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Abstract—Autarkies for SAT are partial assignments for
boolean CNF, which either satisfy a clause or leave it untouched.
We introduce the natural generalisation of autarkies for DQCNF
(dependency-quantified boolean CNF), by generalising constant
boolean functions 0, 1, as used in SAT, to arbitrary boolean
functions assigned to existential variables, as allowed by the
dependency-specification. We regard here DQCNF as a proper
generalisation of QCNF (QBF with CNF), and all results natu-
rally apply also to QCNF. We provide the most basic theory, con-
sidering confluence of autarky reduction (removing the clauses
satisfied by some autarky), and the Autarky Decomposition
Theorem, the unique decomposition of a DQCNF into the lean
kernel (free from any autarky) and the clauses satisfiable by some
autarky. Finding autarkies is NEXPTIME-hard (or PSPACE-
hard, when restricting to QCNF), and so autarky systems are
introduced, which allow for more feasible restricted notions of
autarkies, while maintaining the basic properties. The two most
basic autarky systems restrict either the number of existential
variables assigned, or the number of universal variables used in
the boolean functions assigned.

I. INTRODUCTION

QBF is the natural extension of SAT to a PSPACE-complete
problem, by allowing quantifiers (for the basics of the theory
see [5]). QBF can be seen as maturing, with solvers and
underlying theory available. Its NEXPTIME-complete exten-
sion DQBF, which generalises the existential quantifiers by
allowing arbitrary dependencies, is at an earlier stage. On the
theory side, proof calculi get developed (see [1] for a basic
pointer), and dependency-schemes naturally play an important
role (see [12], [15] for basic pointers). On the solver side,
our investigations are closer to pre- or inprocessing (see [14]).
We introduce basic autarky theory, which can become a fabric
for pre/inprocessing. The basic theory of autarkies for SAT
can be found in [6]. An autarky for a CNF F is a partial
assignment ϕ (with boolean values 0, 1) such that every clause
of F , where some variable is assigned by ϕ, is satisfied
by ϕ. Clauses satisfied by some autarky can be removed
satisfiability-equivalently (and indeed these clauses can not
be used by any resolution refutation ([9])). Restricted forms
of autarkies yield “autarky systems”; an example is given by
“matching autarkies” ([6, Subsection 11.11.2]), where selected
variables used to satisfy clauses must be distinct.

The natural generalisation for a DQCNF F is to allow ϕ
to assign existential variables v of F , using as values boolean
functions as allowed by the dependency-set of v. Making a
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clause true now means making it a tautology (as proposi-
tional formula in the universal variables). The basic autarky-
systems A0, A1 allow the boolean functions to essentially (not
just formally) depend on zero resp. one universal variable,
while E1 only uses one existential variable (we use “A” to
denote universal variables, and “E” for existential variables).
Let’s consider the example from [3, after Definition 4]:

F := ∀x1, x2, x3∃y1(x1, x2)∃y2(x2, x3) : F0

F0 := (y1 ∨ x1) ∧ (¬y1 ∨ x2) ∧ (¬y2 ∨ ¬x2 ∨ x3).

y1 depends (only) on x1, x2, and y2 depends (only) on x2, x3.
F has an E1-autarky for y2, which is also an A0-autarky,
namely we can assign y2 7→ 0, and obtain the satisfiability-
equivalent QCNF F ′ := ∀x1, x2∃y1 : (y1 ∨ x1) ∧ (¬y1 ∨ x2).
By assigning x1, x2 7→ 0 one sees that F ′ is unsatisfiable.
Since there is only one existential variable, it follows that
there is no non-trivial autarky for F ′, i.e., F ′ is “lean”. We
call F ′ the lean kernel of F . If we add y2 to the second
clause of F , then y2 7→ ¬x2 becomes an A1-autarky, and the
remaining clause can be satisfied by the E1-autarky y1 7→ 1.
Finding A1-autarkies in general is translated to SAT, where
the fundamental idea is to compile for each clause the minimal
possibilities to make it a tautology. Our work is related in two
dimensions to existing literature: our “model”-based approach,
starting so to speak with the Skolem functions (not extracting
them as e.g. in [13]), is discussed in Subsection 1, while
autarkies for QBF are discussed in Subsection 2.

