Graph convolutional neural network for multi-scale feature learning

Michael Edwards!, *Xianghua Xie!, Robert Palmer!, Gary Tam!,
Rob Alcock?, Carl Roobottom?
Department of Computer Science, Swansea University, UK
2Peninsula Radiology Academy, Plymouth Hospitals NHS Trust, UK
3Plymouth University Schools of Medicine & Dentistry, Plymouth Hospitals NHS Trust, UK
*corresponding author: x.xie@swansea.ac.uk

Abstract

Automatic deformable 3D modeling is computation-
ally expensive, especially when considering complex
position, orientation and scale variations. We present
a volume segmentation framework to utilize local and
global regularizations in a data-driven approach. We
introduce automated correspondence search to avoid
manually labeling landmarks and improve scalabil-
ity. We propose a novel marginal space learning
technique, utilizing multi-resolution pooling to ob-
tain local and contextual features without training
numerous detectors or excessively dense patches. Un-
like conventional convolutional neural network oper-
ators, graph-based operators allow spatially related
features to be learned on the irregular domain of
the multi-resolution space, and a graph-based con-
volutional neural network is proposed to learn repre-
sentations for position and orientation classification.
The graph-CNN classifiers are used within a marginal
space learning framework to provide efficient and ac-
curate shape pose parameter hypothesis prediction.
During segmentation, a global constraint is initially
non-iteratively applied, with local and geometric con-
straints applied iteratively for refinement. Compar-
ison is provided against both classical deformable
models and state-of-the-art techniques in the complex
problem domain of segmenting aortic root structure
from computerized tomography scans. The proposed
method shows improvement in both pose parameter
estimation and segmentation performance.

1 Introduction

The use of contextual and local information is com-
mon in numerous domains, from understanding scene
context in images to modeling sentence structure
within speech [Oh et al., 2017, Yu et al., 2016]. The
idea of a scale-space is introduced by Koenderink
[1984] and discussed by Lindeberg [1996] and Tony
[2008], in which a multi-resolution decomposition of
an input signal is an ordered set of signals at increas-
ingly coarser representations, reducing the finer scale
features of an input domain and providing an increas-
ingly generalized representation of the data [Florack
et al., 1996]. Given that an observed dataset may de-
scribe a sampling of a problem domain in which the
spatial scale of the target may be unknown, it can be
beneficial to represent the observation across multi-
ple scales. Lindeberg [1996] discusses that the use of
feature descriptors are often dependent on the rela-
tionship between the size of points of interest within
the data and the size of the operators which are to be
applied to them. Developing feature extractors that
are able to provide information from various levels of
scale has been an important area of research in vi-
sion communities and is closely linked to drop off in
resolution for biological vision systems [Curcio et al.,
1990, Lindsay and Norman, 1977], as shown by the
topology of the photoreceptors within the human eye,
Figure 1. The density of sensory structures within the
eye provides a region of focal acuity, whilst the reduc-
tion in density towards the outer field of view leads
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Figure 1: Spatial resolution of visual sensory recep-
tors within the human eye. The resolution of pe-
ripheral vision gradually reduces as the angle of ob-
servation deviates from the foveal region (0 degrees).
Image from Lindsay and Norman [1977].

to a reduced resolution. Rosenholtz [2016] explains
that the loss of acuity in peripheral vision should not
result in the perception of a blurred scene, as appears
within Figure 2, despite the drop in resolution as an-
gular distance increases from the fovea and center of
focus. The understanding of scale and the utiliza-
tion of contextual information is an important task
in computer vision and its use in pattern recognition,
and methodologies have been explored which look to
handle changes in scale and the relation between an
object and its wider context.

Current deep learning approaches incorporate scale
information by either producing filters of different
sizes or input streams of different resolutions. Both
approaches keep the local and contextual informa-
tion separate until they are fused downstream. In
order to explore the use of spatial representation
learning on incorporated contextual and local fea-
tures, we present a generalized methodology for con-
structing a multi-resolution graph using an irregu-
larly spaced patch sampling method. By using a
novel multi-resolution pooling method to create a rel-
atively small patch which contains both local and
contextual structural information, we are able to
learn features from raw intensities; avoiding the inef-
ficiencies of large patches and the need to train nu-
merous Convolutional Neural Network (CNN) models
for each scale. This Graph-based Convolutional Neu-
ral Network (Graph-CNN) network acts as a detec-

Figure 2: Effect of drop in acuity within the periph-
eral visual field. Left to right: Original image, in-
creasing reduction in spatial acuity, leading to a loss
of high resolutions within the peripheral sampling.
“Blurring” is exaggerated in order to adequately dis-
play the effect. Image from Rosenholtz [2016].

tion classifier for a search space optimization frame-
work, which not only eliminates the burden of defin-
ing hand-crafted local and contextual features during
training, but also significantly reduces the number of
potential object pose parameter hypotheses at the
testing stage.

The presented study is structured as follows. Sec-
tion 2 provides a background to the proposed meth-
ods. Section 3 introduces an application domain
of medical segmentation, on which we evaluate the
multi-resolution sampling and deep learning on the
irregular spatial domain of the non-uniformly sam-
pled grid. Section 4 outlines the proposed pipeline for
automated segmentation using deep learning on the
irregular domain. Section 5 presents multi-resolution
deep feature learning to drive Marginal Space Learn-
ing (MSL) for position-orientation pose parameter es-
timation, and deformable model segmentation is uti-
lized to obtain accurate regularized meshes. In Sec-
tion 6 we evaluate the proposed pipeline on the case
study of aortic root detection and segmentation on
Computerised Tomography (CT) scans of the human
torso, providing qualitative and quantitative analy-
sis in Section 7. Conclusions and discussions on the
results found are given in Section 8.



2 Related Methodology

2.1 Feature Scale and Contextual In-
formation

Many methods, such as Scale Invariant Feature
Transform (SIFT) and scale cascades have been de-
veloped to utilize hand-crafted descriptor sets in pre-
vious years; including the Haar, tilted-Haar, and
steerable Haar features seen in many image based ob-
ject detectors [Bay et al., 2008, Freeman and Adelson,
1991, Lienhart and Maydt, 2002, Lowe, 1999, Viola
and Jones, 2001]. Cascade based methods, such as
those presented in the Viola-Jones cascade detector,
[Viola and Jones, 2001], aim to speed up detection
by detecting on contextual features before moving on
to local information, utilizing the fast computation
of descriptors to discard regions which do not match
the learned context.

