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Abstract

The computational cost of parametric studies currently represents the major lim-
itation to the application of simulation-based engineering techniques in a daily in-
dustrial environment. This work presents the first nonintrusive implementation of
the proper generalised decomposition (PGD) in OpenFOAM, for the approximation
of parametrised laminar incompressible Navier-Stokes equations. The key feature of
this approach is the seamless integration of a reduced order model (ROM) in the
framework of an industrially validated computational fluid dynamics software. This
is of special importance in an industrial environment because in the online phase of
the PGD ROM the description of the flow for a specific set of parameters is obtained
simply via interpolation of the generalised solution, without the need of any extra so-
lution step. On the one hand, the spatial problems arising from the PGD separation
of the unknowns are treated using the classical solution strategies of OpenFOAM,
namely the semi-implicit method for pressure linked equations (SIMPLE) algorithm.
On the other hand, the parametric iteration is solved via a collocation approach.
The resulting ROM is applied to several benchmark tests of laminar incompressible
Navier-Stokes flows, in two and three dimensions, with different parameters affecting
the flow features. Eventually, the capability of the proposed strategy to treat indus-
trial problems is verified by applying the methodology to a parametrised flow control
in a realistic geometry of interest for the automotive industry.
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1 Introduction and motivations

Computational fluid dynamics (CFD) is a key component in the current industrial design
pipeline. Simulations of incompressible flows are performed on a daily basis to solve dif-
ferent problems both in automotive and aeronautical industries. Owing to its robustness,
the most widely spread CFD methodology is the finite volume (FV) method [1–7]. Using
this technique, numerically evaluated quantities of interest (e.g. drag and lift) have proved
to match reasonably well experimental results in many realistic engineering problems.

Nonetheless, design and optimisation cycles in a production environment require mul-
tiple queries of the same problem with boundary conditions, physical properties of the
fluid and geometry of the domain varying within a range of values of interest. In this con-
text, parameters act as extra-coordinates of a high-dimensional partial differential equation
(PDE). The computational cost of such parametric studies currently represents the major
limitation to the application of simulation-based engineering techniques in a daily indus-
trial environment. It is well-known that the computational complexity of approximating
the PDEs describing the problems under analysis increases exponentially with the number
of parameters considered. In recent years, reduced order models [8,9], including reduced ba-
sis (RB) [10–16], proper orthogonal decomposition (POD) [17–23] and hierarchical model
reduction (HiMod) [24–27], have been proposed to reduce the computational burden of
parametric analysis for several physical problems, including incompressible flows. The
aforementioned techniques rely on an a posteriori reduction based on snapshots computed
as solutions of the full-order model for different values of the parameters under analysis.

An alternative approach is represented by PGD [28–32]. This method features an a
priori reduction [33–35], using a separable approximation of the solution, which depends
explicitly on the parameters under analysis. In this context, during an offline phase, a
reduced basis is constructed with no a priori knowledge of the solution, whereas efficient
online evaluations of the generalised solution are performed by simple interpolation in the
parametric space. The PGD framework has been first applied to incompressible Navier-
Stokes equations in [36] to separate x and y directions in two-dimensional problems and
in [37, 38] to separate space and time discretisations of unsteady flows. Moreover, special
attention has been devoted to the study of convective phenomena and convection stabilisa-
tion using PGD-based separated representations [39,40]. Applications of PGD to different
physical phenomena including wave propagation, incompressible flows, nonlinear thermal
problems and elastic metamaterials have been studied in [41–44]. Of course, parametric
solutions involving the geometry of the domain, which are beyond the contributions of this
paper, are of great interest in an industrial environment for the speed up of shape de-
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sign and optimisation procedures. A separated solution of a PDE involving parametrised
geometries was first proposed in [45] and further investigated in [42, 46, 47]. Such tech-
nique can be extended to the PGD algorithm for OpenFOAM proposed in this work via
the definition of two nested computational meshes, one with the FV cells used for the
flow computation and one featuring macrocells for the description of the geometry. In the
context of geometrically parametrised problems, it is worth mentioning that a seamless
integration of PGD and computer aided design (CAD) tools has been recently proposed
in [48] to exploit the potential of parametric representation of curves and surfaces via the
control points of nonuniform rational B-splines (NURBS).

