Al (1.2)
A

separating the color and kinematics of the amplitude. The
color structures C* may be organized in terms of powers
of N,.

A great deal of progress has been made in computing

Aﬁ,f) for tree amplitudes (Z = 0) and one-loop amplitudes
(¢ = 1)in SU(N,) gauge theory. However progress in two-
loop amplitudes has been more modest: the four gluon
amplitude has been computed [1,2] for the full color and
helicity structure and there is currently tremendous
progress in the computation of the five-point amplitude.
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The first amplitude to be computed at five point was the
leading in color part of the amplitude with all positive
helicity external gluons (the all-plus amplitude) which was
computed using d-dimensional unitarity methods [3,4] and
was subsequently presented in a very elegant and compact
form [5]. In Ref. [6], it was shown how four-dimensional
unitarity techniques could be used to regenerate the five-
point leading in color amplitude and in Refs. [7,8] the
leading in color all-plus amplitudes were obtained for six
and seven points, these being the first six- and seven-point
amplitudes to be obtained at two-loops. The leading in
color five-point amplitudes have been computed for the
remaining helicities [9,10]. Full color amplitudes are
significantly more complicated requiring a larger class of
master integrals incorporating nonplanar integrals [11,12].
In Ref. [13] the first full color five-point amplitude was
presented in QCD.

In this article we will examine the one- and two-loop
partial amplitudes using a U(N,) color trace basis where
the fundamental objects are traces of color matrices 7
rather than contractions of the structure constants f%¢. We
examine the particular scattering amplitude in pure gauge
theory where the external gluons have identical helicity,
A, (17, ...n"). This amplitude is fully crossing symmetric
which makes computation relatively more tractable but
nonetheless is a valuable laboratory for studying the
properties of gluon scattering. The all-plus amplitude has
a singular structure which is known from general theorems
together with a finite remainder part. We present a form for
the finite part which is a simple combination of dilogar-
ithms together with rational terms. Specifically we compute
directly all the color trace structures for the five-point all-
plus two-loop amplitude. Our results are in complete
agreement with the results recently computed by Badger
et al. [13] and are consistent with constraints imposed by
group theoretical arguments [14,15].

Our methodology involves computing the polylogarith-
mic and rational parts of the finite remainder by a
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combination of techniques. The polylogarithms are com-
puted using four-dimensional unitarity cuts and the rational
parts are determined by recursion. We use augmented
recursion [16] to overcome the issues associated with
the presence of double poles.

II. ONE-LOOP SUBLEADING AMPLITUDES

An n-point tree amplitude can be expanded in a color
trace basis as

.AS,O)(LZ,3, S ZTI‘[T“‘ ...T“"]Aflo:)l (ay,as,...a,).
SV[/Z"

(2.1)

This separates the color and kinematic structures. The

partial amplitudes Af,oz)l (ai,ay, ...a,) are cyclically sym-

metric but not fully crossing symmetric. The sum over
permutations is over permutations of (1,2, ...n) up to this
cyclic symmetry. This is not the only expansion and in fact
|

other expansions exist [ 17] which may be more efficient for
some purposes. This color decomposition is valid for both
U(N,) and SU(N,.) gauge theories. If any of the external
particles in the U(N,) case are U(1) particles then the
amplitude must vanish. This imposes decoupling identities
among the partial amplitudes [18]. For example at tree-level
setting leg 1 to be U(1) and extracting the coefficient of
Tr[T?T3...T"] implies that

A 1,2,3,.0)+ 4% (2.1.3...n)
+.-A% 2, ... 1) =0.

n:

(2.2)

This provides a consistency check on the partial ampli-
tudes. At loop level these decoupling identities provide
powerful relationships between the different pieces of the
amplitude.

Ina U(N,) gauge theory the one-loop n-point amplitude
can be expanded as [18]

AV (1,23, 00) = Y ONTT L T4)AY (ay. a5, ...a,)

S”/Zﬂ
[n/2]+1

DI

r=2 Sn/(zr—l XZ:Hrl—r)

The A,(ll:)2 are absent (or zero) in the SU(N,) case. For n
even and r = n/2 + 1 there is an extra Z, in the summation
to ensure each color structure only appears once. The
partial amplitudes A" (a,...a,_,:b,...b,) are cyclically
symmetric in the sets {a;...a,_, } and {b,...b,} and obey a
“flip” symmetry,

AD(1,2, . (r=1)s7, )

=(=1)AY =1 2,0 ). (24)

Amplitudes involving the scattering of gauge bosons also
occur in string theories. From a string theory viewpoint the

AS,I;), with r > 1 would be considered nonplanar contribu-
tions arising from attaching gauge bosons to the two edges
of a one-loop surface.

Decoupling identities impose relationships among the
partial amplitudes. For example setting leg 1 to be U(1) and
extracting the coefficient of Tr[72T>...T"] implies

AN (1;2,3, .0 + AV (1,2,3,...0)
+AY 213, ) +-AD @ 1) =0

n

(2.5)

Tr[T“ ...T“H]Tr[TbV...Tb"]Agll;)r(al ciy_15by. . Dy).

(2.3)

and consequently the Afll)z can be expressed as a sum of

(n — 1) of the A,(11:>1. By repeated application of the decou-

pling identities all the Aﬁ,lz)r can be expressed as sums over

the A", [18],

AV 2 r=1inr+ 1, n)
= (- Y Al

ceCOP{a} ()

(2.6)

where a; € {a} ={r—1,r=2,...,2,1} and ; € {f} =
{r,r+1,...,n—1,n} [Note that the ordering of the
first set of indices is reversed with respect to the
second]. COP{a}{f} is the set of all permutations of
{1,2,...,n} with n held fixed that preserve the cyclic
ordering of the a; within {a} and of the f; within {f},
while allowing for all possible relative orderings of the a;
with respect to the f;. For example if {a} = {2,1} and
{p} ={3.4,5}, then COP{a}{p} contains the twelve
elements
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(27 17 37 49 5)1
(1727 3749 5)’

(27 37 17 47 5)9
(17 3727 47 5)’

(27 37 47 17 5)9
(17 374727 5)9

(37 27 1747 5)7
(37 172747 5)7

(3a 2’ 47 17 5)7
(37 1’4727 5)7

(35 4’ 2a 1’ 5)7
(3.4,1,2,5).