1) Starting with the boolean functions (models): Our ap-
proach in general is similar to [7], concerning the basic frame-
work, while we generalise satisfying assignments (“models”)
to autarkies. They consider “K1-models”, which correspond
to our A1-autarky system (for total assignments, as only
studied by [7]). They show that every satisfiable Q2CNF
(QCNFs with the matrix a 2CNF) has a K1-model (Theorem
3). We remark here that this generalises to DQ2CNF, and
thus every satisfiable DQ2CNF is A1-satisfiable, but due to
space restrictions we don’t prove this here. Furthermore they
consider K2 (conjunctions of positive literals), and mention
K3, which is the closure of K1 under conjunction; we will
consider the corresponding autarky-systems in future work.

Our notion of an autarky system goes beyond the study of
classes of boolean functions, since the autarkies may depend
on the formula, as for example for matching autarkies.

2) Restricted autarkies for QBF: Autarkies for QBF in the
literature only use boolean values (not boolean functions as



values, as we do). [8] uses A0 (especially matching autarkies),
and exploits that not having any such autarkies implies that
the “deficiency” (the number of clauses minus the number of
existential variables) is at least one. [11] consider the matrix
F of a QCNF, and just any autarky for F , not differentiating
between universal and existential variables. If only existential
variables are involved, then this is the A0-case. While the
main use of an autarky just involving universal variables is
based on the following simple fact for CNFs F : if ϕ is an
autarky for F with v ∈ var(ϕ), then in the result of applying
ϕ without v to F , the variable v must be pure (occurs only
in one sign). And if a universal variable is pure, then it can
be assigned (satisfiability-equivalently) so that its instances are
(all) false. In [11] this is used in the DLL-framework (a simple
backtracking algorithm) for QBF, considering at most two
variables. We believe that in a DQCNF the only real variables
are the existential variables, while the universal variables
belong to the value-structure (as in constraint satisfaction).
Thus we do not consider assigning the universal variables.
For QBF that might be different, when exploiting duality (the
negation of a QBF is again a QBF — PSPACE is closed under
complement), but that would be a more complicated matter.

II. DQCNF AND AUTARKIES

We assume a standard framework for boolean clause-sets: a
set LIT of literals is given with a fixed-point free involution
x ∈ LIT 7→ x ∈ LIT , the complementation. For a set L ⊆
LIT of literals we use element-wise complementation L :=
{x : x ∈ L}. The set of variables is VA ⊆ LIT with VA ∩
VA = ∅ and VA ∪ VA = LIT . A clause is a finite subset
C ⊆ LIT without clashes (C ∩C = ∅), and finally a clause-
set is a finite set of clauses. For a clause C we set var(C) :=
(C ∪C)∩ VA, while for a clause-set F we define var(F ) :=⋃

C∈F var(C). A DQCNF is a 4-tuple (A,E, F,D), where
• A is the set of universal variables,
• E is the set of existential variables, with A ∩ E = ∅,
• F is a clause-set over A ∪ E (i.e., var(F ) ⊆ A ∪ E),
• D is the dependency-map with dom(D) = E, mapping
v ∈ E 7→ D(v) ⊆ A, the variables on which v depends.

The DQCNFs (A,E, F,D) with empty A = ∅ correspond
to (formal) boolean clause-sets, where E is then the set of
(formal) propositional variables (i.e., they might not occur in
F ). A universal clause is a clause C ∈ F with var(C) ⊆ A
(generalising the unique empty clause of boolean clause-sets).
The example from the Introduction is now denoted by F =
({x1, x2, x3}, {y1, y2}, F0, {(y1, {x1, x2}), (y2, {x2, x3})}),
with the clause-set F0 = {{y1, x1}, {y1, x2}, {y2, x2, x3}}.
We use here the standard definition of a map f as a set of
pairs (x, y) with x ∈ dom(f) and y = f(x). We now define
the semantics of DQCNF, generalising the standard semantics
for boolean clause-sets, where now instead of constant boolean
functions we consider arbitrary boolean functions as values of
assignments. A total boolean assignment f for a set V of
variables is a map f : V → {0, 1}, the set of all 2|V | many
total assignments over V is denoted by TASS(V ). As usual,
f(v) = f(v), with 0 = 1 and 1 = 0.

