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Abstract

"Classic" affi ne and quadratic term structure models in the litera-

ture usually have three or four factors and tens of parameters. However

affi ne and quadratic term structure models with many factors and few

parameters (MFFP), i.e. with up to twenty factors and with six to

seven parameters, fit and predict US and Euro sovereign yields better

than "classic" affi ne and quadratic models. MFFP models also fit the

volatility of and the correlations between changes in yields of differ-

ent maturities better than "classic" models. MFFP models outperform

because fewer parameters reduce in sample over-fitting and because

more factors give models more flexibility to match yields of different matu-
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rities. Among MFFP models, a type of affi ne model with stochas-

tic volatility is usually preferable to the homoschedastic affi ne

model, but for US yields the quadratic model seems preferable

among five factor MFFP models.

Key words: affi ne term structure models, quadratic term structure

models, discrete time, squared Gaussian shocks, Giacomini-White

tests.

JEL classification: G12, G13.

1 Introduction

The vast majority of the literature on affi ne and quadratic term structure models

uses three or four stochastic factors, which are either latent factors or linear

combinations of observed Government bond yields. These models usually have

many parameters, typically between twenty and sixty. Canonical affi ne and

quadratic models have also been proposed, which have the maximum number

of econometrically identifiable parameters for a given number of latent factors.

Thus the literature has effectively focused on affi ne and quadratic term structure

models with few factors and many parameters. However affi ne and quadratic

models remain tractable even with ten, twenty or more stochastic factors, while

tens of parameters are often burdensome to estimate and pose the risk of over-

fitting the model to sample data. Few parameters reduce the risk of over-fitting,

of statistically insignificant parameters and of unstable parameters as samples

are updated with new data. Fewer parameters also alleviate the considerable
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likelihood optimisation burden in model estimation. Therefore focusing on just

three or four factors does not fully exploit the tractability of affi ne and quadratic

models, and tens of parameters may be an unnecessary complication. For these

reasons affi ne and quadratic models with few parameters and many factors, i.e.

with six to seven parameters and with five to twenty factors, seem promising,

but have been little explored.

A recent exception is Calvet and others (2018), who showed the considerable

merits of affi ne Gaussian models with up to ten factors and as few as six parame-

ters. The factors enter their model through a cascade structure whereby one

factor reverts to a mean that is itself another factor, which in turn reverts to a

mean that is itself yet another factor, and so on. Some factors in this chain re-

vert to their respective means more quickly, due to greater mean reversion speed

parameters. Thus their model can mimic the high persistence of long term

interest rates. While Calvet and others (2018) concentrated on affi ne Gaussian

models, this paper shows that the merits of the many factors-few parameters

(MFFP) approach extend beyond affi ne Gaussian models to affi ne models with

stochastic volatility, to affi ne models that rule out negative yields and

to quadratic Gaussian models. Using US Treasury bond yields and Euro

AAA rated sovereign bond yields, this paper finds that affi ne and quadratic

models with five to twenty factors and six to seven parameters respectively

outperform "classic" affi ne and quadratic models with three factors and up

to about forty parameters. With MFFP and a mean reversion chain, quadratic

models and affi ne models with stochastic volatility fit and predict US and
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Euro Government bond yields very accurately, as yields observation errors are

often around one or two basis points. Affi ne models with MFFP perform

so well even without the cascade parameter structure of Calvet and

others (2018). The very good fit to observed yields is welcome since Adrian

and others (2013), Golinski and Spencer (2017) and others noted that yield

observation errors imply negatively serially correlated bond returns, which are

not observed in the data. While Golinski and Spencer (2017) address this prob-

lem by modelling excess returns rather than yields, this paper uses models with

MFFP to drastically reduce yield observation errors. Small observation errors

do not eliminate, but greatly reduce the problem that yield observation errors

imply negatively serially correlated bond returns. Small yield observation errors

also make MFFP models suitable to price interest rate derivatives. Moreover

MFFP models fit the volatilities of yields changes and the correlations

between yields changes of different maturities better than "classic" models.

MFFP models outperform "classic" models because fewer parameters reduce

in sample over-fitting and because more factors give models more flexibility

to match yields of different maturities. "Mean reversion chains" preserve the

tractability of affi ne and quadratic term structure models, which is why this

paper focuses on these models and not on others.

In sample and out of sample tests show that, for US yields, quadratic

models seem preferable among MFFP models with five factors, while

affi ne models with stochastic volatility of the type A1 (n) are usually

preferable to homoschedastic affi ne models. For Euro yields, among
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MFFP models with five or more factors affi ne models of the type

A1 (n) are preferable.

Next the term structure models are presented. Then the empirical

evidence shows the merits of MFFP models in fitting and predicting

US and Euro sovereign yields.

2 Review of the models

This section presents novel extensions of discrete time affi ne and

quadratic models from past literature. These extensions consist in in-

creasing the number of factors up to twenty and in reducing the num-

ber of parameters to six or seven, so as to obtain new specifications

with many factors and few parameters (MFFP). The many factors

enter the models through long "mean reversion chains", whereby one

factor reverts to a long term mean that is itself another factor, which

in turn reverts to a long term mean that is itself another factor and so

on. After the models are estimated through Kalman Filters, empiri-

cal tests compare various MFFP models and "classic" models. The

"classic" models feature three factors and tens of parameters. The

empirical tests, which are the econometric contribution of this paper,

are in sample Vuong tests and out of sample Giacomini-White (2006)

tests. The Giacomini-White tests compare out of sample conditional

densities of US and Euro sovereign yields. The conditional densities
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are those forecast by the different affi ne and quadratic models and

are twenty-variate since they refer to yields of all yearly maturities

from one year to twenty years.

2.1 Discrete time affi ne term structure models (DTASTM)

with squared Gaussian shocks (SGS)

The discrete time affi ne models tested in this paper are special cases of DTASTM-

SGS, either in their "classic" versions or in their versions with many factors and

few parameters (MFFP). DTASTM-SGS are alternative to the DTASTM based

on auto-regressive Gamma processes proposed by Le, Singleton and Dai (2010)

and others, and are just as tractable. DTATSM-SGS were recently proposed in

Realdon (2018) and are chosen for two reasons: they need no Feller condi-

tions restricting market prices of risk and need fewer parameters for A1 (n)

models.