The simplest one-loop QCD n-gluon helicity amplitude is the all-plus amplitude with all external helicities positive. The
tree amplitude vanishes for this particular amplitude and, consequently, the one-loop amplitude is rational (to order €°). The
leading in color one-loop partial amplitude has an all-n expression [19]'

AV 1+, 2% ) = -+

3(12)(23)...(n 1)

> w_[ijkl] + Ofe).

1<i<j<k<I<n

(2.7)

This expression is order € but all-¢ expressions exist for the first few amplitudes in this series [20]. The subleading terms
can be obtained from decoupling identities. We have obtained compact expressions, to order €, for these:

i

(D 1+ 2+ 3+ +) — 1 i
A (203 ot = s tr_[ijkl],
a 3<12><23>...<n1>1§i<jz<;<lg
(M) (1+.9+ 3+ ) — 1
A, (102030, . ont) =i (1)1, (2.8)
2 (23><34>...<n2>2;;5n
and for r >3
2 2
(D) 1+ ~+ +opt ) — 0 (Ki..,-1)
Ay, (27 =11t nt) = =20 . (2.9)
((12)23)..((r=1) 1) ({(r(r+1))...(nr))
I
These expressions are remarkably simple given the number ~ where
of terms arising in the naive application of Eq. (2.6): the
number of terms in the numerator of a single Ailz)l grows as VW(a®,b* K*)  ilab][bK][Kd] (2.13)
1 Sab - 3 Sab '
ﬁn(n—l)(n—Z)(n—3), (2.10)
is th -loop three-point vertex [21]. F 4, the all-
while the summation over COP terms grows with n as s the one foop tree-potnt vertex L21] orm = ca
plus one-loop amplitude does not contain double poles
(n—1)! since the tree amplitude on the right-hand side of Fig. 1
~ (r=2)!(n—r)!" (2.11) vanishes. The double poles in the single-minus amplitudes

A further complication arises for one-loop amplitudes
where the external helicities are not identical, the simplest
case being the single-minus amplitude with one negative
helicity gluon and the rest positive helicity. Double poles
arise in these amplitudes for complex momenta where
factorizations as in Fig. 1 occur.

The factorization takes the form

(gt bT. K+ 1
ARICARLAR )x—xA(o_)l.l(K‘, )
Sab Sab '
[a b] 0 _
~ <Cl b>2 XAE1—)1:1<K ’ ) (212)

'Here a null momentum is represented as a pair of
two component spinors p# = 0";0./1“/1“. We are using a spinor
helicity formalism with the usual spinor products (ab) = eaﬁﬂgﬂ/z
and [ab] = —ed/-;/_lz/_lg. Also s, = (k, + k,)? = {ab)[ba] =
(albla), tw_[ijkl) = (UK M) = (i) R () 1), e [ijki) =

(U Bl ) = (11K KL and e(i, j, k, 1) = tr [ijkl]—
tr_[ijkl].

can be seen explicitly in the five-point case [22],

Al (17,24 .3% 4% 57)

il 25 (14)3[45](35) (13)3[32](42)
3342 | [120[51] ' (12)(23)(45)%  (15)(54)(32)?
(2.14)
o
at nt

FIG. 1. The origin of the double pole. The double pole corre-
sponds to the coincidence of the singularity arising in the 3-pt
integral with the factorisation corresponding to K* = s,,;, — 0.

016009-3



DUNBAR, GODWIN, PERKINS, and STRONG

PHYS. REV. D 101, 016009 (2020)

where there are (a b)~? singularities for (a b) = (23), (34)
and (45).

Again the subleading in color partial amplitudes can be
obtained in terms of the leading in color partial amplitudes
using decoupling identities. The naive application of
Eq. (2.6) obscures the simplicity of the subleading terms.
In particular, there are no double poles in the one-loop
subleading partial amplitudes for n > 4.

To demonstrate this we first consider the partial ampli-
tude Ailz)z(al;bz, b3, by, ...b,). This can be expressed as a

sum over the qulz)l,

by

U (babs, .car,b,)  (2.15)

where the sum is over the n — 1 distinct places where a;
may be inserted within b,, bs...b,. If we consider the
double pole in {(a; b,) this will only occur in the first two
terms and will be of the form

v(ay.b3.K™)

0 _
- 2 XAS’[—)IZI(K ,b3,...b,)
sa1b2
V(l) b+, +,K+
AR 2 4 )xAELO_)IZI(K‘,b%...bn), (2.16)
sab
172

which vanishes since V(l)(a+,b+,K+) is antisymmetric.
The double pole in (b,b3) also vanishes, but via a different
route. Only the second term in Eq. (2.15) does not
contribute and we obtain

1740 bi, bt K+
- ( 22 : )X (Az(10—)1:1(al,K_,b4,...
Sh,bs

0 _
+A£l_)1:1(K ,al,b4, ..

b,)

'bn) 4+ ...
+ A" (K. by, ...ay.by)). (2.17)

AP (1. 2cm) = N2 Y THENT T4 (0. .

S”/Z”
[n/2]+1

+N:. >

r=2 Sn/(Zr—IXZrH»l—r)
[2/3] [(n=s)/2]

OIS

s=1 1=s S, /(ZXZXZys)

x« A®

+ Y TH(TTe . T9)AD p(ay. a ..

Sn/Zn

Te(T T%... T\ Te(Tt ... T")AP (a,. a. ...

