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Abstract

In 1971, in a seminal paper, Yamamoto derived integral relationships between
dynamic moduli and rate-dependent relaxation spectra, H(τ, γ̇2), in parallel
superposition of oscillatory shear on steady shear flow, where both the flows
and deformation gradients exist in the same plane. These integral relation-
ships are more complicated than their counterparts for orthogonal superposition
(where the oscillatory and unidirectional flow fields occur in orthogonal planes),
since they involve not only the spectrum, but also its derivative with respect
to unidirectional shear-rate. Herein we derive (i) expressions for determining
rate-dependent relaxation spectra directly from parallel superposition rheom-
etry data and (ii) expressions to convert from parallel to orthogonal dynamic
moduli in a stable manner. These results facilitate the physical interpretation
of parallel superposition dynamic moduli, and direct model-based comparison
of parallel and orthogonal superposition moduli in the study of weak nonlinear
response.

Keywords: superposition rheology, rate-dependent spectra, parallel and
orthogonal dynamic moduli, Kramers-Krönig relations, interconversion

1. Introduction

Superposition rheometry was established as a technique for probing the non-
linear rheological properties of complex fluids in the 1960’s [1,2], and involves
superposition of a small amplitude oscillatory perturbation, of amplitude γ0
and angular frequency ω, upon a unidirectional flow with constant strain-rate
γ̇. The perturbation may be applied either in parallel with, or orthogonal to,
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the bulk flow, these being termed parallel and orthogonal superposition rheom-
etry (PSR and OSR), respectively. The kinematics of the two techniques may
be conveniently expressed as follows (see Yamamoto [14]):

x1(t) = x1(t′) + [γ̇(t− t′) + a(eiωt − eiωt
′
)]x2(t′),

x2(t) = x2(t′), (1.1)

x3(t) = x3(t′) + b(eiωt − eiωt
′
)x2(t′),

where a = γ0 and b = 0 for PSR, whilst for OSR a = 0 and b = γ0. These
kinematics generate stress responses that also consist of unidirectional and
oscillatory components. The oscillatory parts of the stress and strain waveforms
may hence be used to define a superposition complex modulus G∗‖(ω, γ̇) or

G∗⊥(ω, γ̇) (in PSR and OSR), respectively). Here, the subscripts ‖ and ⊥
serve to distinguish between the superposition moduli, and the linear complex
modulus G∗(ω) [3].

A controlled stress implementation of PSR (termed Controlled Stress Par-
allel Superposition, CSPS) has recently been used to study the microstructure
of incipient gel networks formed under controlled stress unidirectional flow
conditions [4, 5, 6]. In such experiments γ̇ → 0 as the gel point is approached.
This marks the transition between viscoelastic liquid and viscoelastic solid-like
behaviour that occurs upon establishment of a sample spanning network.
Hence, under these conditions G∗‖ may be interpreted in the same way as G∗.
However, more generally, i.e. where γ̇ > 0, interpretation of G∗‖ is complicated

by a coupling of the unidirectional and oscillatory components (as discussed
in section 3, below). As γ̇ increases away from zero, negative values of G′‖ are

often reported in the literature (e.g. [1, 2, 7, 8, 9, 18]), thus preventing the
conventional interpretation of G′‖ and G′′‖ in terms of intracycle energy storage
and dissipation, as per their quiescent counterparts. It is also commonly stated
that the real and imaginary parts of G∗‖ do not satisfy the Kramers-Krönig
relations.

Such complications do not arise in OSR and the components of G∗⊥ appear
to retain the same physical meaning as those of G∗, for small perturbation
amplitudes [10, 11]. Consequently, despite the ease of implementing PSR
experiments on commercial rheometers, OSP has (for the past 20 years)
been the preferred methodology. However, such experiments require specific
hardware, e.g., the TA Instruments Orthogonal Superposition accessory, which
employs the rheometer’s normal force transducer to generate the oscillatory
component [12], and the availability of relatively large quantities of material
(approximately 50 ml). Further, a recent study of flow induced anisotropy
in colloidal gels employed the ratio of G′ measured in orthogonal directions
as a measure of anisotropy [11]. In that study, in order to avoid ‘the prob-
lems associated with parallel superposition experiments’, materials for which
microstructural recovery was relatively slow were studied, such that SAOS
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experiments probing the anisotropic rheology could be performed following
cessation of the unidirectional flow [11]. There is hence clearly a need for
further study of superposition moduli, (i) to allow physical interpretation of
G∗‖, and (ii) facilitate the development of a quantitative interpretation of flow

induced anisotropy probed by superposition rheometry [13].

Herein we aim to demonstrate that, for certain Lodge type integral con-
stitutive equations studied by Yamamoto [14], and often cited in discussion of
superposition rheometry, (i) the real and imaginary parts of G∗‖ do satisfy the

the Kramers-Krönig relations, and (ii) relationships between the superposition
moduli can be derived that may be used as a basis for a quantitative compar-
ison of PSR and OSR data. We begin with an elementary discussion of the
properties of the linear relaxation spectrum H(τ) before discussing shear-rate
dependent spectra as defined by Yamamoto.