A boolean function over V is a map b : TASS(V ) →
{0, 1}, where we set var(b) := V . For V ′ ⊇ V and
f ′ ∈ TASS(V ′) we let b(f ′) := b(f ′ |V ), using the re-
striction of f ′ to V . The set of essential variables, denoted
by vares(b) ⊆ var(b), is the set of v ∈ var(b), such that
there exists f, f ′ ∈ TASS(var(b)) with b(f) 6= b(f ′) and
∀w ∈ var(b) : f(w) 6= f ′(w) ⇔ w = v. A total assignment
for a DQCNF (A,E, F,D) (indeed only depending on (E,D))
is a map Φ with dom(Φ) = E such that for each v ∈ E
the value Φ(v) is a boolean function over D(v). Again, as
usual, Φ(v) = Φ(v), where for a boolean function b and
f ∈ TASS(var(b)) we have b(f) = b(f). In [7, Section 1]
our total assignments are called “proper assignments” (in the
special case of QBF). Informally, a total assignment Φ satisfies
(A,E, F,D) (“is a model of (A,E, F,D)”) if Φ satisfies
each clause C ∈ F . This means that for C, understood as
disjunction of literals, after replacing the existential literals of
C with the boolean functions as given by Φ (negated if the
literal is negated), the disjunction of these boolean functions
and the remaining universal literals is a tautology over A.
Formally, that can be easily expressed as follows: The total
assignment Φ for (A,E, F,D) satisfies C ∈ F , if for every
f ∈ TASS(A) there exists a universal literal x ∈ C (i.e.,
var(x) ∈ A) with f(x) = 1 or there exists an existential
literal y ∈ C (i.e., var(y) ∈ E) with Φ(y)(f) = 1. As usual,
we only need to consider f ∈ TASS(A∩var(C)). A DQCNF
(A,E, F,D) is satisfiable (or “true”) if it has a satisfying
(total) assignment, otherwise it is unsatisfiable (or “false”).

For boolean clause-sets, an autarky for a clause-set F
generalises satisfying assignments of F . A partial assignment
is a total assignment for some finite set V of variables. An
autarky for F is a partial assignment ϕ, such that every clause
C ∈ F is either satisfied by ϕ or not “touched” at all, that
is, var(ϕ) ∩ var(C) = ∅ (using var(ϕ) = dom(ϕ) = V ).
See [6] for the basic theory of autarkies for boolean clause-
sets. This is naturally generalised to DQCNF (A,E, F,D).
A partial assignment for (A,E, F,D) is a total assignment
for some V ⊆ E. An autarky for (A,E, F,D) is a partial
assignment satisfying every C ∈ F with var(ϕ)∩var(C) 6= ∅.
The above definition that Φ satisfies C is generalised in the
natural way here to the partial assignment ϕ, now requiring
that for the existential literal y ∈ C we have var(y) ∈ var(ϕ).

The empty partial assignment is always an autarky for every
DQCNF (never touching any clause), and also every satisfying
assignment is an autarky (satisfying every clause). We note
that the definitions of satisfying assignments and autarkies for
DQCNFs are semantical, do not consider any representation of
boolean functions (by circuits, say) other than the canonical
representation by truth-tables. For each restricted notion of
“autarky system” the representation has to be considered anew.

III. BASIC THEOREMS

Generalising [6, Subsection 11.8.3], we call a DQCNF
(A,E, F,D) lean if for every autarky ϕ with var(ϕ) ⊆ E
we have var(ϕ) = ∅ (i.e., there are no non-trivial autarkies).



For two DQCNF (A,E, F,D), (A′, E′, F ′, D′) their union
is defined if A ∩ E′ = ∅, E ∩ A′ = ∅, and D,D′ restricted
to E ∩ E′ coincide (i.e., D |(E ∩ E′) = D′ |(E ∩ E′)).
In this case we define (A,E, F,D) ∪ (A′, E′, F ′, D′) :=
(A ∪ A′, E ∪ E′, F ∪ F ′, D ∪ D′), using that the union
of two compatible maps (equal on the intersection of their
domains) is again a map. It is easy to see that the union
of two lean DQCNFs is again lean, and thus every DQCNF
has a largest lean sub-DQCNF, its lean kernel. Here we use
for DQCNFs (A,E, F,D) ⊆ (A′, E′, F ′, D′) iff A ⊆ A′,
E ⊆ E′, F ⊆ F ′, and D ⊆ D′. We note that thus for the lean
kernel (A0, E0, F0, D0) of (A,E, F,D) we have A0 = A,
while E0 is exactly the set of existential variables occurring in
F0. Another trivial property is that for every universal C ∈ F
we have C ∈ F0 (these clauses can neither be “touched”
nor satisfied). We denote the lean kernel by Na(A,E, F,D)
(“N” like “normal form”). The clause-set of Na(A,E, F,D)
is empty iff (A,E, F,D) is satisfiable.