This vanishes due to the decoupling identity for the tree

(0)1:1 (2.2). Similar arguments show the van-

ishing of double poles for all A", with r > 1.

The simplifications in the subleading terms allow us to
present some compact n-point expressions. Explicitly,

we can find all-n formulas for AS,I:)Z(I‘;TF, ...n™) and

A (1= 2434 )

amplitude A

—i) acici<n(lij|1)
23)34)...{(n = )n){n2)
(2.18)

A (1724 34, ) =

and

D acicjen(1]ijI1)
(23)(34)...(n—)n)(n2)

(2.19)

1) -
AL (203t et =)
Z(3...n)

where Z3 ) is the set of cyclic permutations of the
set (3,...n).

The vanishing of the (b,b3) double poles in Eq. (2.17)
uses a tree level identity, so we do not expect the argument
to extend beyond one-loop. Specifically if we consider

Af;)z(aﬁ by, b3, by, ...b,), a formula for the double pole in
(bybs) akin to Eq. (2.17) will exist but with the tree

amplitudes A;(qo—)1:1 replaced by their one-loop equivalents

Af,l_)l .1- The combination of A,(ql_)1 .; is that of the decoupling
identity (2.5) so the double pole does not vanish but instead
is proportional to

V(l)(b+,b+,K+) i
22 3 XAE,_)I;Q(a];K_vah--
Sbybs

III. TWO-LOOP AMPLITUDES

by).  (2.20)

A general two-loop amplitude may be expanded in a
color trace basis as

)

b,)

s a,_l;b,...

Tr(T ... T4 )Tr(Tts .. TP+ )Tr(TCs+1 ... T¢n)

n:s,t(alv sy a.\';bH»l"'bert; cs+t+l cn)

(3.1)

,dy).
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Again, for n even and r = n/2 + 1 there is an extra Z, in the summation to ensure each color structure only appears once.
In the s, t summations there is an extra Z, when exactly two of s,  and n — s — ¢ are equal and an extra S3 when all three
are equal.

For five-point amplitudes this reduces to

AP (1,2.3,4,5) = N2 Y Tr(T4 TS TST%)AL) (). ay, az. ay. as)
$5/Zs

+ NC Z TI'(Tal )TI'(TbZ Tb3 Tb4 Tb5 )Agz)z(al 5 bz, bg, b4, bs)

Ss/Z,4
+No > Te(TOTE)Te(THTT)AL) (ay. ax; by, by, bs)
S5/(ZyxZ3)
+ Z Tr (T“l)Tr(TbZ)Tr(T”T“*T‘S)Ag )1 (ay;bays ez, ey, c5)
S5/ (ZaxZs)
+ > TR(T)Te(T TP)Tr(TT)AS) 5 (ay: by, bys ey c5)
S5/(ZyxZyxZ,)
+ Y TH(TOTTSTHT)AL) y(ay, az, ay, ay. as) (3.2)
Ss/Zs

which for an SU(N,.) gauge group simplifies to

AP (1,2,3.4.5) = N2 Y Te(Ta T2 TTST)AS) (). ay. as. ay, as)
Ss/Zs
+Ne Y TR(TOTe)Te(TH T TP)AL, (). a: by, by, bs)
Ss5/(ZyxZ3)
+ Y TH(TATETSTHT)AL y(ay. ay, as, ayg. as). (3.3)
Ss/Zs

Thus there are three independent functions to be determined: Ag%)l, A§2)3 and Agzz)l - By themselves the U(1) decoupling

identities do not determine any of the three, however they can be used to obtain the specifically U(N..) functions Ag%)z, Agzz)l’l

and Agzz)l,zz

A2 (152,3,4.5) = -A2 (1,2,3,4,5) = A2, (2.1,3,4.5) = A2, (2.3.1,4.5) = A2, (2.3.4.1,5),
) —ADL(5:1,4,2,3) - A (4.5:1,2,3)

2

AD)(4:5:1,2,3) = A§22(5;1,2,3,4> —AZ(5:1,2.4.3
A®)
- 5 3

(4.5:1.2.3)+ > AP (1.2.3.4,5)
COP{45}{1.2.3}

and
AL (152,3;4,5) = —ATL(2,3:1,4,5) — ADL(2,3;1,5.4) — AL (4,5:1,2,3) - ALL (4.5:1,3,2) = 0. (3.4)

)

Decoupling identities do not relate the A, to the other terms but do impose a treelike identity,

AP (123, ) + AP 2,13, )+ A% 2. L) =0, (3.5)

which in itself does not specify A£,2:>1 5 completely. There are however further color restrictions beyond the decoupling

identities [14,15] which may be obtained by recursive methods. These, together with Eq. (3.5) determine the Ag%)l p in terms

of the A5.; and As.3
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A®)

@ (1,2,3,4,5) = —A% (1,2,4,3,5) + 24, (1,2,5,3,4) + A% (1,2,5.4,3) — A7 (1,3,2,4,5)

+24%(1.3.4,2.5) = 54 (1,3,5,2,4) =24 (1.3.5.4.2) + 241 (1,4,2.3.5)
+AY(1,4,3,2,5) +24%,(1,4,5,2,3) + AP (1,4,5,3,2)

1

2 Z5(12.3.4.5)

Our calculation we determine A?:)l p directly and we use
Eq. (3.6) as a consistency check.

IV. SINGULARITY STRUCTURE OF THE
ALL-PLUS TWO-LOOP AMPLITUDES

The IR singular structure of a color partial amplitude is
determined by general theorems [23]. Consequently we can
split the amplitude into singular terms U .-, and finite terms

(2)
Fn:/l’

AD = Ul + F2 + Oe).

n

(4.1)

As the all-plus tree amplitude vanishes, U,(lzz)/1 simplifies

considerably and is at worst 1/€. In general an amplitude
has UV divergences, collinear IR divergences and soft IR
divergences. As the tree amplitude vanishes, both the UV
divergences and collinear IR divergences are proportional

to n and cancel leaving only the soft IR singular terms [24].
)

n:l>

The leading case, U
amplitude,

is proportional to the one-loop

Uy = A < 1Y (4.2)

where

IDN-{C

“ ,+1> ] . (4.3)

(@)

-5 Y (APh(1.213.4.5) - ADL(1,3:2,4,5)).

