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A B S T R A C T   

We present in this paper the development of a new, open-source MATLAB toolbox SRS-GDA that aims to provide 
random spatial sampling of grid-based hydro-climatic datasets for environmental change studies. This toolbox 
addresses the needs of quantifying how hydro-climatic responses, which are often driven by grid-based forcing 
datasets such as climate model projections, vary with location and scale. The toolbox can be used to carry out 
random spatial sampling of grid-based quantities with various constraints: shape, size, location, dominant 
orientation and resolution. A case study of a large dataset, the GEAR rainfall dataset is supplied to demonstrate 
the typical uses case of this toolbox. The provision of the toolbox for downloading together with the sample data 
is also presented.   

1. Introduction 

Research in environmental changes has been increasingly relying on 
computer models driven by external forcing field and conditions that 
can represent changing factors such as temperature, precipitation and 
land uses (Erler et al., 2019; Alamou et al., 2017). Historically, the in-
puts used to drive these models were often relatively scarce, and only 
available at limited number of locations. Data collection was often 
restricted by technical conditions, instruments and means of storage. To 
make full use of such finite data, many methods have been proposed and 
applied. In terms of rainfall data, there are many methods for translating 
point rainfall records which are usually collected from hydrological 
gauges or stations to the basin rainfall. For example, the Areal Reduction 
Factor (ARF) has been widely used, possibly under different names in 
different countries (Weather Bureau, 1958; NERC, 1977). More recently, 
however, with the rapid advances in environmental monitoring tech-
nology, spatially disaggregated, grid-based hydro-climatic datasets have 
become gradually available with steady improvements in both accuracy 
and spatial-temporal resolutions. A typical case is the NIMROD weather 
radar system deployed by the UK Met Office which can provide up to 
1km/5min precipitation distribution over the country (Golding, 1998; 
Fairman et al., 2017). Similarly, satellite-borne observations, such as the 
Global Precipitation Measurements (GPM; Islam et al., 2014; Ning et al., 
2016) can now provide large scale coverage of the precipitation 
coverage in near real-time. Many environmental models nowadays are 

also tuned to make use of those new, grid-based, high resolution data-
sets, e.g. the Grid-to-Grid version of the PDM model has been developed 
and operationally used by the Environment Agency in the UK (Cole and 
Moore, 2008; Kay et al., 2009). 

Another important source of external forcing data is model simulated 
hydro-climatic fields. In this case, rainfall, temperature as well as soil 
moisture fields generated by numerical weather models or climate 
models can be used to drive other model simulations. Practices of using 
the so-called coupled model approach started to gain momentum in the 
early 2000’s when numerical weather models and climate models were 
able to produce simulation with high enough spatial resolutions, e.g. at 
tens of kilometres. As such, there have been plenty of studies since then, 
such as Bauer et al. (2015), Moufouma-Okia & Jones (2015) and many 
more inspired by the Hydrological Ensemble Prediction Experiments 
(HEPEX; Schaake et al., 2007) initiative. Datasets such as the ERA40 
(Uppala et al., 2005) have been widely used since then. Although these 
datasets are not originally produced over sets of grids, or at least not the 
commonly recognised types of grids; they often are interpolated onto 
regular grids nevertheless in order to facilitate further analysis and to be 
used as other model inputs. For instance, global numerical weather 
models tend to use the Gaussian Grids, e.g., EAR40 grids. Local area 
model (LAM), such as the Weather Research and Forecasting model 
(WRF; Skamarock et al., 2001) uses regular grids spatially but does so 
only on a projected plane. 

The importance and popularity of using those grid-based forcing data 
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are underlined by the needs of many climate change impact studies 
where climate projections, such as those from the Coupled Model Inter- 
comparison Project (Giorgetta et al., 2013; Covey et al., 2003), are 
normally provided over a set of regular longitude/latitude grids over the 
globe. To better facilitate the community in using these grid based data 
and encourage the interoperability among models, the Network Com-
mon Data Format (NETCDF, Rew and Davis, 1990) has become the 
de-facto standard in climate change impact studies, although other 
traditional formats such as GRIdded Binary (GRIB, Rutledge et al., 2006) 
or Hierarchical Data Format (HDF, Duane et al., 2000) are well sup-
ported as well. 