In the context of flow problems, model reduction techniques based on Galerkin pro-
jection have been extensively studied in the literature [49–51]. In this framework, several
strategies have been proposed to construct the trial basis, using POD [52], RB [53] or the
empirical interpolation method [54]. Concerning incompressible Navier-Stokes equations,
in [55, 56] supremiser stabilisations techniques have been investigated to couple the FV
method with POD to solve parametrised turbulent flow problems. Alternative projection
methods based on minimisation of the residual of the momentum equation only [57] and
on a least-squares Petrov-Galerkin approach [58–60] have been proposed. More recently,
special attention has also been devoted to FV-based structure-preserving ROMs for con-
servation laws [61].

Another key aspect for the application of simulation-based techniques to industrial
problems is the capability of the proposed methods to provide verified and certified results.
This problem has been classically treated by equipping numerical methods with reliable
and fully-computable a posteriori error estimators using equilibrated fluxes [62–64] and
flux-free approaches [65–67] to control the error of the solution as well as of quantities of
interest [68–75]. Nonetheless, these approaches require intrusive modifications of existing
computational libraries and may not be feasible in the context of commercial software.
Hence, although the effort of the academic community in this direction, such solutions have
not been successfully and widely integrated in codes utilised by the industry. More recently,
to circumvent this issue, great effort has been devoted to nonintrusive implementations in
which novel numerical methodologies are externally coupled to existing commercial and
open-source software used in industry on a daily basis. Some contributions in this direction
have been successfully proposed coupling PGD with Abaqus R© for mechanical problems [76]
and PGD with SAMTECH R© for shape optimisation problems [77]. For flow problems, the
coupling of POD and OpenFOAM has been discussed in [56,78]. The present contribution
is the first nonintrusive integration of the PGD framework in OpenFOAM for the solution of
parametrised incompressible Navier-Stokes problems in the laminar regime. The resulting
algorithm, henceforth referred to as pgdFoam, relies on internal functions and routines of
OpenFOAM [79] and exploits the incompressible flow solver simpleFoam for the spatial
iteration of the alternating direction scheme.

The rest of this paper is organised as follows. Section 2 recalls the incompressible
Navier-Stokes equations and their FV approximation. The parametrised equations for
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laminar Navier-Stokes flows are introduced in Section 3 as well as their PGD approxima-
tion and its nonintrusive implementation in OpenFOAM. Numerical simulations to validate
the discussed reduced-order strategy are provided in Section 4, whereas its application to
parametrised flow control problems in laminar regime is presented in Section 5. Section 6
summarises the results and two appendices complement the information with some tech-
nical details on the formulation and the OpenFOAM spatial solver utilised.

2 Finite volume approximation of laminar incompress-

ible Navier-Stokes equations

In this section, the steady Navier-Stokes equations for the simulation of incompressible
viscous laminar flows in d spatial dimensions are recalled. Let Ω ⊂ Rd, ∂Ω=ΓD ∪ ΓN be
an open bounded domain with disjoint Dirichlet, ΓD, and Neumann, ΓN , boundaries. The
flow problem under analysis consists of computing the velocity field u and the pressure p
such that 

∇·(u⊗u)−∇·(ν∇u) + ∇p = s in Ω,

∇·u = 0 in Ω,

u = uD on ΓD,

n·(ν∇u−pId) = t on ΓN ,

(1)

where the first equation describes the balance of momentum and the second one the con-
servation of mass. In Equation (1), s represents a volumetric source term, ν>0 is the
dynamic viscosity and Id is the d×d identity matrix. On the Dirichlet boundary ΓD, the
value uD of the velocity is imposed, whereas on ΓN the pseudo-traction t is applied. From
the modelling point of view, inlet surfaces and physical walls are described as Dirichlet
boundaries with an imposed entering velocity profile and a homogeneous datum, respec-
tively, whereas outlet surfaces feature homogeneous Neumann boundary conditions. For
the sake of simplicity and without loss of generality, ΓN is henceforth assumed to be an
outlet boundary, that is a null t is considered.