2. The linear relaxation spectrum

In an incompressible shear deformation, Boltzmann’s general linear integral
model for viscoelastic materials relates the stress σ(t) to the strain-rate γ̇(t) in
the form

σ(t) =

∫ t

−∞
G(t− t′)γ̇(t′)dt′, (2.1)

where G(t) denotes the relaxation modulus, which is a positive, monotonically
decreasing, and continuously differentiable function of time. The stress may also
be expressed in terms of the memory function of the material, M(t), defined
by the first derivative M(t) = −Ġ(t). Thus, providing the shear, γ, vanishes as
t′ → −∞,

σ(t) =

∫ t

−∞
M(t− t′)γ(t, t′)dt′. (2.2)

In keeping with the principle of fading memory, [15], M(t) is also monoton-
ically decreasing, so that Ġ(t) is monotonically increasing. Bernstein’s theorem
[16] states that successive derivatives of G(t) of all orders are alternately mono-
tonically increasing and decreasing if and only if G(t) is the Laplace transform of
a positive measure. Under this constraint G(t) is said to be completely monotone
and may be written in the form

G(t) = Ge +

∫ ∞
0

H(τ)e−
t
τ
dτ

τ
= Ge + L[τH(τ)](t), (2.3)

where L denotes Laplace transformation with respect to the variable τ−1, and
Ge is a material constant given by

Ge = lim
t→∞

G(t).
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H(τ) is the relaxation spectrum associated with a continuous or discrete dis-
tribution of relaxation times τ . The memory function M(t) may be written
as

M(t) =

∫ ∞
0

H(τ)

τ
e−

t
τ
dτ

τ
= L[H(τ)](t), (2.4)

and either equation (1.3) or (1.4) serves as a mathematical definition of the
relaxation spectrum. Taking inverse Laplace transforms, one finds

H(τ) = τ−1L−1[G(t)](τ) = L−1[M(t)](τ). (2.5)

The spectrum is more often recovered from dynamic measurements of the
complex modulus, which is defined as a function of frequency, ω, by

G∗(ω) = G′(ω) + iG′′(ω) = Ge + iω

∫ ∞
0

[G(t)−Ge]e−iωtdt, (2.6)

where G′ and G′′ denote the storage and loss moduli, respectively. These moduli
are related to the spectrum by the pair of Fredholm integral equations

G′(ω)−Ge =

∫ ∞
0

ω2τ2

1 + ω2τ2
H(τ)

dτ

τ
≡ (T H)(ω), (2.7)

G′′(ω) =

∫ ∞
0

ωτ

1 + ω2τ2
H(τ)

dτ

τ
≡ (SH)(ω). (2.8)

The integral operators T and S defined in equations 2.7 and 2.8 have special
properties which we shall specify and exploit in due course.

Determining H(τ) from experimental data for G or G′, G′′ reflects an
exponentially ill-posed inverse problem. Explicit use of inverse transforms is
rarely made: rather, a model is chosen for H containing a finite number of
parameters, and these parameters determined by fitting the corresponding
models for the moduli to the available data. This calls for regularization, either
by restricting the number of parameters, or by stabilizing the fit to the data by
means of a regularization functional.

Equations 2.7 and 2.8 relate the real and imaginary parts of G∗(ω) via the
common spectrum H(τ). In complex form we have

G∗(ω) = Ge +

∫ ∞
0

iωτ

1 + iωτ
H(τ)

dτ

τ
, (2.9)

from which it may be deduced that, under weak conditions on H(τ), G∗(ω)
as a function of complex frequency is analytic away from the imaginary axis.
This enables G∗(ω) to be rewritten as a Cauchy integral. By taking limits
after indented contour integration around the simple poles on the imaginary
axis, it may be shown that the real and imaginary parts of G∗(ω) satisfy the
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Kramers-Krönig relations (see, for example, Tschoegl [19]).

In tensorial form, the constitutive equation 2.1 is generally assumed to
be valid whenever the deformation is sufficiently small or slowly varying, i.e.
within the realm of linear viscoelasticity. For larger or more rapid deformations
there are a large number constitutive equations to choose from in modelling the
responses encountered. In nonlinear viscoelasticity no single constitutive model
is known to predict the behaviour of all materials under all flow conditions. It is
important to bear this in mind when studying shear-rate dependent relaxation
spectra, since there exist shear-rate dependent response spectra which are
defined not only by the constitutive model but also by the flow conditions.
In this paper we examine certain response spectra arising in superposition
rheology, and how they are related to shear-rate dependent relaxation spectra.

3. Superposition rheometry and rate dependent relaxation spectra

In what follows, the dependence of G∗‖ and G∗⊥ on γ̇ will be taken as
understood. We consider a relatively simple integral constitutive model of
Lodge-type, which has been studied in the context of superposition rheology
in the seminal paper by Yamamoto [14] and more recently by Vermant et al
[10] and others. In superposition rheology a small amplitude oscillatory shear,
γ0e

iωt, is superimposed on a steady shear flow (the primary flow) with constant
shear-rate γ̇, either in parallel to the primary flow (PSR) or orthogonal to it
(OSR). Experimentally it is less challenging to obtain complex moduli data
from PSR than it is from OSR, but the real and imaginary parts of the complex
modulus G∗⊥(ω) = G′⊥(ω) + iG′′⊥(ω) in OSR are easier to interpret. From the
modelling viewpoint, the OSR storage and loss moduli associated with simple
Lodge-type models are known to satisfy the Kramers-Krönig relations.

It has been stated several times in the literature that the PSR storage and
loss moduli associated with simple Lodge-type models, G′‖(ω) and G′′‖(ω) , do
not satisfy the Kramers-Krönig relations. These statements are assumptions
made in consequence of additional first derivative terms which are present in
the expressions for the storage and loss moduli. One of the main results in this
paper is to prove that, at least for the Lodge-type model given by (3.1) below,
these assumptions are false. In this case it is relatively easy to show that G′‖(ω)

and G′′‖(ω) do satisfy the Kramers-Krönig relations.

Consider a Lodge-type constitutive model given by

σ = −pI +

∫ t

−∞
M(t− t′, II2D(t′))(C−1(t, t′)− I)dt′, (3.1)

where C−1(t, t′) is the relative Finger strain tensor, II2D(t′) is the second invari-
ant of the rate of deformation tensor 2D at time t′, and M is a rate-dependent
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memory function. Following Vermant et al, we define II2D = 1
2 tr[(2D)2].