We divide time into weekly steps each of length ∆ = 1/52, since time is

measured in years. Let t and m be integer numbers. Pm,t is the value at time

t · ∆ of a default-free discount bond with unit face value and with maturity

at time (t+m) ∆. rt = − ln(P1,t)
∆ is the one week default-free interest rate

during [t∆, (t+ 1) ∆]. Similarly the m-week discount bond yield is − ln(Pm,t)
m∆ .

6



DTASTM-SGS assume that

rt = ρ′zt

zt+1 = zt + (µ− κzt) ∆ + S · diag
(√

ki + h′izt

)
ξQt+1

√
∆ + diag

(
ψi

(
S(i)ξQt+1

)2
)
ιn∆

(1)

zt+1 = zt + (µ∗−κ∗zt) ∆ + S · diag
(√

ki + h′izt

)
ξPt+1

√
∆ + diag

(
ψi

(
S(i)ξPt+1

)2
)
ιn∆

(2)

ξQt+1 v N (0n×1, In) , ξPt+1 v N (0n×1, In)

ξQt+1 =
(
ξQ1,t+1, .., ξ

Q
n,t+1

)′
, ξPt+1 =

(
ξP1,t+1, .., ξ

P
n,t+1

)′
.

The vector zt denotes the value of n latent stochastic factors at time t. ρ is

an n × 1 vector of parameters. The z process is specified under both the risk-

neutral measure Q and the physical measure P. κ, κ∗ and S are n×n matrixes

of parameters. µ, µ∗ are n× 1 vectors of parameters. κ, µ denote parameters

under Q. κ∗, µ∗ denote parameters under P. diag
(√

ki + h′izt
)
is an n × n

diagonal matrix with i-th diagonal entry equal to
√
ki + h′izt. hi is an n × 1

vector of constants and ki are scalar parameters for i = 1, .., n. ξQt+1 is an

n×1 Gaussian vector under Q at time t+ 1 with mean 0n×1 and covariance In.

0n×1 is an n × 1 vector of zeros and In is the n × n identity matrix. ξQi,t+1 for

i = 1, .., n are time t+ 1 values of scalar Gaussian shocks under the Q. ξPt+1 has

similar meaning under the P measure. S is lower triangular in some models and

diagonal in others. diag
(
ψi

(
S(i)ξQt+1

)2
)
is an n × n diagonal matrix whose

i-th diagonal element is ψi
(
S(i)ξQt+1

)2

. ψi is a scalar parameter and S(i) is the

i-th row vector of S. ιn is an n × 1 vector whose elements are all equal to 1.
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Appendix A.4 explains the market price of risk that links process 1 under Q

and process 2 under P. It can be shown that according to this DTATSM-SGS

Pm,t = exp (Am + B′mzt) where Am is a scalar function of m and Bm is an n×1

vector of functions of m. An Appendix provides the Riccati difference equations

for Am,Bm.

2.2 A1 (n) family of models

Some of the empirical tests below concern DTATSM-SGS whose continuous time

limits are the A1 (n) models of Dai and Singleton (2000, 2002). We refer to these

DTATSM-SGS simply as A1 (n) models and, when they have MFFP, they are

such that: ρ = en; ei is the i-th column of In, therefore rt = zn,t; µ = e2 · µ2

and µ∗ = e2 · µ∗2 where µ2, µ
∗
2 ≥ 0 are scalar parameters; hi = e1 for all i

so that z1,t is the only factor that drives the volatility of all factors; we impose

the restrictions k1 = µ1∆
1−κ1,1∆ and ψ1 = 1

4(1−κ1,1∆) to ensure that z1,t ≥ 0 for

all t; for i > 1, ki = k1 and ψi = 0; κ is an n × n matrix whose elements

are all zero except for the elements in the main diagonal and in the

main sub-diagonal; κi,j is the element in the i-th row and j-th column of κ

and therefore
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κ =



κ1,1 0 0 .. 0

κ2,1 κ2,2 0 .. 0

0 κ3,2 κ3,3 .. 0

.. .. .. .. ..

0 0 .. κn,n−1 κn,n


; (3)

in A1 (n) models κi,i = κ2,2 for i = 2, .., n and κ2,1 = 0, κi,i−1 = −κi,i for

i = 3, .., n; S =

 s1 01×(n−1)

0(n−1)×1 s2 · In−1

 where s2 is a scalar and the nor-

malisation s1 = 1 is needed to identify the latent factor z1,t in estima-

tion. κ features a "mean reversion chain", since factor zn,t reverts to

its mean zn−1,t, which in turn reverts to its mean zn−2,t and so on until

z2,t reverts to its mean µ2. z1,t reverts to its mean
ψ1
κ1,1

. κ∗i,j is the ele-

ment in the i-th row and j-th column of κ∗ and κ∗1,1 = κ1,1, κ
∗
i,j = κi,j ·ϕ

for i ≥ 2 where ϕ is a scalar parameter. This A1 (n) model specification

proved preferable to other specifications within the same family. In the empir-

ical tests DTASTM-SGS with MFFP are compared with "classic" three factor

DTASTM-SGS. One such "classic" three factor DTATSM-SGS is A1 (3), which

has more parameters than its counterpart models A1 (n) with MFFP, partly

because of more general risk premia. The specification of A1 (3) is detailed in

the Appendix.
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2.3 An (n) family of models

A1 (n) models do not rule out negative bond yields, which may be a concern

especially as we model the entire term structure of yields with maturities up

to twenty years. Therefore we also test DTATSM-SGS whose factors and bond

yields are always non-negative and whose continuous time limits are the An (n)

models of Dai and Singleton (2000, 2002). We refer to these DTATSM-SGS as

An (n) models and, in their MFFP version, they assume: ρ = en; µ = e1 · µ1;

µ∗ = e1 · µ∗1; hi = ei for all i; S = s1 · In; moreover κ is given by 3 with

κi,i = κ1,1 and κi,i−1 = −κi,i for i = 2, .., n; again feedback matrix κ features a

"mean reversion chain"; κ∗i,j = κi,j · ϕ for all i, j; to ensure that zt ≥ 0n×1

at all times, we impose that µi, µ
∗
i ≥ 0, ψi = 1

4(1−κi,i∆) and ki = µi∆
1−κi,i∆ for all

i.

In the empirical tests models An (n) with MFFP are compared with their

"classic" three factor model counterpart A3 (3), which has more parameters and

only three factors. The specification of A3 (3)is detailed in the Appendix.