2.1 A cell-centred finite volume approximation using OpenFOAM

In this section, the formulation of a FV scheme for the laminar incompressible Navier-Stokes
equations is briefly recalled to introduce the notation needed for the high-dimensional
parametrised problem of Section 3. The domain Ω is partitioned in N nonoverlapping
cells Vi, i=1, . . . , N such that Ω:=

⋃N
i=1 Vi and Vi∩Vj=∅, for i 6=j. The FV discretisation

is constructed starting from the integral formulation of Equation (1), namely find (u, p),
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constant on each cell Vi, i=1, . . . , N , such that u=uD on ΓD and it holds
∫
Vi

∇·(u⊗u) dV −
∫
Vi

∇·(ν∇u) dV +

∫
Vi

∇p dV =

∫
Vi

s dV ,∫
Vi

∇·u dV = 0.

(2)

OpenFOAM implements a cell-centred FV rationale in which piecewise constant ap-
proximations are sought for velocity and pressure in each cell of the computational mesh
and the degrees of freedom of the discretised problem are located at the centroid of each
finite volume. Employing Gauss’s theorem, the integrals in Equation (2) are rewritten in
terms of fluxes over the boundaries of the cells and approximated using classical central
differencing schemes [4, 5]. Moreover, to handle the nonlinearity in the convection term,
OpenFOAM considers a relaxation approach introducing a fictitious time variable. The
resulting solution strategy relies on the SIMPLE algorithm [80] which belongs to the family
of fractional-step projection methods [81, Sect. 6.7]. A brief description of this method is
provided in B.

3 Nonintrusive proper generalised decomposition for

parametrised laminar flow problems

Consider now the case in which the user-prescribed data in Equation (1), i.e. the viscosity
coefficient, the source term and the boundary conditions, depend on a set of parameters
µ ∈ I ⊂ RM , with M being the number of parameters. More precisely, the set I de-
scribing the range of admissible parameters can be defined as the Cartesian product of the
domains of the M parameters, namely, I:=I1×I2×· · ·×IM with µi ∈ Ii for i=1, . . . ,M .
Within this context, µ is treated as a set of additional independent variables, or para-
metric coordinates, instead of problem parameters. For the purpose of discretisation, each
interval Ii is subdivided in Nµ subintervals. The unknown pair (u, p) is thus sought in a
high-dimensional space described by the independent variables (x,µ) ∈ Ω×I and fulfils
the following parametrised Navier-Stokes equations on each cell Vi, i=1, . . . , N

∫
I

∫
Vi

∇·(u⊗u) dV dI −
∫
I

∫
Vi

∇·(ν∇u) dV dI

+

∫
I

∫
Vi

∇p dV dI =

∫
I

∫
Vi

s dV dI,∫
I

∫
Vi

∇·u dV dI = 0.

(3)

In the following sections, the rationale for the construction of a separated solution of the
parametrised laminar Navier-Stokes equations is recalled and the proposed nonintrusive
implementation of the alternating direction scheme in OpenFOAM is presented.
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3.1 The proper generalised decomposition rationale

PGD constructs an approximation (un
PGD
, pn

PGD
) of the solution (u, p) of Equation (3) in

terms of a sum of n separable functions, or modes. Each mode is the product of functions
depending solely on one of the arguments x, µ1, . . . , µM . For the sake of readability and
without loss of generality, only the spatial coordinates x and the parametric ones µ are
henceforth separated.

Following [42], the so-called single parameter approximation is detailed. That is, for
each mode, a unique scalar parametric function φ(µ) is considered for all the variables and
the resulting separated form of the unknowns is{

un
PGD

(x,µ) = un−1
PGD

(x,µ) + σnuf
n
u (x)φn(µ),

pn
PGD

(x,µ) = pn−1
PGD

(x,µ) + σnp f
n
p (x)φn(µ),

(4)

where the superindex n denotes the, a priori unknown, number of terms in the PGD
expansion and the positive scalar coefficients σnu and σnp represent the amplitude of the n-
th mode for velocity and pressure, respectively. These coefficients are obtained normalising
the modal functions, namely

σnu := ‖fnu ‖ and σnp := ‖fnp ‖,

with ‖φn‖ = 1. Appropriate user-defined norms on the spatial and parametric domains
need to be introduced for each function. For all the simulations in Section 4 and 5, the L2

norm has been considered for normalisation.