° -+

12m e
+ 4

(3.6)

In Appendix A the form of the two-loop IR divergences for
the other unrenormalized partial amplitudes are presented
in a color trace basis.

Given the general expressions for U,(f:)l, the challenge is

to compute the finite parts of the amplitude: F 512)2 This

finite remainder function F 512)1 can be further split into

polylogarithmic and rational pieces,

2
n

)
iy (4.4)
We calculate the former piece using four-dimensional
unitarity and the latter using recursion.

V. UNITARITY

D-dimensional unitarity techniques can be used to
generate the integrands [3] for the five-point amplitude
which can then be integrated to obtain the amplitude [5].
However the organization of the amplitude in the previous
section allows us to obtain the finite polylogarithms using
four-dimensional unitarity [25,26] where the cuts are
evaluated in four dimensions with the corresponding
simplifications. With this simplification the all-plus one-
loop amplitude effectively becomes an additional on-shell
vertex and the two-loop cuts effectively become one-loop
cuts with a single insertion of this vertex. The nonvanishing
four-dimensional cuts are shown in Fig. 2.

The cuts allow us to determine the coefficients, a;, of
box, triangle and bubble functions in the amplitude. The
integral functions are

(d)

nm I

FIG. 2. Four dimensional cuts of the two-loop all-plus amplitude involving an all-plus one-loop vertex (indicated by a shaded disk). In
the boxes K, may be null but K, must contain at least two external legs.
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_KZ)—e
I,(K? :(4 1
2(K%) e(1—2¢)’ G-1)
1 1 <_K2)—e _ (_KZ)—S
Ilm(K2) — _(_K2)—1—€’ 12m(K2’ KZ) — 1 2 , (52)
: & PR TR - (-K3)
and
Bme(S, T, K2 K3) = = | = | (=) 4 (=) = (—K2) = (—K3)
4 204 ST - K3K2 | & ’ !
+ Li ﬁ +Liy( 1 ﬁ +Liy| 1 ﬁ + Li K—‘z‘
2 S 2 T 2 S 2 T
Li( 1 K3Ki +=1In? S (5.3)
e ST \7 '

where S = (k; + K,)? and T = (k; + K,4)>.

The bubbles in principle would determine the (—s)¢/¢
infinities. However, explicit calculation using, for example,
a canonical basis approach [27] shows that they have zero
coefficient. This is a property of this particular helicity
configuration and is due to the vanishing of the tree

amplitude. The triangles only contribute to U,(f)/1 while

the box functions contribute to both U,(f:)/1 and the finite

polylogarithms. Separating these pieces we have

2

13me(S,T,K3,K3) :]imehR—m
LV

F2"([S.T,K3,K3]
(5.4)

where F?™ is a dimensionless combination of polylogarithms.
The IR terms combine to give the correct IR
singularities [28],

(S|, + S+ Seaiiy)
IR A

= U 2k, et

(5.5)

where U ,(,2>’€O(1+, 2%, ...,nT) is the order € truncation. We
have checked the relation of (5.5) by using four dimen-

sional unitarity techniques to compute the coefficients and
then comparing to the expected form of U,(f)
Appendix A for n up to 9 points.

The remaining parts of the box integral functions

generate the finite polylogarithms. The expression for
P is [28]

given in

(5.6)

Py = ZCiF,‘zm
i

where
K2 KZ
F>™[S,T,K2, K3] =Li, (1 —?2> +Li, (1 —72>

. K3 . K3
+L12< —?4> +L12<1—74>
KIKZ\ 1 S
—Lip( 1-=2224) +-1n?( = .
( 2 )+2n (T) (5.7)

and, in the specific case where K% =0,

FIM[S, T, K3] = F*™[S, T, 0, K3]

. K; . K3

:L12<1_S4>+L12<1_;>
1 S n?
S (2) 4T
i <T)+6

Let us now consider the specific five-point case where
only the K3 = 0 case occurs.

In this case the one-loop corner is a four-point amplitude
and the color partial amplitudes simplify since

(5.8)

AV (1,2,3.4) = Al (1,2,4.3) = A (1,3.2,4), (5.9
which implies that

Al (1:2,3.4) = =341 (1,2,3.4)

and  A{(1,2;3,4) = 64,(1,2,3,4) (5.10)

so that the full color amplitude factorizes into color and
kinematic terms
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AV by d.e) =Cx A (byde.t))  (5.11)

where the momentum labels are specified in Fig. 3.
Since the three-point tree amplitudes also factorize, the
quadruple cut of this box function factorizes as

C' x AW (a. £, £)AV (b, 5. 6,)AY (c. 4. £5)
x AV (t4.d. e.£)). (5.12)

The solution to the quadruple cuts in this case is

g SVt blhy, —, _(calketbalky, g
(ac) (ca)
|
C/

m,n,p.q

So that

AP (a. 5. 0)AY (b.65.6,)AY) (c.£4.25)
x A (¢4.d. e.t))
2i [de]?