In the context of using grid-based hydro-climatic datasets for 
providing external forcing field, an important step is to understand, 
quantify and if possible, to correct the errors and/or bias in these fields. 
The spatially variant nature of these data remains as the centre of the 
process. For example, Rojas et al. (2011) applied a statistical bias 
correction to improve the regional climate model (RCM)-driven climate 
simulations across the Europe; Rabiei and Haberlandt (2015) proposed 
to merge rain gauge measurements and weather radar data which is 
grid-based data by bias correction. Specifically for weather radar 
adjustment, many algorithms such as the Mean Field Bias (MFB) method 
and the Kriging with External Drift (KED) method, adjust the radar data 
solely by a multiplicative factor which does not vary spatially; however, 
more recently the Conditional Merge algorithm introduced by Sinclair 
and Pegram (2005) and implemented by Guenzi et al. (2016), considers 
the spatial impacts by conditioning the gauge adjustment on the radar 
precipitation values at gauge locations (Silver et al., 2019). 

Apart from being used as inputs to the models, the grid-based hydro- 
climatic datasets are also a foundation to support further analyses on 
environment change both spatially and temporally. It is not surprising 
that nearly all published studies in this field have been done so on grid- 
based datasets, e.g., Du and Zhang (2019) identified the spatiotemporal 
variations and trends of precipitation and streamflow extremes in the 
Xiang river basin with gridded data of resolution 0.5� and concluded 
that intensified summer extreme precipitation occurs mainly in the 
upper and middle of the basin and extreme streamflow has an increasing 
trend at the same region; Fairman et al. (2017) analysed the climatology 
of size, shape and intensity of grid-based precipitation features over 
Great Britain and Ireland; more application on grid-based data can be 
seen in Drusch et al. (2004); Thorndahl et al. (2017); Chen et al. (2015). 

It is clear from the above examples that the grid-based hydro-cli-
matic data have spatial patterns and characteristics with regards to 
certain changing factors that need to be diagnosed. Such diagnosis, 
without exception, is done over analysing targeted variable(s) and/or 
their combinations sampled spatially within predefined boundaries such 
as political regions (Bell et al., 2009) and river catchments (Monteiro 
et al., 2016). Further, to understand the random nature of the errors and 
uncertainties associated with the spatial data, the Monte-Carlo simula-
tion approach is commonly used together with geo-statistical stochastic 
simulation for uncertainty quantification. A simple procedure is to 
perform simulations of points (can be data or events) randomly 
distributed in the predefined area, calculate the empirical distribution 
function of such inter-point distances in each case and then obtain 
further values of the statistic by goodness of fit (Besag and Diggle, 1977). 
Following this approach, some applications have been published, e.g., 
Smith and Cheeseman (1986); Xu et al. (2005) and Wu et al. (2018); 
however, application on hydro-climatic grid-based data remains scarce 
and many previous studies on spatial distributions of hydro-climatic 
variables were conducted over predefined areas. 

Apparently, the substantial overhead of computer programming of 
spatial random sampling over often large-size hydro-climatic datasets 
has affected researchers’ capacity of studying spatial-temporal variation 
of climatic features. To address this issue, we developed a Spatial 
Random Sampling toolbox for Grid-based Data Analysis (SRS-GDA) 
which can generate arbitrary samples from any grid-based dataset 
automatically. As an Open-source MATLAB toolbox, it can assist users in 

spatial random sampling with various constraints such as shape, size, 
location, dominant orientation and resolution. In the field of environ-
mental change impact studies where the spatial properties of grid-based 
datasets remain as the focus, this toolbox addresses the needs of quan-
tifying how hydro-climatic responses vary with location and scale. The 
grid size used by the SRS-GDA toolbox can be defined in line with any 
resolution of the base grid map. To increase the applicability of this 
toolbox, users can customise various sampling conditions and their 
combinations which can be directly applied to many environmental 
change studies. 

