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Highlights

• Transverse vibration of connected beams with attached masses, excited
by base motion is investigated

• The beams are connected by fractional viscoelastic layers of Kelvin-Voigt
type

• The solution was obtained by the Galerkin approximation, Fourier trans-
form and the impulse system response method

• Frequency response of the system in a steady state vibration regime is
analysed

• Several system configurations were considered and the influence of various
parameters was investigated
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Abstract

Vibration of structures induced by some external sources of excitation is a
common phenomenon in many engineering fields such as civil engineering, ma-
chinery and aerospace. In most cases, it is desirable to suppress such vibrations
but lately there are attempts to exploit this phenomenon for the energy har-
vesting purposes. Multiple connected structures with attached masses are ideal
systems for such applications. In this study, we propose a cantilever multi-
beam system excited by base motion, with an arbitrary number of attached
masses on beams and fractional-order damping considered. The correspond-
ing governing equations with fractional-order derivatives and non-homogeneous
boundary conditions are given. These equations are solved by first homogeniz-
ing the boundary conditions and applying the Galerkin discretization, and then
using the Fourier transform and impulse response methodology. A steady state
response of the system is also analysed. In the numerical study, the influence
of various system parameters on the dynamic behaviour of the system is inves-
tigated, and different beam-mass configurations are examined. The potential
application of this type of systems is also commented.

Keywords: multi-beam system, base excitation, concentrated masses,
fractional viscoelasticity, Galerkin method, impulse response

1. Introduction

Systems that can be modelled as multiple connected structural elements such
as bars, beams, plates, membranes or wires are very common in engineering
practice on micro/nano as well as on macro scale [1, 2]. Application of such
systems ranges from civil engineering [3] to mechanical engineering and other
applications [4]. It is important to note that multi-beam based systems are
commonly employed for energy harvesting purposes based on piezoelectric effect
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[5]. Moreover, both the energy harvesting systems with the beams connected
in the plane of beams’ transverse vibration [6], or in the plane perpendicular
to the beam vibration plane [5, 7] are analysed. Also, among others, a very
appealing application of energy harvesting devices, based on vibration of beam-
like structures, is in civil engineering, particularly on bridges that vibrates due
to traffic loads [8–13].

Investigating dynamic properties of a system of multiple connected beams
is an important task in the field of structural mechanics and vibration theory.
This problem has a long history, where many authors addressed this issue for
elastically coupled beams [14–29]. Another interesting problem in vibration of
coupled structures is the consideration of system’s vibration damping. One
among the first papers in this field is a paper by Dublin [30], where two beams
were coupled by discrete spring-damper system. In a number of studies, damp-
ing is considered in multiple connected structures weather as layer’s damping,
through continuously distributed spring-damper elements between structures,
or by including the internal structural damping through constitutive equations
[31–34]. Dynamics of single and multiple connected structures can be signifi-
cantly affected by the attached concentrated masses or inertia elements [35–38].
A special class of beam-mass problems is the case with the nonhomogeneous
boundary conditions, particularly the base excitation problem [39–42]. Attach-
ing concentrated masses to a beam can considerably improve the performance
of an energy harvesting system, especially if the piezoelectric effect is used to
convert mechanical energy of beam vibrations to electric energy [43].

Damping models of structures based on fractional order derivatives have
been extensively used in recent decades. An overview of these works can be
seen in a paper by Rossikhin and Shitikova [44], where models of fractional-
order viscoelastic coupled beams and plates were also presented. In order to
solve linear fractional order differential equations, Kempfle et al. [45] developed
the methodology based on functional calculus and Fourier transform. Later,
SchÃďfer, and Kempfle [46] suggested the solution for the system of nonhomo-
geneous fractional order differential equations based on impulse response. In
papers by Freundlich [47, 48], previous methodologies served as a tool to solve
specific problems of fractional-order base excited viscoelastic beams with and
without attached masses. Other authors [49] also observed a similar problem of
base excited fractional viscoelastic beams but employed a different methodology
to get the responses. In addition, Cajic et al. [50, 51] analysed the beam-mass
problem based on nonlocal elasticity and fractional-order damping models using
two different approaches. Finally, in a recent study [52], a similar approach was
applied to fractional Zener type viscoelastic model.

From everything mentioned previously, it is clear that most of the studies
deal separately with multiple coupled structures or single structures with at-
tached masses and base excitation with or without damping considered. The
aim of this paper is to present a general model of a fractional-order viscoelas-
tic multi-beam system with attached masses and base excitation as well as a
methodology to solve this complex system of nonhomogeneous fractional or-
der differential equations. An impulse response methodology is employed in
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conjunction with the Galerkin discretization technique, Fourier transform and
residue theory. A general, yet weak damping case is considered in order to
decouple the system of equations and solve the corresponding eigenvalue prob-
lem. For the purpose of parametric study, different beam-mass configurations
are analysed to obtain the responses and show the effects of number of beams,
connecting layer properties and mass distribution on vibration amplitudes, and
based on these results the potential applications of this type of systems are
discussed.

2. Defining the problem

2.1. The problem formulation
In this study, dynamic behaviour of an array of fractional viscoelastic Euler-

Bernoulli cantilever beams connected by fractional viscoelastic layers in the
plane of beams’ transverse vibration is analysed. All the connecting layers in
the system have the same material properties. The beams are of constant (but
possibly mutually different) geometry and material density. An arbitrary num-
ber of concentrated masses can be attached to each of the beams, and each
beam is connected to the two neighbouring ones by a lightweight fractional
viscoelastic layer. The whole system is subjected to an arbitrary transversal
motion of the beams’ supports. However, all the supports follow the same mo-
tion function. Moreover, all the beams are of the same length L. The described
system is schematically presented in Fig. 1. It can be seen that the last and
the first beam in the system are connected through fractional viscoelastic layers
with fixed bases. Such systems are usually called "Clamped-Chain" systems
in the literature. However, the same equations derived in the following text
can be applied to a "Free-Chain" system, where the first and the last beam
are not connected to a fixed base, which is achieved if the elastic properties of
the first and the last fractional viscoelastic layer in the system vanish, that is
κ(0) = κ(N) = 0.

Fractional viscoelastic material of the beams is described by the fractional-
order Kelvin-Voigt model, which for the (k)-th beam is given as:

σ(k)(t) = Ek
(
ε(k)(t) + τα1 aD

α
t ε(k)(t)

)
(1)

where σ(k)(t) is the normal stress in the (k)-th beam, ε(k)(t) is the longitudinal
dilatation of the (k)-th beam, and Ek and τα1 are the relaxed (prolonged, long-
time) elasticity modulus and the retardation time of the (k)-th beam material,
respectively. Fractional viscoelastic properties of each of the beams are taken
to be the same, so consequently, the retardation time τα1 and the fractional
derivative order α are the same for all the beams. In this paper, only the left
Riemann-Liouville fractional time derivative of order between the limits of 0
and 1 will be used. This derivative of a function f(t), which is continuous and
differentiable on a time interval [a, b], is defined as [53]

aD
α
t f(t) =

1

Γ(n− α)

dn

dtn

∫ t

a

f(τ)

(t− τ)α−n+1
dτ, (2)
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Figure 1: The schematic representation of the considered problem model; a) the whole sys-
tem of connected beams, b) the (k)-th beam and details of the attached mass positions and
notations

where α ∈ [0, 1) is the derivative order, and n ∈ N is a natural number such
that α < n. In this paper, the notation for the left Riemann-Liouville fractional
time derivative will be shortened and it will be denoted by Dα.