=3 e X Y b ) c a)

1
= 3 SabSbe X Al (d e;a.b.c). (5.14)
Consequently,
PO~y Al (d esab,0) xFlp,  (5.15)

where FZ)"C; se =F" 45, Spes S ) - We can determine the terms
in the summation by expanding C’ using U(N.) identities:

(desabe) = Z ((Tr[amn] — Tr[man])(Tr[bpn] — Tr[pbn])(Tr[pcq| — Tr[pgc]))(N Tr[mged] + N Tr[meqd]/2

+ N Tr[gemd)/2 + N Tr[gmed] — 3Tt[m|Tr[qde] — 3Tr[g|Tr[mde] — 3Tr[d|Tr[emq]| — 3Tr[d|Tr[eqgm]
+ 3Tr[de|Tr[mgq| + 3Tr[dm|Tr[eq] + 3Tr[dg|Tr[em] 4+ {d <> e})
= N2(Tr[deabc] + Tr|edabc| — Tr[badec| — Tr[baedc]) + N.(—2Tr[d](Tr[eabc] — Tr[baec])
— 2Trle](Tr[dabc] — Tr[badc)) — Trla](Tr[debc] + Trledbc| — Tr[bdec] — Tr[bedc]) — Tr[b](Tr[deac]
+ Trledac] — Tr[aedc]| — Tr[adec]) — Tr[c](Tr[deab] + Trledab] — Tr[adeb] — Tr[aedb]) + 8Tr[de|(Tr[abc]
— Tr[bac]) + Tr[da](Tr[bec] — Trlebc]) + Tr[db](Tr[aec] — Trleac]) + Tr[dc|(Tr[aeb] — Tr[eab])
— Trlea](Tr[dbc| — Tr[bdc]) — Tr[eb](Tr[dac] — Tr[adc]) — Tr[ec](Tr[dab] — Tr[adb]))
+ 3(=2Tr[d|Tr[e](Tr[abc] — Tr[bac]) + Tr[d]|Tr|a|(Tr[ebc] — Tr[bec]) + Tr[d|Tr[b](Tr[eac] — Trlaec])
+ Tr[d]Tr[c](Tr[eab] — Tr[aeb]) + Tr[e|Tr[a|(Tr[dbc] — Trbdc]) + Tr[e|Tr[b](Tr[dac] — Trladc])

+ Tr[e|Tr[c](Tr[dab] — Tr[adb)))

+ 6(Tr[deabc| — Tr[dcbae] + Tr[dcbea] — Tr[daebc] + Tr[dceba] — Tr[dabec] + Tr[dcaeb] — Tr[dbeac]
+ Tr[dbaec| — Tr[dceab] + Tr|dabce| — Tr[decba] + Tr|daecb] — Tr[dbcea] + Tr|dbeca] — Tr[daceb)).

This is an expansion of the form

= Za/(lde;abc) Ci

A

C/

(desabc) (5 : 17)

where the C* are the different color structures. Consequently
the polylogarithmic part of the partial amplitudes is

(2

PO = 3" dyppeAsis(doesa bc) xFlyr o (5.18)
(desabc)

Specifically we recover the previous results of Refs. [5,13].
Defining Ss.; = Zs(a, b, c,d, e), Ss., = Z4(b, ¢, d, e) and
Ss.3 = Zy(a,b) x Z3(c,d, e) we have

(5.16)

[
sz:)l (a,b,c,d,e)= Z —Aglté(d, eia,b.c)EFL ..

Ss:1
4
sz;)a(a,b:c,d,e):§ <A§1:)3(a,b§c’d’e>l:g&ab
Ss:3
1
+3A(a.cib.ed)

X (Férend;ac +Fll):1ne;ac - F}i?:e;ae)) . (5 19)

We also determine directly the remaining SU(N,.) partial
amplitude,
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bt

FIG. 3. The labeling and internal helicities of the quadruple cut.

P§2:>13(a,b,c,d,e)

1 m
(Ag)3 (Cl, b’ ¢, d’ e)Fi‘de;uh
Ss:1

1 m m m
+Ag )'i (a’ c; b’ e, d) (Fil)ed;ac + Fllade;ac - leihe;ac))‘ (520)

This expression matches that obtained by using the results
of Eq. (5.19) in Eq. (3.6).

The specifically U(N,.) partial amplitudes may also be
extracted directly:

P? (a;b,c,d,e)
:—Z<A1 a,bsc,d,e)Fn. .

Ss:2

I«
+§A L(b cae, d) (Fclzrc;le ;be + Fdea ;be F}]::e;he))

(5.21)
and
PS) (aibie.d.e)
==Y (a.bic.d )Pl
S5:3
+AL (@b, e.d) (Fyy e+ Fy e —Fin)). (5.22)

As a check we have confirmed that these satisfy the
decoupling identities (3.4).

VI. RECURSION

The remaining part of the amplitude is the rational
function quz)/l In Eq. [8] we described a technique for
evaluating this for the leading in color partial amplitude.
We review this here and describe the extensions necessary
to determine the full-color amplitude.

As R,(1 )/1 is a rational function we can obtain it recursively
given sufficient information about its singularities. Britto-
Cachazo-Feng-Witten (BCFW) [29] exploited the analytic
properties of n-point tree amplitudes under a complex shift
of their external momenta to compute these amplitudes
recursively. Explicitly the BCFW shift acting on two
momenta, say p, and p,, is

/10%/1&:/_1“—2/_117, ﬂbﬁﬂgzﬂb—‘rZ/{a. (61)
This introduces a complex parameter, z, while preserving
overall momentum conservation and keeping all external
momenta null. Alternative shifts can also be employed,
for example the Risager shift [30] which acts on three

momenta, say p, p, and p., to give

A = Ao = Ay + 2]bclh,,
Ay = Ay = Ay + Z[cald,,

Ae = Ae = Ao + 2[ab]A,, (6.2)

where 1, must satisfy (an) # 0 etc., but is otherwise
unconstrained.

After applying either of these shifts, the rational quantity
of interest is a complex function parametrized by z i.e.,
R(z). If R(z) vanishes at large
applied to R(z)/z over a contour at infinity implies

=3l

If the function only contains simple poles, Res[R(z)/z]
Res[R(2)]].,
determine the residues. Higher order poles do not present a

problem mathematically, for example, given a function
with a double pole at z = z; and its Laurent expansion,

(6.3)

Zj

|Zj =
- and we can use factorization theorems to

C_»p C_1

R(z) = +0((z-2;)%), 6.4
O= oty tOE-a)) 64
the residue is simply
R
Res {ﬁ} = —22—|-—1. (6.5)
< z Z] <j

To determine this we need to know both the leading and
subleading poles. As discussed above, loop amplitudes can
contain double poles and, at this point, there are no general
theorems determining the subleading pole.