The empirical test also focus on MFFP versions and "classic" versions of

affi ne Gausssian models, detailed in Appendix A.2, and of quadratic models,

detailed in Appendix A.3. Appendix A.3 explains that, unlike in affi ne

MFFP models, in quadratic MFFP models κ and κ∗ feature a cascade

structure as in Calvet and others (2018).
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3 Empirical tests

The US yields were sourced from Thomson-Reuters Eikon, which provides

discount factors implied by US Treasury bond prices. Such discount factors were

downloaded for all yearly maturities from one year to twenty years for every

Wednesday in the period from 3rd January 1995 to 29th November 2017. This

provided 1188 weekly observations of yields. Also Calvet and others (2018) used

Wednesday prices, but they used US interest rate swap rates instead of US Trea-

sury bond yields. Table 1 presents descriptive statistics of theUS sample used

to estimate and test all models. MFFP models A0(n), A1(n) and their

"classic" counterparts A0(3)c, A1(3)c were also estimated and tested

using the AAA rated Euro area sovereign bonds yield curve provided

by the European Central Bank. Since the Euro yield curve was often

negative in recent years, models that rule out negative yields were

not estimated for the Euro curve. The sample of Euro yields is made

up of 688 Wednesday weekly observations from 8th September 2004

to 13th December 2017 for all yearly maturities from one year to

twenty years.

[Table 1 here]

All models are estimated through Kalman Filter or Extended Kalman Fil-

ter, as all yields are assumed to be observed with Gaussian errors, which are

mutually and serially independent as well as independent of the latent factors.

For MFFP models the standard deviation of observation errors is as-
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sumed to be the same for all yield maturities. This assumption is in

the spirit of parameters parsimony of MFFP models. Instead for "clas-

sic" models the standard deviations of observation errors differ for

each yield maturity. In spite of this advantage, "classic" models under-

perform their MFFP counterparts, as shown below. On a practical level, it is

diffi cult to overstate how the small number of parameters of MFFP

models considerably simplifies the burdensome optimisation of the likelihood

function of the Kalman Filters. It is much quicker to find the global optimum

for models with six or seven parameters, than for models with thirty or forty

parameters. As in Calvet and others (2018), to assess models predictive ability,

we compute predictive variance (PV) as

PVj = 1−

∑N−1
t=1

(
lj,t+1 − l̂j,t+1

)2

∑N−1
t=1 (lj,t − lj,t+1)

2
.

lj,t is the continuously compounded yield observed in the t-th week of the sam-

ple for the j-year maturity, with j = 1, .., 20. N is the number of weeks in

the sample. l̂j,t+1 is the yield predicted by the Kalman Filter for week t + 1

conditional on week t information, i.e. the one week ahead forecast according

to any of the tested models. (lj,t − lj,t+1) is the one week ahead forecast error

assuming that the j-year yield follows a random walk. PV compares model fore-

cast errors with random walk-based forecast errors. For each model global PV

is computed across all maturities as PV = 1−
∑20

j=1

∑N−1
t=1 (lj,t+1−l̂j,t+1)

2∑20

j=1

∑N−1
t=1

(lj,t−lj,t+1)2
. Root

mean squared errors (RMSE) for the j-year yield are computed as RMSEj =√
1
N

∑N
t=1

(
lj,t − l̂j,t

)2

.
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3.1 Starting values of the latent factors

In the Kalman Filter or Extended Kalman Filter for "classic" models

the initial values of the latent factors are parameters to be estimated.

This avoids arbitrary assumptions about a prior probability distribu-

tion for the latent factors at the start of the sample. In the Kalman

Filter or Extended Kalman Filter for MFFP models the starting val-

ues of the latent factors in the first week of the sample are assumed

to have zero variance and are computed as follows:

- first a "window" is generated of 200 artificial weekly yield curve

observations, all equal to the yield curve observed on the first week

of the sample;

- then the Kalman Filter or Extended Kalman Filter is run on the

said window of 200 artificial observations using the given model and

parameters; at the start of the 200 artificial observations the value of

all factors is set to 0.01; the filtered mean value of the latent factors

at the end of the 200 observations is set equal to the value of the

latent factors in the first week of the sample.

The outcome of this method is similar to "inverting" the yields

observed in the first week of the sample to determine the latent fac-

tors at that time, but the method has the advantages that it can be

used whatever the number of factors, whose number can even exceed

the number of observed yields, that it need not assume that some

yields in the first week be perfectly observed, that it can be used for
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quadratic models, not only for affi ne ones, that it needs no arbitrary

assumptions about the latent factors prior distribution at the start

of the sample, and that it requires the estimation of no extra para-

meters. Again this is in the spirit of parameters parsimony of MFFP

models.

3.2 Sample split

The US sample is split into two periods of 594 weeks each: the first

period is the "in sample" period used for parameter estimation and

terminates on 31st May 2006, while the second period is the "out

of sample" period. Both in sample and out of sample, every week

the Kalman Filter produces one week ahead yield forecasts, but yield

forecasts in the out of sample period are computed using the fol-

lowing rolling-window estimation: forecasts for week 595 to 891 are

computed using parameters estimated in the window from week 1 to

week 594; forecasts for week 892 to 1188 are computed using parame-

ters estimated in the window from week 298 to week 891. The Euro

sample is split into two halves: the in sample period, which is the

only estimation window, is the first 344 weeks and the out of sample

period is the last 344 weeks.
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3.3 First results

Tables 2-5 report results for all the models presented above. Tables

2-3 concern MFFP models for the US, Table 4 MFFP models for the

Euro, Table 5 "classic" models for the US and Euro. Table 5 reports

the estimation results for the four "classic" models with many parameters and

three factors, namely A0 (3) c which is an affi ne Gaussian model, A3 (3) c which

is an affi ne model with stochastic volatility driven by all three factors, A1 (3) c

which is an affi ne model with stochastic volatility driven by just one of the three

factors, and Q (3) c which is a quadratic model.

The top panels in Tables 2-5 report the parameters estimated us-

ing the full US and Euro samples respectively. The stars highlight

parameter estimates significant at the 1% level when the correspond-

ing asymptotic standard errors were estimated with the "Sandwich"

estimator. In Table 5 the rows "xi,1 or zi,1" for i = 1, 2, 3 report the

estimates of the starting values of the latent factors for the "classic"

models. Tables 2-5 also show in sample and out of sample RMSE and

PV for the one week ahead yield predictions of all models.

3.4 The indications of predictive variance

Predictive variance (PV) provides early indications of various results.