Remark 1. The normalisation coefficients play a critical role in checking the convergence
of the PGD algorithm and may be used as quantitative stopping criterion in the PGD
enrichment procedure described in Section 3.2.

For a discussion on alternative formulations of the separation in Equation (4), involving
both scalar and vector-valued parametric functions, the interested reader is referred to [42].
Henceforth and except in case of ambiguity, the dependence of the modes on x and µ is
omitted.

Considering a linearised approach to compute each new mode, Equation (4) can be
rewritten as the following predictor-corrector single parameter approximation{

un
PGD

= ũn
PGD

+ σnu δ̃u
n
PGD

= un−1
PGD

+ σnuf
n
u φ

n + σnu δ̃u
n
PGD
,

pn
PGD

= p̃ n
PGD

+ σnp δ̃p
n
PGD

= pn−1
PGD

+ σnp f
n
p φ

n + σnp δ̃p
n
PGD
,

(5)

where ũn
PGD

:=un−1
PGD

+σnuf
n
u φ

n and p̃ n
PGD

:=pn−1
PGD

+σnp f
n
p φ

n account for the n−1 previously com-
puted terms and a prediction of the current mode. More precisely, (σnuf

n
u φ

n, σnp f
n
p φ

n) play
the role of predictors in the computation of the n-th mode, whereas (σnu δ̃u

n
PGD
, σnp δ̃p

n
PGD

) are the
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corresponding correctors featuring the variations ∆ in the spatial and parametric functions,
namely {

δ̃un
PGD

:= ∆fuφ
n + fnu ∆φ+∆fu∆φ,

δ̃p n
PGD

:= ∆fpφ
n + fnp ∆φ+∆fp∆φ.

(6)

Note that the last term in Equation (6) represents a high-order variation which is henceforth
neglected. As for the classical single parameter approximation, σnu and σnp represent the
amplitudes of the n-th velocity and pressure modes. That is, setting ‖φn +∆φ‖ = 1, they
are defined as

σnu := ‖fnu +∆fu‖ and σnp := ‖fnp +∆fp‖.

3.2 Predictor-corrector alternating direction scheme

In order to compute (un
PGD
, pn

PGD
) in Equation (5), a greedy algorithm is implemented. The

first PGD mode (u0
PGD
, p0

PGD
) is arbitrarily chosen to fulfil the Dirichlet boundary conditions

of the problem and the n-th mode is successively computed assuming that term n−1
is available [31, 32]. Some variations of this strategy based on Arnoldi-type iterations
have been investigated in [82, 83]. In this section, the alternating direction scheme used
to compute the PGD modes is described. A key assumption for the application of this
method is the separability of the data. For the sake of simplicity and without any loss of
generality, the separated form of the viscosity coefficient, see e.g. [46], is reported

ν(x,µ) := ψ(µ)D(x) =
nν∑
i=1

ψ1,i(µ1) · · ·ψM,i(µM)Di(x), (7)

and analogous separations are considered for all the parametric data in the problem under
analysis.

By plugging (5) into (3) and gathering the unknown increments (σnu δ̃u
n
PGD
, σnp δ̃p

n
PGD

) on
the left-hand side while leaving on the right-hand side the residuals computed using the
previous modes (un−1

PGD
, pn−1

PGD
) and the predictions (σnuf

n
u φ

n, σnp f
n
p φ

n) of the current one, the
following equations are obtained

∫
I

∫
Vi

∇·(σnu δ̃unPGD⊗σ
n
u δ̃u

n
PGD

) dV dI

+

∫
I

∫
Vi

∇·(σnu δ̃unPGD⊗ũ
n
PGD

) dV dI +

∫
I

∫
Vi

∇·(ũn
PGD
⊗σnu δ̃unPGD) dV dI

−
∫
I
ψ

∫
Vi

∇·(D∇(σnu δ̃u
n
PGD

)) dV dI +

∫
I

∫
Vi

∇(σnp δ̃p
n
PGD

) dV dI = Ru,∫
I

∫
Vi

∇·(σnu δ̃unPGD) dV dI = Rp,

(8)
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where the residuals are defined as