In more recent years however, the use of deep learn-
ing algorithms have become a popular alternative,
capable of learning feature descriptors by combining
inputs and adjusting their related importance weight-
ing [LeCun et al., 2015]. Standard neural networks
have been shown to perform well in domains which
exhibit no assumption of spatial relation between in-
put features, and recently the usage of CNNs in do-
mains residing on a regular Cartesian grid, such as
2D images and 3D volumes, has shown that spatially
localized features can present beneficial descriptors
for problems such as object recognition and detec-
tion [Krizhevsky et al., 2012, LeCun et al., 1998, Si-
monyan and Zisserman, 2014]. Given that the ap-
pearance of local structure can significantly vary, con-
textual structures are often just as important for de-
tection as local details. Using CNNs on large enough
3D patches to capture both local and contextual fea-
tures is computationally impractical, often requiring
complicated networks to capture information at var-
ious scales [Cai et al., 2016, Milletari et al., 2016].
Kamnitsas et al. [2017] formulated a CNN architec-
ture with multiple branches, one for each resolution,
learning spatial features at different resolutions for
brain lesion segmentation. Each branch contains its
own collection of filters and the learning of high- and
low-resolution features are disjoint between the mul-

tiple branches. A similar branching scheme is pro-
posed by Kawahara and Hamarneh [2016], with mul-
tiple resolutions being kept separate along different
tracts of the architecture before being combined as in-
put to a fully-connected architecture. He et al. [2014]
proposes a spatial pyramid pooling layer, maintaining
local spatial information and removing the need to fix
input sizes to a CNN when computing a fixed-length
output vector. Ren et al. [2016] combine a object
proposal scheme with a CNN classifier to learn spa-
tial information through a region-of-interest pyramid
of reference boxes, with a Region Proposal Network
identifying key areas for the Fast R-CNN classifier
to focus its attention. Figure 3 gives an overview of
current approaches to multi-scale deep learning.

2.2 Marginal Space Learning

The estimation of pose parameters is often necessary
for 3D object detection, for example there may be 3
optimal parameters each for position (z,y, z), orien-
tation (w, ¢, ), and local scale (S;,Sy,S,). Detec-
tion can often be formulated as a classification prob-
lem; however to exhaustively represent or search all
pose combinations in a single high-dimensional space,
¥, is computationally impractical. Most anatomical
structures have some natural alignment (i.e. the aor-
tic root is near the left ventricle) and therefore it is
observed that the probability distribution is clustered
in a small localized region of W. The idea of MSL,
[Zheng and Comaniciu, 2014], is that the full similar-
ity search space can be marginalized in an attempt
to reduce complexity for each increasing level of pose
estimation:

\I]a C \Ilab - \I]abc = \I,; (1)
where V¥, is the position search space, ¥, is the
position-orientation space, and W, is the position-
orientation-scale space. It is assumed that the op-
timal hypothesis II is contained within the highest
probability hypotheses of all marginal spaces, such
that

(2)

Given three marginal spaces in (1), three classifiers
Cq, Cup and Cyp can be trained. At the testing stage,

II =11, C I, C 11, .
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Figure 3: Current multi-scale schemes in feature representation learning in deep learning approaches. a)
Pyramids of images and filters (branching), b) Pyramids of filters, ¢) Pyramids of reference boxes. Adapted

from Ren et al. [2016].

C, can eliminate the vast majority of false hypotheses
in ¥, leaving high probability hypotheses II,. These
are then passed through Cy; to leave Il,;, which are
subsequently passed through Cgp. to leave Il . =
II. MSL therefore dramatically alleviates the high
computation needed for exhaustive search and has
been shown to reduce the number of test hypotheses
significantly for applications in 3D volumes [Palmer
et al., 2015, Zheng et al., 2012]. When training both
position and orientation estimator models, a positive
hypothesis must satisfy the condition that

|P, — Pyl/Sk <1 Vk, (3)
where Py, is a single pose hypothesis, Py is its ground
truth, and Sy is the corresponding parameter search
step.

Formulation of the problem is made as a binary
classification task over a regression approach in or-
der to obtain probabilities for selection of a set of
hypothesis regions, decreasing the search space with-
out confining the search too much. Deep learning
approaches to pose estimation from medical volumes
have seen a recent advance [Gessert et al., 2018], how-
ever MSL is approached as a binary hypothesis de-
tection problem. It is possible to utilize a logistic
regression for the binary classification, however the
non-linear activations of a network architecture are
able to model more complex boundary decisions and
as such can often more accurately reflect more com-
plex problem domains when avoiding local minima
traps [Goodfellow et al., 2016].

2.3 Graph-based Convolutional Neu-
ral Networks

Due to the irregular spatial domain that is provided
by a sampling operator which contains information
from a non-uniform multi-resolution operation, it is
non-trivial to apply standard CNN operators to the
patches. We can use fully-connected NN models to
learn features for our marginal space classifiers, how-
ever such architectures have no constraint on the spa-
tial localization of features from the input space, as
would be learned by CNN classifiers on the regular
Cartesian domain. Due to their assumption of the
regular kernel as a sampling operator, such CNN op-
erators are ill-defined for use on non-euclidean do-
mains. To make use of spatial relationships between
the input features in an irregular domain we can for-
mulate the sampling operator as an irregularly spaced
sampling of the underlying domain and by defining
the multi-resolution patch topology as a graph G,
with the input intensities forming a graph signal f
that resides on G we can utilize the graph Lapla-
cian as a method of encoding the underlying spatial
topology of the domain for the purpose of defining
localized information. By utilizing Graph-CNN op-
erators, spatially localized features can be learned via
spectral filtering techniques developed in the field of
deep learning and signal processing on graphs [Def-
ferrard et al., 2016, Edwards and Xie, 2016, Henaff
et al., 2015, Kipf and Welling, 2017, Shuman et al.,
2013]. This allows end-to-end learning of features on



the irregular space that allow our model to simul-
taneously observe local features and low-resolution
wider contextual information without the overhead of
learning a different CNN model for each scale. The
utilization of deep learning approaches which utilize
graph structures is growing rapidly in recent years,
including the learning of graph-wise signals that re-
side on the graph [Bruna et al., 2014, Edwards and
Xie, 2016, 2017], node-wise segmentation [Defferrard
et al., 2016, Kipf and Welling, 2017, Monti et al.,
2016, Qi et al., 2017, Wang et al., 2018] and graph
structure learning [Ying et al., 2018]

From graph construction we obtain the edge
weighting and diagonalized adjacency matrices, W €
RY*N and A € RV*N respectively. This allows us to
construct the non-normalized Laplacian matrix rep-
resentation of the graph structure, L € RV*N by
L =D —W. Given a complete Laplacian decompo-
sition we can formulate a Fourier basis for the graph
domain and utilize the Graph-CNN operators, com-
prised of the eigenvector matrix U € RV*YN ordered
by its associated decreasing eigenvalues A € RY.
Such a basis allows us to represent a given graph
signal f € RY in the spectral frequency domain of
the graph by computing the spectral signal f via the
Graph Fourier Transform (GFT):

f=U"f. (4)

By defining a convolution in the spatial domain as the
element-wise multiplication in the frequency domain,
we are able to produce spectral filtering operations
on f with a set of spectral multipliers k& by

frxk=fok (5)

where * defines the convolutional operation, and
© represents the element-wise product. Optimiz-
ing the weightings of spectral multipliers via back-
propagation allows the training of a self-learning
feature mining architecture, rather than arduously
defining hand-crafted features for a complex do-
main topology. To ensure that localized features are
learned in the spatial domain, we can utilize the prop-
erty of smoothness in the frequency domain provid-
ing spatial locality on the spatial domain [Edwards
and Xie, 2016, Henaff et al., 2015]; thus the network

tracks n < N weights for each filter, interpolating
them up to N for use in (5).