This paper is structured as follows: first, a brief introduction of the 
study background and the main objective are provided, followed by the 
presentation of the methodology section. An example using case of 
analysing hydro-climatic extremes, i.e. precipitation over Great Britain 
using the GEAR dataset is provided to demonstrate the application of the 
toolbox. Finally, discussion on further applicability and availability of 
the model is presented. 

2. The design and implementation of the SRS-GDA toolbox 

The main aim of the SRS-GDA toolbox is to enable random spatial 
sampling of grid-based data within a pre-defined Region of Interest 
(ROI) of different sizes, shapes, locations and resolutions. The sampling 
procedure starts with a user-supplied grid dataset with spatial reference. 
It is also common to have an overall boundary (OB) from which the 
sampling is to be conducted, as many grid datasets have coverage nor-
mally much larger than that of the user’s interest, such as the General 
Circulation Model (GCM) output around the globe. Normally, the OB 
should be set large enough for studying how the variation of locations 
can affect certain quantities represented by an ROI. 

The randomisation of the sampling process is manifested by the ways 
of how the ROI is constructed:  

1) Randomisation of the shape of the ROI. The shape of an area often 
plays an important role in various applications. For example, in hy-
drology, a so-called donor catchment is often desired to have a shape 
analogous to that of the ungauged, target one. Understandably, this 
process sets to be the most complex one in the SRS-GDA toolbox. We 
offer two options with regards to whether the shape of the ROI is of 
concern: the shape-unconstrained sampling which randomises the 
shape of ROI; and the shape-constrained sampling that makes use of 
a predefined geometric shape supplied by the user e.g. a polygon at a 
given scale. A special case is point or single-grid sampling whose ROI 
reduces to a single grid. This is also useful, for example, when 
studying the variation of point-measured quantities.  

2) Randomisation of the location of the ROI. The location of an ROI can 
be varied by changing the coordinates of its centroid (for predefined 
ROI’s) or its origin (for randomly generated ROI’s). This operation is 
done by randomly setting a point or grid within the OB as the new 
location for the ROI to be moved to. An extra step is usually applied 
to ensure the entire region of the ROI falling within the OB.  

3) Randomisation of the size of the ROI. Variation of the ROI size can 
help users to identify whether the aggregated data value over an area 
exhibits notable behaviour. A typical case, for example, is to study 
the extreme value distribution of a hydrometeorological variable – 
temperature or precipitation, at regional, national and global scale. 
This operation depends on whether the ROI is shape-constrained or 
not. If a predefined shape is used, a ‘buffering’ operation (Chang, 
2008) is used to either increase or reduce the size whilst maintaining 
the shape unchanged; whereas for a shape-unconstrained case, the 
desired ROI is randomly produced with a given location and speci-
fied size. 

These three operations can be combined to achieve the various levels 
of randomisation required by users. The implementation of the toolbox 
involves a series of steps that are described below and shown in Fig. 1 
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which includes: (a) Grid map generation which sets the overall bound-
ary (OB) spatial coverage constraint and the resolution for the study 
(sampling) area; (b) Sampling setup that determines whether one or 
more constraints are used and sets the corresponding values and/or 
features, for example, location (fixed or floated), shape-unconstrained or 
shape-constrained, size fixed or not etc. and (c) Sampling processing and 
validation which are automatically carried out by the SRS-GDA toolbox 
based on the OB grid map and the constraint setups with extra filters 
applied to the results depending on extra conditions where appropriate. 

2.1. Generating the grid-based overall boundary (OB) map 

As mentioned previously, the underlying dataset normally comes 
with a coverage larger than that of users’ interest. In other words, a 
subset based on an OB needs to be produced. This OB needs to be 
specified by the user, e.g., by using either a raster file or a vector based 
map such as shapefiles that define the boundary. If no OB is specified, 
the entire coverage of the underlying grid dataset will be used to conduct 
the sampling process. It should be mentioned that the sampling process 
often happens inside the OB. However, different from OB, the bound-
aries specified by the ROI’s are deemed to be restrictive and arbitrary as 
far as a natural process is concerned, such as rainfall and wind speed. 