In the same manner as the beam material, the material of the interconnecting
layers is also modelled by a fractional order Kelvin-Voigt type phenomenological
constitutive model, so that the distributed force, representing the influence of
the layer between the (k)-th and the (k + 1)-th beam on the (k-th) beam can
be expressed as

fl(k)(x, t) = κ(k)(1 + τβ2 D
β)
(
w(k+1)(x, t)− w(k)(x, t)

)
(3)

where fl(k)(x, t) is the distributed force per unit beam length exerted by the
(k)-th layer, κ(k) and τ

β
2 are the relaxed (prolonged, long-time) compliance coef-

ficient and the retardation time of the layer material, respectively, and w(k)(x, t)
and w(k−1)(x, t) are the transverse displacements of the (k)-th and the (k+1)-th
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beam, respectively. As already mentioned, material properties of each inter-
connecting layer are taken to be the same, so that the compliance coefficient
κ(1) = κ(1) = · · · = κ(N) = κ and the retardation time τβ2 for each layer are the
same. However, the indices for the compliance coefficients will be kept in order
to emphasize the layer from which the particular influence originates, although
the value of this coefficient is the same for each layer.

2.2. The equation of motion
By using the Hamilton’s principle [48, 54, 55] the following equation of mo-

tion can be formulated for the whole system of N connected beams:

EkIk(1 + τα1 D
α)w′′′′(k)+


ρkAk +

Nm(k)∑

p=1

m(k)pδ(x− a(k)p)


 ẅ(k)−

− κ(k)(1 + τβ2 D
β)(w(k+1) − w(k))+

+ κ(k−1)(1 + τβ2 D
β)(w(k) − w(k−1)) = 0 ; k = 1, 2, . . . , N

(4)

where w(k)(x, t), Ik, ρk and Ak are the transversal displacement, cross-sectional
moment of inertia, the material mass density and the cross-sectional area of the
k -th beam, respectively, x ∈ [0, L] is the axial coordinate, m(k)p is the p-th mass
attached to the (k)-th beam, and δ is the Dirac function, τβ2 is the retardation
time of the connecting layers, and κ(k) is the relaxed compliance coefficient of
the layer between the (k)-th and the (k+1)-th beam, while κ(k−1) is the relaxed
compliance coefficient of the layer between the (k)-th and the (k − 1)-th beam.
It should be pointed out that the equations of motion for the first and the last
beam of the system should be different from the equations for the rest of the
beams. However, the above equation can be used in the presented form for each
of the N beams of the system, if it is noted that w(0) = w(N+1) ≡ 0. In this
paper, (•)′ will be used for ∂(•)/∂x, and ˙(•) will represent ∂(•)/∂t, while Dα(•)
will also be denoted by (•)(α).

The corresponding boundary conditions are

w(k)(0, t) = ws(t) and w′(k)(0, t) = w′′(k)(L, t) = w′′′(k)(L, t) = 0 (5)

where ws(t) is the motion function of all the supports. For each of the beams,
zero initial conditions are adopted.

In order to homogenise the boundary conditions in (5), the absolute transver-
sal displacements of the (k)-th beam are presented as a superposition of a rigid
body motion of the beam, and the relative beam displacements (v(k)(x, t)), mea-
sured with respect to the clamped end of the beam , that is:

w(k)(x, t) = ws(t) + v(k)(x, t) (6)

since in rigid body motion the movement of all the points of all the beams cor-
responds exactly to the motion of the supports ws(t). Taking this consideration
into account, Eq.(4) becomes
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EkIk(1 + τα1 D
α)v′′′′(k)+


ρkAk +

Nm(k)∑

p=1

m(k)pδ(x− a(k)p))


 v̈(k)−

− κ(k)(1 + τβ2 D
β)(v(k+1) − v(k))+

+ κ(k−1)(1 + τβ2 D
β)(v(k) − v(k−1)) = F(k) ; k = 1, 2, . . . , N

(7)

where F(k) = F(k)(x, t) ≡ −
(
ρkAk +

∑Nm(k)

p=1 m(k)pδ(x− a(k)p)
)
ẅs ; k =

1, 2, . . . , N .

The according boundary conditions are now homogeneous:

v(k)(0, t) = v′(k)(0, t) = v′′(k)(L, t) = v′′′(k)(L, t) = 0 (8)

3. Application of the Galerkin method

3.1. The approximate solution for the relative displacements
The exact solution for the relative displacements for each beam of the system

can be approximated by a series

v(k)(x, t) ≈
n∑

i=1

φ(k)i(x)q(k)i(t) ; k = 1, 2, . . . , N (9)

where n is the number of terms in the Galerkin series approximation, φ(k)i(x)
are the trial functions, and q(k)i(t) are some yet undetermined time functions.
The trial functions φ(k)i(x) will be determined later, but for the time being, it
will be assumed that they are known.

Introducing the above approximation into Eq.(7) gives:

n∑

i=1

EkIk(1 + τα1 D
α)φ′′′′(k)iq(k)i +

n∑

i=1


ρkAk +

Nm(k)∑

p=1

m(k)pδ(x− a(k)p)


φ(k)iq̈(k)i−

−
n∑

i=1

κ(k)(1 + τβ2 D
β)(φ(k+1)iq(k+1)i − φ(k)iq(k)i)+

+
n∑

i=1

κ(k−1)(1 + τβ2 D
β)(φ(k)iq(k)i − φ(k−1)iq(k−1)i)− F(k) = R∗(k) 6= 0 ; k = 1, 2, . . . , N

(10)
Here, R∗(k) denotes a nonzero residual, arising as a consequence of the ap-
proximation. Successively multiplying the equation (10) by the trial functions
φ(k)j(x), j = 1, 2, . . . , n and integrating over the length of the beam, the fol-
lowing system of n equations is obtained for each of the N beams of the system:
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n∑

i=1

(∫ L

0

EkIkφ
′′′′
(k)iφ(k)jdx

)
(1 + τα1 D

α)q(k)i+

+

n∑

i=1



∫ L

0


ρkAk +

Nm(k)∑

p=1

m(k)pδ(x− a(k)p)


φ(k)iφ(k)jdx


 q̈(k)i−

−
n∑

i=1

κ(k)

ρkAk

(∫ L

0

ρkAkφ(k+1)iφ(k)jdx

)
(1 + τβ2 D

β)q(k+1)i+

+
n∑

i=1

κ(k) + κ(k−1)

ρkAk

(∫ L

0

ρkAkφ(k)iφ(k)jdx

)
(1 + τβ2 D

β)q(k)i)−

−
n∑

i=1

κ(k−1)

ρkAk

(∫ L

0

ρkAkφ(k−1)iφ(k)jdx

)
(1 + τβ2 D

β)q(k−1)i = Q(k)j
(t)

j = 1, 2, . . . , n ; k = 1, 2, . . . , N

(11)

where

Q(k)j
(t) =

∫ L

0

φ(k)jF(k)(x, t)dx, j = 1, 2, . . . , n (12)

The matrix form of the above system of equations is given by:

[[
K(k)k−1

] [
K(k)k

] [
K(k)k+1

]]




qk−1

qk
qk+1



+

[
[0]

[
Cα(k)k

]
[0]
]
Dα





qk−1

qk
qk+1



+

+
[[

Cβ(k)k−1

] [
Cβ(k)k

] [
Cβ(k)k+1

]]
Dβ





qk−1

qk
qk+1



+

+
[
[0]

[
M(k)k

]
[0]
]




q̈k−1

q̈k
q̈k+1



 = Qk , k = 1, 2, . . . , N

(13)
where qk is the column vector of n time functions for the (k)-th beam, and all
the matrices’ elements will be defined momentarily. Here it should be pointed
out that each of the submatrices in the above equation is of order n×n, and the
complete vector of time functions for each beam is of order 3n × 1. However,
the total accompanying matrices are of order n× 3n, so that the whole system
for the (k)-th beam is still of order n. Elements of the introduced matrices
and vectors are given in Appendix 1 for the sake of the text clarity. These
expressions are determined for the trial functions φ(k)i(x) defined in the next
subsection.