The rate-dependent relaxation spectrum for this model is defined in the same
way as in 2.5, i.e. by

H(τ, II2D(t′)) = L−1[M(t− t′, II2D(t′))], (3.2)

where the inverse Laplace transform is taken with respect to t. The rate-
dependent relaxation modulus is then defined by

G(t, II2D(t′)) = Ge(γ̇) + L[τH(τ, II2D(t′))], (3.3)

where L again denotes Laplace transformation with respect to the variable τ−1.

In steady shear flow we have

II2D = γ̇2, (3.4)

whereas with a small amplitude oscillatory shear superimposed, we have

II2D(t′) = γ̇2 + 2iaγ0γ̇ωe
iωt′ +O(γ20), (3.5)

where the constant a takes the value a = 1 in PSR and a = 0 in OSR. Working
to first order in γ0, we follow Yamamoto in expanding H(τ, II2D(t′)) about
II2D(t′) = γ̇2 to obtain

H(τ, II2D(t′)) = H(τ, γ̇2) + 2iaγ0γ̇ωe
iωt′ ∂

∂γ̇2
H(τ, γ̇2) +O(γ20), (3.6)

where we have adopted the notation used by Vermant et al [10]

∂

∂γ̇2
H(τ, γ̇2) = [

∂

∂II2D
H(τ, II2D(t′))]II2D=γ̇2

3.1. Orthogonal superposition

In OSR the relevant stress component may be written as

σ23(t) = G∗⊥(ω)γ0e
iωt (3.7)

where, for small amplitudes γ0, the real and imaginary parts of the complex
modulus are given by

G′⊥(ω)−Ge(γ̇) =

∫ ∞
0

H(τ, γ̇2)
ω2τ2

1 + ω2τ2
dτ

τ
, (3.8)

G′′⊥(ω) =

∫ ∞
0

H(τ, γ̇2)
ωτ

1 + ω2τ2
dτ

τ
. (3.9)

We shall assume, in what follows, that the rate-dependent equilibrium mod-
ulus Ge(γ̇) is zero, which is the case for viscoelastic liquids. H(τ, γ̇2) is the
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response spectrum for OSR and must be distinguished from the true relax-
ation spectrum H(τ, II2D(t′)). However, if a mathematical function Φ can be
chosen to represent the response spectrum over the complete range of shear-
rates: H(τ, γ̇2) = Φ(τ, γ̇2), then it also represents the true spectrum, i.e.
H(τ, II2D(t′)) = Φ(τ, II2D(t′)). It is not experimentally possible to obtain
data to determine the OSR response function over the complete range of shear-
rates, and so, in this sense, OSR can only partially determine the rate-dependent
relaxation spectrum.

3.2. Parallel superposition

In PSR the relevant stress component is

σ12(t) = γ̇η(γ̇) +G∗‖(ω)γ0e
iωt, (3.10)

where the real and imaginary parts of the complex modulus are now given by

G′‖(ω) =

∫ ∞
0

[H(τ, γ̇2)
ω2τ2

1 + ω2τ2
+

4γ̇2ω2τ2

(1 + ω2τ2)2
∂

∂γ̇2
H(τ, γ̇2)]

dτ

τ
,

(3.11)

G′′‖(ω) =

∫ ∞
0

[H(τ, γ̇2)
ωτ

1 + ω2τ2
+

2γ̇2ωτ(1− ω2τ2)

(1 + ω2τ2)2
∂

∂γ̇2
H(τ, γ̇2)]

dτ

τ
.

(3.12)

At first sight, the emergence of the first derivative terms might suggest that the
Kramers-Krönig relations are not satisfied, but closer inspection shows that this
is not the case. Using the identities

τ
∂

∂τ
(

ω2τ2

1 + ω2τ2
) =

2ω2τ2

(1 + ω2τ2)2
, (3.13)

τ
∂

∂τ
(

ωτ

1 + ω2τ2
) =

ωτ(1− ω2τ2)

(1 + ω2τ2)2
, (3.14)

followed by integration by parts, (see section 3.3 below), equations 3.11 and 3.12
can be rewritten as

G′‖(ω) =

∫ ∞
0

[H(τ, γ̇2)− 2γ̇2τ
∂2

∂τ∂γ̇2
H(τ, γ̇2)]

ω2τ2

1 + ω2τ2
dτ

τ
,

(3.15)

G′′‖(ω) =

∫ ∞
0

[H(τ, γ̇2)− 2γ̇2τ
∂2

∂τ∂γ̇2
H(τ, γ̇2)]

ωτ

1 + ω2τ2
dτ

τ
.

(3.16)

Hence

G′‖(ω) =

∫ ∞
0

H‖(τ, γ̇
2)

ω2τ2

1 + ω2τ2
dτ

τ
, (3.17)

G′′‖(ω) =

∫ ∞
0

H‖(τ, γ̇
2)

ωτ

1 + ω2τ2
dτ

τ
, (3.18)
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where

H(τ, γ̇2)− 2γ̇2τ
∂2

∂τ∂γ̇2
H(τ, γ̇2) = H‖(τ, γ̇

2) (3.19)

is the response spectrum for PSR. Comparing 3.17 and 3.18 with 2.7 and 2.8,
respectively, we see that G′‖(ω) and G′′‖(ω) satisfy the Kramers-Krönig relations.

This is the case even if H‖(τ, γ̇
2) takes on both positive and negative values.