Fig. 1. The three basic steps and the corresponding inputs and outputs of the SRS-GDA toolbox.  
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The logic behind sampling ROI in OB is because many times only the 
quantity of certain hydro-climatic variables falling in such given 
boundary is of concern, for example, rainfall over the urban area of a city 
is a key element for urban drainage design. 

A grid-based map is then generated by rasterising the OB (if it comes 
as a vector map) using the same projection and grid resolution as the 
underlying dataset. The grids inside the OB are regarded as valid grids 
while those outside are invalid grids. Once this is completed, the toolbox 
will automatically exclude those invalid grids and activate the valid 
grids. For example, in the example case given in this paper, the National 
Grid Reference (NGR, Ordnance Survey, 1946) is used to refer to the 
coordinates of the grids of the GEAR dataset. The base map is processed 
to distinguish ocean (so called invalid grids outside the GB boundary) 
and land (so called valid grids inside the GB boundary). It is also further 
refined to have several versions with different spatial resolutions which 
are normally multiples (exact divisions) of the grid size of the underlying 
dataset. These refined OB’s will be used for further study on aggregation 
(upscaling) and disaggregation (downscaling). The toolbox provides 
three resolutions to match the underlying grid dataset: 1 km � 1 km, 5 
km � 5 km and 10 km � 10 km for user applying. And the base maps of 
the GB are produced with these three resolutions respectively, as shown 
in Fig. 5 where 1 km � 1 km is chosen for demonstrating the example 
case for being consistent with the resolution of dataset (details in 3.1). 

In addition to setting the OB, another important task at this step is to 
spatially index the data grids and label those that contain valid data. 
From now on, all subsequent spatial sampling is conducted over (or 
within, to be more precise) the base map. 

2.2. Sampling setup 

There are four initial settings (also seen in Fig. 1b) that need to be 
specified before starting the sampling process which are:  

1) Total number of samples required;  
2) The desired location of the samples, which is only applicable in the 

case where users wish to fix the location while randomising other 
properties such as shapes and sizes;  

3) Sample size in the unit of km2 which is translated into numbers of 
grids at the finest grid resolution used; Note that this is only required 
if a size-constrained sampling is desired;  

4) Spatial index of the ROI shape (i.e., samples) which is needed when a 
shape-constrained sampling is required. In this case, the ROI shapes 
are randomly generated as convex hulls having their spatial index 
(sp) value set by the user. In the case of shape-unconstrained sam-
pling, the shape of the ROI’s will be randomised. The spatial index 
(sp) is defined to indicate dominant spatial extension direction, e.g., 
north-south or west-east: 

sp¼
DNS

DWE
(1)  

where DNS and DWE refer to the north-south dimension and the west-east 
dimension of a sample (represented by a matrix). The reason of having sp 
as an attached indictor is that in many climate studies, the direction of 
an area (such as a river catchment) plays a crucial role in determining 
the amount of quantity, such as rainfall (Viviroli et al., 2003; Svensson 
and Rakhecha, 1998). Obviously, other indexes, such as the direction of 
the major axis, can be easily defined if required. 

2.3. Sampling processing and validation 

This is the final step (Fig. 1c) where samples are generated according 
to the initial settings. The methods discussed below correspond to the 
three main functions of SRS-GDA toolbox.  

� Sampling with randomised locations 

This function randomly selects different locations to set the centroids 
of the samples within the OB base map. The sampling is relatively 
straightforward: first x- and y-coordinates are sampled from the range of 
the OB maps in the two directions using a joint uniform distribution UðX;
YÞ; followed by filtering out those samples that are not entirely within 
the OB.  