3.2. Choosing the trial functions
For the Galerkin weighted residual method, the trial functions are taken as

the weighting functions, and these trial functions should be a part of the set
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of comparison functions, that is, they need to satisfy the according boundary
conditions exactly, as well as satisfy the orthogonality condition [56]. There
are several types of functions that meet these requirements, and here the mode
shape functions of a cantilever beam with no concentrated masses attached will
be used as the trial functions.

Since in the stated problem all the beams of the system have the same
boundary conditions, they will be approximated by the same trial functions.
The mode shape functions for a bare cantilever beam (a cantilever with no
masses attached) can be expressed as:

φ(k)i(x) =

√
1

ρkAkL

(
cos β̄ix− cosh β̄ix+

cos β̄iL+ cosh β̄iL

sin β̄iL+ sinh β̄iL

(
sin β̄ix− sinh β̄ix

))

(14)
where β̄4

i = ω̄2
(k)i

ρkAk

EkIk
is the i−th dimensionless frequency parameter of the bare

(k)-th beam, and ω̄(k)i is the i−th natural frequency of the bare (k)-th beam.
The constant

√
1/ρkAkL makes the trial functions mutually orthogonal and

mass normalised, while the frequency parameters β̄i can be obtained by solving
the well-known frequency equation for a cantilever beam [56].

In order to make the trial functions orthonormal with respect to the beam
mass, the following orthogonality conditions were used:
∫ L

0

ρkAkφ(k)i(x)φ(k)j(x)dx = δij

∫ L

0

EkIkφ
′′
(k)i(x)φ′′(k)j(x)dx = ω̄2

(k)iδij , i, j = 1, 2, ..., n ; k = 1, 2, ..., N

(15)

where δij is the Kronecker delta.
Accordingly, since the trial functions for all the beams are set to be the same

and taking into account the above orthogonality conditions, the expressions for
the system matrix and vector elements for the (k)-th beam can be calculated,
and these expressions are given in Appendix 1.

3.3. The system equations
Using the notation introduced in Eq.(13), N matrix equations of that type,

one for each of the N beams, can be combined into the global matrix equation
for the whole system of connected beams, which is of the form:

Kq + Cαqα + Cβqβ + Mq̈ = Q (16)

where K, Cα, Cβ and M are the stiffness matrix, beam material damping
matrix, layer damping matrix and mass matrix of the whole system, respectively,
and q and Q are the vector of the yet undetermined time functions and the
vector of the inertial forces in the whole system. For the sake of visual clarity,
the explicit forms of each of these system matrices and vectors have been omitted
here, but they are provided in Appendix 2.

Equation (16) represents a system of n × N coupled non-homogeneous dif-
ferential equations of fractional order, with fractional time derivatives of order
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α and β. This system of equations will be solved for the n×N time functions
q by using the Fourier transform, and determining first the impulse response of
the beams, and then taking the convolution of the thus obtained Green func-
tions with the according inertial forces functions, ultimately providing the total
system response of the N coupled beams. After the time functions q are de-
termined, the displacements of each of the beams can be calculated by using
Eq.(9) and Eq.(6)

3.4. The impulse response of the system
If instead of the actual inertial forces, the system is subjected to an impulse

load, the actual time functions q(t) will become the impulse response functions
or the Green functions, here denoted by g(t) = {G1(t), G2(t), . . . , Gn·N (t)}T .
Then the system equation (16) will become

Kg(t) + Cαgα(t) + Cβgβ(t) + Mg̈(t) = δm(t) (17)

where δm(t) is the unit impulse load vector of order n ·N , which is a vector with
the Dirac delta function representing a unit impulse in every m-th coordinate,
m ∈ {1, 2, . . . , n}, and all other elements equal to zero. This should reflect the
unit impulse load in the m-th coordinate for each of the N beams of the system,
since, according to the problem premises, all the beam supports follow the same
motion function.

If the Fourier transform f̂(ω) of a finite function f(t) is defined as

f̂(ω) := F(f(t)) :=
1√
2π

∫ ∞

−∞
f(t)e−ıωtdt,

then, by taking the Fourier transform of the equation (17), the system becomes

A(ω)ĝ(ω) = em (18)

where A(ω) = K + (ıω)αCα + (ıω)βCβ + (ıω)2M, ı is the imaginary unit, and
em is the Fourier transform of the impulse load vector δm(t), that is, it is a
vector of order n ·N with a unit in every m-th coordinate and all other elements
equal to zero.

Now, the equations in the system expressed by Eq.(18) are still coupled. In
the case of general damping, these equations cannot be decoupled in general
[45, 57]. If the damping matrices were proportional to mass and/or stiffness
matrix of the system, i.e. in the proportional damping case, it would be possible
to decouple the equations by using the matrix of eigenvectors of the equivalent
elastic system to diagonalise the system matrices and move to the system of
natural (principal) coordinates [46, 55].

However, here matrices Cα and Cβ are not actually proportional to ma-
trices K and M, which can be seen by considering the form of these matrices’
elements given in Appendix 1. According to [57], there is a special, yet relatively
common case when the mentioned decoupling procedure can also be applied to
diagonalise these damping matrices, even in the general damping case. Namely,
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if the damping in the system is relatively small, then the offdiagonal elements in
the damping matrices after transformation to the natural coordinates are also
relatively small and can be neglected [57]. This procedure effectively decouples
the system equations, so it will be used in further analysis in this paper, while
noting that all further considerations are limited to the small damping case.

As it has just been described, in the case of small damping, the system of
coupled equations in Eq.(18) can be decoupled by considering the eigenproblem
of the corresponding elastic system, given by

(
K− ωr2M

)
ur = 0, r = 1, 2, . . . .n ·N (19)

where ωr is the r−th undamped natural frequency of the whole system with
N beams (each having n terms in the Galerkin approximation), and ur is the
r−th eigenvector of this elastic system. It should be pointed out that these
vectors are mass-normalized and that they satisfy the generalized orthogonality
conditions.

Now, if the damping was proportional, the matrix of the elastic system
eigenvectors Φ given by Φ = [u1 u2 . . . un·N ] could be used to directly decouple
the system, since it would diagonalise all the system matrices [46]. However,
since in the case considered here the damping is not proportional, the matrix of
eigenvectors Φ diagonalises the system stiffness matrix K and mass matrix M,
but not the damping matrices Cα and Cβ , that is:

Md = ΦTMΦ = I

Kd = ΦTKΦ = diag[Kd
rr]

Cd
α = ΦTCαΦ 6= diag[Cdαrr]

Cd
beta = ΦTCβΦ 6= diag[Cdβrr]

(20)

where I is the identity matrix.
Having this in mind, and if a vector of Fourier transformed decoupled impulse

response functions η̂T (ω) = [η̂1(ω), η̂2(ω), . . . , η̂n(ω)] is introduced, such that it
holds:

η̂(ω) = ΦTĝ(ω) ⇔ ĝ(ω) = Φη̂(ω) (21)
it can be seen that by multiplying the equation Eq.(18) by ΦT from the left,
the following (almost) decoupled system of equations is obtained:

Ad(ω)η̂(ω) = ΦTem (22)

where Ad(ω) = Kd + (ıω)αCd
α + (ıω)βCd

β + (ıω)2Md. After neglecting the off-
diagonal elements of the transformed damping matrices, each equation of the
system (22) can be solved independently, giving the following expression for the
r-th decoupled impulse response function:

η̂r(ω) ≈ 1

Adrr

n·N∑

θ=1

Φθreθ =
ur · em
Adrr

=

∑N
b=1 Φ(b−1)n+m, r

Kd
rr + (ıω)αCdαrr + (ıω)βCdβrr + (ıω)2Md

rr

,

r = 1, 2, . . . , n ·N
(23)
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To convert the above decoupled Green functions from the frequency-domain
to the time-domain, the inverse Fourier transform of the above equation needs
to be performed. In order to achieve this, one needs to perform the contour
integration and find the singular points (poles) of the above function [45]. This
function has two branch points at s = 0 and s = ∞, and simple poles at
the same magnitudes of s for which the denominator of the last term in the
above equation vanishes, i.e. for the roots of the corresponding characteristic
equation. The characteristic equation for the system considered in this paper
can be formulated as

s2
r + Cdαrrs

α
r + Cdβrrs

β
r + ω2

r = 0 , r = 1, 2, . . . , n ·N (24)

where the change of variables ıω = s and the substitution ω2
r = Kd

rr/M
d
rr have

been introduced.
It can be shown [44] that each of the characteristic equations (24) has two

complex conjugate roots sr1,2 = −ςr ± iΩr, with real part of the roots (ςr)
representing the damping ratio, and the imaginary part (Ωr) representing the
damped system frequency. However, due to the presence of fractional exponents,
this fractional polynomial equation with arbitrary fractional parameters can be
very difficult or even impossible to solve directly by standard numerical methods
and available commercial software (such as Wolfram Mathematica for example).
Therefore, instead, the following procedure for solving fractional equations with
two fractional orders, similar to the one found in [58], is applied.