3.3. Integration by parts.

Let

U =
ω2τ2

1 + ω2τ2
, V =

∂

∂γ̇2
H(τ, γ̇2). (3.20)

Then, using identity 3.13, it follows that∫ ∞
0

2ω2τ2

(1 + ω2τ2)2
∂

∂γ̇2
H(τ, γ̇2)

dτ

τ
=

∫ ∞
0

τ
∂U

∂τ
V
dτ

τ
=

∫ ∞
0

∂U

∂τ
V dτ. (3.21)

Integration by parts then gives∫ ∞
0

∂U

∂τ
V dτ = [UV ]∞0 −

∫ ∞
0

U
∂V

∂τ
dτ , (3.22)

provided the expression on the right is finite. For a polymeric material with
no Newtonian solvent, H and all its derivatives vanish as τ → 0 and τ → ∞.
Therefore V and its derivatives vanish as τ → 0 and τ → ∞, while U remains
finite. Again, for a material with a Newtonian solvent, V and its derivatives
vanish as τ → 0 and τ →∞, while U remains finite. Hence in all cases [UV ]∞0 =
0. Thus, 3.22 may be rewritten∫ ∞

0

∂U

∂τ
V dτ = −

∫ ∞
0

Uτ
∂V

∂τ

dτ

τ
, (3.23)

which gives∫ ∞
0

2ω2τ2

(1 + ω2τ2)2
∂

∂γ̇2
H(τ, γ̇2)

dτ

τ
= −

∫ ∞
0

[τ
∂2

∂τ∂γ̇2
H(τ, γ̇2)]

ω2τ2

1 + ω2τ2
dτ

τ
(3.24)

Substituting 3.24 into 3.11 leads to 3.15.

The same argument applies to 3.12, leading to 3.16. Here, choose

U =
ωτ

1 + ω2τ2
, (3.25)

with V the same as before.
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4. Interconversion of parallel and orthogonal response spectra.

For clarity, let H⊥ and H‖ denote the response spectra for OSR and PSR,
respectively. For the Lodge type-models (3.1), the two spectra are related by
the linear hyperbolic partial differential equation (3.19). Suppose that H‖ can
be determined from measurement of G′‖ and G′′‖ for a range of shear-rates γ̇.

Then we can solve (3.19) to determine H⊥ and hence G′⊥, G
′′
⊥. Conversely,

if H⊥ can be determined from measurement of G′⊥ and G′′⊥, then (3.19)
determines H‖ and hence G′‖, G

′′
‖ .

4.1. Some exact solutions.

In this section we give local solutions for H⊥ in terms of H‖, i.e., in the first
instance, we restrict attention to a local range of shear-rates 0 < γ̇a < γ̇ < γ̇b <
∞, which we denote by Γab = (γ̇a, γ̇b). We anticipate that Γab covers only part
of the measurable range of shear-rates in PSR, but that local solutions can be
found for all parts of the range. Note that any function of γ̇2 is also a function
of γ̇, and so, without loss of generality we may write

H‖(τ, γ̇
2) = λH(τ, 0) + H̄‖(τ, γ̇), (4.1)

H⊥(τ, γ̇2) = λH(τ, 0) + H̄⊥(τ, γ̇), (4.2)

where H(τ, 0) denotes the linear relaxation spectrum, and λ is a constant. The
shear viscosity is then given by

η(γ̇) =

∫ ∞
0

H⊥(τ, γ̇2)dτ = λη0+η̄(γ̇), where η̄(γ̇) =

∫ ∞
0

H̄⊥(τ, γ̇)dτ, (4.3)

where η0 denotes the zero shear-rate viscosity. No assumption is made regarding
the sign of η̄(γ̇). The constant λ is chosen to ensure

η(γ̇) = η̄(γ̇) + λη0 ≥ 0, γ̇a < γ̇ < γ̇b. (4.4)

We shall require that H̄⊥(τ, γ̇) is piecewise continuously differentiable with
respect to both variables τ and γ̇. This enables the following:
(i) H̄‖(τ, γ̇) can be represented by a rate-dependent discrete spectrum; and
(ii) if Γab is a shear-thinning range, and η̄ > 0, we have

λ < 1 and
d

dγ̇
η̄(γ̇) =

∫ ∞
0

∂H̄

∂γ̇
(τ, γ̇)dτ < 0, γ̇a < γ̇ < γ̇b. (4.5)

On the other hand, if η̄ < 0, at least one of the inequalities in 4.5 is reversed.

Since ∂/∂γ̇2 = (2γ̇)−1∂/∂γ̇, under the decompositions 4.2 and 4.1, equation
3.19 reduces to

−H̄⊥(τ, γ̇) + τ γ̇
∂2

∂τ∂γ̇
H̄⊥(τ, γ̇) = −H̄‖(τ, γ̇), (4.6)
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Exact solutions to equation 4.6 may be found as follows. Introduce a stretched
variable ξ = τ γ̇α, where α is a constant. We then seek solutions of the form

H̄⊥(τ, γ̇) = H̄⊥(ξ), with H̄‖(τ, γ̇) = H̄‖(ξ), ξ = τ γ̇α. (4.7)

In the local range of shear-rates Γab, the shear viscosity has the form

η(γ̇) = λη0 + κγ̇−α, γ̇a < γ̇ < γ̇b, (4.8)

where κ =
∫∞
0
H̄⊥(ξ)dξ is a constant. The constants α and κ have the same

sign if the viscosity over the range Γab is shear-thinning, but are of opposite
sign if the viscosity over this range in shear-thickening.

In terms of the stretched variable ξ, equation 4.6 reduces to an ordinary
differential equation of second-order:

−H̄⊥(ξ) + αξH̄ ′⊥(ξ) + αξ2H̄ ′′⊥(ξ) = −H̄‖(ξ), (4.9)

where the ′ denotes differentiation with respect to ξ. This has a solution for H̄⊥
in terms of H̄‖ given by

H̄⊥(ξ) = 1
2β

∫ ξ

[(
x

ξ
)β − (

ξ

x
)β ]H̄‖(x)

dx

x
, with β = 1/

√
α, (4.10)

= β

∫ ln ξ

sinh[β(lnx− ln ξ)]H̄‖(x)d(lnx). (4.11)

The boundary conditions on H̄⊥, which are necessary conditions for the viscosity
to remain finite, are

H̄⊥(0) = 0, and lim
ξ→∞

H̄⊥(ξ) = 0. (4.12)

The same conditions 4.12 will be asked of H̄‖. Finally, to ensure regularity in
equation 4.6 we impose

lim
ξ→∞

ξH̄ ′⊥(ξ) = lim
ξ→∞

ξ2H̄ ′′⊥(ξ) = 0. (4.13)