Another core operation in the CNN architectures
is the use of pooling, striding across the regular spa-
tial domain of the input feature map with an appro-
priate max or mean operator, to produce a coars-
ened resolution map as output. Such pooling opera-
tions provide two main benefits, firstly the memory
and computational complexity for convolution is re-
duced for smaller sized feature maps, secondly the
learned features are generalized by compression of
feature map resolution [Boureau et al., 2010]. The
standard CNN pooling operator maintains the spa-
tial regularity of the domain, taking a Cartesian grid
as input and returning a Cartesian grid feature map
as output. The use of element-wise spectral filter-
ing within the Graph-CNN convolutional operator
means each layer of a Graph-CNN would possess a
graph signal with RY vertices per feature map, with
an increasing number of output maps leading to scal-
ing inefficiencies without a pooling operation. Such
a graph coarsening strategy looks to remove or ag-
gregate vertices in a given graph, while retaining key
information in the graph structure. The coarsening
of G = {V,W} into a reduced graph, G = {V,W},
is non-trivial, with a wide variety of methods into re-
ducing graph and signal complexity, [Liu et al., 2014,
Safro, 2009, Safro et al., 2012, Shuman et al., 2016,
Ying et al., 2018]. Since the graph convolution via
the GFT requires a fixed Fourier basis, it is possi-
ble to pre-compute the required graphs for the archi-
tecture before training, and look them up for conve-
nience. Two methods for graph coarsening are the
use of Algebraic Multigrid (AMG) and Kron’s reduc-
tion pyramids [Safro, 2009, Shuman et al., 2016], a
comparison of which is shown on an example of a ir-
regularly sampled 2D grid in Figure 4. Selecting a
collection of vertices to keep in the coarsened graph
can take several forms, including a selection criteria
based on the polarity of the eigenvector associated
with the largest eigenvalue, V = {Un:};Uns >=0,
or the use of spectral clustering of the vertices via k-
medoids over the eigenvectors [Liu et al., 2014, Safro
et al., 2012]. Once we have defined the graph-based
convolutional network operators we are able to con-
struct a Graph-CNN architecture as we would with
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Figure 4: Two levels of graph pooling operation on an
irregularly sampled 2D grid. a) Kron’s reduction, b)
AMG. Note that both methods retain overall spatial
structural distribution, however the edge connectiv-
ity of Kron’s reduction results in an explosion in edge
count.

a CNN, with initial feature mining layers and a sub-
sequent fully connected head. Our proposal utilizes
the outlined multi-resolution sampling operation and
the use of a Graph-CNN driven MSL approach, upon
which we will provide a case study in medical volume
structure segmentation.

3 Case Application: 3D Medi-
cal Image Segmentation

The use of multi-scale learning is beneficial in many
domains, and the proposed usage of multi-resolution
sampling and deep learning on the irregular do-
main is generalizable to the overarching problem of
multi-scale representation learning. In this study we
provide evaluation of the proposed multi-resolution
Graph-CNN on the domain application of medical
segmentation, in which the understanding of de-
tailed localized information and the general wider
context of the human anatomy is beneficial in detect-
ing small-scale anatomical structures with accuracy

Figure 5: Structure of the aortic valve. Left: Di-
agrammatic representation of the aortic root and
valve, detailing the three cusps. Image from Che-
ung and Lichtenstein [2012]. Right: Ground truth
mesh from the dataset, oriented vertically. Note that
ground truth is labeled up to the sinotubular junc-
tion.

[Chen et al., 2015, Gao et al., 2014, Li et al., 2017,
Yan et al., 2017, Zhang et al., 2017]. Recently, there
has been tremendous work in the application of neu-
ral network methods to medical image analysis [Jiang
et al., 2010], and in particular CNNs for anatomical
organ detection [Kamnitsas et al., 2017, Shin et al.,
2016] and unsupervised learning [Shin et al., 2013].
Segmentation is a key area in image analysis and
many applications make use of segmentation meth-
ods to process a volume into meaningful parts, espe-
cially medical volume analysis. Such methods often
attempt to label each voxel of a volume into a given
class of interest, utilizing appearance information or
some structural features extracted from the volume.
One such application of medical volume understand-
ing is the segmentation of the aortic valve. Aortic
valve stenosis is a common heart disease affecting 3%
of the global population, with many cases requiring
surgical treatment and the 3D segmentation of the
aortic root is beneficial for patient selection, proce-
dural planning and post-evaluation. It is therefore
vital to reliably and accurately identify aortic root
structure within a patient, Figure 5.

Due to image noise and other ambiguities, non-
model based approaches are often unable to detect
subtle boundaries between classes in a volume, e.g.
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Figure 7: Our testing pipeline for the proposed segmentation. Output segmentation magnified for clarity.

those between the valve and left ventricular output
tract [Zheng et al., 2012]. However, given an initial
shape, deformable models are able to identify this
boundary, and have successfully been used for seg-
mentation of the root structure [Grbié¢ et al., 2012,
Palmer et al., 2015, Zheng et al., 2012]. Structure
generalization and application of priors are often key
in methods that perform detection and segmentation
of medical imaging data.

Supervised automatic 3D deformable modeling is
not only computationally demanding during the test-
ing stage, but it is also labor intensive in prepar-
ing training data, e.g. in establishing correspondence
for smooth 3D structures. Parameters for effective
model regularization as well as useful feature extrac-
tion are chosen carefully depending on the applica-
tion, which can be extremely time consuming. For ex-
ample, model regularization regularly requires build-

ing a statistical model which often demands addi-
tional manual labeling [Cootes et al., 1995]. Similarly,
choosing optimized discriminative features for both
object and boundary detection can be an excessively
lengthy process. In this work, we aim to alleviate the
burden of feature crafting, as well as implementing
an efficient segmentation method using a bottom-up
approach with prior regularization.

Appropriate automatic solutions to building statis-
tical models are not well reported in the literature.
Notably however, Frangi et al. [2002] proposed find-
ing mesh correspondences based on image data rather
than the meshes themselves. The meshes were lo-
cally transformed to an atlas and anatomical points
were propagated across the set. The transformation
was estimated with intensity-based mutual informa-
tion which is not suitable for noisy images with rela-
tively low contrast between soft tissues, such as car-



diac CT data. As such, we propose estimating the
transformation using a mesh-based similarity metric
and learned correspondences between training sam-
ples. The proposed method eliminates the process of
manual landmark labeling, enabling a larger set of
fiducial points per shape and providing a reduction
in overall time taken to construct a shape model.