By introducing the substitution s = ξeıψ, the expression (24) can be sepa-
rated into real and imaginary parts as:

ξ2
r cos 2ψr + Cdαrrξ

α
r cosαψr + Cdβrrξ

β
r cosβψr + ω2

r = 0

ξ2
r sin 2ψr + Cdαrrξ

α
r sinαψr + Cdβrrξ

β
r sinβψr = 0

(25)

Now, by introducing the following parameters

Cdαrrξ
α
r = x1r , Cdβrrξ

β
r = x2r (26)

the previous equation is transformed into

ξ2
r cos 2ψr + x1r cosαψr + x2r cosβψr + ω2

r = 0

ξ2
r sin 2ψr + x1r sinαψr + x2r sinβψr = 0

(27)

The two introduced parameters x1r and x2r can take non-negative real val-
ues, that is (x1r, x2r) ∈ R+

0 [58]. These parameters are not independent, which
can be seen from Eq.(26):

x2r = Cdβrr

(
x1r

Cdαrr

)β/α
(28)

Now, for any assumed value of the parameter x1r, and correspondingly x2r,
the angle ψr can be determined from the transcedental equation obtained by
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dividing the second equation of Eq.(25) by the first one, thus eliminating the
ξ2
r , i.e.

tan 2ψr =
sin 2ψr + x1r sinαψr + x2r sinβψr

cos 2ψr + x1r cosαψr + x2r cosβψr + ω2
r

(29)

The value of ξr can now be determined from the second equation in Eq.(27)
as

ξr =

√
−x1r sinαψr + x2r sinβψr

sin 2ψr
(30)

However, for arbitrarily chosen values of parameters x1r and x2r, the ob-
tained values of ψr and ξr do not correspond to the initially introduced values
of parameters Cdαrr and Cdβrr (that contain fixed retardation times τα1 and τβ2 ).
Therefore, in order to find the corresponding root of the characteristic equation
(Eq.(24)) for the fixed values of Cdαrr and Cdβrr, the following iterative procedure
is performed.

First, assume an initial value for the auxiliary variable x1r. Then, calculate
x2r by equation (28), calculate ψr by equation (29), and ξr by equation (30). Af-
ter that, calculate the trial value for the damping matrix element corresponding
to the considered equation, by equation (26), that is: Cd trialαrr = x1r/ξ

α
r . Fi-

nally, determine the difference between the calculated trial value and the actual
value of the corresponding damping matrix element: ∆ = Cdαrr − Cd trialαrr , and
compare the calculated difference ∆ to a pre-set accuracy limit ε. If |∆| > ε,
calculate the new value for x1r as: xnext1r = (1 + ∆/Cdαrr) xprevious1r and repeat
the iteration from the second step.

The iteration proceeds until the value for the variable x1r corresponding to
the given damping matrix element Cdαrr is determined with the desired accuracy.
When x1r for the considered r−th vibration mode is determined, the correspond-
ing parameters ψr and ξr can be calculated by equations (29) and (30), after
which the r-th root of the characteristic equation is defined by sr = ξre

ıψr .
Once all the roots of the characteristic equations (24) are known, the decou-

pled impulse responses ηr(t) can be determined. However, as already mentioned,
direct inverse Fourier transform of η̂r(ω) is not so straightforward. Instead, the
residuum theory is used, so that the real decoupled impulse responses in time
domain can be calculated as [45, 46, 59]

ηr(t) = K1r(t) +K2r(t) (31)

where

K1r(t) =
∑

Re[sr]<0

Res
[
η̂r(s) e

srt
]

= a1re
(−σrt) sin(Ωrt+ a2r)

K2r(t) =
1

π

∫ ∞

0

Υr(z)e
−zt

Ψ2
r(z) + Υ2

r(z)
dz

(32)
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Here, the following notations have been used

a1r =
2√

%2
r + ϑ2

r

N∑

b=1

Φ(b−1)n+m,r , a2r = arctan

(
%r
ϑr

)

%r = Re[P ′(s)]

ϑr = Im[P ′(s)]

Ψr = Re[P (s)] =
[
z2 + Cdαrrz

α cos(απ) + Cdβrrz
β cos(βπ) + ω2

r

]

Υr = Im[P (s)] =
[
Cdαrrz

α sin(απ) + Cdβrrz
β sin(βπ)

]

P (s) = s2 + Cdαrrs
α + Cdβrrs

β + ω2
r

P ′(s) ≡ dP (s)/ds = 2s+ αCdαrrs
α−1 + βCdβrrs

β−1

(33)

where the expressions for Ψr and Υr have been determined from the expression
for P (s), by taking the change of variables s = zeıπ.

The partK1r(t) of the solution is the residuum, oscillatory part, whileK2r(t)
is the drift part, which is much smaller than theK1r(t) and diminishes over time
[45]. Therefore, K2r(t) will be neglected in numerical analyses conducted in this
paper.

After all the decoupled impulse responses ηr(t), r = 1, 2, . . . , n · N are
determined, the coupled impulse responses that are being sought Gi(t), i =
1, 2, . . . , n ·N can be calculated as

g(t) = Φη(t) ⇔ Gi(t) =
n·N∑

r=1

Φirηr(t) (34)

3.5. The total response of the system
As already mentioned, the total system response is obtained by taking the

convolution of the unit impulse system response Gi, and the actual inertial
forces load Qi defined in Eq.(16), which can be stated as

qi(t) =

∫ t

0

Gi(t− τ)Qi(τ)dτ (35)

Now that the time functions qi(t) are known, the relative transversal dis-
placements of each of the beams can be calculated through Eq.(9), by using
the time functions corresponding to that beam. And when relative displace-
ments are known, the absolute displacements of the (k)-th beam can be obtained
through Eq.(6), thus providing the solution to the stated problem of transversal
vibrations of a system of coupled beams. In addition to this solution, a steady
state response of the considered system will also be analysed, so in the next
section, the frequency response function for such system will be determined.

4. Frequency response function

Analysis of the steady state response of the system due to a harmonic excita-
tion can be very useful in practical applications of the presented model. In this
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section, the frequency response function will be derived by using the methodol-
ogy similar to the one found in [60], for a system of N connected beams exposed
to harmonic movement of supports:

ws(t) = w0e
ıΩF t (36)

where w0 and ΩF are the amplitude and the frequency of the support motion
function, respectively, and ı is the imaginary unit.