Both the BCFW and Risager shifts break cyclic sym-
metry of the amplitude by acting on specific legs and the
Risager shift further introduces the arbitrary spinor . While
it is hard to determine a priori the large z behavior of an
unknown amplitude, recovering cyclic symmetry (and 7
independence) are powerful checks. For the two-loop all-
plus amplitude this symmetry recovery does not occur for
the BCFW shift (the one-loop all-plus amplitudes have the
same feature). However, symmetry is recovered if we
employ the Risager shift (6.2).

The Risager shift excites poles corresponding to tree:
two-loop and one-loop:one-loop factorizations. The former
involve only single poles and their contributions are readily
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obtained from the rational parts of the four-point two-loop
amplitude [2]:

! 2
RﬁKK+x+ﬂ+x+w‘§ﬁ%cKtctdaeﬂ(ﬁ;?7+8>,

2)

Rg:3(K+,c+;d+,e+): Ag%([(*,c*;d*,e*)

1
9 :

2 2 2

Ay S, S
><< cd_ Tce | Tde +24>.
SceSde  ScdSde  ScdSce

The one-loop:one-loop factorizations involve double
poles and we need to determine the subleading pieces.
By considering a diagram of the form Fig. 4 using an axial
gauge formalism, we can determine the full pole structure
of the rational piece, including the nonfactorizing simple
poles. We have used this approach previously to compute
one-loop [31-33] and two-loop amplitudes [6-8]; we
labeled this process augmented recursion. In axial gauge
formalism helicity labels can be assigned to internal off-
shell legs and vertices expressed in terms of nullified
momenta [34,35],

K2

K'=K-
2K.qq

(6.6)

where ¢ is a reference momentum. The two off-shell legs
are

a=a(f)=¢+a and p=pI1l)=b-¢, (6.7)
where we also define the sum of these legs, P, =
a+p=a+b=P,, which is independent of the loop

momentum, .
The principal helicity assignment in Fig. 4, gives

/dAC(a+,a+,b+,ﬂ—)r,<})"’(a—,ﬁ+,c+,...,n+), (6.8)
where

b+

FIG. 4. Diagram containing the leading and sub-leading poles
as s,, — 0. The axial gauge construction permits the off-shell
continuation of the internal legs.

/dAC(a+,a+,b+,ﬂ_)

[ dPr
l /fzazﬁz Vi(a.a,0)V5(¢.b.B). (6.9)

- cr(27)P

the vertices are in axial gauge and 15,1)’6 is a doubly off-shell
current.

As we are only interested in the residue on the s,, — 0
pole, we do not need the exact current. It is sufficient that
the approximate current satisfies two conditions [6,32]:

(C1) The current contains the leading singularity as

Sqp — 0 with a’, p* #0,
(C2) The current is the one-loop, single-minus amplitude
in the on-shell limit a?, % — 0, 5,5 # 0.
This process is detailed in Ref. [8].

We now apply the method to the full color amplitude.
The U(N,.) color decomposition of dA° contains a
common kinematic factor so we have the color decom-
positions

e =S"c) and [ dac=cCy [ dA,  (6.10)
7 ; AThia / A/ 0
where
/dAO(a+,a+,b+,ﬂ‘)
0 dP¢ la|?|q)[bl¢\q) (B q)*
_MhP/%ﬁzm®®®<wV (6.11)

Hence the full color contribution is

ZCAQ/dAO(a+,a+,b+,ﬁ—)rfj)ﬂ(a—,ﬂ+,c+,...n+).
A

(6.12)

The various 1,(11:)/1 can be expressed as sums of the leading

amplitudes Tﬁllz)] via a series of U(1) decoupling identities.

We now focus on the five-point case, where there are two
distinct forms of the leading current,

Tglz)l(a_,ﬂﬂc*,d*,e*) and Tglz)l(a_,cﬂﬁ*,d*,e*),

(6.13)

which we call the “adjacent” and ‘“non-adjacent” leading
currents, respectively.

Tgl:)l (a=,pt,ct,d", e") has been calculated previously
for a specific choice of the axial gauge spinor 4, = 4, [6].
Since we require currents for which all the legs have been
permuted it is necessary to derive this current for arbitrary
A4- The nonadjacent case has not previously been consid-
ered. The derivation of the adjacent current is given in
Appendix B. This current is given by
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) (e b o e 4N ede qe] [clq|d) lelq|d) )]
(et ,d e F {l—ksa(
il A\ [q|Paﬁ|q>[c|e\d> IPugla)eleld)
q)* [<0w> [clpld) | {ce)lde] <[Q|Paﬂ|d>3<qc><qa>[‘1|a|61>_3<‘1d> [QIPa/;IdV[QIﬁIcI)ﬂ
q)* | (de){ea) <dE>2 [9IPasla)’ {ac)[glPysle) [91Pasla)* (4] Paglc)
L el ( pellae] leldl >([6ﬂMﬁf1][qlPaﬂ|61>—[ﬂQ]z[elPaﬂlq»)
3<6d>2 [ea][aq] laq](q|Pesla)’
+0((af)) +0(a?) +O(f) (6.14)
|
where Rg)] (at, bt ct,d,et)
. 3 i 1
fcde_i<QQ> (qlaplq) (ec)lce] _9<ab><bc><cd><de><ea>
ar 3 <ﬂ q>2 af <C d) <d e) [e|Pa/}|CI> [C|Paﬁ|q> tr2 [deab]
(6.15) x SZ <;d—sb + 55apSpe + sabscd>, (6.19)
and Rg2)3 (at,b5ct,d,et)
e Pogla) [Bal* 1 [e|Pyylq) — !
Fete — _L1elPas — (6.16)
T T3 [adllalPuld) sy (cd)? 3 <“b><[b “;<Td>[<d2><]€ °
tr_[acdeltr_[ecba 5
= 6.20
Setting 4, =44 in Eq. (6.14) reproduces the current X;( SaeScd +2S‘”’> ( )
presented in Ref. [6]. '
The nonadjacent leading current is and
2
Tgl;)l (a, ¢t Bt dt,et) Rg:)lB(aJr, bt ct,d, e")
G ((xcied] e Yo = 2ie(a.b,c.d)(Cprla.b,e.c.d)
== - ap)).
3(pa)* \(ca)({de)* [elald)[c|ald) +Cpr(a.d.b.c.e) + Cpr(b. c.a.d.e)
(6.17) + Cpr(a,b,d, e, c) + Cpp(a,c,d, b,e))  (6.21)
These currents must be integrated before extracting the ~ Where
rational pole. The nonadjacent case integrates to the simple 1
form, ,b,c,d, . 22
o Corlab e ) = b e aiaeea)

