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A new cooperative model was proposed to explore the working mechanism of double network 

(DN) hydrogel undergoes heuristic swelling and inhibitive micellization, synchronously, by the 

ionic dissociation of polyelectrolyte. 
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Abstract: In this study, a cooperative model has been proposed for the double 

network (DN) hydrogel, which synchronously undergoes heuristic swelling and 

inhibitive micellization by the ionic dissociation of polyelectrolyte. Flory-Huggins 

solution theory is initially employed to identify the working mechanism of dielectric 

constants on swelling behavior of the DN hydrogel. Then a free-energy function is 

introduced to formulate the constitutive relationship of the DN hydrogels, in which 

the first hydrotropic network undergoes a heuristic swelling and the second 

hydrophobic network undergoes an inhibitive micellization. Finally, the proposed 

model has been verified using the experimental results reported in the literature. A 

good agreement between the theoretical results and experimental ones has been 

achieved. This study provides a fundamental approach to formulate the constitutive 
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relationship and to understand the cooperative dynamics of two types of networks in 

DN hydrogels induced by the polyelectrolyte. 

Keywords: Double network (DN) hydrogels; ionic dissociation; free energy function 

1. Introduction

Hydrogel is one of the most popular soft polymeric matters that exhibit a highly 

stretchable behavior in response to an externally mechanical loading [1-3]. It has 

highly absorbent polymeric networks and can contain over 90% water in it [4]. These 

stimulus-responsive hydrogels effectively pave the ways for their successful 

applications in artificial muscle, soft robots, and intelligent devices [5-7]. However, 

the conventional hydrogels are easily broken even at a low stress [8,9], and their 

mechanical properties are soft and weak [10,13-16]. 

Recently, double-network (DN) hydrogels have been proposed and attracted great 

attention due to their ultra-high mechanical strength and toughness [8-11]. These DN 

hydrogels are incorporated of two types of polymeric networks, which are referred to 

as the brittle and stretchable ones, respectively [10,11]. Experimental results reveal 

that the DN hydrogels have mechanical strengths of 1-10 MPa and strains of 1000% 

under the tensile stress, while their toughness values (e.g., tearing fracture energy) are 

as high as 100-1000 J/m2 [10]. To further improve the mechanical properties of these 

soft materials, a tough and stretchable hybrid DN hydrogel has been synthesized and 

induced by the ionic dissociation of polyelectrolyte [12,16-22]. However, the working 

mechanisms of significantly improved mechanical properties of these polyelectrolyte 
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dissociated DN hydrogels are different from those of the conventional ones [23-25]. It 

is expected that the excellent mechanical properties are originated from the ionic 

interactions between polyelectrolyte networks and solvent molecules [26-30]. 

Therefore, it is necessary to investigate and explore the working mechanisms for these 

polyelectrolyte dissociated DN hydrogels. 

When a polyelectrolyte dissociated DN hydrogel is able to swell, the dissolution 

degree of the hydrophobic network is far less than that of the polyelectrolyte (or 

hydrophilic) network. The hydrophobic network will undergo inhibitive micellization 

resulted from the swelling effects of the hydrophilic network. Due to the complexity 

of thermodynamics, in this study, we propose some theoretical models for the 

mechanical behavior of polyelectrolyte dissociated DN hydrogels which are based on 

the classical Flory-Huggins solution theory [31]. Initially, a free-energy equation of 

double networks is established according to the heuristic swelling and inhibitive 

micellization of two types of networks. Then the constitutive stress-strain relations are 

formulated for the DN hydrogels, whose cooperative dynamics has been identified as 

the driving force for their mechanical behavior. Finally, theoretical results with the 

proposed models are compared and verified using the experimental data reported in 

the literature. 

2. Theoretical framework 

The two types of networks in the DN hydrogels are mutually swollen by the solvent. 