It is clear from 4.10 that, when α > 0, then β is a positive constant, while if
α < 0, then β is pure imaginary, with β = −i|β| = −i/

√
|α|. In the latter case,

equation (3.11) may be rewritten as

H̄⊥(ξ) = |β|
∫ ln ξ

sin[|β|(ln ξ − lnx)]H̄‖(x)d(lnx). (4.14)

We end this subsection by proving a very interesting result:

Result 4.1. In a shear-thinning region, H̄‖(ξ) must be negative for some
values of the relaxation time τ .
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We shall demonstrate later that Result 4.1 allows G′‖(ω) to become negative
for a certain range of frequencies ω. As stated in the introduction, there
is experimental evidence for this phenomenon reported in the literature.
Yamamoto [14] observes that, theoretically, there are conditions under which
G′′‖(ω) can also become negative for a certain range of frequencies. Our theory
does not preclude this eventuality.

To prove Result 4.1, it is enough to consider the case α > 0, for otherwise κ
must be negative, and so H̄‖ must be negative for some values of the relaxation
time. Using Liebnitz’ rule for integrals to differentiate 4.11, we find

H̄ ′⊥(ξ) = −β2ξ−1
∫ ln ξ

cosh[β(lnx− ln ξ)]H̄‖(x)d(lnx). (4.15)

It is clear that if H̄‖ is everywhere positive then ξH̄ ′⊥(ξ) is everywhere negative.
Furthermore, either there exists a finite constant C < 0 such that ξH̄ ′⊥(ξ)→ C
as ξ → ∞, or ξH̄ ′⊥(ξ) → −∞ as ξ → ∞. In either case the first condition in
4.13 cannot hold, and so Result 4.1 follows immediately.

4.2. Discrete and semi-discrete response spectra.

We may infer from 3.17 and 3.18 that H̄‖ is representable as a discrete
spectrum. However, this spectrum does not share the properties of a linear re-
laxation spectrum. Result 4.1 informs us that at least one of the discrete modes
must carry a negative coefficient. Complete monotonicity of the associated
nonlinear relaxation modulus in PSR is thus lost. On the other hand, complete
monotonicity is retained by the corresponding OSR relaxation modulus. In
this section we explore the nature of a discrete spectral representation for H̄‖,
and the corresponding spectral representation for H̄⊥.

Let us first examine the spectral representation for H̄⊥ resulting from a
single constituent mode in H̄‖. Consider

H̄‖(ξ) = c1δ(ξ − ξ1), (4.16)

where δ(.) is the Dirac point impulse function, and c1, ξ1 are constants, with
ξ1 > 0. The rate-dependence becomes clear by associating with ξ1 the rate-
dependent relaxation time τ1 = ξ1γ̇

−α. Equation 4.16 may then be written

H̄‖(ξ) = c1γ̇
−αδ(τ − τ1), (4.17)

With α > 0, τ1 decreases with increasing shear-rate. From 4.11 we deduce

H̄⊥(ξ) = −βc1ξ−11 sinh[β(ln ξ − ln ξ1)]H (ξ − ξ1), (4.18)

= −βc1ξ−11 sinh[β(ln τ − ln τ1)]H (τ − τ1), (4.19)

where H (.) denotes the Heaviside unit step function.
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The response spectrum given by 4.18 is positive for ξ > ξ1 provided the
coefficient c1 is negative. Moreover, with c1 < 0 and τ fixed, H̄⊥(ξ) is a
decreasing function of shear-rate. This means that H(τ, γ̇2) is also a decreasing
function of shear-rate. H̄⊥(ξ) in 4.18 also satisfies the first of the boundary
conditions 4.12. However the second boundary condition is not satisfied, since
|H̄⊥(ξ)| → ∞ as ξ → ∞. Clearly, therefore, the representation of H̄‖ by a
single discrete mode is not compliant with a finite shear viscosity. We shall
show that this situation can easily be rectified by constructing a triplet of Dirac
functions with coefficients whose values alternate in sign.

Definition. Let ξ1, ξ2, ξ3 be three positive constants with 0 < ξ1 < ξ2 < ξ3.
We define a compliant Dirac triplet as a triplet of the form

D(ξ; ξ1, ξ2, ξ3) = c1δ(ξ − ξ1) + c2δ(ξ − ξ2) + c3δ(ξ − ξ3), (4.20)

where the coefficients c1, c2, c3 are chosen in the ratio

c1 : c2 : c3 = ξ1 sinh[β ln(
ξ2
ξ3

)] : ξ2 sinh[β ln(
ξ3
ξ1

)] : ξ3 sinh[β ln(
ξ1
ξ2

)]. (4.21)

Note that the values of the entries in the ratios on the right-hand side of 4.21
alternate in sign: -,+,-. Also, |c2| > |c1|. For modelling purposes, each triplet
has at most five free parameters: β, c1, ξ1, ξ2, ξ3, with β fixed for the range of
shear-rates Γab.