PV is negative for most models and maturities both in sample and out of sample,

both for the US and the Euro. Only some MFFP models with more

than ten factors achieve Global PV close to zero. Such examples are
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models A0 (n) with n ≥ 10 for US and Euro yields. Negative PV signals

that current yields better predict future yields than the model. Tables 2-4

show that the PV of MFFP models tends to increase, i.e. improve,

with the number of factors n. Tables 2-5 also show that PV tends to be

higher and RMSE lower, i.e. PV and RMSE tend to be better, for MFFP

models than for the corresponding "classic" models, which have many more

parameters and only three factors. Out of sample PV of "classic" models

for one year yields is particularly disappointing. For most models,

PV for the one year maturity tends to be worse, i.e. lower, than for

the ten and twenty year maturities. This is often the case both in

and out of sample and may be due to a degree of segmentation in the

market for the shortest bonds. Random walk based one year yield

forecasts appear more diffi cult for models to beat. Across models,

PV for the ten maturity may be higher or lower than for the twenty

year maturity, and that may differ in sample and out of sample. No

clear pattern emerges for the term structure of PV for the longer

maturities.

3.4.1 Predictive variance for US yields during the "great recession"

From the last quarter of 2007 to the second quarter of 2009 the US economy

experienced the "great recession". The "great recession" is part of the US

out of sample period. Yet Tables 2-3 and Table 5 show that the Global

PV of all models is either similar or improves during the "great recession".
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The performance of no model seems negatively affected by the sharp

decline in yields that occurred during the "great recession". However this

seems more due to a weakness of the random walk assumption than to

merits of the models. Random walk based foreacasts cannot capture

well the sharp and protracted drop of US yields, especially of one year

yields, during the "great recession". This is shown by the positive

PV of one year yields for most models in the Panels of Tables 2-3

dedicated to the US "great recession".

3.5 Other measures of fit to observed yields

For "classic" models Table 5 reports Avg h =
(∑20

i=1 hi

)
/20, which is the

average of the estimated standard deviations of observation errors (hi) across

all maturities from one year to twenty years. For models with MFFP h is the

same for all yield maturities and is often much smaller than Avg h for "classic"

models, indicating that Kalman Filter observation errors are often larger

for "classic" models. For MFFP models h is often around two to four basis

points, and sometimes even below one basis point. Tables 2-4 show that h

is mostly around one to two basis point for models A0 (n), A1 (n), Q (n)

with n = 10, 15, 20 and slightly higher for An (n) with the same number

of factors. So low observation errors significantly alleviate the concerns raised

by Adrian and others (2013) or by Golinski and Spencer(2017), who pointed

to large and economically significant observation errors when estimating term

structure models using yield levels rather than bond returns or yield changes.
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"Avg RMSE" in Tables 2-5 denotes average RMSE across all yield

maturities. For example for the US Avg RMSE in Tables 2-3 range

between 12 and 16 basis points and, for any single model, are larger than h,

whose estimates do not exceed 11 basis points. RMSE reflect one week ahead

prediction errors and Kalman Filter observation errors, while h only measures

Kalman Filter observation errors. For the Euro in sample Avg RMSE

are about 12 basis points for "classic" models in Table 5 and about 9

to 10 basis points for MFFP models in Table 4.

3.6 Out of sample RMSE and predictive variance of MFFP

and of "classic" models

Out of sample Avg RMSE and out of sample Global PV in Tables 2-5

show that "classic" models A0 (3) c, A3 (3) c, A1 (3) c, Q (3) c predict out of

sample US and Euro yields worse than their respective MFFP coun-

terparts A0 (n), An (n), A1 (n), Q (n) with n ≥ 5. The difference between

models predictions seems greater out of sample than in sample and

points to the risk that "classic" models may over-fit in sample due to

their many parameters. This risk of over-fitting seems much lower for

MFFP models, which only have six to seven parameters. Moreover

"classic" models under-perform especially for the shortest yield ma-

turities, as if three factors were not enough to model the whole yield

curve from one year to twenty years at the same time. Instead MFFP

models appear to better match short, medium and long term yields
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at the same time, thanks to their long "mean reversion chains" with

many factors. Therefore MFFP models appear to predict yields bet-

ter than "classic" models for two reasons. More factors entail more

model flexibility to match yields of different maturities, and fewer

parameters make MFFP models less prone to in sample over-fitting.

These results are largely confirmed by the statistical tests below.

[Table 2 here]

[Table 3 here]

[Table 4 here]

[Table 5 here]

3.7 SBIC and Vuong tests, "classic" three-factor models

and MFFP models, the number of factors in MFFP

models

Table 6 reports Vuong tests that compare how pairs of models pre-

dict US and Euro in sample yields, when the entire US and Euro

samples are used. Panels A and B in Table 6 are an indicative sum-

mary of models in sample performance. For each model Panel A

shows the value of the maximised log-likelihood of the Kalman Filter

lk. lk always rises with the number of factors n, while the Schwartz

Bayesian information criterion (SBIC) in Panel B always decreases,

i.e. improves, with n. This is true for all MFFP models and for both
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US and Euro. For n ≥ 5 the SBIC of all MFFP models is less than

the SBIC of the respective classic models at the bottom of Panel B.

These indications show that adding factors to MFFP models improves

their predictions of in sample yields, while also enhancing their out-

performance over their respective "classic" counterparts. According

to SBIC in Panel B of Table 6 A1 (20) best predicts in sample US and Euro

yields among all tested models. The Akaike information criterion gave

the same insight and almost the same values as SBIC and therefore

is not reported.

Panels C, D, E of Table 6 present Vuong tests that compare models

estimated using the whole samples of US and Euro yields. Using

whole samples increases the power of the Vuong tests. The grey cells

in Table 6 show individual Vuong tests that are significant after the

Bonferroni correction. Table 6 presents a family of 258 Vuong tests.

The Bonferroni correction implies that the level of significance of the

whole family of Vuong tests does not exceed 1% if, for each individual

Vuong test, the alternative (null) model is deemed to significantly

outperforms the null (alternative) model when the test p value is

lower than 0.005/258 (higher than 0.995/258). Panels C, D, E in Table

6 report the p value of the Vuong likelihood ratio statistic for each

test. A p value close to 1 supports the null model, while a p value

close to 0 supports the alternative model.