� Sampling with randomised sizes 

The second function is to randomly generate samples with different 
sizes, which is mainly used in the cases where the behaviour of aggre-
gated quantity over the area of a sample is desired. Since the grid res-
olution Agrid (in km2) is known, the size of sample Asample can be 
translated into the number of grids Ngrids  of  sample of the ROI. The 
equation below shows the translation: 

Ngrids  of  sample¼Asample
�

Agrid (2) 

The variation of the area of the ROI (the sample) is realized by 
applying a ‘buffering’ operation while keeping the centroid location 
unchanged, i.e., it only increases or decreases the main axis of the 
sample proportionately. Fig. 2 shows an example of shape generation.  

� Sampling with randomised shape of ROI: unconstrained and 
constrained 

The third main function is to randomly generate samples in different 
shapes varying in both sizes and locations. Depending on the user’s 
initial settings, this function can conduct both shape-unconstrained and 
shape-constrained sampling. In the former case, the location and the size 
of the sample (ROI) are both obtained from the two previous functions; 
for each combination of the location and the size, the shape is rando-
mised using the size as a constraint. Two principles are applied in this 
process:  

1) all grids should be interconnected, i.e. no isolated grids are allowed;  
2) any growth must not go over the boundary set by the OB map. 

The sampling starts at the given location and follows a random run to 
the neighbouring grid and records it until the number of grids equals 
Ngrids  of  sample. All the grids covered by the path are selected to comprise 
the sample. An extra validation step is applied to remove samples with 
holes inside (the so-called ill-set samples) and rerun the process until the 
required number of samples is met, as presented in Fig. 3. 

Fig. 2. The ‘buffering’ operation used to vary the ROI into difference sizes 
(shown here in different border colours). (For interpretation of the references to 
colour in this figure legend, the reader is referred to the Web version of 
this article.) 
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For the case of shape-constrained random sampling, it focuses on 
sampling with the shapes of convex polygons as seen in many hydro-
logical catchments in environmental or climatic research. The working 
flow is shown in Fig. 4. 

Unlike the shape-unconstrained method, the shape-constrained 
random sampling method produces more regular samples such as 
convex polygons. The main parameters such as the initial/centred 
location (L), sample size (S) and number (N) are the same as those 
required by the shape-unconstrained method. In addition, the shape- 
constrained method uses one more major parameter the spatial index 
(sp) as a further constraint. If required, three optional parameters can 
also be set to further refine the control of the polygon generation, i.e. the 
number of angles (usually is greater than or equal to 3); the irregularity 
that indicates how much variance there is in the angular distance of 
vertices with a range of 0–1; the spikiness which indicates how much 
variance there is in each vertex from the average radius with a range of 
0–1. However, as in the setup of the main parameters, L, S, N and sp, 
specification of these additional parameters are not compulsory. Unless 
otherwise specified explicitly by the user, the toolbox automatically 
generates default values for them (e.g. irregularity ¼ 0.3 and spikiness 
¼ 0.1) to avoid producing extremely weird (irregularity ¼ 1) or sharp 
(spikiness ¼ 1) polygons. Compared with the shape-unconstrained 
random sampling method, it runs substantially faster because there is 

no need for random walking to grow the grids nor does it have any 
possibility of producing ill-set areas. 

3. An example application of the toolbox 

3.1. Dataset 

One of the motivations of this example is to investigate how areal 
rainfall extremes in terms of their distributions can vary with locations, 
size and shapes of the ROI. In fact, there has been consensus about the 
impact of the size of catchment when producing areal rainfall at certain 
return levels. This is normally acknowledged by applying a so-called 
Areal Reduction Factor (ARF, Bell, 1976) to the value obtained at the 
location of the centroid of the catchment. Whilst variation of 
hydro-climatic variables is commonly recognised to be associated with 
the climatology, impact of the locations as well as the shape of the 
catchment have not been fully studied in a quantitative way. In our case, 
the 1-km gridded estimates of daily rainfall for Great Britain are ana-
lysed using a map of Great Britain roughly sized as 700� 1250 km2. The 
rainfall estimates are derived from the Met Office national database of 
observed precipitation by using the UK rain gauge network. The natural 
neighbour interpolation methodology, including a normalization step 
based on average annual rainfall, was used to generate the daily esti-
mates from 9am until 9am on the following day (Tanguy et al., 2016). 