However, one network is able to swell while the another one is able to micellize, as 

illustrated in Figure 1, resulting into a complexity in the free energy function of DN 
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hydrogels. Here, both the swelling effect and micellization effect are necessary to 

consider in the formulation of constitutive relationship for the DN hydrogels. 

Fig. 1. Schematic diagram of the swelling and micellization behaviors of the two 

networks in DN hydrogel. 

Huggins interactive parameter ( ) is often used to characterize the interaction 

between polymer and solvent by their molecular polarizabilities [32], which can be 

expressed as: 
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where is the Huggins interactive parameter between polymer and solvent,  MS MM

is the interactive parameter between polymer macromolecules,  is the interactive SS

parameter between solvent molecules, and  is the scaling constant [32]. ek

Furthermore,  and  are the molecular polarizabilities of the polymer and M S

solvent, respectively. Equation (1) can also be written as, 
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Molecular polarizability of the polymer can be experimentally determined by the 

dielectric constant ( ) of polymer, i.e.,  [13]. Therefore, equation M
03

M M

M

e N
f C

 



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

(2) can be rewritten as, 

      (3)
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where  is the permittivity parameter,  is the number of molecules per unit 0C N

volume,  and  are material constants. It should be noted that the proposed e f

model of equation (3) is applicable for both single network (SN) and DN hydrogel, 

because the dielectric constant is determined by the whole hydrogel (for both DN or 

SN hydrogels), not determined by the network component. 
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Fig. 2. Analytical results based on equation (3) for the interactive parameter ( ) as a 

function of dielectric constant ( ) of polymer, where =2, 2.25, 2.5, 2.75 and 3.  03
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Figure 2 plots the constitutive relationship of Huggins interactive parameters as a 

function of dielectric constant of polymer, where the parameter  is assumed to 
2

2
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be a constant as the solvent is fixed. For a given constant, e.g., =2.0, 2.25, 2.5, 03

S

C
N

2.75 or 3.0, it is found that the interactive parameter is initially decreased by the 

increasing dielectric constant of polymer. However, it is then increased with a further 

increase in the dielectric constant, . These theoretically calculated results indicate M

that the interactive parameter ( ) is determined by the molecular polarizabilities of 

hydrogel ( ) and solvent ( ), as supported in equation (2). Therefore, the swelling M S

behavior of the hydrogels can be designed by controlling the molecular 

polarizabilities according to the proposed model in equation (3). 

Furthermore,  is a dynamic parameter, which is determined by the fraction of 

solvent ( ) as [31], 2

                        (4)2B C  

where  and  are two coefficients. Here  is used to characterize the effect of B C B

weight fraction of solvent on the value of . It will be increased when there is a 

strong interaction between the polymer and solvent. is a constant. Substituting C

equation (4) into (3), the swelling ratio ( ) of hydrogel is obtained, 
0

V
V

       (5)2
2 200
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where,  is the swollen volume of hydrogel,  is the volume of hydrogel in V 0V

untreated state, is the dielectric constant of solvent. S

To verify equations (5), the analytical results of swelling ratio as a function of 

dielectric constant have been plotted and compared with the experimental results 

reported in literature [12]. The results are shown in Figure 3. The parameters B=9.952
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，C=-0.52268, =1, , =9.327, =21007 and =-32.312 are 0V
2

96.2 10
2

e Sk    03

S

C
N

e f

used in equation (5). It is found that there is an inhibitive micellization effect for the 

DN hydrogels, where the swelling ratio is gradually decreased from 12.25 to the 

micellization ratio of 0.01 as the dielectric constant ( ) of solvent is increased from S

0 F/m to 32.5 F/m. On the other hand, the swelling ratio is increased from -0.99 to 

17.65 with an increase in dielectric constant ( ) of solvent from 32.5 F/m to 180 S

F/m. These theoretical results clearly reveal that the swelling behavior of the DN 

hydrogel is determined by the cooperative dynamics of heuristic swelling and 

inhibitive micellization of two types of networks. If the values of these parameters are 

small, the fitting seems not good, which is mainly due to the small swelling ratio. 