The algorithmic approach for the lean kernel of a DACNF
(A,E, F,D) uses autarky reduction. For an autarky ϕ let
ϕ ∗ (A,E, F,D) := (A,E \ var(ϕ), {C ∈ F : var(ϕ) ∩
var(C) = ∅}, D |E) be the sub-DQCNF obtained by remov-
ing the clauses satisfied by ϕ. The most basic observations on
autarkies is worth stating as a fundamental lemma:

Lemma III.1 For an autarky ϕ of (A,E, F,D) the sub-
DQCNF ϕ ∗ (A,E, F,D) is satisfiability-equivalent to it.

Proof: A satisfying assignment of (A,E, F,D) satisfies also
ϕ ∗ (A,E, F,D), since just clauses have been removed. And
if Φ is a total satisfying assignment for ϕ ∗ (A,E, F,D), then
ϕ∪Φ is a (partial) satisfying assignment for (A,E, F,D). �

The basic fact now is that autarky reduction is confluent,
and ends up with the lean kernel. For this it is convenient to
allow for autarkies ϕ of (A,E, F,D) some variables outside
of A ∪ E, so that an autarky for a DQCNF is also an
autarky for any sub-DQCNF. Thus if ϕ,ψ are autarkies for
(A,E, F,D), then ϕ is also an autarky for ψ ∗ (A,E, F,D).
This already proves that if we apply autarky-reduction as long
as possible, then the final result is uniquely determined (we
have confluence of autarky-reduction). It is also instructive
to note that for the result of this chain of reduction we have
ϕ∗(ψ∗(A,E, F,D)) = (ϕ◦ψ)∗(A,E, F,D). Here for partial
assignments ϕ,ψ we define their composition ϕ ◦ ψ as the
partial assignment with domain var(ϕ)∪var(ψ), which assigns
to v ∈ var(ψ) the value ψ(v), and to v ∈ var(ϕ) \ var(ψ) the
value ϕ(v). The basic observation regarding composition is
that for autarkies ϕ,ψ of (A,E, F,D) also their composition
ϕ ◦ ψ is an autarky of (A,E, F,D), touching (satisfying) the
clauses touched by ϕ plus the clauses touched by ψ: This is
clear for the clauses touched by ψ, since the assignments by
ψ are contained in ϕ ◦ ψ, and additional assignments do not
hurt in satisfying a clause. While for the remaining clauses,
the clauses touched by ϕ and not touched by ψ, trivially all
assignments of ϕ touching them are contained in ϕ ◦ ψ.

So for the final result (A0, E0, F0, D0) of autarky-reduction
of (A,E, F,D), where actually A0 = A holds, there exists
a single “maximal” autarky Φ such that Φ ∗ (A,E, F,D) =
(A,E0, F0, D0), and where Φ can be obtained by a composi-
tion of all autarkies of F (in any order).

By definition (A,E0, F0, D0) is lean. And indeed we
have (A,E0, F0, D0) = Na(A,E, F,D), since no clause of
Na(A,E, F,D) can be touched by any autarky of (A,E, F,D)
(which is also an autarky for the lean kernel – necessarily
a trivial one). An autark sub-DQCNF of (A,E, F,D) is
a sub-DQCNF (A′, E′, F ′, D′) such that an autarky ϕ of
(A,E, F,D) exists satisfying all clauses of F ′. We see that
(A,E, F \F0, D) is the unique largest autark sub-DQCNF of
(A,E, F,D) (satisfied by Φ). We can summarise the results
of this section in the Autarky Decomposition Theorem:

Theorem III.2 For an arbitrary DQCNF (A,E, F,D) we
have the following. There exists a (unique) largest lean
sub-DQCNF Na(A,E, F,D) = (A,E0, F0, D0) (with every
lean sub-DQCNF (A′, E′, F ′, D′) ⊆ (A,E0, F0, D0)) and
a (unique) largest autark sub-DQCNF (A,E, F1, D) (with
every autark sub-DQCNF (A′, E′, F ′, D′) ⊆ (A,E, F1, D)),
where we have F = F0 ∪ F1, F0 ∩ F1 = ∅. Furthermore
var(F0) ∩ E = E0 holds, and there exists an autarky Φ
of (A,E, F,D) with var(Φ) = E \ E0. Every chain of
autarky reductions starting with (A,E, F,D) can be extended
to Na(A,E, F,D) (where it necessarily ends).