Ru :=Ru(u
n−1
PGD

, pn−1
PGD

, σnuf
n
u , σ

n
p f

n
p , φ

n) = Ru(ũ
n
PGD
, p̃ n

PGD
)

=

∫
I

∫
Vi

s dV dI −
∫
I

∫
Vi

∇·(ũn
PGD
⊗ũn

PGD
) dV dI

+

∫
I
ψ

∫
Vi

∇·(D∇ũn
PGD

) dV dI −
∫
I

∫
Vi

∇p̃ n
PGD
dV dI,

(9)

Rp :=Rp(u
n−1
PGD

, σnuf
n
u , φ

n) = Rp(ũ
n
PGD

)

=−
∫
I

∫
Vi

∇·ũn
PGD
dV dI.

(10)

As classical in ROMs [84,85], an affine dependence of the forms in (8), (9) and (10) on
the parameters is required to construct the PGD approximation. The spatial (respectively,
parametric) component of each mode is thus computed by restricting Equation (8) to
the tangent manifold associated with the spatial (respectively, parametric) coordinate.
Following from Equation (6) and setting a fixed value for the parametric function φn, the
pair (σnu∆fu, σ

n
p∆fp) is determined by solving a purely spatial PDE. Recall that the PGD

alternating direction scheme handles homogeneous Dirichlet boundary conditions at each
iteration of the spatial solver [32], whereas inhomogeneous data are treated by the first
arbitrary PGD mode (u0

PGD
, p0

PGD
) introduced above. In a similar fashion, the increment ∆φ

is computed as the solution of an algebraic system of equations in the parameter µ while
the spatial functions (σnuf

n
u , σ

n
p f

n
p ) are considered known.

Note that at each iteration of the alternating direction scheme, ũn
PGD

is known and may be
expressed in separated form as

∑n
m=1 σ

m
u f

m
u φ

m. Thus, exploiting the separated structure
of the unknowns and the affine parametric decomposition of the involved integral forms,
the numerical complexity of the high-dimensional PDE is reduced by alternatively solving
for the spatial and the parametric unknowns, as detailed in the next subsections.

Remark 2. By restricting Equation (8) to the tangent manifold in the spatial (respectively,
parametric) direction, the integral forms are multiplied by φn (respectively, (σnuf

n
u , σ

n
p f

n
p )).

This is equivalent to the projection of the high-dimensional PDE to the tangent manifold
discussed for PGD in the context of finite element approximations [42]. In the framework
of FV discretisations, the finite element test functions are set equal to 1 to retrieve the
classical integral form of the PDE under analysis. Hence, the restriction of the high-
dimensional PDE to the tangent manifold introduces a factor φn multiplying the integral
forms in Equations (8), (9) and (10) for the spatial iteration. Similarly, in the parametric
iteration, a factor σnuf

n
u appears in the integral form of the momentum equation and in

the residual Ru, whereas σnp f
n
p multiplies the integrand terms in the mass conservation

equation and in the residual Rp.
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3.2.1 The spatial iteration

First, the parametric function φn is fixed and the increments (σnu∆fu, σ
n
p∆fp) are deter-

mined by solving a spatial PDE. More precisely, restricting Equation (8) to the tangent
manifold in the spatial direction, a pair (σnu∆fu, σ

n
p∆fp), constant cell-by-cell, is sought

such that in each cell Vi, i=1, . . . , N it holds



α0

∫
Vi

∇·(σnu∆fu⊗σnu∆fu)dV

+

∫
Vi

∇·
(
σnu∆fu⊗

n∑
m=1

αm1 σ
m
u f

m
u

)
dV

+

∫
Vi

∇·
( n∑
m=1

αm1 σ
m
u f

m
u ⊗σnu∆fu

)
dV

−α2

∫
Vi

∇·(D∇(σnu∆fu))dV+α3

∫
Vi

∇(σnp∆fp)dV = Rn
u,

α3

∫
Vi

∇·(σnu∆fu)dV = Rn
p ,

(11)

where Rn
u and Rn

p are the spatial residuals associated with the discretisation of the momen-
tum and mass equations, respectively, and each coefficient αi, i=0, . . . , 3 depends solely on
the parametric function φn and on the data of the problem

α0 :=

∫
I

[φn]3 dI, α2 :=

∫
I

[φn]2 ψ dI,

αm1 :=

∫
I

[φn]2 φm dI, α3 :=

∫
I

[φn]2 dI.
(12)

Note that given the separable form of (9)-(10), an efficient implementation of the right-
hand side of the spatial iteration may be devised and the corresponding FV discretisation
is obtained. A detailed description of the residuals acting as linear functionals on the
right-hand side of Equation (11) is provided in A.