To initialize deformable models, they need to first
be automatically aligned with the test image by per-
forming object detection. Exhaustive pose parame-
ter search in 3D is highly impractical due to possible
position, orientation and scale permutations. Alter-
natively, MSL has been proposed for efficient 3D or-
gan detection [Grbié et al., 2012, Palmer et al., 2015,
Zheng et al., 2012] by incrementally searching po-
sition, position-orientation and position-orientation-
scale spaces. Zheng et al. [2009] presents a method
for further reducing the parameter space by further
constraining the initial search space based on the sta-
tistical correlation between pose parameters in the
observed training data, further removing the testing
of unnecessary hypotheses. Choosing the appropriate
features for classifiers is challenging, as feature type,
orientation and scale must be considered, and patho-
logical structures often look significantly different be-
tween observations. MSL introduced by Zheng et al.
[2008] and Zheng et al. [2012] provides a hand-crafted
steerable feature extractor which is used as to pro-
duce input for the pose estimation classifiers. We ar-
gue that a feature learning based approach should be
adopted, such as those obtained through deep learn-
ing architectures. The mining of such features has
shown marked improvements on the start of the art
in numerous image analysis problems [LeCun et al.,
2015], and we further propose that incorporating a
sense of spatial context into the learning strategy can
improve the accuracy of the classifier model produced
for MSL.

The development of an end-to-end segmentation
pipelines have only seen very recent study [Caesar
et al., 2016, Long et al., 2014], and even fewer have
been applied to volumetric data due to the complex-
ity of dense segmentation of large volumes. Numer-
ous dense segmentation methods exists, utilizing the
fully convolutional neural network approach to pro-
vide a segmentation of input images [Xue et al., 2017].

Milletari et al. [2016] go one stage further and present
a fully convolutional neural network for volumetric
segmentation of medical images, providing a dense
segmentation model which takes 48 hours to train on
the 128 x 128 x 64 volumes. This has since been ex-
panded by Zhang et al. [2018] to utilize the Region
Proposal Network structure from the Faster R-CNN
approach to localize and focus the convolutional at-
tention [Ren et al., 2016]. Both methods are depen-
dent on the use of a fixed sampling resolution, limit-
ing the ability to consider local and contextual fea-
tures without increasing complexity with a branched
multi-scale network architecture.

Irregular sampling within MSL has been ap-
proached before, notably by Ghesu et al. [2016],
where a sparse sampling is taken from within a lo-
calized area of fixed resolution and fed to a fully-
connected neural network architecture to drive the
pose estimation classifiers. The use of a fully-
connected network removes the intrinsic spatial re-
lationships between the input features, whereas the
proposed method differs from this approach by in-
troducing the use of a patch sampling from across
multiple resolutions and by incorporating spatial re-
lationships between the input features by training
a Graph-CNN architecture. The proposed multi-
resolution sampling provides local and contextual in-
formation to the network during training. We also in-
troduce an automated shape model landmark detec-
tion approach, providing data-driven statistical shape
model generation and reducing user input.

Overall, we present a novel pipeline method of deep
learning on the graph representation of an irregular
multi-resolution spatial domain for identifying tar-
get position and orientation hypotheses in aortic root
detection. Raw local and contextual intensity fea-
tures are used in a novel Graph-CNN architecture to
mine spatially related features on an irregular spa-
tial topology, avoiding relying upon hand-crafted fea-
tures or an increased overhead from large patches.
A marginal space learning approach is taken to re-
duce the search space complexity of the large 3D
parameter space for segmentation initialization. An
initial shape model is learned in an automated fash-
ion by detecting a set of landmark features across
the training meshes; reducing the manual effort of



labeling fiducial landmarks on each mesh and allow-
ing for a larger set of landmarks to be identified.
A deformable segmentation framework is proposed
that does not rely heavily on top-down constraints,
instead presenting a non-iterative deformation and
shape model regularization step for the initial seg-
mentation of the volume. This is then followed by
an iterative refinement of the mesh with local de-
formations and mesh-based regularization based on
a strong boundary detection network. The use of
Statistical-Shape-Modelling (SSM) shape constraints
and mesh regularization utilizes prior information re-
garding learned shape context in order to produce
a data-driven segmentation with reduced mesh en-
tanglement and user guidance. Results on the pro-
posed method show strong performance benefits in
both aortic root pose estimation for the purpose of
marginal space learning, and an accurate segmenta-
tion of the aortic root structure. Evaluation of the
proposed approach is given in the medical segmenta-
tion domain.

4 Proposed Approach

The proposed method looks to improve the efficiency
of the overall volume processing pipeline in an auto-
mated fashion, removing the need to manually label
landmark points on numerous training samples by
hand, introduce multi-scale learning into the MSL
pipeline and to utilize constrained deformable seg-
mentation to produce regularized meshes. Our multi-
resolution graph-based sampling produces a patch
without overlapping regions, reducing the number of
elements sampled in comparison to the equivalent
area covered with a conventional regularly sampled
patch. Through the use of multi-resolution sampling
and Graph-CNN we are able to use a local and con-
textual sampling patch to feed the network whilst
learning localized filters on the multi-resolution graph
via graph signal processing operators, Figure 6.

The proposed testing framework is shown within
Figure 7. Localization and alignment parameters for
the initial mesh, a median mesh from the training set,
is efficiently carried out using a novel Graph-CNN-
Based Marginal Space Learning (Graph-CNN-MSL)
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Figure 8: Graph Convolutional Neural Network oper-
ators. a) Graph Convolution. Spectral graph signals
are multiplied with spectral multiplier filter weights.
An inverse Graph Fourier Transform returns the sig-
nal to the spatial domain. b) AMG Pooling, fine-
scale nodes are aggregated into coarser nodes in the
pooled graph. Color of nodes indicate resolution of a
given layer, i.e. lowest outer resolution sampling to
the volume edge (blue), highest resolution in central
core (red).

approach. Deformable segmentation is composed of
boundary detection and 3D mesh regularization al-
lowing large-scale movements by setting long search
paths at the boundary detector stage, with shape
constraints applied to avoid mesh and shape irregu-
larities. Local refinement is then performed using de-
formable segmentation in an iterative fashion, where
each iteration is capable of small movements, followed
by generic mesh processing.

5 Methodology

The proposed method consists of two major parts;
the use of Graph-CNN-MSL to reduce the complex-



ity of parameter search space, and SSM supported
segmentation to generate an accurate and regular-
ized mesh of the aortic root, Figure 7. The following
section outlines the proposed pipeline components.

5.1 Marginal Space Learning

We train two classifiers which act as detectors for a
positive position and orientation within the search
space. For our MSL estimators we define the search
space criteria as outlined in Section 5.1. The po-
sition estimator is composed of search parameters
P = (z,y,2), P' = (z4,y1,2t), S = (1,1,1) vox-
els, and the input layer features are the intensi-
ties from our globally aligned pooling. For the
position-orientation estimator P = (x,y, z,w, ¢, 6),
Pt - (‘rt?yt7zt7wt7¢t70t)? S = (13 13 17 107 107 10)’
and the patches are aligned with the orientation hy-
pothesis. An example volume, with 512 x 512 x 512
voxels and full 360° orientation space about the X,
Y, and Z axes, would result in over 6.26 x 10'®
pose parameter hypotheses. MSL allows us to first
search 1.34 x 108 position parameters, select the top
10 probable position hypotheses, and then search
roughly 4.66 x 108 position-orientation parameters.
This is an overall reduction on the order of 107
over exhaustive search of the pose space. Finally,
for simplicity, we use the mean local scale of the
training meshes to yield a 9-element pose estimation
vector (z,y,z,w,$,0,S5;,S5,,5.). The use of mean
scale incorporates the base scale information used in
the multi-resolution sampling, simplifying the process
over creating an appropriate scale search space.