Having this in mind, and starting at the equation of motion of the system
of beams and applying the Galerkin method as described in Section 3, Eq.(12)
becomes

Q(k)i = Ω2
Fw0 y(k)i e

ıΩF t , i = 1, 2, . . . , n , k = 1, 2, . . . N (37)

where

y(k)i =



∫ L

0

ρkAkφ(k)i(x)dx+

Nm(k)∑

p=1

m(k)pφ(k)i(a(k)p)


 (38)

while for a system in a steady state, the Galerkin approximation of the relative
displacements of the beams becomes:

vss(k)(x, t) ≈
n∑

i=1

φ(k)i(x)qss(k)i(t) , k = 1, 2, . . . N (39)

where
qss(k)i(t) = u(k)ie

ıΩF t , i = 1, 2, . . . n, k = 1, 2, . . . N (40)
are the steady state time functions, with u(k)i being the amplitude of the cor-
responding time function.

Noting that the fractional derivative of an exponential function can be eval-
uated as in [59]:

Dγqss(k)i(t) = (ıΩF )γu(k)ie
ıΩF t , γ ∈ R (41)

for a system in steady state regime Eq.(16) becomes:

A(ΩF )u = Ω2
Fw0y (42)

where
A(ΩF ) = K + (ıΩF )αCα + (ıΩF )βCβ + (ıΩF )2M

uT = [u1 u2 . . . uN ] =
[
u(1)1 u(1)2 . . . u(1)n u(2)1 . . . u(N)n

]

yT = [y1 y2 . . . yN ] =
[
y(1)1 y(1)2 . . . y(1)n y(2)1 . . . y(N)n

]
(43)

Now the complex amplitudes of the steady state time functions can be easily
determined from the Eq.(42) as:

u(ω) = Ω2
F w0 A−1(ΩF )y (44)

Introducing this solution into Eq.(40) and then into Eq.(39), the amplitudes
of the relative beam displacements can be expressed as:

vss(k)max
(x,ΩF ) ≈

n∑

i=1

φ(k)i(x)u(k)i(ΩF ) , k = 1, 2, . . . N (45)
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5. Model validation

The exact analytical solution to the problem of transverse vibrations of
fractional-order viscoelastic beams carrying attached masses, connected by fractional-
order viscoelastic layers and subjected to the support motion has not yet been
reported in literature. For this reason, the results of the analytical approximate
solution presented in this paper will be validated against the results obtained
by the Finite Element Method (FEM), being one of the most thoroughly de-
veloped numerical methods. However, the FEM solution was obtained only for
a special case with an arbitrary number of elastic beams carrying an arbitrary
number of attached masses and connected by viscoelastic layers, but with an
integer order damping, that is, only for β = 1.0. Nevertheless, the results show
that the presented solution adequately describes the influence of the connecting
layers and the dynamic behaviour of a single (separated) beam, as well as mul-
tiple connected beams. Moreover, the proposed solution will also be validated
against the frequency response function derived in the previous section for a
steady state vibration regime.

5.1. Validation with the Finite Element Method
For this validation, a case with the following numerical values of the con-

sidered parameters was analysed: number of beams: N = 5, the cross-sectional
area Ak and second moment of inertia Ik for all the beams were taken to be
the same and equal to: Ak = 5 · 10−4m2 and Ik = 1.667 · 10−8m4. Length of
all the beams: L = 0.8m, mass density for all the beams: ρk = 1190.0kg/m3,
relaxed elastic modulus Ek = 3.2 ·109Pa, number of attached masses per beam:
Nm(k) = 3, each weighting one third of the of a single beam weight. Relaxed
compliance coefficient of each interconnecting layer: κ = 200N/m2, retarda-
tion time and derivative order for each interconnecting layer: τβ2 = 0.002 sβ and
β = 1.00. Moreover, in this validation study, a free chain of beams is considered,
which is achieved by setting that κ0 = κN = 0 N/m2.

All the supports follow the motion function ws(t) = w0 sin (ΩF t
2/2), with:

w0 = 0.001m and ΩF = 20s−2. The Galerkin approximation is applied with
n = 3 terms considered.

For the described case, the damped frequencies of the system are presented
in Table 1. Since there are 5 connected beams and 3 considered Galerkin terms,
there are 15 system frequencies obtained in total - 3 intermodal groups of 5
intramodal vibration modes (if the terminology found in [27] is adopted). As it
can be seen from the table, results obtained by the two methods are in excellent
agreement.

In Fig. 2 the relative displacements of the free end of the beams in the first
10 seconds of the motion are presented. Since the geometrical and material
properties are set to be the same for each beam, and all the connected beams
carry the same number of attached masses of equal weight, the responses of all
the beams are identical, so that the presented diagram shows only two curves -
the blue continuous line represents the displacements calculated by FEM, while
the orange dashed line represents the Galerkin solution.
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Table 1: Damped frequencies of a system with 5 connected beams and 3 considered terms in
the Galerkin approximation

Intermodal Intramodal Galerkin FEM Absolute Relative
mode mode solution solution difference difference

[1/s] [1/s] [1/s] [%]

1

1 31.212 31.218 -0.00576095 -0.02
2 31.942 31.947 -0.00563794 -0.02
3 33.776 33.781 -0.00518899 -0.02
4 35.913 35.917 -0.00456778 -0.01
5 37.551 37.555 -0.00402581 -0.01

2

1 195.802 195.000 0.802372658 0.41
2 195.933 195.129 0.803868333 0.41
3 196.274 195.468 0.806079751 0.41
4 196.696 195.886 0.809828038 0.41
5 197.037 196.224 0.812868898 0.41

3

1 532.953 528.840 4.112818306 0.78
2 533.000 528.888 4.112338624 0.78
3 533.126 529.012 4.114048817 0.78
4 533.280 529.166 4.114445331 0.78
5 533.405 529.290 4.115199473 0.78
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]
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FEM solution
Galerkin solution

Figure 2: The relative displacements of the free end of a cantilever in the system of N = 5
connected beams with Nm(k) = 3 attached masses and β = 1.0; blue continuous line - the
FEM solution, orange dashed line - the Galerkin solution

As it can be seen from the figure, the results obtained by these two methods
are again in very good agreement for a certain initial period of time. However,
after some time a slight difference in displacements appears between the FEM
solution, obtained via the Newmark method, and the Galerkin solution, obtained
via convolution.
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5.2. Validation with the frequency response function
In the previous subsection the presented model was validated against the

FEM solution, both analysing the system natural frequencies, and its relative
displacements as functions of time. Now another approach will be applied.
Namely, for the same geometrical and material properties of the beams as in
the previous validation analysis, the frequency response function (FRF) will be
determined as described in Section 4. After that, the solution derived in Section
3 will be used to determine system displacements for a harmonic support motion
function ws(t) = w0 e

ıΩF t, with w0 = 0.001m, and for various values of ΩF . For
each ΩF , the steady state amplitudes are determined via convolution. After
considering a number of different values for ΩF , a set of frequency response dia-
gram points is obtained and these are compared to the results obtained directly
by analysing the FRF. If the proposed solution via the impulse response method
and convolution yields the same results as the FRF analysis, it would provide
another confirmation that the presented solution is valid.

For this analysis a system of 3 connected beams was considered. Each beam
was of the same geometrical properties, relaxed elastic modulus and material
mass density as described in the previous subsection, and the beam fractional or-
der damping parameters adopted for this analysis were: α = 0.9, τα1 = 0.0002sα.
The connecting layer stiffness, fractional derivative order and retardation time
were taken to be κ = 10000 N

m2 , β = 0.99, τβ2 = 0.0001sβ , respectively. The
same total mass equal to the mass of a single beam was attached to each of the
beams, but in different configurations. For the first beam the whole attached
mass was positioned at the free end of the beam, for the second beam the total
attached mass was divided equally into three parts and attached to the beam
in the thirds of the span, while for the third beam the total mass was divided
into two parts, one of which was attached to the beam midspan, and the other
to the free end of the beam.