The terms in Equation (11) feature a structure similar to the original incompressible
Navier-Stokes problem in the spatial domain Ω, see Equation (2). The discretisation is thus
performed using the cell-centred FV method implemented in OpenFOAM, see Section 2.1.
The main difference is represented by the second and third integrals on the left-hand side
of the momentum equation (11). In order to preserve the nonintrusiveness of the discussed
PGD approach, Equation (11) is modified by introducing a relaxation in the SIMPLE
iterations to treat these two integrals in an explicit way as part of the right-hand side of
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the momentum equation, leading to

α0

∫
Vi

∇·(σnu∆fu⊗σnu∆fu)dV

−α2

∫
Vi

∇·(D∇(σnu∆fu))dV + α3

∫
Vi

∇(σnp∆fp)dV = Rn
u

−
∫
Vi

∇·
( n∑
m=1

αm1 σ
m
u f

m
u ⊗σk−1

u ∆fk−1
u

)
dV

−
∫
Vi

∇·
(
σk−1
u ∆fk−1

u ⊗
n∑

m=1

αm1 σ
m
u f

m
u

)
dV,

α3

∫
Vi

∇·(σnu∆fu)dV = Rn
p ,

(13)

where the index k−1 is associated with the last computed increment σk−1
u ∆fk−1

u in the
SIMPLE algorithm, see B. It is straightforward to observe that Equation (13) now fea-
tures the same structure as the original Navier-Stokes problem (2) for which the SIMPLE
algorithm is designed. Hence, the resulting solver for the spatial iteration does not require
any modification of the existing OpenFOAM routines and is nonintrusive with respect to
simpleFoam.

Remark 3. The first integral in Equation (13) solely introduces a higher-order perturba-
tion which, upon convergence of the SIMPLE iterations, is negligible. Hence, an alternative
formulation of the momentum equation within the proposed PGD algorithm relies on ne-
glecting such higher-order contribution. The convection term is thus linearised using the
last computed approximation

∑n
m=1α

m
1 σ

m
u f

m
u of the unknown velocity field, namely

∫
Vi

∇·
(
σnu∆fu⊗

n∑
m=1

αm1 σ
m
u f

m
u

)
dV

−α2

∫
Vi

∇·(D∇(σnu∆fu))dV+α3

∫
Vi

∇(σnp∆fp)dV = Rn
u

−
∫
Vi

∇·
( n∑
m=1

αm1 σ
m
u f

m
u ⊗ σk−1

u ∆fk−1
u

)
dV,

α3

∫
Vi

∇·(σnu∆fu)dV = Rn
p .

(14)

The left-hand side of Equation (14) mimics the SIMPLE strategy to solve the linearized
version of the Navier-Stokes equations because it substitutes the unknown convection field
with a relaxation. This approach converges to the same solution of (14) (and this has been
verified numerically). Nevertheless it is slightly intrusive in the context of simpleFoam

as it requires the implementation of the linear convection term. Hence, Equation (13) is
preferred for the PGD spatial iteration.
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3.2.2 The parametric iteration

In the parametric step, the value of the previously computed spatial functions is fixed
(fnu , f

n
p )←(σnuf

n
u +∆fu, σ

n
p f

n
p +∆fp) and the parametric increment ∆φ acts as unknown.

Within the single parameter approximation rationale, a unique scalar function depending
on µ is sought.