The Vuong tests in each cell of Panel C assume that the null model
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is the n factor version of the model indicated in the respective col-

umn heading and the alternative model is the same model with n− 1

factors; n ranges from 2 to 20. The Vuong tests in Panel C show

that Q(n), A0 (n), A1 (n), An (n) respectively significantly outperform

Q(n− 1), A0 (n− 1), A1 (n− 1), An−1 (n− 1) for n = 2, .., 20. This confirms

the insight from lk and SBIC in Panels A and B of Table 6. In

sample yield predictions by MFFP models significantly improve as n

increases. As for a given model n increases, the number of parame-

ters remains the same. Therefore only the difference in the number of

factors can explain why models with more factors outperform. This

conclusion is later largely confirmed, as even out of sample yields

predictions by MFFP models improve as n increases. These results

support MFFP models with up to twenty factors and other unre-

ported results support MFFP models with up to thirty factors, but

in practice the computations become very burdensome with more

than twenty factors, especially for quadratic models.

The Vuong tests in each cell of Panel D assume that the null model

is the n factor version of the model indicated in the respective column

heading and the alternative model is the "classic" model indicated in

bold at the bottom of the same column of Panel D; n ranges from

1 to 20. The Vuong tests in Panel D confirm that in sample yields

predicted by A0 (n), A1 (n), Q(n), A5 (n) with n ≥ 5 respectively signif-

icantly outperform those predicted by A0 (3) c, A1 (3) c, Q(3) c, A3 (3) c.
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In other words MFFP models with five or more factors predict in

sample US and Euro yields significantly better than their respective

three factor "classic" counterparts at the bottom of Panel D. This

confirms the insight from SBIC in Panel B of Table 6.

The Vuong tests in each cell of Panel E assume that the null model

is the model indicated in the respective column heading and the al-

ternative model is the model indicated for the respective row. The

two models in each cell of Panel E have the same number of factors

n, with n = 5, 10, 15, 20. Among the four models An (n), A0 (n), A1 (n),

Q (n), model An (n) fits US in sample yields significantly worse than

the others for all the tested values of n. In An (n) all the n factors

are non-negative and drive the stochastic volatility of yields. Instead

the ranking of in sample yield predictions by the other three models

A0 (n), A1 (n), Q (n) varies with n.

The Vuong tests in Panel E show that Q (5) best predicts in sample

US yields among five factor models. Among ten factor models, Q (10)

and A1 (10) predict in sample US yields better than the other models,

but neither significantly outperforms the other, while among fifteen

and twenty factor models A1 (n) predicts in sample US yields signif-

icantly better than all the other models. In A1 (n) models zi,t is the

only non-negative factor and drives the volatility of all factors. The

Vuong tests in Panel E show that, while both Q (n) and An (n) rule

out negative yields, the former clearly better predicts in sample yields
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than the latter. As for the Euro, Panel E shows that A1(n) predicts in

sample yields significantly better than A0(n), for n = 5, 10, 15, 20. Also

for Euro yields A1(n) seems preferable to A0(n). This conclusion is

largely confirmed by the tests for out of sample Euro yields in Table

7.

[Table 6 here]

3.8 Yields forecasting out of sample

Table 7 presents Giacomini-White (2006) tests, in short GW tests, of

models out of sample forecast conditional densities of yields. The out

of sample periods are week 595 to 1188 for US yields and week 345

to 688 for Euro yields. The loss function for each model in the GW

statistics is the log of the (Extended) Kalman Filter one week ahead

twenty variate (approximate) conditional density of yields forecast by

the model. Such forecast conditional density of yields is Gaussian; in

sample it coincides with the conditional quasi-likelihood function of

the (Extended) Kalman Filter. The said density forecasts are out of sam-

ple and use parameters estimated in sample for the Euro or estimated

in the rolling windows described above for the US: the first window

is the first 594 weeks and the second window is from week 298 to

891. GW tests are applicable to approximate forecast densities, as

they, like Vuong tests, can test mis-specified models. The GW test

is similar to the Diebold-Mariano test of forecast accuracy, but takes
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into account the fact that forecasts depend on estimated and there-

fore uncertain model parameters. The GW tests with logarithmic

scores used in this paper are similar to the out of sample Vuong-type

likelihood ratio test of Amisano and Giacomini (2007). The GW sta-

tistics shown in Table 7 for each pair of models employ an estimate of

the variance of the weekly loss differential that is heteroschedasticity-

and-autocorrelation-consistent (HAC) and that uses ten weekly lags.

Table 7 presents a family of 127 GW tests and their GW statistics.

The GW statistic asymptotic distribution is the standard normal. The

grey cells in Table 7 show the GW tests that are significant after a

Bonferroni correction. The Bonferroni correction ensures that the

level of significance of the whole family of GW tests does not exceed

1% and implies that, for an individual GW test, the null (alternative)

model significantly outperforms the alternative (null) model if the

test p value is lower than 0.005/127 (higher than 0.995/127).

The GW tests in each cell of Panel A test two versions, with dif-

ferent numbers of factors, of the model indicated for the respective

column. For example for the An (n) model the cell in the first row as-

sumes that the alternative model is A3 (3) factors and the null model

is A4 (4); the cell in the second row assumes that the alternative model

is A4 (4) and the null model is A5 (5); and so on as indicated in Panel

A for all rows and all models. The GW tests in each cell of Panel B

assume that the alternative model is the model indicated in the re-
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spective column heading with n = 3, 4, 5, 6, 10, 15, 20 factors as indicated

for the corresponding row, and the null model is the "classic" model

in bold at the bottom of the corresponding column. The GW tests in

each cell of Panel C assume that the alternative model is the model

indicated for the respective column and the null model is the model

indicated for the respective row. Panel C shows the p values of some

of the GW statistics in Panel D. The GW tests in each cell of Panel

D assume that both the indicated alternative model and null model

have the same number of factors n. Large negative (positive) values

of the GW statistic in Table 7 support the null (alternative) model.

3.8.1 US yields

The GW tests in Panel A of Table 7 show that out of sample US

yields density forecasts by A0 (n) ,A1 (n) ,An (n) ,Q (n) become signifi-

cantly more accurate as n increases, with only two exceptions: the

density forecast accuracy of A20 (20) ,Q (20) does not significantly ex-

ceed that of A15 (15) ,Q (15) respectively. Then the GW tests in Panel

B of Table 7 show that the density forecasts by A0(n),Q(n) with n ≥ 4

respectively outperform those by A0(3),Q(3) and the density forecasts

by A1(n),An(n) with n ≥ 5 respectively outperform those by A1(3),A3(3).