5.2 Multi-Resolution Graph-CNN

To produce a graph representation of the multi-
resolution sampling operation, for each selected res-
olution level I, we generate a set of Cartesian co-
ordinates, P!, sampled at the given resolution rate.
We then remove points from P! that are spanned by
PU=1 discarding observed regions of overlap. Intra-
layer edge weighting is calculated as

=112
=

=e (6)

Wi.g)

10

on an epsilon nearest neighborhood of vertex v;, with
a search radius of € = [, the current sampling reso-
lution, where ||v; — v;|| is the L? distance between

the vertices v; and v; and o 5. This returns
the 4-way Von Neumann neighborhood relationships
of the vertices within a resolution layer. Inter-layer
edges connect the lower-resolution layer vertices to
the higher-resolution core via the [ nearest neigh-
bor vertices, relating wider contextual features to the
high-resolution region of interest within the patch.
Weighting for inter-layer edges are defined by scaling
Eq. 6 down by the current resolution factor, with v;
representing a vertex in the current layer, and v; a
vertex in the high-resolution core.

For this application the selected graph pooling op-
eration is an AMG graph coarsening, selecting ver-
tices in the finer graph resolution for aggregation into
coarser vertices within the pooled graph and avoid-
ing an explosion of edges in the coarsened graph when
compared to the use of Kron’s reduction [Safro, 2009],
Figure 4. Aggregation takes spatially localized sub-
sets of V from G, and generates a singular vertex for
each subset in the new set of vertices V in the output
graph G. The graph signal, f1.n, associated with G
is then down-sampled to reside on G as the coarser
graph signal fl:m where N and n are the original
number of vertices and the pooled number of vertices
respectively. The AMG operation produces a set of
projection matrices, restriction matrix R and interpo-
lation matrix I, for down-sampling and up-sampling
transform of the graph signals between the finer and
coarser graph scales. To coarsen the graph signal f°
from residing on G” to f! on the coarsened graph G*
we utilize the restriction matrix R? by

ft=fR (7)
and to reconstruct the signal we can interpolate
through I' as

f=rr (8)

The Graph-CNN models are built as follows. 1) A
graph representation of the multi-resolution volume
space is generated; 2) Grayscale voxel intensities from
the volume are samples using the multi-resolution
sampling scheme; 3) Multi-resolution pooling yields



a significantly reduced representation on the irreg-
ular graph; 4) Pooled patch values are fed into the
Graph-CNN, undergoing graph spectral convolutions
and graph pooling operators, Figure 8; 5) An out-
put detection prediction is given for each observed
hypothesis.

5.3 Statistical Shape Model

The proposed segmentation stage first uses the
predicted hypothesis pose parameter vector
(,y,2,w,$,0,5,S,y,5.) to align the initial shape
model, a median shape from the training set, to
the volume. A boundary detector is then used
to guide a non-iterative local deformation that is
then constrained via a shape regularization step.
Mesh refinement is then obtained via an iterative
application of local deformations.

To automatically label training data and identify
a SSM for deformation regularization we propose lo-
cally transforming meshes to a reference mesh and
propagating points across the set. The automated
landmark detection allows for a larger set of land-
marks to be identified with little impact on the user.
To construct the initial shape model, a target mesh
My = (V, By, Fy) with |V;| = n vertices is randomly
selected from the training set, and a subset of m fidu-
cial point vertices are labeled such that P; C V;, and
m << n. All other meshes in the set are regarded
as source meshes, such that M, = (V;, Es, Fi) where
|[Vs| = p, and n # p. The aim is to find a subset
of m vertices P; C Vj, that are correspondent with
P,. We work on the assumption that finding corre-
spondences between two shapes becomes much easier
if the shapes are similar to each other. Therefore we
apply a transformation T'(z,y,z) : Ms — M,, con-
sisting of global T (x, y, 2) and local T;(x, y, z) trans-
formations.

T, globally aligns both meshes and is formulated
as an affine transformation from ground truth vec-
tors. T; then takes into account the local differences
in shape, and is estimated using (10), (11), and a
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similarity metric

E(WV:, V)

where V" are the corresponding nearest neighbor ver-
tices in V! with respect to V;. For every point in P,
its nearest neighbor based on Euclidean distance is
found in V!, resulting in P!. Finally, applying 7} *
to P! yields Ps.

5.4 Deformable Segmentation

After alignment of the initial mesh with pose parame-
ters identified by MSL, the non-iterative deformation
stage utilizes appearance features to adjust the vertex
set by defining a search path along the normal direc-
tion. A boundary detector is trained to find the path
coordinate with the optimal boundary response, and
landmark vertices are deformed to these positions. In
order to avoid hand-crafting features, we again uti-
lize feature learning. For boundary detection we use a
shallow fully-connected Neural Network (NN), learn-
ing low-level features from a small set of intensities
on a local patch, centered at the search path coordi-
nate and aligned with the path direction. The small
area of observation ensures iterative refinement of the
mesh is based upon response to localized boundary
features, with little interference from wider appear-
ance. A 3x3 patch is extracted from each point along
a boundary search path, vectorized, and input to a
single-layer neural network.

Boundary detection now results in new vertex po-
sitions V', however there is potential for mesh entan-
glement amongst the new set of vertices. To counter
this we use B-spline based 3D mesh regularization,
Palmer et al. [2015], where a non-rigid transforma-
tion T'(z,y, ) is estimated between V' and V' before
performing a free-form-deformation (FFD) on V to
fit V'. To estimate T'(z,y,z2), control points ¢f
separated by ¢, are moved which warp an underlying
3D voxel lattice. Given a set of control points, the



transformation is formulated as follows:

3 3
xyz ;ZZBI
=0

0

TYL

(10)
where B, represents the ['! basis function of the B-
spline, [i,j, k] are the voxel positions, and [u,v,w]
are the fractional positions. The positions of QSZj,Ic
are optimized using gradient descent consisting of a
smoothness cost and a sum-of-squared-difference sim-
ilarity metric between V' (after warping) and V'. The
final transformation is estimated at multiple resolu-
tions R, similar to FFD registration [Rueckert et al.,
1999]:

ZTT (z,y,2

For our purpose, R = 3, and at each mesh resolu-
tion the control point spacing is 6, = Jp/2", which
controls the FFD degrees-of-freedom. After apply-
ing SSM constraints during segmentation, only cor-
responding fiducial points are regularized. Thin plate
spline warping is used to interpolate remaining ver-
tices, resulting in ~8000 final corresponding vertices.