When the swelling ratio is very small, the DN hydrogel is approximately a 

concentrated solution, while the proposed model is mainly originated from the dilute 

solution theory. Therefore, in this case, the simulation results of the proposed model 

do not fit well with the experimental results. 

Fig. 3. Comparison of swelling ratio as a function of solvent dielectric constant 

between the experimental data [12] and theoretical results using equation (5).
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DN hydrogel is incorporated into a hydrotropic network and a hydrophobic 

network, while the solvent is polyelectrolyte and undergoes an ionic dissociation, e.g., 

causing swelling of hydrogel in the water (or N-methyl formamide, NMF) solution 

containing LiCl solute [12]. Here the LiCl is dissociated into Li+ and Cl- in the NMF 

or water, thus resulting in the swelling of the DN hydrogels. 

If the DN hydrogel is incorporated into sodium salt and reacts with the anions, Cl

equation (5) can be rewritten when we assume [34,35]: (Cl )M Mk C 

          (6)
2 20

1 1
( ) ( (Cl ))

2 2
e e
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where  is the concentration of anions. Here, the chemical equilibrium of (Cl )C  Cl

the ionic dissociations can be expressed using, 

                         (7)
(Na ) (Cl )

a
M

C C K
C
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

where  is the chemical equilibrium constant. According to equation (7), the aK

concentration of anions can be obtained, Cl

  (8)
2
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Substituting equation (8) into (6), the swelling ratio is represented as,
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The analytical results of swelling ratio as a function of LiCl concentrations have 

been plotted and compared with the experimental results [12] as presented in Figure 4. 

The parameters used in equation (9) have been listed in Table 1. With an increase in 

the concentration of LiCl, the dielectric constant of DN hydrogel is increased, thus 
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resulting in a decrease of the swelling ratio. It is revealed that the theoretical results fit 

well with the experimental data. Based on the theoretical results, for the DN 

hydrogels in the NMF solution, the swelling ratio is gradually decreased from 16 to 

4.8 with an increase in the LiCl concentration from mol to 1.0 mol. On the -41 10

other hand, for the DN hydrogel in the water, the swelling ratio is gradually decreased 

from 19 to 4.0 with an increase in the LiCl concentration from mol to 1.0 mol.-41 10

Table 1. Values of parameters used in equations (9) for the DN hydrogel with various 

concentrations of LiCl.

0 (Na )C 
aK

2
0( (Na ))

2
e S Mk k C 

0 (Na )
M

S M

k
k C  B C

NMF 0.021 0.163 3.54 9.28 9.553 3

Water 0.0003 0.091 10 20 1 10

Fig. 4. Comparisons between the theoretical results using equation (9) with the 

experimental data [12] for DN hydrogel swollen by the NMF and water, which 

contain various weight concentrations of LiCl.
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3. Modelling of cooperative dynamics in DN hydrogel

As mentioned earlier, in DN hydrogels, the two types of networks simultaneously 

undergo a distinct swelling behavior, resulting in a complex constitutive stress-strain 

relationship. Therefore, it is necessary to investigate the cooperative dynamics of 

heuristic swelling and inhibitive micellization in the DN hydrogel. According to 

Flory-Huggins theory [31], the free energy equation is initially employed to 

characterize the thermodynamics of DN hydrogels, 

                 (10)1 1 2 2 1 2( ln ln )MF RT n n n      

where,  is the mixing free energy,  and  represent the amount and MF 1n 1

volume fraction of the solvent, respectively,  and  represent the amount and 2n 2

volume fraction of the hydrogel, respectively. Therefore, the elastic free energy ( ) elF

of the DN hydrogels is expressed as [31],

                       (11)2/3

2

3 1[( ) 1]
2

B
el

k TF 


  

where  is the Boltzmann constant and  refers to the number of chains. Bk 

Free energy function of the hydrogel should be the sum of these two terms

, while ,  and . Therefore, M elF F F     1 2
0

1 V
V V

   


3
0V V   3

0 0V 

the free energy function can be expressed as, 

 (12)
3 3 3 3 3 3 3 2

0 0 0 0 0
1 3 3 3 3 3 2

0 0

3[ln ln ( ) ] [ 1]
2
kTF RTn B C        

     
 

       

where  is the molar volume ratio of polymer to solvent,  is the elongation ratio  

of the DN hydrogel.  
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It is necessary to further investigate micellization effect in the DN hydrogel. 