d°¢ ilalt|q)[b|¢|q) (ae)lec]
a’f*3 (aq)(bq)

i lec](a

(ca)(de)?  6(de)*{(c

e)lab]
a){ab)’
(6.18)

/

where the second term in Eq. (6.17) has been dropped since
it is a quadratic pentagon and does not contain any rational
terms. The integrated adjacent case is a generalization of
the previous result [6]. Summing over all the channels
excited by the Risager shift we recover the full two-loop
color decomposition. We present compact forms of the
SU(N,) rational pieces below, including the first compact
form for the rational piece of the maximally nonplanar
amplitude obtained via a direct computation. We find
complete agreement with previous calculations [13] and

R(52:>1  satisfies the constraint (3.6).

These expressions are valid for both U(N,) and SU(N,.)
gauge groups and are remarkably compact.

We note that there are double poles at leading and
subleading in color, but not at sub-sub-leading. As Rf:)l B
vanishes [2] the poles in Rg%)l 5 do not correspond to tree:
two-loop factorizations, instead they arise from contribu-
tions of the type shown in Fig. 4, where the corresponding
current has no pole in s,,.

VII. CONCLUSIONS

Computing perturbative gauge theory amplitudes to high
orders is an important but difficult task. In this article, we
have demonstrated how the full color all-plus five-point
amplitude may be computed in simple forms. We have
computed all the color components directly and only used
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color relations between them as checks. In passing, we have
given simple all-n expressions for the one-loop subleading
in color amplitudes and presented the n-point IR diver-
gences in a color basis approach. Our methodology obtains
these results without the need to determine two-loop
nonplanar integrals.
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APPENDIX A: INFRARED DIVERGENCES

The singular behavior of two-loop gluon scattering
amplitudes is known from a general analysis [23]. The
leading IR singularity for the n-point two-loop amplitude
is [36]

_SeizbfaijfbikXA,(II)(j,k,...,I’l) (A1)

where A,(q1> is the full-color one-loop amplitude. We wish to
disentangle this simple equation into the color-ordered
partial amplitudes. It will be convenient to use a more list
based notation for the partial amplitudes where we use

1 l
AV () =AY {ay.ar....a,}) =AY (a1.a5....a,).  (A2)
AV(S1:S,) for A), and AL (S, 85: 85) for AY), .
First we define
(s:7)7¢
Ii,j = — 22 (AS)

A7 (S) =4 (8) x 1,[5).
AELZ)(SI;SZ) :Agl)(sﬁsz) X (1.[S] +1,[S5])

2, 2 A

SLEC(S,) SLEC(Ss)

T2 > 4

S,eC(S)) SyeC(S,)

ZA (S}58%) X I[S}. S5,

S ec(s

(51,52,53

T2, > 4

1) S,eC(S,)

V(S1: 8, @ S4) x 1;[Sh, S4] + dYoo> A

and we have for a list S = {ay, a,, as, ..

Sat,

(A4)

where the term [, , =1, ,, 18 included in the sum. We
also define I;[S;,S,] and I;[S;, S,],

1;[S,, 8] = I;[{ay. ay...a,}. {by, by, ...b,}]
( a.a, +Ib1,b: _Ial.bl _Ia,,bx)’

1i[81. 8] = Ik[{a1, ay...a,},{by, b, ...b}]

= Lap, +1pa0 = Layp, = 1ap,) (A5)
giving
L[S ® S5] = 1.[S)] + 1,[So] + Ik [S1, 2] = 1;[S1,S5,]  (A6)
where {a,...a,} & {b,...b;} = {a,...a,,by...b,}. In this

language the leading and subeading IR singularities at
one-loop are

AV (S) = AV (s) x 1,[S].

Agzl)(sl;sz) iy

AV @ $5) x 1,81, 8b).

V(S3:8, @ ) x 1[S), Sy,

(A7)
The set C(S) is the set of cyclic permutations of S.
At two-loops, we have
S’ ® S5) x I;[S]. 55,
SQ,S’ ® S5) x I;[S], 85
S €C(S)) S5eC(S3)
(A8)

where U(S) is the set of all distinct pairs of lists satisfying S} @ S5 € C(S) where the size of S’ is greater than one. For

example

U({1.2,3,4,5}) = {({1,2}.{3,4,5}). ({2.3}.{4.5.1}), ({3,4}.{5. 1.2}), ({4.5}.{1.2,3}), ({5.1}.{2.3.4})}.