It is now a fairly straightforward exercise to establish the following:

Result 4.2 The compliant Dirac triplet 4.20 has a corresponding orthogo-
nal response spectrum E(ξ; ξ1, ξ2, ξ3), which is a hyperbolic spline with knots
ln ξ1, ln ξ2, ln ξ3. Specifically, E takes the form

E(ξ; ξ1, ξ2, ξ3) =


0, 0 ≤ ξ ≤ ξ1,
−βc1ξ−11 sinh[β ln( ξξ1 )], ξ1 ≤ ξ ≤ ξ2,
−β{c1ξ−11 sinh[β ln( ξξ1 )] + c2ξ

−1
2 sinh[β ln( ξξ2 )]}, ξ2 ≤ ξ ≤ ξ3,

0, ξ ≥ ξ3.
(4.22)

It is easy to check that E ≥ 0 if c1 < 0 and E ≤ 0 if c1 > 0. Also, E is
continuous, with compact support (ξ1, ξ3). Moreover, the entries on the right-
hand side of 4.22 for the first three subintervals (0, ξ1), (ξ1, ξ2), and (ξ2, ξ3)
follow immediately from 4.18. When ξ ≥ ξ3, the entry is

−β{c1ξ−11 sinh[β ln(
ξ

ξ1
)] + c2ξ

−1
2 sinh[β ln(

ξ

ξ2
)] + c3ξ

−1
3 sinh[β ln(

ξ

ξ3
)]}. (4.23)

But for m = 1, 2, 3 we may expand the sinh functions as

sinh[β ln(
ξ

ξm
)] = sinh(β ln ξ) cosh(β ln ξm)− sinh(β ln ξm) cosh(β ln ξ).
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Thus the entry 4.23 vanishes if

c1ξ
−1
1 cosh(β ln ξ1) + c2ξ

−1
2 cosh(β ln ξ2) + c3ξ

−1
3 cosh(β ln ξ3) = 0,

and c1ξ
−1
1 sinh(β ln ξ1) + c2ξ

−1
2 sinh(β ln ξ2) + c3ξ

−1
3 sinh(β ln ξ3) = 0.

Both these identities are satisfied if the coefficients c1, c2, c3 are in the ratio 4.21.

Figure 1: A compliant Dirac triplet, D, and its corresponding hyperbolic spline, E, with
β = 1; c1 = −1; (ξ1, ξ2, ξ3) = (1, 2, 3). E is doubled in scale for clarity.

Figure 1 shows a compliant Dirac triplet and its corresponding hyperbolic
spline. The parameter values are β = 1; c1 = −1; (ξ1, ξ2, ξ3) = (1, 2, 3).
For purposes of illustration, E is doubled in scale for clarity, and the Dirac
functions are given finite heights equal to the values of the coefficients. For
all shear-rates in the range Γab, the knots (ln ξ1, ln ξ2, ln ξ3) are fixed. When
γ̇ = 1, in natural-log scale, the relaxation times (ln τ1, ln τ2, ln τ3) coincide
with the knots, but as γ̇ increases the relaxation times translate to the left.
Viewed as functions of ln τ , both D and E shift to the left as γ̇ increases,
without changing shape or size. This translational property only applies to
the rate-dependent part of H⊥(τ, γ̇2) and H‖(τ, γ̇

2) in 4.2 and 4.1. If λ 6= 0,
the rate-dependence of H⊥(τ, γ̇2) and H‖(τ, γ̇

2) is not translational due to the
contribution from the linear relaxation spectrum.

Result 4.2 is entirely consistent with the known properties of splines.
When a linear differential operator with constant coefficients is applied to a
polynomial spline of order n, the result is a collection of splines of order ≤ n.
The same is true of hyperbolic splines with a logarithmic variable. Expressed
in terms of ln ξ, the differential operator in 4.9 is a linear differential opera-
tor with constant coefficients. When applied to the order 2 hyperbolic spline
E, the result is a collection of hyperbolic splines of order 0, i.e. the Dirac triplet.

13



Recalling the decompositions 4.2 and 4.1, if the linear spectrum H(τ, 0) is
represented as a conventional discrete spectrum and the response spectrum
H̄‖(τ, γ̇) is represented by Dirac triplets, then the corresponding spectrum
H⊥(τ, γ̇2) will be semi-discrete, i.e. a combination of the discrete linear
spectrum and continuous hyperbolic splines of order 2.

5. Interconversion of complex moduli.

There are two ways in which interconversion between G∗‖ and G∗⊥ can be
accomplished on the basis of the Lodge-type model 3.1. One way is to convert
the differential equation 3.19 into a differential equation relating G∗⊥ to G∗‖
and finding a solution. In principle, this enables conversion from G∗‖ to G∗⊥
directly from the experimental data, without a need for spectral representa-
tions H‖ and H⊥. However, the method requires the collection of negative
data, which may present challenges in implementation. Also an initial low
frequency value for G∗⊥ is needed, which may be difficult to estimate. Since the
method is not without theoretical interest, we will include a brief account below.

The second approach is to use the exact solutions for the response spectra
H̄‖ and H̄⊥ obtained in the previous section. It is preferable to have a flow
curve available to determine the parameter β, but this is not strictly necessary.
The approach allows interconversion in both directions and necessitates model-
fitting. We describe each approach in turn.

5.1. A differential equation relating G∗⊥ to G∗‖.

The integral operators T and S introduced in 2.7 and 2.8 have a special
property: they are both anticommutative with respect to homogeneous differ-
entiation. Specifically, let A(τ) be a continuously differentable function which
vanishes at τ = 0 and as τ →∞. Then

(T τ d
dτ
A)(ω) = −ω d

dω
(T A)(ω) and (Sτ d

dτ
A)(ω) = −ω d

dω
(SA)(ω). (5.1)

The identities 5.1 are an immediate consequence of integration by parts and
the symmetry of the operators T and S with respect to the variables τ and ω.

For clarity, we restate here the differential equation 3.19 in the equivalent
form

H⊥(τ, γ̇2)− γ̇τ ∂2

∂τ∂γ̇
H⊥(τ, γ̇2) = H‖(τ, γ̇

2). (5.2)

Applying the operator T + iS to both sides of 5.2 gives, with the aid of 5.1,

G∗⊥(ω) + γ̇ω
∂2

∂ω∂γ̇
G∗⊥(ω) = G∗‖(ω). (5.3)
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The following result follows immediately.

Result 5.1. Since

lim
ω→∞

ω
∂2G′⊥(ω)

∂ω∂γ̇
= lim
ω→∞

∫ ∞
0

2ω2τ2

(1 + ω2τ2)2
∂H⊥
∂γ̇

dτ

τ
= 0,

then the plateau moduli in OSR and PSR, derived from the Lodge-type model
3.1, are equal, i.e.

lim
ω→∞

G′⊥(ω) = lim
ω→∞

G′‖(ω), or G′⊥(∞) = G′‖(∞). (5.4)

Result 5.1 may also be derived directly from equations 3.11 and 3.8 (with
Ge(γ̇) = 0).