The next stage of the pipeline is to take the regu-
larized mesh and perform iterative refinement of the
mesh boundary by applying repeated rounds of mesh
deformation with the NN boundary detector. This
avoids a heavy top-down constraint on the segmen-
tation, instead having a single round of top-down
shape constraint followed by an iterative data-driven
refinement stage. Vertices are iteratively deformed by
identifying boundaries along the normal direction as
above. A final generic mesh-processing step rounds
out the pipeline to regularize and smooth the mesh
for output.

(11)

$ya

6 Implementation

For evaluation of fully automated Graph-CNN-MSL
and segmentation, we provide an example application
on aortic valve segmentation from 3D-CT scans. We
perform 3-fold cross-validation via segmentation on
36 3D-CT volumes of size 512 x 512 x (500 ~ 800) and
voxel size 0.48mm x 0.48mm x 0.62mm. Benefits of

( )d’z—&-l J+m,k+n
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utilizing Graph-CNN architectures to learn spatially
related features for MSL are evaluated in compari-
son to use of standard NN and hand-crafted feature
classifiers. Comparison of the proposed segmentation
stage is given against a state-of-the-art method and
traditional statistical shape model based segmenta-
tion.

6.1 Marginal Space Learning

Our multi-resolution position estimator consists of a
patch comprised of 3 resolutions; an inner core of
1 x 1 x 1, a middle region of 2 x 2 x 2, and an
outer region of 3 x 3 x 3 times the mean local scale.
Multi-resolution layers were pooled at resolutions of
é, %, and %, resulting in a graph with 395 vertices.
Position-orientation inputs were taken from a patch
at 3 resolutions; an inner core of 1 x 1 x 1.2, a middle
region of 2 X 2 x 2, and an outer region of 4 x 4 x 4
times the mean local scale. Regions were pooled at
resolutions of 1 5 40, and % respectively, resulting in
a graph with 591 vertices. The inner high-resolution
core of this patch is cuboid in shape, extending along
the Z-axis to provide further high detail information
about the ascending aorta to assist with orientation
estimation. Coordinates generated from this multi-
resolution setup were then used to generate the graph
structure for the Graph-CNN operators as defined in
Section 5. Figure 9 shows the resulting graph struc-
ture for both classifiers utilized in Graph-CNN-MSL,
whilst Figure 10 outlines the intra-layer connectiv-
ity for each of the sampled resolutions. The graph
signals residing on this graph representation corre-
spond to the voxel intensities sampled via the multi-
resolution sampling scheme, with the values at each
node aligned to the grayscale intensity of the original
image sampled at that node’s respective resolution
and location.

Two separate Graph-CNN architectures, Figure
11, are utilized to estimate position and position-
orientation parameters for shape model alignment.
The aortic root position estimation architecture was
empirically defined as C°°PC?°C19, where C° is a
graph convolutional layer with o output feature maps
and P is an AMG graph pooling layer. Each graph
convolutional layer is followed by Rectified Linear



Figure 9: a) 3D multi-resolution volume graph for
orientation estimation. b) 2D example, note removed
nodes in regions of overlap. The high-resolution core
is a cuboid structure, extending along the Z-axis
to capture further information about the ascending
aorta. Node coloring represents variable resolution
sampling, from low resolution outer layer to the high
resolution inner core. Best viewed in color.

Unit (ReLU) activation, batch normalization, and
dropout to further support generalization of fea-
tures and reduce model overfitting. A binary clas-
sification outputs predicted labels and provides a
back-propagation target for training. Networks were
trained using an ADAGRAD optimization strategy
[Duchi et al., 2011], with an initial learning rate of
10~3 and batch size of 32. Training samples were
selected with an object/non-object ratio of %. The
orientation estimator architecture was C?*C19, and
utilized an object/non-object ratio of 2—15

In order to identify the benefit of utilizing a lo-
calized feature extraction constraint provided by the
Graph-CNN architecture, a fully-connected neural
network was constructed where C° layers are re-
placed with fully-connected layers of the same size
as in architectures above. These fully-connected net-
works had no intrinsic representation of spatial rela-
tionships between features, essentially representing a
fully-connected and equally edge-weighted graph, as
represented in Figure 12. Training hyper-parameters
of the neural network implementations were kept the
same as with the Graph-CNN; utilizing ADAGRAD
optimization with a learning rate of 10~3 and batch
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Figure 10: Exploded view of an example 2D multi-
resolution graph. Note the empty center of each suc-
cessive outer layer, and the irregular sampling dis-
tances between layers. These combining factors make
such a multi-resolution sampling domain unsuitable
for current convolutional neural network approaches.

size of 32.

Our boundary detector was trained with an equal
boundary /non-boundary ratio using intensities from
a 3 x 3 local patch. Patches were fed through shallow
fully-connected network in order to learn low-level
boundary features. A comparison hand-crafted fea-
ture based approach utilized steerable features and a
boosted tree ensemble classifier, as per Zheng et al.
[2012].

6.2 Segmentation

To generate the required initial shape model for de-
formable segmentation, we label 70 fiducial points
on a single target mesh, which were propagated
across the remaining training set as set out in Sec-
tion 5. We compared the proposed segmentation
pipeline with two competing methods; a modified
Active-Shape-Modelling (ASM) implementation, and
another deformable modeling method [Zheng et al.,
2012]. Zheng et al. [2012] consisted of a boundary
detector trained with steerable features, followed by
Taubin mesh smoothing in an iterative fashion for
mesh refinement. For fair comparison, we included a
3D mesh regularization stage in our implementation
of ASM.



Figure 11:
Graph-CNN orientation estimator.
outlined in Section 6.1.

Figure 12: Examples of graph constructions for a 3x 3
regularly spaced grid structure. Left to right: Von
Neumann Neighborhoods (4 way), Moore Neighbor-
hoods (8-way), fully-connected (non-spatial if equally
weighted). Choice of a suitable graph construction
approach is required as the graph represents under-
lying spatial relationships within the domain.

7 Comparative Analysis and

Results

We report evaluation on both MSL and deformable
segmentation portions of the pipeline, outlining con-
tribution of Graph-CNN feature learning for aortic
root, position and orientation parameter estimation,
and non-iterative shape deformation with regulariza-
tion for segmentation.

7.1 Marginal Space Learning

A comparison of classifier methods utilized for MSL is
presented in Table 1. The self-learning feature mining
methods of NN and Graph-CNN outperform use of
hand-crafted features for both position and position-
orientation estimation, with Graph-CNN further im-

Graph-CNN MSL network architectures.
Input graph signals result from the multi-resolution patch sampling
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Top: Graph-CNN position estimator. Bottom:

Table 1: Predictive accuracy of the Marginal Space
Learning approaches. The addition of a locally recep-
tive filtering operation within the proposed Graph-
CNN approach provides an improvement over the
standard Fully-Connected Neural Network method,
lowering both the position and the orientation error
of the predicted pose parameters.