IV. AUTARKY SYSTEMS

Due to the high complexity of general autarky-finding for
DQCNF, it is vital to allow restricted notions of autarkies (with
lower complexity). For that purpose we generalise the notion
of “autarky systems” from [6, Section 11.11]. While for a
DQCNF (A,E, F,D) we write Auk(A,E, F,D) for the set
of all autarkies, an autarky system A now allows to consider
subsets A(A,E, F,D) ⊆ Auk(A,E, F,D). There are two
basic conditions which make A an autarky system. First for
DQCNFs (A,E, F,D) and ϕ,ψ ∈ A(F ) it must always hold
ϕ ◦ ψ ∈ A(F ) (closure under composition). And second for
DQCNFs (A,E, F,D) ⊆ (A′, E′, F ′, D′) it must always hold
A(A′, E′, F ′, D′) ⊆ A(A,E, F,D) (removal of clauses does
not remove A-autarkies). A-satisfiability means satisfiability
by a series of A-autarkies, while A-leanness means there there
are no nontrivial A-autarkies.

In order for the results from Section III to generalise, we
formulate five conditions for normal autarky systems; we
formulate the conditions here only informally, since there are
no real subtleties involved. First four trivial conditions on A:

standardised: the presence or absence of formal variables
in A,E (not actually occurring in F ) is not of relevance
⊥-invariant: universal clauses in F are not of relevance
invariant under variable elimination: removing existential

variables from the clauses of F does not affect autarkies of A
which do not use these variables

invariant under renaming: renaming variables (existential
or universal) is respected by the autarky system.



These four conditions are always expected to hold. Finally
there is a non-trivial condition:

iterative: if we apply an autarky of A, and take another
autarky of A for the reduction result, then their composition
also belongs to A (for the original DQCNF).

All results of Section III hold for arbitrary normal autarky
systems. Especially we have confluence of A-autarky reduc-
tion, and we have the unique decomposition of any DQCNF
in an A-lean and an A-satisfiable part. If A is not iterative
(but fulfils the other four conditions), then we can consider the
unique closure A∗ of A under iteration, which then is a normal
autarky system, and which has exactly the same power of
reduction, with the only difference that by A∗ we can always
obtain every (iterated) reduction result also in a single step
(applying a singleA-autarky – the composition of the autarkies
used in the reduction chain). For two autarky systems A1,A2,
we can consider their combination A1 + A2, which contains
all possible compositions ϕ◦ψ,ψ◦ϕ for ϕ ∈ A1(A,E, F,D),
ψ ∈ A2(A,E, F,D). IfA1,A2 are normal, then so isA1+A2.

V. A- AND E-SYSTEMS

Consider a DQCNF (A,E, F,D), and k ∈ N0. An Ak-
autarky for (A,E, F,D) is an autarky ϕ, such that for
all v ∈ var(ϕ) holds |vares(ϕ(v))| ≤ k (i.e., all boolean
functions used in assignments by ϕ use at most k (universal,
essential) variables), while an Ek-autarky is an autarky ϕ
with |var(ϕ)| ≤ k (i.e., at most k (existential) variables are
assigned by ϕ). A0 is just CNF-autarky, and we concentrate
on A1, which has some nontrivial power (can satisfy all
satisfiable DQ2CNF) and has a nice SAT-translation, and on
E1, which has a natural polytime computation. We obtain the
composition E1 +A1, which one might consider as the basic
“clean-up autarky system”. An example for A1-satisfiability
and A0 + E1-leanness is ∀x1, x2∃y1(x1)∃y2(x2) : (y1 ∨ y2 ∨
x1) ∧ (y1 ∨ y2 ∨ x2) ∧ (y1 ∨ x1) ∧ (y2 ∨ x2), which has the
satisfying A1-assignment y1 7→ x1, y2 7→ x2. An example
for E1-satisfiability and A1-leanness is ∀x1, x2∃y : (y ∨ x1 ∨
x2) ∧ (y ∨ x1) ∧ (y ∨ x2), with the satisfying E1-assignment
y 7→ x1∨x2. An example for E1 + A1-satisfiability, while not
satisfiable by E1 + A0 or A1 alone, is obtained by taking the
union of the two after renaming y to y3.