Micellization has been extensively studied in many types of block polymers, 

including the water-soluble block polymers [33]. The micelle radius ( ) function aR

can be expressed as [33], 

                   (13)1/2 1/5 3/10 3/5 1/51( )
2a a aR k R k n F l  

where,  is characteristic ratio of length,  is monomer number of a single arm, ak n

 is number of arms, and  is length of the arms. The swollen volume ratio ( ) F l micV

of the micelle is then obtained as: 

            (14)
3

3/5 3/50
3

1 1( ) ( )
2 2mic mic micV k k B C


     

where,  is a scaling constant for the micelle [32]. mick

The elastic free energy of micelle is therefore expressed as [31].

 
(15)
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2 2 2 2
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Combining equations (10), (11) and (15), the free energy function of the DN 

hydrogel is finally obtained:

         (16)
3 3 3 3 3 3

0 0 0 0 0
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According to the equation (16), the constitutive stress-strain relationship can 

therefore be expressed as:
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   (17)
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     

According to equation (17), the capability of the DN hydrogels to resist to an 

external force is originated from a coupling effect of the two networks. The 

mechanical energy is transformed into mixed free energy and elastic free energy of 

the first hydrotropic network, whereas it is transformed into elastic free energy of the 

second hydrophobic network. Therefore, the mechanical performance of the DN 

hydrogels is resulted from a coupling effect from their two networks.

To verify the proposed model, the analytical results are plotted in Figure 5. The 

parameters used in equation (17) are listed in Table 2. As shown in Figure 5(a), it is 

found that the stress is dramatically increased from 0 MPa to 2.064 MPa as the 

dimensionless elongation ratio is increased from 1 to 1.155, at a given constant of 

B=4.4. Meanwhile, the maximum stress is increased from 1.364 MPa to 2.064 MPa, 

with an increase of the B from 3.6 to 4.4. These theoretical results imply that the 

stress is increased with an increase in the interactive parameter ( ), because the 

mixing of hydrogel and solvent becomes difficult. Therefore, more free energy is 

necessary to apply to the DN hydrogels at the same elongation ratio.

Table 2. Values of parameters used in equations (17).

1RTn 3 B C
1

3

AN n
 2/3

1

9
5

mic

A

Bk
N n



In Fig. 5(a) 0.5 1 / 2 4 2

In Fig. 5(b) 0.5 1 4 1.5 4 /
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Analytical results of the stress as a function of elongation ratio at given values of 

=0, 1.6, 2, and 2.4 are plotted in Figure 5(b). The theoretical results show that 
2/3

1

9
5

mic

A

Bk
N n



the stress is dramatically increased from 0 MPa to 3.018 MPa as the elongation ratio 

is increased from 1 to 1.14. On the other hand, the maximum stress is increased from 

1.454 MPa to 3.018 MPa, with an increase of the  from 0 to 2.4. These 
2/3

1

9
5

mic

A

Bk
N n



theoretical results clearly imply that the free energy function and the corresponding 

stress are both increased with an increase in the interactive parameter ( ), according 

to equations (4), (12) and (17). With an increase in the values of , the free energy is 

increased at the same elongation ratio of the hydrogel. 

Fig. 5. Theoretical results of stress as a function of elongation ratio of DN hydrogel. 