Position Orientation

MSL Method (Voxels + SEM)  (Degrees + SEM)
Hand-crafted 9.10 + 0.57 14.69 + 1.28
Fully-Connected 3.79+047 12.38 £1.24
Proposed 1.46 +0.36 6.78 £1.01

proving over NN architecture. Being able to ac-
curately and reliably provide hypothesis regions on
which to initialize a segmentation algorithm is highly
beneficial to following segmentation steps. The
Graph-CNN position detector’s sensitivity and speci-
ficity were 91.46% and 99.95%, respectively. Sensi-
tivity and specificity of the position-orientation es-
timator was 89.84% and 84.16%. Given the huge
parameter search space, strong specificity results
are invaluable to reliably reduce parameter search
spaces and greatly increase efficiency. The pro-
posed method provides a significant increase in accu-
racy over both the hand-crafted and fully-connected
neural network implementations. Results showed
a significant difference in position estimation accu-



racy between Graph-CNN and hand-crafted features,
t(35) —11.76, p < .001. Graph-CNN also pro-
vides benefit in orientation estimation over the hand-
crafted feature approach, t(35) = —9.37, p < .001.
The NN method outperformed the hand-crafted fea-
ture approach, as shown in Table 1; the trained
estimators provided a significant improvement over
hand-crafted features for both position and orienta-
tion, t(35) = —7.74, p < 0.001 and t(35) = —7.35,
p < 0.001 respectively. When comparing the spa-
tially localized feature learning of the Graph-CNN
architecture against the fully-connected neural net-
work approach, Table 1 shows that both the position
and orientation estimator see marked improvements,
with ¢(35) = —4.31, p < .001 and ¢(35) = —4.89,
p < .001 respectively.

The Graph-CNN architectures provide a large gain
in accuracy over the other methods, utilizing spa-
tial relationships between the high and low resolution
spaces in a single descriptor. One benefit of utilizing
the underlying spatial topology of the problem do-
main is the ability to visualize the learned descriptors
[Yosinski et al., 2015, Zeiler and Fergus, 2014}, and
the same can be utilized in Graph-CNN methodolo-
gies to identify the localized responses within the net-
work’s filters. Figure 13 shows some example feature
maps produced by graph convolutions of spectral fil-
ters in the Graph-CNN model trained for the position
classifier. The feature maps describe the activations
of 3 filters (a, b, ¢) on multi-resolution patches cen-
tered at the ground truth of 3 different volumes to
show the response to the aortic root structure. The
visualization plots a slice through the center of the
multi-resolution volume with the topology as in Fig-
ure 9. From these visualizations we are able to iden-
tify activation responses to the local and contextual
information within the multi-resolution patch, with
the outer layers responding to lower resolution fea-
tures from the wider contextual region surrounding
the patch center. Figure 13a shows consistent re-
sponses across high and low resolutions. Figure 13b
displays features which are consistently found in the
high resolution region, in this example a diagonalized
response across the center. Figure 13c shows features
found in the mid-resolution layer of the graph.
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Table 2: Comparison of segmentation approach ac-
curacy.

Method Mesh Error  Hausdorff Distance
(mm £+ STD) (mm £ STD)
Regularized ASM 2.01 £ 0.63 9.13 +£2.58
Unregularized 1.44 + 0.59 10.29 + 2.93
deformation
Proposed 1.27+0.23 6.04 +1.50

7.2 Segmentation

Segmentation performance is evaluated in terms of
the symmetrical point-to-mesh error and symmetri-
cal Hausdorff distance. Mesh error provides an in-
dication of average error in the predicted segmen-
tation, however the Hausdorff distance gives insight
into the presence of outlying regions on the predicted
mesh. Overall the proposed pipeline showed notable
improvements in segmentation accuracy compared to
the comparison methods, with an average Mesh Er-
ror of 1.27 4+ 0.23mm and a Symmetrical Hausdorff
Distance of 6.04 + 1.50mm (Table 2). The benefit of
regularization for suppressing mesh entanglement can
be seen by the lower symmetrical Hausdorff distances
of the regularized ASM and proposed methods. The
use of deformable segmentation refinement helps to
drive the mesh error lower, iteratively bringing points
closer to the appearance boundaries identified by the
shallow network. For both error metrics the pro-
posed method shows lower standard deviation, with
the pipeline providing consistently accurate and re-
liable segmentation. The proposed method provides
a significant improvement over the ASM approach
for both mesh error and Hausdorff distance, with
t(35) = —=7.17, p < .001 and ¢(35) = —3.45, p = .0015
respectively. Compared to the method provided by
Zheng, only the Hausdorff provided a significant dif-
ference in performance with ¢(35) = —7.68, p < .001.
There was no significant difference between the pro-
posed method and that of Zheng in regards to their
mesh error, with ¢(35) = 1.25 and p = .22

Table 3 highlights findings comparing the overall
pipelines. First, proposed use of Graph-CNN for



(a) (b) (c)

Figure 13: Example feature maps from positive patches from 3 separate test volumes. Feature-maps from
filter responses to a) local and contextual features, b) local features ¢) non-local features.

mesh pose initialization provides a consistent bene-
fit to the segmentation portion of our pipeline. Sec-
ond, proposed segmentation steps are able to produce
meshes with low Hausdorfl Distance to the ground
truth, a benefit of regularization for controlling mesh
entanglement. It can also be seen that Graph-CNN
methods provide low standard deviation across nu-
merous test volumes, indicating that accurate pose
parameter hypotheses from Graph-CNN-MSL are
beneficial to the following segmentation phase.

7.3 Qualitative Segmentation Analy-
sis

Output from each stage of the segmentation pipeline
can be seen in Figure 14, detailing the alignment
of an initial mesh to pose parameters identified via
Graph-CNN-MSL, non-iterative deformation, appli-
cation of the SSM constraint, and the iterative defor-
mation stage. Given the difference in pose between
ground truth and median initial shape, it is impor-
tant to identify accurate pose parameters for shape
alignment.

Final segmentations and their cropped slices are
shown in Figure 15, including different axial views,
and Figure 16 compares segmented slices from each
evaluated method. Entanglement is observed in slices
implementing a top-down approach with no regular-
ization [Zheng et al., 2012], Figure 16¢, whilst the
modified ASM fails to expand and meet the boundary
contour due to the heavy shape constraint. The pro-
posed method shows it is able to maintain a smooth
regularized mesh whilst also deforming towards the
boundaries in all spatial directions.

Although the point-to-mesh error of Zheng
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et al. [2012] is marginally lower (~ 0.04mm)
than the proposed method when initialized with
Graph-CNN-MSL, these meshes lack regularization,
resulting in the higher symmetrical Hausdorff dis-
tance error. It is also worth noting that our method
is automated at the training stage, whereas Zheng
et al. [2012] requires extensive manual preparation
time to produce suitable hand-crafted feature vector
representations and identify landmark points across
training meshes. By labeling landmark points in an
automated fashion we are able to greatly reduce the
pre-processing time required to start model training.
Local transformation to identify a corresponding sub-
set of vertices across training meshes allows scaling
of identified fiducial landmark points in our shape
model without drastic increase in pre-processing ef-
fort, as seen by the proposal to identify 70 landmark
points compared to the 8 within Zheng et al. [2012].