Fig. 3 shows the frequency response diagram for each of the three beams
of the described system. The blue continuous line represents the graph of the
frequency response function, while the red dotted line presents the interpolation
between the frequency response diagram points obtained through convolution.
As it can be seen from the figure, both the direct FRF solution and the solution
with convolution presented in Section 3 yield very similar results. The difference
becomes somewhat greater around the resonance state of the system, but the
results are still in very good agreement. It can be observed that the convolu-
tion solution gives a bit larger displacement amplitudes than the ones obtained
directly through FRF, which is to be expected since the off-diagonal elements
of the "diagonalised" damping matrices were neglected in order to decouple the
system equations. However, for a small damping case such as the one considered
in this analysis, it is apparent that the error introduced by this approximation
is relatively small and acceptable.
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Figure 3: The frequency response diagram vss
(k)max

(L,Ω) for the free end of each cantilever
in the system of N = 3 connected beams with different number and position of the attached
masses

6. Numerical studies

In this section, numerical investigation of the influence of the connecting
layer properties, number of connected beams, number and position of the at-
tached masses and properties of the connected beams themselves on the dynamic
behaviour of the system are presented. First, the displacements and transient
system behaviour will be analysed by using the solution presented in Section 3,
under the same support motion function used for validation with FEM in Sec-
tion 5.1. And after that, the analysis of influence of various system parameters
on the system steady state response will be presented.

In all the subsequent analyses, geometrical characteristics of the connected
beams are taken to be the same as in the validation section. However, the
parameters such as number of beams N , number of concentrated masses Nm(k)

and their position a(k)p, derivative order for the connecting layers β and their
relaxed compliance coefficient κ, were all varied according to the particular
analysis. The retardation time and the fractional derivative order for the beam
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material constitutive equation and its influence on the system behaviour were
not an object of the present study so they were fixed at the values of τα1 =
0.002sα and α = 0.9 for all the numerical investigations. Again, only free beam
chains were considered, with κ0 = κN = 0 N/m2. Moreover, in all subsequent
analyses, zero initial conditions were assumed.

6.1. Transient analysis
Influence of the order of fractional derivative of the connecting layer material

First, the influence of the order of the fractional derivative in the connecting
layer material model on the dynamic behaviour of the system was investigated.
A system of 3 beams, each carrying 2 attached masses of equal weight, was
analysed. Values for the parameters describing the beam geometry and material
model were adopted the same as described in the validation section. All the
attached masses were equal to half of a single beam weight, and positioned at the
free end and at the midspan of each beam. The relaxed compliance coefficient of
the connecting layers was set to be κ = 1000N/m2, and the fractional derivative
order in the constitutive equation for the layer material model was varied. The
support motion function is taken the same as described in Section 5.

In Fig. 4 the relative displacements of the free end of the beams in the first
10 seconds of motion are presented, for the three representative cases: elastic
layer - β = 0, layer with fractional-order damping - β = 0.50, and layer with an
integer order viscous damping - β = 1.00.

As it can be seen from the Fig. 4, in the case of elastic connecting layer (β =
0) the vibrations are damped only due to internal damping in the beams (α =
0.9), but they are attenuated more slowly compared to the cases with fractional
viscoelastic connecting layers. And, as expected, the higher the derivative order
for the layer material model is used, the higher the damping occurs in the
system. It can be seen from the figure that the layer decreases the vibration
amplitudes of the beams with the increase of fractional derivative order β.

0.00

0.50

1.00

Figure 4: The relative displacements of the free end of the first beam v(1)(L, t) for various
fractional derivative order in material model of the connecting layers

20

                  



Influence of the position of the attached masses
Next, the influence of the position of attached concentrated masses on the

dynamic behaviour of the system is investigated. For this purpose, a system
with N = 3 connected beams, each carrying Nm(k) = 2 attached masses of
half the single beam mass (m(k)p = 0.5, p = 1, 2, k = 1, 2, 3), was analysed.
Geometrical and material properties of all the beams are set to be the same,
with the parameter values chosen as described in section 5. The connecting
layers were modelled with the relaxed compliance coefficient of κ = 200N/m2,
retardation time τβ2 = 0.001 sβ and fractional derivative order of β = 0.99.

Two different positions of the attached masses in the system were considered
- when all the beams carry one mass at the midspan and one at the free end,
and when all the beams carry both attached masses at the free end.

The results of the analysis are presented in Fig. 5, which shows the relative
displacements for all 3 beams of the system for both considered dispositions of
the attached masses. Green line represents the beams with mass at the midspan
and at the free end, while the red line represents displacements of beams with
all the attached masses at the free end. In each mass disposition case, all the
beams of the system have mutually equal displacements, since all the conditions,
including the mass disposition, are identical.

It can be seen from the Fig. 5 that by positioning some of the attached mass
at the midspan of the beams, the beams vibrate with larger amplitudes, which
could potentially be used in some practical applications of this type of systems.

Figure 5: Relative displacements of the free end of the connected beams v(k)(L, t) for different
positions of the attached masses; Case 1 - half of the added mass attached at the midspan,
and the other half at the tip (green line), Case 2 - the whole added mass attached at the tip
(red line)

Influence of the presence of "stiff core" in the system
The influence of different beam properties on the dynamic behaviour of the

system is also analysed. To show how the presence of a beam with properties
different from those of other beams in the system affects the system behaviour,
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an array of 5 connected beams is analysed. Each beam is carrying 3 attached
masses in the thirds of the span, and each mass equals one third of a single
beam mass. Two different cases were considered. Case 1 - a system with all
beams identical, and their geometrical and material properties set as described
in Section 5. This system served as the reference case. Case 2 - a system
identical to the one in the previous case, except that one of the beams has a
three times greater cross-sectional moment of inertia and is therefore 3 times
stiffer than the rest of the beams. This beam will be referred to as the "stiff
core". In this case, the stiff core is positioned in the middle of the beam array,
that is: E1I1 = E2I2 = E4I4 = E5I5 = E3I3/3 . The connecting layer properties
and the support motion function are taken to be the same as in the previous
subsection.

The relative displacements of the free end of all the beams in the system are
presented in Fig. 6.

a)

b)

c)

d)

e)

Case 1 - Without a stiff core

Case 2 - Beam 3 is a stiff core

Beam 1

Beam 2

Beam 3

Beam 5

Beam 4

4
5

Figure 6: The relative displacements of the free end of 5 connected beams v(k)(L, t) for
different positions of the stiff core

It can be seen from figure that in the case without a stiff core (red, continuous
lines) all the beams have the same displacements since the vibration conditions
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are identical. On the other hand, if the stiff core is put in the middle of the
beam chain (blue, dashed lines), vibration amplitudes of the connected beams
are mutually different. It can be seen that the amplitudes of the beams that are
farthest from the core are the highest, while the middle beam that acts as the
stiff core for the system has the lowest amplitudes.

Thus the stiff core obviously affects the dynamic behaviour of the system,
but, perhaps somewhat counterintuitively, its presence leads to overall higher
vibration amplitudes of the connected beams. This phenomenon should be
investigated further, but that analysis transcends the scope of this paper.

6.2. Steady state response analysis
The previous numerical studies were done by using the solution for beam

displacements as a function of time, presented in Section 3. However, a useful
insight into the system behaviour can also be obtained by analysing the system
response in a steady state vibration regime. If a system arrives at a steady state,
its behaviour depends on the frequency of the present harmonic excitation (e.g.
[7, 60]), so it can be most conveniently described by the frequency response
diagram. In the following analyses, the influence of several parameters on the
system steady state behaviour will be investigated, by first determining the
frequency response function (FRF) for each considered case as described in
Section 4, and then using this function to graph the required frequency response
diagrams. In all the analyses, the support motion function was taken to be a
harmonic function as described in Section 4, with the amplitude of w0 = 0.001m.