(a) At a given B=3.6, 3.8, 4, 4.2 and 4.4. (b) At a given =0, 1.6, 2 and 2.4.
2/3

1

9
5

mic

A

Bk
N n



4. Experimental verification of mechanical behavior of DN hydrogel

To verify the proposed model, we have applied the experimental results for six 

groups of DN hydrogels reported in literature [12]. These six groups including (1) 

PNaAMPS (poly(2-acrylamido-2-methylpropanesulfonic acid sodium salt)) and PEA 
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(poly(ethyl acrylate)) DN hydrogel; (2) PAAc (Poly(acrylic acid)) and PEA 

(poly(ethyl acrylate)) DN hydrogel; (3) PAMPS 

(Poly(2-acrylamido-2-methylpropanesulfonic acid)) and PEA (poly(ethyl acrylate)) 

DN hydrogel; (4) PCIAETMA (Poly(2-acryloxyethyl trimethylammonium chloride)) 

and PEA (poly(ethyl acrylate)) DN hydrogel; (5) PNaSS (Poly(p-styrene sulfonic acid 

sodium salt)) and PEA (poly(ethyl acrylate)) DN hydrogel; (6) PNaSS (Poly(p-styrene 

sulfonic acid sodium salt)) and PEA (poly(ethyl acrylate)) DN hydrogel. The 

experimental results [12] have been used to compare with the analytical results. 

According to equation (17), the theoretical results of stress as a function of the 

elongation ratio have been plotted in Figure 6. It is found that the stress of DN 

hydrogels is gradually increased with the increase of the elongation ratio. The 

parameters used in the equation (17) have been listed in Table 3. 

Table 3. Values of parameters used in equations (17) for DN hydrogels composed of 

various types of hydrotropic networks.

1RTn 3 B C
1

3

AN n
 2/3

1

9
5

mic

A

Bk
N n

 '

PAAc 0.5 1 4 2 6.1 0.8 12

PAMPS 0.5 1 4.3 2.3 12 1.3 25

PCIAETMA 0.5 1 4.7 1.6 10.4 2.6 25

PNaSS 0.5 1 4 1.6 5.8 2.6 15

PNaAAc 0.5 1 3.6 1.5 3.5 2.2 12

It is revealed that the theoretical results are in good agreements with the 

experimental results of the DN hydrogels. Furthermore, the yielding behaviors of 

hydrogels have also been calculated, where the yielding points are ( =2.97 MPa,  
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=2.27), ( =5.10 MPa, =3.22), ( =5.89 MPa, =2.26), ( =4.36 MPa, =1.33)      

and ( =3.45 MPa, =0.95) for the PAAc, PAMPS, PCIAETMA, PNaSS and  

PNaAAc netoworks, respectively.

Fig. 6. Tensile stress-strain curves and theoretical prediction curves of DN hydrogels 

with different hydrotropic networks. The experimental data are derived from 

references [12].

Figure 7 illustrates the effect of weight concentration ( ) of hydrotropic network EAf

on the stress-strain relationship of DN hydrogels, where =30, 40, 50, and 60. The EAf

used parameters in the theoretical analysis are listed in Table 4. As revealed from 

Figures 7(a), 7(b), 7(c) and 7(d), the theoretical results fit well with the experimental 

data of DN hydrogels with 30wt.%, 40wt.%, 50wt.%, and 60wt.% of hydrophobic 

network. The analytical results showed that the proposed model is able to characterize 

the constitutive stress-strain relationship of the DN hydrogel with various weight 

fractions of components. With an increase in the weight fraction of hydrophobic 

network from 30wt.%, 40wt.%, 50wt.% to 60wt.%, the yielding strain is gradually 

decreased from 5.35, 4.68, 4.48 to 4.46, while the yielding stress is decreased from 
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2.48 MPa, 2.23 MPa, 1.99 MPa to 1.99 MPa. These simulation results clearly reveal 

that the ability of DN hydrogel to resist external force is strongly determined by the 

density of polymer networks, e.g., resulting from the mixing free energy of 

hydrophobic network and water. Therefore, large free energy is necessary to enable 

the DN hydrogels swollen at the same elongation ratio, when the weight concentration 

of hydrotropic network is increased. Therefore, the proposed model is applicable to 

characterize and predict the effect of weight concentration of the components on the 

mechanical behaviors of DN hydrogels. 