Definition. Two complex-valued functions G∗⊥ and G∗‖ satisfying 5.3 are said

to be KK-compliant if their real and imaginary parts (G′⊥, G
′′
⊥) and (G′‖, G

′′
‖)

both satisfy the Kramers-Krönig relations.

Result 5.2. A sufficient condition for G∗⊥ and G∗‖ to be KK-compliant is that
there exist response spectra H⊥ and H‖ such that

G′⊥ = T H⊥, G′′⊥ = SH⊥, (5.5)

and G′‖ = T H‖, G′′‖ = SH‖. (5.6)

There is no obvious reason, however, to assume that 5.5 and 5.6 are necessary
conditions for KK-compliance. Whereas equation 5.2 implies equation 5.3, the
fact that the inverse operators T −1 and S−1 are not, in general, continuous,
poses difficulties for the reverse implication. This question is worthy of further
investigation, but will not be addressed in this paper.

Clearly, equation 5.3 is of theoretical interest. A solution may be found by
proceeding as before. Introduce a reduced frequency variable ζ = ωγ̇−α, where
α > 0 and β = 1/

√
α. Now seek a solution of the form

G∗⊥(ω) = λG∗(ω) + Ḡ∗⊥(ζ), (5.7)

G∗‖(ω) = λG∗(ω) + Ḡ∗‖(ζ), (5.8)

where G∗(ω) is the linear complex modulus (γ̇ = 0), and λ < 1 is a constant
chosen in accordance with 4.4. We then obtain

G∗⊥(ω) = λG∗(ω) + Ḡ∗⊥(ζ1) + β

∫ ln ζ

ln ζ1

sinh[β(ln z − ln ζ)]Ḡ∗‖(z)d(ln z). (5.9)

If an estimate for the low frequency initial value Ḡ∗⊥(ζ1) can be found, therefore,
equations 5.7 to 5.9 enable conversion from G∗‖ to G∗⊥ directly from the exper-
imental data, without a need for spectral representations. However, working
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directly with experimental data in this way does not guarantee KK-compliance
of the converted G∗⊥ and G∗⊥.

The requirements necessary in the practical implementation of the conversion
formula 5.9 are the following:
(i) the collection of possibly negative parallel moduli, G∗‖(ω);

(ii) the estimation of a low frequency initial value G∗⊥(ζ1);
(iii) sufficiently many sampled frequencies to enable the accurate evaluation of
the integrals by numerical quadrature; and
(iv) a flow curve to enable the determination of the parameter β.
None of these requirements are strictly necessary if spectral representations are
chosen for Ḡ∗‖(ζ) and G∗⊥(ζ). The lower frequency limit ζ1 may then be taken

as ζ1 = 0, with corresponding initial value Ḡ∗⊥(ζ1) = 0, and, at least for rational
values of β, the integrals can be evaluated in closed form, if required.

5.2. A spectral representation approach.

As indicated above, working with spectral representations guarantees KK-
compliance of the converted G∗⊥ and G∗⊥. Consider the spectral decompositions
4.1 and 4.2. Using discrete and semi-discrete representations we have

H‖(τ, γ̇
2) = λ

∑
k

ck0δ(τ − τk0) +
∑
k

D(τ γ̇α; ξk1, ξk2, ξk3), (5.10)

H⊥(τ, γ̇2) = λ
∑
k

ck0δ(τ − τk0) +
∑
k

E(τ γ̇α; ξk1, ξk2, ξk3), (5.11)

where the linear spectrum {ck0, τk0} has been predetermined from a pure oscil-
latory shear experiment. The corresponding moduli are given by

G′‖(ω) = λG′(ω) + Ḡ′‖(ωγ̇
−α),

= λ
∑
k

ck0
ω2τk0

1 + ω2τ2k0
+
∑
k

3∑
m=1

ckm
ω2ξkm

γ̇2α + ω2ξ2km
, (5.12)

G′′‖(ω) = λG′′(ω) + Ḡ′′‖(ωγ̇
−α),

= λ
∑
k

ck0
ω

1 + ω2τ2k0
+ γ̇α

∑
k

3∑
m=1

ckm
ω

γ̇2α + ω2ξ2km
, (5.13)

and by

G′⊥(ω) = λG′(ω) + Ḡ′⊥(ωγ̇−α),

= λ
∑
k

ck0
ω2τk0

1 + ω2τ2k0
+
∑
k

[T E(τ γ̇α; ξk1, ξk2, ξk3)](ω), (5.14)

G′′⊥(ω) = λG′′(ω) + Ḡ′′⊥(ωγ̇−α),

= λ
∑
k

ck0
ω

1 + ω2τ2k0
+
∑
k

[SE(τ γ̇α; ξk1, ξk2, ξk3)](ω). (5.15)
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With {ck0, τk0} predetermined, the remaining constants {ckm, ξkm} are deter-
mined by fitting the models 5.12 and 5.13 to the available PSR experimental
data at a fixed shear-rate γ̇ in the range Γab. The constants ck1, ck2, ck3 must
be chosen in the ratio 4.21, so only one in three of these constants is a free
parameter.

Note that the models 5.12 to 5.15 are confined to the range of shear-rates
Γab, and are not necessarily applicable in the limit γ̇ → 0.