Mesh comparisons in Figure 17 show that some
shape constraint is beneficial for generating ordered
mesh surfaces. The meshes produced by Zheng et al.
[2012] are significantly entangled compared to both
the proposed method and the modified ASM, how-
ever the modified ASM produced high point-to-mesh
errors due to the lack of shape deformation towards
the structural boundaries. This shows that strong
shape generalization can be too restrictive, and it is
critical not to overly rely on top-down constraints.
We applied the Taubin smooth as a final mesh
smoothing operation to both our proposed method
and the comparison method from Zheng. We have
also explored the effect of increasing the smoothing
effect on the predicted meshes. As can be seen in Fig-
ure 18, the repeated smoothing does not correct the
mesh entanglement but can initially reduce surface



Table 3: Comparison of MSL initialization methods on final segmentation performance.

Segmentation method

MSL method  Mesh Error (mm + STD)

Hausdorff Distance (mm + STD)

Hand-Crafted 2.01 £0.63 9.13 £2.58

Regularized ASM NN 2.00£0.78 8.42 £ 3.28
Graph-CNN 1.66 +=0.45 6.92 + 2.05

Hand-Crafted 1.44+0.59 10.29 £ 2.93

Unregularized deformation NN 1.51 £0.66 10.59 £ 3.41
Graph-CNN 1.23+0.27 9.10 £ 2.26

Hand-Crafted 1.50 + 0.56 7.72+£3.20

Proposed NN 1.49 £+ 0.52 7.85+3.24
Graph-CNN 1.27+0.23 6.04 +1.50

Figure 14: Output at each stage of segmentation. a) Initial shape model, b) pose alignment, ¢) non-iterative
deformation, d) SSM constraint, e) iterative deformation, f) final mesh regularization, g) post-segmentation

smooth, h) ground truth.
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Figure 15: Segmentation shown on cropped image
slices for illustration. Green contours show ground
truth, blue contours show result of proposed method.

variance. The observation here show that reliance on
smoothing as a method for repairing the mesh sur-
face is not an optimal approach, and instead an in-
tegrated mesh regularization approach which avoids

(d)

Figure 16: Segmentation comparison for three
pipeline methods. a) Ground Truth, b) Modified
ASM, ¢) Zheng Zheng et al. [2012], d) Proposed.

mesh entanglement provides an initial prediction of a
well-structured mesh surface which then be improved
slightly with smoothing.

Failure cases are shown in Figure 19. Visualiza-
tion of the predicted mesh shows that the overall
shape is often reasonable, with the overall model
shape, including root and cusps, being present and
well formed, however there are some issues with ori-
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Figure 17: Segmentation comparison, where each row
is the result of a different test image. Columns: 1)
Ground truth; 2) modified ASM; 3) Zheng et al. 2012;
4) Proposed method.

entation alignment (Figure 19: second row and fourth
column, bottom row and last column). The contours
show that the failure cases give under-segmentation,
often falling inside the boundary of the tissue. This
suggests that either the search path is unable to lo-
calize the boundary, or the boundary detector can
be improved to more robustly classify boundaries
along that search path. The use of a shallow, fully-
connected boundary detector could be replaced with
a Graph-CNN architecture which allows localized in-
formation from the small patches extracted along the
search path to be learned.

7.4 Complexity of Marginal Space
Learning classifier

Graph convolutions, as defined in Section 5, are an
element-wise multiplication of the spectral graph sig-
nal and a spectral filter, resulting in K'~' N trainable
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Figure 18: Repeated Taubin smoothing of meshes.
Starting with an unregularized mesh (top) and a
regularized mesh (bottom). Left to right: Ground
truth, Applications of smoothing (iteration): 0, 1,
10, 20, 200. The entanglement of the mesh remains
through the application of smoothing and the exces-
sive smoothing results in meshes eventually beginning
to diverge from the ground truth. Note that ground
truth labeling is not locally smooth due to labeling
process.

weights and biases per output feature map, where N
is the number of vertices in the graph and K1 is the
number of input feature maps. For our Graph-CNN
implementation, we utilize the property that smooth
spectral filters provide localized filtering in the spa-
tial domain. Such a formulation provides the benefit
of spatially localized features, and a reduction in the
number of tracked weights for our network to opti-
mize. By tracking only n < N weights and inter-
polating the filter up to N via a smoothing kernel,
we are able to reduce the number of tunable parame-
ters in an output feature map to K'~'n. A smaller n
provides more localization, but also introduces noise
in the gradient steps during back-propagation opti-
mization [Edwards and Xie, 2016]. This parametriza-
tion helps improve parameter complexity of the graph
convolution for a given filter from O(n) to O(K),
given a constant tracked number of weights. For NN,
full connection provides O(n) complexity with a sep-
arate weighting for each input feature. If utilizing
standard CNNs architectures, the ability to integrate
local and contextual features comes with increased
complexity from a multi-branch approach [Kamnitsas
et al., 2017, Kawahara and Hamarneh, 2016] with a
full set of weights for each branch, or from weight
sharing through dilated kernels [Wolterink et al.,
2017] which learns multiple scales of the same feature.
With multi-resolution patches and Graph-CNNs we



Figure 19: Example failure cases of the proposed
pipeline. Left to right: Ground truth mesh, pre-
dicted mesh, yz-slice, xz-slice and xy-slice through
segmented volume. Green contours show ground
truth, blue contours show result of proposed method.

are able to learn spatial features between the high
and low resolution input features without tracking
multiple branches for each resolution.

8 Summary

In this study we have presented a novel method for
deep learning in the irregular domain of the non-
uniformly sampled grid. A patch-sampling mechanic
generates a single spatial domain comprised of nu-
merous layers at differing resolutions. Through the
proposed Graph-CNN operators and architecture, we
are able to learn features across multiple resolutions,
utilizing the intrinsic spatial relationships between
features at both local and wider scales. The use of
conventional CNNs in such a domain is unfeasible due
to the irregular sampling used, which does not satisfy
the array structured input required for regular con-
volutional operations. The sampling method reduces
the number of input features and does not require
multiple branches to a pyramid of filters or inputs,
reducing the complexity of the network architecture.

In evaluating the proposed method, we present a
fully automatic, deformable modeling framework for
3D aortic root segmentation in CT images. The
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multi-resolution sampling strategy is generalized to
3D data, forming an irregularly spaced volume sam-
pling method. The novel segmentation pipeline
method significantly reduced the time taken for train-
ing by automatically finding shape correspondence
across the training set and utilizing deep learning for
discriminative feature extraction, rather than hand-
crafting features for the task. The MSL search space
optimization benefited from a novel implementation
of a multi-resolution sampling for Graph-CNN based
learning of features, learning spatially related fea-
tures within an irregular spatial domain. Both quali-
tative and quantitative results justified our proposed
segmentation pipeline over a top-down approach.

Future work will explore the development of end-
to-end graph-based segmentation architectures which
utilize the multi-resolution approach proposed here
to produce a dense segmentation of the observed do-
main, whether grid-based or not, making use of local
and contextual information.
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