As noted in the previous Section, the correction introduced by the high-order term in
the momentum equation is negligible upon convergence. Following the strategy described
for the spatial iteration and neglecting this term in the restriction of Equation (8) to the
parametric direction of the tangent manifold, ∆φ is computed by solving the following
algebraic equation (

n∑
m=1

am1 φ
m − a2ψ + a3

)
∆φ = rnu + rnp , (15)

where rnu and rnp are the parametric residuals associated with the discretisation of the
momentum and mass equations, respectively, and each coefficient ai, i=1, . . . , 3 depends
solely on the spatial functions (σnuf

n
u , σ

n
p f

n
p ) and on the data of the problem, namely

am1 :=

∫
Vi

σnuf
n
u ·
[
∇·(σnufnu ⊗σmu fmu )

]
dV

+

∫
Vi

σnuf
n
u ·
[
∇·(σmu fmu ⊗σnufnu )

]
dV ,

a2 :=

∫
Vi

σnuf
n
u ·
[
∇·(D∇(σnuf

n
u ))
]
dV ,

a3 :=

∫
Vi

σnuf
n
u ·∇(σnp f

n
p ) dV +

∫
Vi

σnp f
n
p ∇·(σnufnu ) dV .

(16)

The unknown ∆φ is discretised at the nodes of the parametric domain I and the resulting
algebraic equation is solved via a collocation method. Similarly to the spatial iteration,
the separable form of (9)-(10) is exploited to perform computationally efficient pointwise
evaluations of the residuals at the nodes of I. The complete derivation of the separated
form of the right-hand side is detailed in A.

3.3 A nonintrusive implementation of the proper generalised de-
composition in OpenFOAM

A critical aspect to make ROM strategies suitable for application on a daily basis in an
industrial environment is their nonintrusiveness with respect to existing solution method-
ologies validated by companies. Thus, in order to solve parametrised flow problems using
OpenFOAM, the proposed PGD algorithm is designed to be nonintrusive with respect to
the simpleFoam solver as described above. As discussed in Section 3.2, inhomogeneous
Dirichlet boundary conditions are treated by means of a spatial mode computed using the
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full-order solver, whereas the corresponding parametric mode is set equal to 1 (Algorithm 1
- Step 1). Then, the enrichment process is started and at each iteration of the alternating
direction scheme a spatial mode is computed using simpleFoam (Algorithm 1 - Steps 7 to
10) and a linear system is solved to determine the corresponding parametric term (Algo-
rithm 1 - Steps 11 to 14). The alternating direction iterations stop when the computed
corrections ∆f�, ∆φ are negligible with respect to the amplitudes σn� , σφ of the current
mode for � = u, p and the residuals εr◦ are sufficiently small for ◦ = u, p, φ (Algorithm 1 -
Steps 6 and 15). The global enrichment strategy ends when the amplitude of the current
mode σn� is negligible with respect to the first one σ1

� for � = u, p (Algorithm 1 - Step 3).

Remark 4. Alternative criterions may be considered to stop the greedy algorithm, e.g.
when the magnitude of the last mode normalised with respect to the sum of the amplitudes
of all the computed terms is lower than a user-defined tolerance η?�, namely

σn� < η?�

n∑
m=1

σm� , for � = u, p.

4 Numerical validation

In this section, numerical examples are presented to validate the proposed methodology.
First, a test case with known analytical solution is considered to verify the optimal conver-
gence rate of the high-dimensional FV approximation of the velocity and pressure fields,
measured in the L2(Ω×I) norm, for a parametrised viscosity coefficient. In this context,
special emphasis is given to the additional error introduced by PGD, highlighting the range
of applicability of the discussed reduced-order strategy in terms of expected accuracy of the
parametric solution. Moreover, a classical benchmark test for incompressible flow solvers,
namely the nonleaky lid-driven cavity, is studied parametrising the imposed velocity of the
lid in a range of values of the Reynolds number spanning from 1,000 to 4,000.

4.1 Kovasznay flow with parametrised viscosity

Consider the Kovasznay flow [86] for a parametrised viscosity ν(µ)=µ. The analytical
solution is

u(x, y, µ) =
(

1− eλ(µ)x cos(2πy), λ(µ)
2π
eλ(µ)x sin(2πy)

)
p(x, y, µ) = 1

2

(
1− e2λ(µ)x

)
+ C

(17)

where the constant C is determined by fixing a reference value for the pressure field in one
point of the domain, whereas λ is a function of the parametrised viscosity and changes
when the Reynolds number is modified, namely,

λ(µ) = 1
2ν(µ)

−
√

1
(2ν(µ))2

+ 4π2.