To complete the conversion from G∗‖ to G∗⊥, it remains only to derive suit-
able expressions for the transformed splines T E and SE in 3.8 and 3.9. Such
expressions may be found in terms of the integrals

Iβ(ω; τm, τn) =

∫ τn

τm

(
τ

τm

)β
ω2τ2

1 + ω2τ2
dτ

τ
, (5.16)

Jβ(ω; τm, τn) =

∫ τn

τm

(
τ

τm

)β
ωτ

1 + ω2τ2
dτ

τ
. (5.17)

Specifically:

[T E(τ γ̇α; ξ1, ξ2, ξ3)](ω) = − 1
2βc1ξ

−1
1 [Iβ(ω; τ1, τ3)− I−β(ω; τ1, τ3)]

− 1
2βc2ξ

−1
2 [Iβ(ω; τ2, τ3)− I−β(ω; τ2, τ3)],

(5.18)

and

[SE(τ γ̇α; ξ1, ξ2, ξ3)](ω) = − 1
2βc1ξ

−1
1 [Jβ(ω; τ1, τ3)− J−β(ω; τ1, τ3)]

− 1
2βc2ξ

−1
2 [Jβ(ω; τ2, τ3)− J−β(ω; τ2, τ3)],

(5.19)

with τm = ξmγ̇
−α, m = 1, 2, 3.

It must be noted that the above conversion also works in the reverse
direction, from G∗⊥(ω) to G∗‖(ω). In this case the constants {ckm, ξkm}
are determined by fitting the models 5.14 and 5.15 to the available OSR
experimental data. It should also be emphasized that each set of parameters
obtained by model-fitting is local to the range of shear-rates Γab. Any
flow curve can be separated into a set of local ranges Γab in which the
power index, −α, is effectively a constant. Within such a range, a PSR (or
OSR) experiment need be conducted at only one representative shear-rate.
Finally, it should be noted that if β is an integer multiple of 1

2 or 1
3 , the

integrals 5.16 and 5.17 may be expressed in closed form in terms of elemen-
tary functions. Otherwise, they are readily computed by numerical quadratures.
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5.3. A model example.

We illustrate the theory presented above by considering a model example.
The parallel response spectrum consists of a single discrete mode for the
linear spectrum, plus a single Dirac triplet for the rate-dependent part. The
rate-dependent parts of the parallel and orthogonal response spectra are scaled
versions of the spectra shown in Figure 1. Viewed as a function of ln(τ), the
spectra shift to the left as shear-rate increases. In Figure 2 are shown log-log
plots of |G′‖(ω)| obtained from 5.12 for three different shear-rates. As the

shear-rate increases, the profiles shift to the right, and negative parts of G′‖(ω)
become apparent. In Figure 3 are shown the corresponding log-log plots of
G′′‖(ω) obtained from 5.13 for the same three different shear-rates. G′′‖(ω) has
no negative values for this model example, even when extrapolated beyond the
frequency range shown.

The converted G′⊥ and G′′⊥, obtained from equations 5.14 and 5.15 are shown
in Figures 4 and 5, respectively. The frequency range in Figure 4 has been
extended to demonstrate that the orthogonal and parallel moduli converge to
the same plateau modulus at high frequency. Model 5.12 predicts the same
plateau modulus for all shear rates in the local range Γab.

6. Limitations

There is a wide range of constitutive models available which describes
nonlinear response in superposition rheometry. It is important to note that
the theory and results derived in this paper hold for the Lodge-type model
(3.1). Whereas it may be anticipated that similar results hold for other
models, rigorous conclusions pertaining to other constitutive models must
await separate investigation. In particular, the theory and results are presented
in the context of weak nonlinear response, and may well require modification in
the case of strong nonlinear response. For example, Metri and Briels [17] indi-
cate, on the basis of Brownian dynamics simulation, that the Kramers-Krönig
relations for OSR can break down under conditions of strong nonlinear response.

The solution class studied in section 4.1 is for finite ranges of shear-rates
strictly greater than zero. Different solution classes are available in the limit
γ̇ → 0, and asymptotic matching principles may be required to present a
complete picture. Furthermore, numerical techniques may be required if the
discrete and semi-discrete spectral representations in section 5.2 are replaced
by fully continuous representations.

Finally, it should be clear that this is essentially a theoretical paper which
begins to explore the nature of parallel response spectra and techniques of in-
terconversion. We propose to follow this initial exploration with future investi-
gations into other constitutive models, and compare their use in interconverting
between experimental data available in the literature.
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7. Conclusions

In parallel superposition rheometry, the problem of how to interpret and uti-
lize dynamic moduli derived from Lodge-type models has been unresolved since
the seminal paper of Yamamoto in 1971 on rate-dependent relaxation spectra.
It has been assumed many times in the rheological literature that the parallel
dynamic moduli derived by Yamaoto do not satisfy the classical Kramers-Krönig
relations. In this paper we have shown that these assumptions are false, i.e. that
these parallel dynamic moduli do satisfy the classical Kramers-Krönig relations.
We have also shown how to interpret parallel response spectra in Lodge-type
models by relating them to their orthogonal counterparts. Special bases have
been introduced which enable the interconversion of parallel and orthogonal
response spectra, and of parallel and orthogonal dynamic moduli, in both di-
rections.
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Figure 2: Model data for |G′‖(ω)| based on equation 5.12 for three shear-rates (γ̇1, γ̇2, γ̇3) =

(0.2, 0.3, 0.4). Single linear mode λc0 = 2.5×104, τ0 = 4. Single Dirac triplet with parameters
β = 1, (c1, c2, c3) = (−1, 6.4,−5.4)× 104, (ξ1, ξ2, ξ3) = (1, 2, 3).
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Figure 3: Model data for G′′‖ (ω) based on equation 5.13 for three shear-rates (γ̇1, γ̇2, γ̇3) =

(0.2, 0.3, 0.4). Single linear mode λc0 = 2.5×104, τ0 = 4. Single Dirac triplet with parameters
β = 1, (c1, c2, c3) = (−1, 6.4,−5.4)× 104, (ξ1, ξ2, ξ3) = (1, 2, 3).
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Figure 4: Model data. Comparison of G′‖(ω) in Figure 2 with corresponding G′⊥(ω) at same
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