(A9)
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APPENDIX B: OBTAINING THE
ADJACENT CURRENT

We build the rational part of the full color five-point
amplitude recursively, using augmented recursion to deter-
mine the subleading poles arising in the one-loop:one-loop
factorizations. For this we need an approximation to the
doubly massive current rgl)(a, B, c,d, e) shown in Fig. 4.
As we are only interested in the residue on the s,, — 0
pole, we do not need the exact current, just one that satisfies
the conditions

(C1) The current contains the leading singularity as

Sqp — 0 with a?, f* #0,
(C2) The current is the one-loop, single-minus amplitude
in the on-shell limit a?, > — 0, Sap 7 0.

Condition (C2) requires the current Tgl)/{ to reproduce the

full partial amplitude A{") in the a® — 0, % — 0 limit and
so the current should have the same color decomposition as
the one-loop amplitude (2.3). We can use (2.6) to relate any

of the subleading currents to sums of the leading in color
(1)

currents 7;.;. The cyclic and flip symmetries inherited

from Ag:>1 mean that any of the Téz)ﬁ can be related to

Tgl:)l (a,p,c,d, e) and ’L'gl:)l (a,c,pB,d, e) up to permutations
of the legs {c,d, e}.

To build the current we start with the one-loop, five-
point, single-minus partial amplitude

A (@ prictidt ety = Y Al (e prictdte)
o (BI1)
where
A ) = <<aﬂ; 233553 ’
Al %) =57 aolea
and
AL (am pro et ety = L {eP BB

3{cd) (de){ae)(pe)

Condition (C1) requires our approximation to the current
to reproduce the correct leading singularities as s,5 — 0,
the sources of these are depicted in Fig. 5 [6]. We determine
these within the axial gauge formalism. The two channels
give

cde — [ﬁk]<aq>2i (1)
T = ) kq) s

_ i(aq)’ (qlaplg)
3 <ﬁ CI>2 sa/}

(k= et dt,eh)

(ec)lcef

e)le|Paslq)[c|Paplq)

{cd){d

FIG. 5. Factorizations of the current on the s,; — 0 pole.

and

Fede = <[ >][Li‘é]] —A4 V(K et db,et)

_7<ak>[ﬁCI]2L[€k]2
3 [aq”kq] Sa/i <Cd>2

(B2)

where k = a + ff = —c¢ — d — e which is null on the pole.
Using the identity

1
(ap)ipe)
1 <<Q|aﬁ|Q>[Q|Paﬂ|Q> {gP)qc) [anIQ>>
(@q)(Ba)* \ seplalPoslc) (Bc)lalPuslc)
(B3)

and the expansion

LB|PI()I/}|d> _ [Q|Prlli|d> s <CI d>LHQ] + O(Sz )
W|Paﬁ|q> [Q|Pa/3|q> @ [ﬁ|Pa/7’|q> [Q|Pa/)’|q> o
(B4)
we find
ce|q 4 s [q €] [c|qld)
b= AlglPaglc) " aPpla)lcleld)

- [q|Paﬂ|q>[e|c|d>> +o “ﬁ)]'

We see that Aglz)l ; generates the correct singularity as
(ap) = 0. This terms generates the double pole when
integrated and the form in (B5) explicitly exposes the

subleading contribution.
The F¢d¢ factorization arises when [a ] — 0. This we
(1)

obtain from Ag.};;. Using

(BS)

2

k
-——q=a +p +dq,

K=k
2k.q

(B6)

where
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5= o n B _ Sap (B7) Wesee that Aglfm has the form F¢%¢ + A » + Ap + A, as
2a.q 2p.q 2kgq [af] — 0, where A, is proportional to a®/ Sqp etc.. As Ag
we have does not contribute on the pole, we do not have to replicate
it in the current and therefore include a contribution to the
de b 1 [g ﬁ]z[ﬂ q} (Ba) current of the form Aglz)l i A — Aﬁz to satisfy condition
Fob' = 5@ [ag](cd)> (C1). This does not compromise condition (C2). Upon
) integration the o* and 4 factors in A » and A generate s,
+ 6le|q|a) (epllpallka] + [ﬁqz] [ k) . (B8)  factors which cancel the pole. We therefore do not require
@ qllk gl{cd) these forms explicitly. For the purposes of integration it is
m ) convenient to express the term with the [a ] pole in terms
Now Aj.; can be rewritten as of F¢d¢. To maintain condition (C2) we must retain A, .
1 5 1 5 The remaining piece of the one-loop amplitude, Aglz)l Zﬂl
Agl,)m — 5 Bel'lge] i - pel’laf] (B9)  contains no poles as (af) — 0 or [@ff] - 0 and we can
’ 3(cd)’ [eallag] 3(cd)’ [ap]lag] simplify it using
and noting that Xa) (Xa)(Ya) (Xa)
a a a
RS T S W Ta — (7 + O({aa)) (B11)
Ba) 1 fa)afl—sap (@ + )" —s4p (Ya)  (Ya)(Ya) (Ya)
Saﬂ [aﬂ] saﬂ[aﬂ] Saﬂ[aﬂ]
as terms of O((aa)) do not ultimately contribute to the
o? p? 2k.q
= _< + ) . (B 10) residue.
2a.q  2P.q) sqplaf] The adjacent leading current is then
|
(D) (= g+ o+ g+ ,+)_ Fede lge] [c|g|d) le|g|d)
o (a,pr et dret)=F [1—|—sa< +
i w7\ [eellgPasle) " [alPopladleleld) " [qlPagla)lelcld)
L1 (ag) [<a0> [clpld)  (ce)lde] ([‘I|Pa/)’|d>3 (gelaalglala) ,{qd) [Q|Prxﬂ|d>2[Q|ﬂ|Q>>:|
3(cd)*(Bg)* | (de)(ea) — (de)* \[q|Pyla)® (ac)(glPulc) ~ [4|Pusla)*[alPaglc)
, i Bellae] ([epllpallkq)+[pal*[ek])
_|_]:§de+ <_ +le|q|a +0 <(Zﬂ)+0 o’ +O(ﬁ2 .
e\ leaflag T (agllkaizkg e+ Ol +O)

(B12)
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