3.2. Application of the SRS-GDA toolbox 

To be consistent with the precision of dataset, the OB base map is 
produced as the same grid size of 1 km2. The production of the OB map 
undergoes two steps: first, a rough sketch of the boundary of Great 
Britain (GB) is used to generate grids with very coarse resolution set as 
100 km2. This is to ensure the boundary is properly covered. Secondly, 
the grid map is then refined by subdividing every grid with a number of 
smaller ones so that the grid resolution gradually increases to 5 km � 5 
km and 10 km � 10 km, which allows for the detection and removal of 
those grids falling outside of the boundary. This process is shown in 
Fig. 5 including: (a) 638607 valid grids (marked as green) with the size 
of 1 km2; (b) 9464 valid grids with the size of 25 km2; (c) 2368 valid 
grids with the size of 100 km2. 

Meanwhile, the location of the sample in this example study is 
chosen to be in London with the coordinate of L ¼ (520 km, 1070 km). 
Two random sampling methods, e.g. shape-unconstrained and shape- 
constrained, are used to generate 5 different samples (N ¼ 5) at this 
location with the same size of 25 km2. According to Eq. (2), the number 
of grids in each sample (S) is calculated as 25 km2/1 km2 

¼ 25. N, L and 
S are the basic inputs for SRS-GDA toolbox. 

3.2.1. Shape-unconstrained random sampling method 
Table 1 presents the 5 different samples around the initial location L 

(grey grid) generated by the shape-unconstrained random sampling 
method. It can be observed that all samples have grids interconnected 
with no hole inside. However, the shapes of the sample can be very 
irregular as there is no requirement that they need to be a convex 
polygon which is used in the shape-constrained sampling method. 

The shape-unconstrained sampling offers maximum freedom; how-
ever, it can inevitably introduce shapes with holes inside, which have to 
be rejected. Fig. 6 shows the steps involved to detect and remove those 
ill-set sample shapes: First the original sample is presented to the vali-
dation function (Fig. 6a) before it is converted into a binary image 
(Fig. 6b). Secondly, the inner area of the binary image is flooded to 
remove the potential holes which results in a hole-free image as shown 
in Fig. 6c. Finally, by comparing the areas of the two images, the loca-
tion and the size of the hole(s) can be detected, which in turn triggers the 
removal process to discard the ill-set sample. In our test, the whole 
process of shape-unconstrained random sampling method takes 7.0 s on 
a low-configuration laptop to randomly generate five accepted samples 

Fig. 3. The process of shape-unconstrained random sampling method with ill- 
sample detection and removal. 

Fig. 4. Flowchart of shape-constrained sampling method.  
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with sizes of 25 km2 (specified as an initial constraint) while three 
samples are abandoned. 

3.2.2. Shape-constrained random sampling method 
Five samples at same location L (grey grid) generated by using shape- 

constrained random sampling method are shown in Table 2 with various 
spatial indexes sp defined by the toolbox. Comparing with those samples 
listed in Table 1, clearly the shapes are more regular here as convex 
polygons, which can be directly used to simulate hydrological catch-
ments. The whole process is recorded to have finished in 2.0s on our test 
PC, which is shorter than that from the former method. However, the 
tests show that the larger size and number are, the more efficient and 
time-saving the shape-constrained method is, compared with the shape- 
unconstrained method in Table 3. 

Fig. 7 summarises the steps taken for shape-constrained sampling 
starting with an arbitrary but convex polygon (with sp, irregularity and 
spikiness all set by the toolbox) set at the same location index L (grey 
grid). 