MFFP models with five or more factors tend to forecast the condi-

tional density of out of sample US yields significantly better their

respective "classic" three factor counterparts.
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The GW tests in Panel C of Table 7 show that, among five factor

MFFP models, Q (5) best forecasts US yields out of sample conditional

density, followed by A0 (5). Instead among ten, fifteen and twenty

factor MFFP models, i.e. for n = 10, 15, 20, affi ne model A1 (n) forecasts

the density of US yields significantly better than A0 (n) and better,

but not significantly better, than Q (n). An (n) is the worst forecaster

yet again. Panel D of Table 7 confirms that US yields density forecasts

by A0 (n) significantly beat those by A1 (n) for n ≤ 5, while the opposite

is true for n > 5, and that An(n) is the worst out of sample forecaster

of US yields.

3.8.2 Euro yields

Panel A of Table 7 shows that MFFP models A1(n),A0(n) with more

factors forecast out of sample Euro yields density significantly better

than the same MFFP models with fewer factors. Then Panel B of

Table 7 shows that for n ≥ 3 models A1(n),A0(n) forecast out sample

Euro yields density significantly better than A1(3)c,A0(3)c respectively.

Again MFFP models forecast out of sample Euro yields density sig-

nificantly better than corresponding "classic" models. The GW tests

in Panels C and D of Table 7 show that for n > 3 model A1(n) forecasts

out sample Euro yields density significantly better than A0(n), while

the oppose it true for n = 3. In particular A1(20) outperforms A0(20).

This out of sample evidence from Euro yields largely confirms the in
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sample evidence as well as results from US yields.

3.8.3 Conclusions from out of sample forecasts of yields density

Overall the tests of out of sample forecasts of yields conditional den-

sity in Table 7 largely agree with the in sample tests in Table 6. MFFP

models outperform "classic" models; adding factors tends to improve

the performance of MFFP models; while A1(n) is often the preferable

MFFP model, especially for n ≥ 10, for US yields it does not domi-

nate Q(n); Q(5) seems the best among five factor MFFP models for the

US. While Calvet and others (2018) showed the good performance of

affi ne Gaussian models with MFFP that are similar to A0 (n), MFFP

affi ne models with stochastic volatility A1 (n) and MFFP quadratic

models Q (n) can predict in and out of sample yields even better.

[Table 7 here]

3.9 Yields volatilities and correlations

MFFP models are also more accurate than their "classic" counter-

parts in matching the volatilities of and the correlations between changes

in observed yields of different maturities. This is the case for both US

and Euro yields. Yields are observed weekly in our sample and therefore the

yield changes we consider are weekly changes, whose volatility and corre-

lations Table 8 reports for the different maturities. The correlations

are between changes in the one year yield and changes in yields of all
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other maturities. The two top panels in Table 8 refer to US yields and

the two bottom panels refer to Euro yields. The first rows in grey in each

panel show volatilities and correlations of changes in observed yields,

while the other rows in each panel show volatilities and correlations of

changes in model predicted yields. The yield changes span the whole

US and Euro samples respectively and the model yields are those

predicted one week ahead. The relevant models are those estimated

using the full samples of US and Euro yields. The first and the third

panels of Table 8 show that, for both the US and Euro, changes in the

one year observed yields are little correlated with changes in long maturity

yields and the said correlation decreases for the longer maturities. The corre-

lations between changes in yields predicted by "classic" models are shown in

the grey rows at the bottom of each panel and tend to be too high both

for US and Euro short maturity yields and too low for the longest

Euro maturities. The three factors of "classic" models entail too little inde-

pendence between changes in yields of different maturities. This shortcoming

seems overcome by MFFP models with five or more factors in the mean re-

version chain, as correlations in changes in their predicted yields match

the US and Euro yields change correlations more closely. The second

and fourth panels of Table 8 also show that MFFP models match the

volatilities of changes in shorter term yields more accurately than

their corresponding "classic" models. Again MFFP models appear

more flexible, thanks to their many factors, than "classic" models in
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matching observed changes in yields of different maturities.

[Table 8 here]

4 Conclusion

Calvet and others (2018) showed that affi ne Gaussian term structure models

with up to ten factors and as few as six parameters predict swap rates

very accurately. This paper shows that some affi ne models with stochastic

volatility and quadratic models with up to twenty factors and six to

seven parameters can predict US Treasury yields and Euro sovereign yields

even more accurately than affi ne Gaussian models with the same num-

ber of factors and parameters. Because these models feature many

factors and few parameters (MFFP), they predict US Treasury and Euro

sovereign yields better than their corresponding "classic" versions with only

three factors and tens of parameters. This is the case both in sample and

out of sample and even if the affi ne MFFP models lack the cascade

parameter structure of Calvet and others (2018). MFFP models also

fit the volatility of yields changes and the correlations between yields

changes of different maturities better than "classic" models. MFFP

models outperform for two reasons. Fewer parameters entail less in

sample over-fitting and many factors linked through a mean rever-

sion chain give models more flexibility to match yields of different maturities.

Adding factors to a model in this way improves its yields predictions
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in sample and usually also out of sample. For US yields, quadratic

models seem preferable, both in sample and out of sample, among

MFFP models with five factors, while among MFFP models with

more than five factors affi ne models with stochastic volatility of the

type A1 (n) outperform homoschedatic models A0 (n) with the same

number of factors; models A1 (n) significantly outperform quadratic

models with the same number of factors only in sample and only

when they feature fifteen to twenty factors. For Euro yields, affi ne

models A1 (n) seem preferable, both in sample and out of sample,

among MFFP models with five or more factors.
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A Appendix

A.1 "Classic" models

A.1.1 "Classic" three factor model A1 (3)

For example κ and κ∗ are different in A1 (3). Model A1 (3) is such that

rt = z3,t

z1,t+1 = z1,t + (µ1 − κ1,1z1,t) ∆ +
√
k1 + z1,tS

(1)ξQt+1

√
∆ + ψ1

(
S(1)ξQt+1

√
∆
)2

z2,t+1 = z2,t + (µ2 − κ2,2z2,t) ∆ +
√
k1 + z1,tS

(2)ξQt+1

√
∆

z3,t+1 = z3,t + κ3,3 (z2,t − z3,t) ∆ +
√
k1 + z1,tS

(3)ξQt+1

√
∆

z1,t+1 = z1,t +
(
µ∗1 − κ∗1,1z1,t

)
∆ +

√
k1 + z1,tS

(1)ξPt+1

√
∆ + ψ1

(
S(1)ξPt+1

√
∆
)2

z2,t+1 = z2,t +
(
µ∗2 − κ∗2,2z2,t

)
∆ +

√
k1 + z1,tS

(2)ξPt+1

√
∆

z3,t+1 = z3,t + κ∗3,3 (z2,t − z3,t) ∆ +
√
k1 + z1,tS

(3)ξPt+1

√
∆

S = diag (s1, s2, s3)·Υ, Υ =


1 0 0

ρ12

√
1− ρ2

12 0

ρ13
ρ32−ρ12·ρ13√

1−ρ212

√
1− ρ2

13 −
(ρ32−ρ12·ρ13)2

1−ρ212

 .