Influence of the connecting layers relaxed compliance coefficient
First, the influence of the connecting layers relaxed compliance coefficient on

the system steady state behaviour was investigated. For this analysis, a system
of 3 beams of the same geometrical and material properties as in validation
section was considered. One concentrated mass was attached to the free end of
each beam. If the mass of a single beam is denoted with mB , then the masses
attached to the first, second and third beam weighted 1.0mB , 0.6mB and 0.3mB ,
respectively. Fig. 7 shows the frequency response diagrams for different values
of the layers’ coefficient.

Three different cases were considered. First, the compliance coefficient was
set to be equal to zero, that is, the beams were treated as disconnected and they
vibrated separately. In the next two cases the compliance coefficient was set to
be κ = 100 N

m2 and κ = 300 N
m2 , respectively, and the results for all three beams

and all three cases are shown in Fig. 7.
Several facts can be observed in Fig. 7.
First, if the beams are not connected (i.e. κ = 0, blue lines in Fig. 7), in

the considered frequency range there is only one resonance state for each of the
three beams represented by a single peak in the frequency response diagram,
and no influence is transferred between the beams. The resonance occurs when
the excitation frequency approaches the natural frequency of the beam, and it
can be seen that the base natural frequency for each of the three considered
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Figure 7: The frequency response diagrams of the 3 connected beams for different values of
the connecting layer relaxed compliance coefficient κ

beams is different - the larger the mass attached to the tip of the beam, the
lower the base natural frequency of the beam.

Next, in both cases with connected beams (red and green lines in Fig. 7),
it can be seen that for each of the beams there are 3 large-amplitude vibra-
tion states, since the vibrations are transferred through the system due to the
presence of the connecting layer. For instance, if the case with κ = 300 N

m2 is
observed (green lines), it can be seen that the first beam enters a resonance
for excitation frequency around 24.5 s−1, which is the natural frequency of that
beam. For the same excitation frequency, now the second and the third beam
also experience larger amplitudes. This happens because vibration energy from
the first beam gets transferred to the second, and afterwards to the third beam.
However, the amplitudes of the first beam in the first resonant state of the sys-
tem are much larger than those of the second and the third beam, since this is
the natural frequency of the first beam so the first system resonance originates
from it. On the other hand, for excitation frequency of around 32.2 s−1, the
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system also enters the resonant state, but this time due to the resonance of the
second beam. This time, the resonance is most pronounced on the second beam,
and the amplitudes of the first and the third beam are considerably lower. Sim-
ilar effect can be observed around the excitation frequency of 39.1 s−1, when the
third beam enters its resonant state. However, since the mass attached to the
third beam is much smaller than the one attached to the first beam, it can be
seen that the third beam resonance has little effect on the second, and almost
no effect on the first beam. The same phenomenon as the one just described
is observed for a case with lower relaxed compliance coefficient (κ = 100 N

m2 ,
red lines in Fig. 7), but since the connecting layer stiffness is lower, so the
amplitudes are lower.

Another observation is that the connecting layers compliance coefficient af-
fects the values of natural frequencies of the system. And as expected, the higher
the coefficient, the higher the system natural frequencies. Consequently, as it
can be seen in Fig. 7, the frequency response diagram (or, more precisely, the
resonant states of the system) gets shifted to the right as the value of relaxed
compliance coefficient increases.

Influence of the number and position of the attached masses
Next, the influence of the number, position and distribution of the attached

masses was investigated. For this analysis, a system of three connected beams
of the same geometrical and material properties as described in the validation
section was studied. The connecting layer relaxed compliance coefficient was set
to be κ = 300 N

m2 . Again, if the mass of a single beam is denoted with mB , then
the total mass attached to the first, second and third beam was 1.0mB , 0.8mB

and 0.6mB , respectively, but this total attached mass was distributed in three
different ways. In the first case, Case 1, all the attached mass was concentrated
at the free end for all the beams. In Case 2, half of the total attached mass was
positioned at the midspan of each beam, and the other half at the free end. In
Case 3, the total attached mass was distributed differently in each beam of the
system - for the first beam, all the attached mass of 1.0mB was attached to the
free end, on the second beam, one half of the total attached mass of 0.8mB was
attached at the midspan and the other at the free end of the beam, and for the
third beam, the total attached mass of 0.6mB was divided equally into three
parts and attached in thirds of the beam span. The results for all three beams
and all three considered cases of the attached mass distribution are shown in
Fig. 8.

Again, there are several observations that can be made when considering
Fig. 8. For instance, for the first two considered cases - that is, with the
whole attached mass concentrated at the free end (blue lines) and with the
total attached mass equally divided and positioned at the midspan and at the
free end of the beams (red lines) - it can be seen that the frequency response
is practically the same, only shifted for a certain amount. As expected, if the
whole attached mass is located at the free end, the system natural frequencies
are lower, but the amplitudes are very similar, even in the resonant states.
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Figure 8: The frequency response diagrams of the 3 connected beams for different distributions
of the total attached mass; Case 1 - whole attached mass concentrated at the free end in all
three beams, Case 2 - half the attached mass at the midspan, half at the free end in all three
beams, Case 3 - different attached mass distribution in all three beams

Another interesting observation that follows from Fig. 8 is that by the
appropriate distribution and positioning of the attached mass, the steady state
response of the system can be tailored at will, according to the particular needs
for any given system. Namely, in all three considered cases, the same total
mass was added to the system, and it was only distributed differently, but the
behaviour of the system was changed dramatically. For instance, not only that
the resonant frequency range for the whole system can be shifted by changing
the balance of the attached masses (e.g. as in Cases 1 and 2), thus changing
all the natural frequencies of the system for the same amount, but with the
appropriate distribution of the attached masses each individual natural frequency
of the system can be changed at will. Example of this can be seen in Fig. 8. In
Case 3 (green lines), the first natural frequency of the system is almost the same
as in Case 1. However, the second natural frequency was shifted higher and it is
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almost the same as the first natural frequency of Case 2. In this way, the second
resonant state occurring in Case 1, and the first resonant state occurring in Case
2 are avoided, and only the desired resonant states of the system are kept. This
opens a wide range of possibilities for the design of systems of connected beams
and their practical application.

Influence of the number of beams
Finally, the influence of the number of connected beams on the system steady

state behaviour was investigated. For this analysis, 4 beams of the same geomet-
rical and material properties as in previous section were analysed, each carrying
one concentrated mass attached at the free end. As before, if the mass of a
single beam is denoted with mB , then the total mass attached to the first,
second, third and fourth beam was 1.0mB , 0.8mB , 0.6mB and 0.4mB , respec-
tively. Two different cases were considered. First, only the first two and the
second two beams were mutually connected by a connecting layer, with coeffi-
cient κ = 300 N

m2 , while there was no connection between the second and the
third beam in the chain. So, there were effectively two independent systems,
each consisting of two connected beams. In the other case, the connection was
added between the second and the third beam so all the beams were integrated
into a single system. All the results are shown in Fig. 9. Blue lines represent
the frequency responses for the first two beams when there is no connection
between them and the other two beams, and red lines present the frequency re-
sponse diagrams for the second two beams in the same case. Green lines present
the frequency responses of each beam when all four beams are connected into a
single system.

As it can be seen from the Fig. 9, when there are two pairs of connected
beams (blue and red lines), each beam exhibits two large-amplitude vibration
states - one originating from entering its own resonant state, and one induced by
the resonance of another beam it’s connected to. On the other hand, when all
four beams are connected (green lines), each beam exhibits four large-amplitude
states, one as a consequence of its own resonance, and three induced by other
beams’ resonant states. As in the previous analysis, the induced resonances are
less pronounced, and even more so as the beam in which the particular system
resonance originates is farther from the considered beam. Again, the induced
resonance amplitudes depend largely on the connecting layer properties.