Fig. 7. Comparisons of theoretical results and experimental data [12] for the stress as 

a function of elongation ratio of DN hydrogel with various weight fractions of 

hydrotropic network.
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Table 4. Values of parameters used in equations (17) for DN hydrogels incorporated 

of various weight concentration of hydrotropic network.

EAf 1RTn 3 B C
1

3

AN n
 2/3

1

9
5

mic

A

Bk
N n

 '

30 wt% 0.5 1 4.8 2.2 9.8 2.8 26

40 wt% 0.5 1 6 2.4 8.4 4.6 22

50 wt% 0.5 1 6.5 2.4 9.4 5.4 20

60 wt% 0.5 1 8.2 3 10.8 7.2 20

4. Conclusion 

In this study, we propose a constitutive model to study the mechanical behavior of 

the DN hydrogels, in which two types of networks synchronously undergo heuristic 

swelling and inhibitive micellization by the ionic dissociation of polyelectrolyte. It is 

demonstrated that the proposed framework is able to well predict mechanical behavior 

of DN hydrogels. It provides an effective approach to estimate and quantitatively 

separate the dependence of the stress-strain relationship on the dielectric constant, 

Huggins interactive parameter, dissociation of polyelectrolyte, and component 

concentration. The cooperative dynamics has been identified as the critical factor to 

determine the mechanical behaviors of DN hydrogels, which undergo the heuristic 

swelling and inhibitive micellization from these two types of networks, respectively. 

Finally, the analytical results have been verified by the experimental results. This 

study provides a fundamental approach to formulate the constitutive relationship and 

cooperative dynamics in DN hydrogels.
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Tables caption

Table 1. Values of parameters used in equations (9) for the DN hydrogel with various 

concentrations of LiCl.

Table 2. Values of parameters used in equations (17).

Table 3. Values of parameters used in equations (17) for DN hydrogels composed of 

various types of hydrotropic networks.

Table 4. Values of parameters used in equations (17) for DN hydrogels incorporated 

of various weight concentration of hydrotropic network. 
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Figures caption 

Fig. 1. Schematic diagram of the swelling and micellization behaviors of the two 

networks in DN hydrogel. 

Fig. 2. Analytical results based on equation (3) for the interactive parameter ( ) as a 

function of dielectric constant ( ) of polymer, where =2, 2.25, 2.5, 2.75 and 3.  03

S

C
N

Fig. 3. Comparison of swelling ratio as a function of solvent dielectric constant 

between the experimental data [12] and theoretical results using equation (5).

Fig. 4. Comparisons between the theoretical results using equation (9) with the 

experimental data [12] for DN hydrogel swollen by the NMF and water, which 

contain various weight concentrations of LiCl.

Fig. 5. Theoretical results of stress as a function of elongation ratio of DN hydrogel. 

(a) At a given B=3.6, 3.8, 4, 4.2 and 4.4. (b) At a given =0, 1.6, 2 and 2.4.
2/3

1

9
5

mic

A

Bk
N n



Fig. 6. Tensile stress-strain curves and theoretical prediction curves of DN hydrogels 

with different hydrotropic networks. The experimental data are derived from 

references [12].

Fig. 7. Comparisons of theoretical results and experimental data [12] for the stress as 

a function of elongation ratio of DN hydrogel with various weight fractions of 

hydrotropic network.
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Highlights: 

 A cooperative model has been proposed for the DN hydrogel, which 

synchronously undergoes heuristic swelling and inhibitive micellization. 

 By combination of Flory-Huggins solution theory, a free-energy function is 

introduced to formulate the constitutive relationship of the DN hydrogels, 

 This study provides a fundamental approach to formulate the constitutive 

relationship for the cooperative dynamics in DN hydrogels.
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