(4)

diag (s1, s2, s3) is a 3×3 diagonal matrix whose three diagonal elements are the

parameters s1, s2, s3. The parameter ρ12 is the conditional correlation between

S(1)ξQt+1 and S(2)ξQt+1. ρ13 and ρ32 have similar interpretation. All κi,i and κ
∗
i,i

are independent parameters. The conditions k1 = µ1∆
1−κ1,1∆ and ψ1 = 1

4(1−κ1,1∆)

again guarantee that z1,t be non-negative at all times.
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A.1.2 "Classic" three factor model A3 (3)

Model A3 (3)assumes

rt = z3,t

z1,t+1 = z1,t + (µ1 − κ1,1z1,t) ∆ +
√
k1 + z1,tS

(1)ξQt+1

√
∆ + ψ1

(
S(1)ξQt+1

√
∆
)2

z2,t+1 = z2,t + (µ2 + κ2,1z1,t − κ2,2z2,t) ∆ +
√
k2 + z2,tS

(2)ξQt+1

√
∆ + ψ2

(
S(2)ξQt+1

√
∆
)2

z3,t+1 = z3,t + (µ3 + κ3,3 (z1,t + z2,t − z3,t)) ∆ +
√
k3 + z3,tS

(3)ξQt+1

√
∆ + ψ3

(
S(3)ξQt+1

√
∆
)2

z1,t+1 = z1,t +
(
µ∗1 − κ∗1,1z1,t

)
∆ +

√
k1 + z1,tS

(1)ξPt+1

√
∆ + ψ1

(
S(1)ξPt+1

√
∆
)2

z2,t+1 = z2,t +
(
µ∗2 + κ∗2,1z1,t − κ∗2,2z2,t

)
∆ +

√
k2 + z2,tS

(2)ξPt+1

√
∆ + ψ2

(
S(2)ξPt+1

√
∆
)2

z3,t+1 = z3,t +
(
µ∗3 + κ∗3,3 (z1,t + z2,t − z3,t)

)
∆ +

√
k3 + z3,tS

(3)ξPt+1

√
∆ + ψ3

(
S(3)ξPt+1

√
∆
)2

with S = diag (s1, s2, s3). All κi,i and κ∗i,i are independent parameters and

κ∗2,1 = κ2,1 ≥ 0. Again ψi = 1
4(1−κi,i∆) for i = 1, 2, 3 to ensure that z1,t, z2,t, z3,t

are non-negative for all t.

A.2 Affi ne Gaussian models A0 (n)

The empirical tests also concern affi ne Gaussian models A0 (n) with MFFP,

which are special cases of the above DTASTM-SGS whereby: ρ = en, so that

rt = xn,t; ki = 1, hi = 0n×1, ψi = 0 for all i, so that diag
(√

ki + h′izt
)

= In

and diag
(
ψi

(
S(i)ξPt+1

)2
)

= 0n×n; µ = µ1 · e1, µ∗ = µ∗1 · e1, S = s1 · In,

κ is given in 3 and with κi,i = κ1,1 for i = 2, .., n and κi+1,i = −κi+1,i+1 for

i = 1, .., n− 1; therefore κ implies a "mean reversion chain". κ∗i,j = κi,j ·ϕ

for all i, j. Then the price of a discount bond is still Pt,m = eAm+B′mxt and

the Riccati equations in Appendix A.7 determine Am and Bm. The "classic"
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version of affi ne Gaussian models that is tested below is A0 (3), with S given by

4 and with κ∗1,1 6= κ∗2,2 6= κ∗3,3 6= κ1,1 6= κ2,2 6= κ3,3. Therefore A0 (3) only has

three factors, but more parameters than A0 (n), partly because of more general

risk premia and partly because of correlated shocks to factors.

A.3 Discrete time quadratic models

Quadratic Gaussian models Q (n) assume

rt = x′tΘxt

xt = (x1,t, x2,t, .., xn,t)
′

xt+1 − xt = ∆ (µ− κxt) + SξQt+1

√
∆ (5)

xt+1 − xt = ∆ (µ∗ − κ∗xt) + SξPt+1

√
∆ (6)

ξQt+1 v N (0n, In) , ξPt+1 v N (0n, In) .

xt are n latent stochastic factors at time t that follow a Gaussian vector au-

toregressive process under P and Q. All shocks are serially and mutually inde-

pendent. Θ is an n×n symmetric matrix. The conditional covariance of xt+1 is

SS′∆. It can be shown that, according toQ (n), Pm,t = exp (Am +B′mxt + x′tCmxt)

and that Am,Bm,Cm are functions of m that satisfy Riccati difference equa-

tions shown in Appendix A.8. Am is a scalar. Bm is an n× 1 vector. Cm is an

n× n symmetric matrix. The process x is mean-reverting under both Q and P

as long as all the eigenvalues of (In −∆κ) and of (In −∆κ∗) are smaller than

1 in absolute value. We assume this condition.

The quadratic models Q (n) with MFFP that are tested in this paper as-
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sume that: µ = µ1 · e1, µ∗ = µ∗1 · e1, S = s1 · In, Θ = en · e′n; κ is as in 3

with κi,i = κ1,1 · (1 + δ)
i−1 and κi,i−1 = −κi,i for i = 2, .., n. δ is a para-

meter to be estimated and κ∗i,j = κi,j for all i, j. In quadratic models

κ and κ∗ feature a cascade structure as in Calvet and others (2018)

and rt = x2
n,t. Quadratic models imply that Pt,m = eAm+B′mxt+x′tCmxt where

Am,Bm,Cm are given in Appendix A.8. The empirical tests concern mod-

els Q (5) ,Q (10) ,Q (5) s,Q (10) s. The "classic" version of quadratic Gaussian

models that is tested below is Q (3), but with κ∗i,i 6= κi,i for i = 1, .., n, with

all κi,i and κ∗i,i independent parameters, and with S given by 4. Thus Q (3)has

only three factors but more parameters than Q (n) with MFFP.