Nevertheless, it can be seen that by increasing the number of connected
beams, more influence is transferred between the beams and each beam expe-
riences more large-amplitude states, while the size of these large amplitudes
can be modified by tuning the connecting layer properties. This in turn means
that, from a possible energy harvesting point of view, each beam has a broader
operational range than it would have had if it was isolated. Namely, systems of
the type considered in this paper can be applied for energy harvesting purposes
if, for instance, piezoelectric elements are added between the beams, or if the
beams themselves are made as bimorph beams with piezoceramic layers on one
side or both sides (as presented in [6] for example). This means that the beams’
deformation is directly proportional to the expected electrical energy output.
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Figure 9: The frequency response diagrams of 4 connected beams with various connection
configurations and various masses attached to their free end

Therefore, if the beams are connected, since then each beam experiences large
amplitude vibrations for more different values of the excitation frequency, the
operational range of such energy harvesting device becomes wider. Moreover,
this operational range can be tuned at will, in accordance with particular needs
for a given problem, by the appropriate system configuration, that is, by using
the optimal number of adequately connected beams with the appropriate mass
distribution throughout the system, and the model presented in this paper can
be used as a tool for finding the optimum parameter values of such systems.

Additionally, as previously shown, the frequency response of the system can
also be modified by different attached mass distribution and material properties
of the beams. This could also be used for intentionally increasing the vibration
amplitudes and improve the efficiency of the energy harvesting system based
on the multi-beam model discussed herein. It should also be pointed out that,
as it was mentioned in the introductory section, commonly up to three concen-
trated masses are attached to beams in energy harvesting systems to improve
their performance. Hence, in this paper, only systems with one, two or three
attached masses are considered. However, the model presented herein gives the
ability to examine the influence of any mass number and disposition on the dy-
namic behaviour of the system, and makes it possible to find the optimal mass
disposition that would produce the desired values of output parameters.
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7. Concluding remarks

In the presented paper the problem of transversal vibrations of a system of
arbitrary number of connected Euler-Bernoulli cantilever beams, each carrying
an arbitrary number of attached concentrated masses, subjected to arbitrary
motion of their supports is investigated. Masses can be of arbitrary weight
and any position on the beams. Beams can have various geometrical charac-
teristics and fractional viscoelastic properties modelled by using a Kelvin-Voigt
type fractional-order constitutive equation of the same, yet arbitrary order.
The beams are connected by fractional viscoelastic layers of constant properties
throughout the system, and also modelled by a Kelvin-Voigt type fractional
order force-displacement relation.

The solution is sought through applying the Galerkin analytical approximate
method to deal with the influence of the attached masses on the orthogonality
conditions, and the Fourier transform to solve the system of coupled fractional
order differential equations, assuming that the system damping is relatively
small. First the impulse system response is determined by analysing the Green
functions, and then the convolution between them and the inertial forces is
taken in order to obtain the total system response.

The steady state behaviour of the system is also analysed and the expressions
for the frequency response functions are derived.

The model is validated by the Finite Element Method for a special case
with elastic beams and integer order derivative constitutive equation for the
connecting layer material, and also for the steady state vibration regime by
comparing the convolution results with the frequency response function values.

The influence of various parameters such as the number of the connected
beams, the order of fractional derivative in the connecting layer material model,
the position of the attached masses and the presence of beams with different
elastic properties on the dynamic behaviour of the system is investigated, both in
transient and in the steady state vibration regime. Numerical studies revealed
several phenomena that could potentially be applied in the analysis and the
design process of energy harvesting systems consisting of multiple connected
beams.

The presented model is developed for the case with relatively small general
damping present in the system. Therefore, it should be further developed to
include other damping cases, as well as different material properties of beams
and connecting layers in the system. Also, the model could be extended with
a higher-order beam theory and accounting for nonlinear effects. However, the
solution and analysis methodology proposed in this paper present a solid and
useful starting point in analysis of systems of connected beams with attached
masses under base excitation and their application in energy harvesting or com-
posite material modelling.
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Appendix 1: Elements of the matrices and vectors for the (k)-th beam
in the Galerkin approximation

[
K(k)k−1

]
ij

= −κ(k−1)

∫ L

0

φ(k−1)iφ(k)jdx =

{
− κ(k−1)√

ρk−1Ak−1

√
ρkAk

for i = j

0 for i 6= j

[
K(k)k

]
ij

=

∫ L

0

EkIkφ
′′′′
(k)i(x)φ(k)j(x)dx+ (κ(k) + κ(k−1))

∫ L

0

φ(k)iφ(k)jdx =

=

{
ω̄2

(k)i +
(κ(k)+κ(k−1))

ρkAk
for i = j

0 for i 6= j

[
K(k)k+1

]
ij

= −κ(k)

∫ L

0

φ(k−1)iφ(k)jdx =

{
− κ(k)√

ρkAk

√
ρk+1Ak+1

for i = j

0 for i 6= j

[
Cα(k)k

]
ij

= τα1

∫ L

0

EkIkφ
′′′′
(k)i(x)φ(k)j(x)dx =

{
τα1 ω̄

2
(k)i for i = j

0 for i 6= j

[
Cβ(k)k−1

]
ij

= −τβ2 κ(k−1)

∫ L

0

φ(k−1)iφ(k)jdx =

{
−τβ2

κ(k−1)√
ρk−1Ak−1

√
ρkAk

for i = j

0 for i 6= j

[
Cβ(k)k

]
ij

= τβ2 (κ(k) + κ(k−1))

∫ L

0

φ(k)iφ(k)jdx =

{
τβ2

(κ(k)+κ(k−1))

ρkAk
for i = j

0 for i 6= j

[
Cβ(k)k+1

]
ij

= −τβ2 κk
∫ L

0

φ(k+1)iφ(k)jdx =

{
−τβ2

κ(k)√
ρkAk

√
ρk+1Ak+1

for i = j

0 for i 6= j

[
M(k)k

]
ij

=

∫ L

0


ρkAk +

Nm(k)∑

p=1

m(k)pδ(x− a(k)p)


φ(k)i(x)φ(k)j(x)dx =

=

{
1 +

∑Nm(k)

p=1 m(k)pφ
2
(k)i(a(k)p) for i = j∑Nmk

p=1 m(k)pφ(k)i(a(k)p)φ(k)j(a(k)p) for i 6= j

{
Qk

}
j

= Q(k)j
(t) =

∫ L

0

F(k)(x, t)φ(k)j(x)dx

{
qk
}
j

= q(k)j
(t) ⇔ qTk = [q(k)1

, q(k)2
, ..., q(k)n

]

i = 1,2, . . . , n ; j = 1, 2, . . . , n

35

                  



Appendix 2: Matrix equation for the whole system

With the notation introduced in (16), and with the matrix elements for (k)-
th beam defined in Appendix 1, the matrix for the whole system of N beams
can be represented as:


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K(N−1)N−2

] [
K(N−1)N−1

] [
K(N−1)N

]
[
K(N)N−1

] [
K(N)N

]








q1
q2
q3
q4

...
qn·N−1
qn·N





+




[
Cα(1)1

]
[
Cα(2)2

]
[
Cα(3)3

]

. . . [
Cα(N−1)N−1

]
[
Cα(N)N

]




Dα





q1
q2
q3
q4

...
qn·N−1
qn·N





+




[
Cβ(1)1

] [
Cβ(1)2

]
[
Cβ(2)1

] [
Cβ(2)2

] [
Cβ(2)3

]
[
Cβ(3)2

] [
Cβ(3)3

] [
Cβ(3)4

]

. . .[
Cβ(N−1)N−2

] [
Cβ(N−1)N−1

] [
Cβ(N−1)N

]
[
Cβ(N)N−1

] [
Cβ(N)N

]




Dβ





q1
q2
q3
q4

...
qn·N−1
qn·N





+




[
M(1)1

]
[
M(2)2

]
[
M(3)3

]

. . . [
M(N−1)N−1

]
[
M(N)N

]




d2

dt2





q1
q2
q3
q4

...
qn·N−1
qn·N





=





Q1
Q2
Q3
Q4

...
Qn·N−1
Qn·N





(46)
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