Since the existence of an ordinary propositional autarky for
a clause-set F is NP-complete (see [9]), which is covered by
A0-autarkies, deciding whether a DQCNF has a non-trivial
Ak-autarky is NP-hard for every k ≥ 0 (boolean functions
can be just represented by truth-tables here). Deciding the
existence and finding some short E1-autarky can be done in
polynomial time, as we will discuss below, while for any fixed
k ≥ 2 we are not aware of results in the literature (see also
below). We note here that there are no restrictions on the
boolean functions used in Ek autarkies, but we will see that for
k = 1 a CNF- as well as a DNF-representation can be read off
F in linear time. The restriction Ak yields a normal autarky
system for every k ≥ 0, while the Ek fulfil all requirements
for a normal autarky system except for not beeing iterative.

1) E1-autarkies: Consider a DQCNF (A,E, F,D) and
V ⊆ E. Let ([A,E, F,D)[V ] := (A, V, F [V ], D |V ) be
obtained by restriction to V , where F [V ] := {C ∩ (A ∪ A ∪
V ∪ V ) : C ∈ F ∧ var(C) ∩ V 6= ∅} is obtained from F
by removing all clauses not containing some variable from V ,
and removing from the remaining clauses all existential literals
with variables not from V . The existence of an autarky ϕ with
var(ϕ) = V is equivalent to the DQCNF (A,E, F,D)[V ] be-
ing satisfiable, where the satisfying assignments correspond to
the autarkies. So searching for an E1-autarky of (A,E, F,D)
means solving for each v the one-existential-variable DQCNF
(A,E, F,D)[{v}]. From any clause C we can remove all
universal literals x ∈ C, where there is no existential variable
in C depending on the underlying universal variable of x
(this is called “universal reduction”). So we have a QCNF
∀X∃v : F ′ with exactly one existential variable v to solve.
F ′ is equivalent to A → v → B, where A is a DNF over
X , and B is a CNF over X . There is a solution for v iff
every conjunct of A has a non-empty intersection with every
disjunct of B, in which case either A or B can be chosen as
a solution. We note here that for E2 we do not get a QCNF
with two existential variables, but only such a DQCNF.

2) A1-autarkies: The main strategy to solve the constraint-
satisfaction problem of finding some non-trivial A1-autarky
for a given (A,E, F,D) is: 1. to explicitly list the possible
boolean functions as values of the existential variables, 2. to
compile for each clause C ∈ F the minimal possibilities
for C to become a tautology, and 3. to make it explicitly
part of the SAT-translation that at least one of these minimal
possibilities for C is fulfilled, if the selector-variable of C
is true (a dedicated variable per clause, true iff the clause is
touched). For v ∈ E we thus have 2|D(v)|+2 possible values
(boolean functions depending on at most one of the variables
of D(v)) to consider, the two constant boolean functions plus
for each universal variable the two associated literals. And
there are exactly three types of minimal possibilities for C to
become a tautology:

1) some y ∈ C ∩ (E ∪ E) is set to 1;
2) for some y ∈ C ∩ (E ∪E) there is x ∈ C ∩ (A∪A) with

var(x) ∈ D(var(y)), and y is set to x;
3) for some y, y′ ∈ C ∩ (E ∪ E), y 6= y′, there is x ∈

D(var(y)) ∩D(var(y′)), and y is set to x and y′ to x.
The translation into a SAT-problem is now in principle not
difficult, but effort and experimentation is needed for the rep-
resentation of AMO-constraints (at-most-one), and for encod-
ings of nonboolean values (direct or logarithmic encodings).
The results on the normalforms by the basic autarky system
E1 + A1 on all known QCNF and DQCNF instances (as in
QBFLIB), will be made available online; for the DQCNF
instances of QBFEVAL’18 see [10].

VI. CONCLUSION

E1 + A1 establishes the basic autarky sytem. All the SAT-
theory on autarkies can be combined with many interesting
classes of boolean functions to yield autarky systems. The use
of autarkies in pre- and inprocessing then is the next question.
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