A.4 The stochastic discount factor and the link between

the processes of equations 1 and 2

Given the z process under Q in equation 1 we derive the z process under P. The

time t stochastic discount factor Mt is such that

Mt+1 = Mt · e−rt∆ · e−
1
2Λ′tΛt∆−Λ′tξ

P
t+1

√
∆

Λt = diag
(

(ki + h′izt)
−1/2

)
(g2 + G3 · zt) .

g1,g2 are an n× 1 vectors of parameters, G3 is an n× n matrix of parameters

and

ξQt+1 = ξPt+1 + Λt

√
∆. (7)

It can be shown that, if the lower bound of the process z under Q is 0n×1 (this

is the case under conditions provided in the text), 0n×1 is also the lower bound

34



of z under P, irrespective of Λt. Given the z process under Q in equation 1,

substituting for ξQt+1 according to 7 in equation 1 implies that the z process

under P is

zt+1 = zt + (µ− κzt) ∆ + S · diag
(√

ki + h′izt

)
Λt∆ + diag (Λ′tS

′ΨiSΛt∆) ιn∆ + (8)

+diag
(

2Λ′tS
′ΨiSξ

P
t+1

√
∆
)
ιn∆ + S · diag

(√
ki + h′izt

)
ξPt+1

√
∆ + diag

(
ξP′t+1S

′ΨiSξ
P
t+1

)
ιn∆.

Ψi = ei · e′i · ψi, where ei is an n × 1 vector whose only non-zero element is

the i-th element which is 1. Therefore all elements of Ψi are zero except for

the i-th diagonal element which is ψi. It follows that diag
(
ξQ′t+1S

′
iΨiSξ

Q
t+1

)
=

diag

(
ψi

(
S(i)ξQt+1

)2
)
. The terms in 8 that are proportional to ∆2 and ∆

3
2

vanish in continuous time as ∆ → 0 and, with about 52 weeks in one year

and ∆ = 1
52 , those same terms may be omitted in estimation with little loss in

accuracy, giving

zt+1 ' zt + (µ− κzt) ∆ + S · diag
(√

ki + h′izt

)
Λt∆ + S · diag

(√
ki + h′izt

)
ξPt+1

√
∆ +

+diag
(
ξP′t+1S

′ΨiSξ
P
t+1

)
ιn∆

EPt [zt+1] w µ∆ + (In−κ∆) zt + S · diag
(√

ki + h′izt

)
Λt∆ + diag (tr (S′ΨiS)) ιn∆

CovPt [zt+1] w S · diag (ki + h′izt) · S′ ·∆

where EPt [..] and CovPt [..] are respectively the time t one period conditional

expectation and covariance under the P measure, which enter the Kalman filter.

According to these approximations Λt affects EPt [zt+1] but not CovPt [zt+1] and

the z process of equation 2 under P is consistent with the z process of equation

1 under Q if µ+ S · g2 = µ∗ and κ−SG3 = κ∗. This paper uses Kalman Fil-

ter quasi-maximum-likelihood estimation, which needs the first two conditional
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moments of factors and yields, and such moments are known in closed form for

DTATSM-SGS.

A.5 DTASTM-SGS An (n)

DTASTM-SGS An (n) are such that rt = zn,t and

Am = Am−1 + B′m−1µ∆ + ln (abs (|Γ|)) +
1

2
∆
∑n
i=1

B2
i,m−1s

2
i,iki

1− 2s2
i,i∆Bi,m−1ψi

B′m = −ρ′∆ + B′m−1 (In − κ∆) +
1

2
∆
∑n
i=1

B2
i,m−1s

2
i,i · h′i

1− 2s2
i,i∆Bi,m−1ψi

Γ =

(
In − 2 · S′

(
n∑
i=1

Bi,m−1Ψi∆

)
S

)−1/2

Ψi = ei · e′i · ψi

ρ0 = 0, ρ1 = en, hi = ei, µ ≥ 0n×1, κi,j 6=i ≤ 0 for i, j = 1, .., n

ψi =
1

4 (1− κi,i∆)
, ki =

µi∆

1− κi,i∆
.

A.6 DTASTM-SGS A1 (n)

DTASTM-SGS A1 (n) are such that rt = zn,t, S is lower triangular, ki = k1,hi =

e1 for i = 1, .., n and

Am = Am−1 + B′mµ∆ + ln (abs (|Γ|)) +
1

2
B′m−1S

(
In − 2 · S′

(
n∑
i=1

Bi,m−1Ψi∆

)
S

)−1

S′Bm−1k1∆

B′m = −ρ′∆ + B′m (In − κ∆) +
1

2
B′m−1S

(
In − 2 · S′

(
n∑
i=1

Bi,m−1Ψi∆

)
S

)−1

S′B′m−1e
′
1∆.

A.7 DTASTM-SGS A0 (n)

Affi ne Gaussian models A0 (n) are special cases of DTASTM-SGS whereby rt =

ρ′zt, ki = 1, hi = 0n×1, ψi = 0 for all i, so that
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Am = Am−1 + B′mµ∆ +
1

2
B′m−1SS′Bm−1∆

B′m = −ρ′∆ + B′m (In − κ∆)

A0 = 0, B0 = 0n×1.

A.8 Gaussian quadratic models

This Appendix presents the discrete time quadratic modelQ (n) tested

in the paper. According to the quadratic model Pm,t = exp (Am +B′mxt + x′tCmxt)

and

Am = Am−1 +B′m−1µ∆ + ∆2µ′Cm−1µ+ ln
|γ|

abs
∣∣∣√∆S

∣∣∣ +
1

2
q′m−1γγ

′qm−1

B′m = q′m−1 (In + 2γγ′Cm−1) (In − κ∆)

Cm = −Ψ∆ + (In − κ∆)
′
Cm−1

(
In + 2γγ′C′m−1

)
(In − κ∆) .

q′m−1 = B′m−1 + 2∆µ′Cm−1, γ =
((

∆SS′
)−1 − 2Cm−1

)−1/2

A0 = 0, B0 = 0n×1, C0 = 0n×n.

0n×n is an n× n matrix of zeros.
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