The effect of the spatial index sp in the process of shape-constrained 
sampling is shown in Fig. 8 with larger values of sp having more north- 

Fig. 5. General map of Great Britain with three resolutions: (a) 1 km*1 km (b) 5 km*5 km (c) 10 km*10 km. The difference in details and resolutions can be 
appreciated in the representation of the coast lines. 

Table 1 
Five example samples generated by shape-unconstrained sampling method.   

No.1 No.2 No.3 No.4 No.5 

Samples 

Fig. 6. The process of hole detection.  

Table 2 
Five example samples generated by shape-constrained sampling method.   

No.1 No.2 No.3 No.4 No.5 

Samples 
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south direction dominated shapes while smaller values indicate west- 
east direction dominated samples. Apparently, other shape related 
constraints can be defined and applied subject to the needs of different 
applications. 

The value of the toolbox can well be appreciated in the analysis re-
sults, partly shown in Fig. 9, in finding the spatial variation of extreme 
rainfall over the GB. The entire analysis is not presented here; however, 
with the help of the SRS-GDA toolbox, we were able to reveal patterns 
never reported before. For example, a west-east variation of the rainfall 
distribution at different quantiles is clearly seen as “west high, east low” 
in Fig. 9a. What is more interesting is the symmetric pattern shown in 

Fig. 9b (around sp ¼ 1.0) with regards to the sample shape which implies 
that sampled areas with slight elongation in north-south direction are 
expected to have a higher amount of rainfall than those spread more in 
east-west direction at given frequency/return period. For samples with 
the same size and location, there is a remarkable difference in areal 
averaged rainfall between more elongated (e.g. sp ¼ 0.2 or 5.0) and 
rounded shape (e.g. sp ¼ 1.0), which can be attributed to heterogeneity 
of the grid rainfall distribution that cannot compensate to the areal 
average. The relationship between the sample size and the annual 
maximum daily rainfall (Fig. 9c) is shown to have largely followed what 
is expected, e.g., decrease of areal rainfall as sample size grows. 

Table 3 
Comparison of the indicative speed of the two sampling methods: Method 1 the shape-unconstrained method and Method 2 the shape-constrained method. Note that 
the numbers are obtained on our test PC and for comparing the relative speed difference.  

Number of Grids Sampling Method Number of Samples 

5 10 20 45 60 100 150 

25 Method 1 7.4s 13.8s 39.1s 2.3min 3.6min 9.3min 20.9min 
Method 2 2.2s 2.8s 3.0s 4.6s 5.6s 7.0s 10.0s 

50 Method 1 18.1s 33.1s 1.8min 8.1min 29.4min 39.6min 1.4 h 
Method 2 2.1s 3.8s 4.7s 7.7s 10.7s 12.0s 20.6s 

100 Method 1 50.8s 3.5min 28.1min 1.2 h 2.4 h 9.6 h 12.9 h 
Method 2 1.7s 3.1s 7.3s 11.4s 13.5s 23.0s 30.5s  

Fig. 7. The process of generating samples by shape-constrained sampling method.  

Fig. 8. The 7 samples with different spatial index sp.  
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4. Conclusions and availability of the toolbox 

In this paper, we discuss the development of a new MATLAB toolbox 
for spatial random sampling in grid-based data analysis (SRS-GDA). The 
main aim of the toolbox is to address the very needs of many climate 
change related studies on spatial-temporal diagnostics of hydro-climatic 
datasets. An example application case is given in which the imple-
mentation details are discussed. Our initial applications show that with 
this toolbox, several important variation patterns of extreme rainfall 
(due to be published separately) over GB that have yet to be reported are 
clearly identified. Based on the promising results, we expect this 
toolbox, thanks to the availability of its source code, will help the related 
research community in their analyses of grid data sets and gain further 
insight into the underlying science. 

The source code of the toolbox as well as the example case given 
above are available at the GitHub (https://github.com/wanghan924/ 
SRS-GDA_Toolbox.git). The source code is provided subject to a GPL 
V3 licence. Use/fork of the toolbox is subject to proper acknowledge-
ment as stated on the Webpage of the toolbox. 
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