12



Algorithm 1 pgdFoam: a nonintrusive PGD implementation in OpenFOAM

Require: Tolerances η?� for the greedy algorithm. Tolerances η◦ for the amplitudes and
ηr◦ for the residuals in the alternating direction iteration. Typical values typ◦ for the
residuals of the spatial and parametric problems. � = u, p and ◦ = u, p, φ.

1: Compute boundary condition modes: the spatial mode is solution of (2) using
simpleFoam and the parametric mode is equal to 1.

2: Set n← 1 and initialise the amplitudes of the spatial modes σ1
� ← 1.

3: while σn� > η?� σ
1
� do

4: Set k ← 0, the parametric predictor φn←1 and the spatial predictors (fnu , f
n
p ) using

the last computed modes.
5: Initialise ε◦ ← 1, εr◦ ← typ◦.
6: while ε◦ > η◦ or εr◦ > ηr◦ do
7: Compute the spatial residuals (22) and coefficients (12).
8: Solve the spatial Navier-Stokes problem (13) using simpleFoam.
9: Normalise the spatial predictors: σn�←‖σn�fn� +∆f�‖.

10: Update the spatial predictors: fn� ←(σn�f
n
� +∆f�)/σ

n
� .

11: Compute the parametric residual (24) and coefficients (16).
12: Solve the parametric linear system (15).
13: Normalise the parametric predictor: σφ←‖φn +∆φ‖.
14: Update the parametric predictor: φn←(φn +∆φ)/σφ.
15: Update stopping criterions: ε�←‖∆f�‖/σn� , εφ←‖∆φ‖/σφ, εr◦←‖r◦‖.
16: Update the alternating direction iteration counter: k ← k + 1.
17: end while
18: Update the mode counter: n← n+ 1.
19: end while
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The parameter µ is sought in the space I=[5×10−3, 10−2], which is discretised with uniform
intervals. The corresponding values of the Reynolds number span from 100 to 200. The
spatial domain Ω=[−1, 1]2 is discretised with a family of Cartesian meshes of quadrilateral
cells. The characteristic lengths hx and hµ of the spatial and parametric discretisations,
respectively, are provided in Table 1.

hx 8.3× 10−2 4×10−2 2×10−2 1×10−2 5×10−3 2.5×10−3

hµ 2×10−2 1×10−2 5×10−3 2.5×10−3 1.25×10−3 6.25×10−4

Table 1: Normalised characteristic lengths of the spatial and parametric discretisations.

A convergence study under uniform mesh refinement is performed for the linearised
Navier-Stokes equations using the meshes described in Table 1. In this context, a convec-
tive field a given by the analytical expression of the Kovasznay velocity is introduced in
Equation (1) and the convective term ∇·(u⊗u) is replaced by ∇·(u⊗a). As detailed in
Section 3.2, an affine separation of the data is required to run PGD. Thus, the convective
field a is separated a priori considering the first four terms of the Taylor expansion of eλx

in the analytical form of the velocity, see Equation (17). For µ=10−2, the relative L2(Ω)
error of the resulting separated velocity field with respect to the exact one is 4.3×10−3

and, consequently, a target error of 10−2 in the spatial discretisation is considered for the
following convergence study. Moreover, the Dirichlet boundary datum uD requires five
modes to be described in a separated form.

The L2(Ω×I) error between the PGD approximation (un
PGD
, pn

PGD
) computed using fifteen

modes and the high-dimensional analytical solution (u, p) as a function of the characteristic
mesh size hx is displayed in Figure 1. The optimal first-order convergence rate for pressure
and second-order one for velocity are obtained.

To run the iterative procedure pgdFoam described in Algorithm 1, a stopping criterion
η(u,p) ≤ 10−5 is considered, where η(u,p) accounts for the relative amplitude of both the
velocity and pressure modes, namely

η(u,p) :=

√(
σnu∑n
m=1 σ

m
u

)2

+

(
σnp∑n
m=1 σ

m
p

)2

. (18)

In Figure 2(a), the evolution of the amplitude η(u,p), ηu and ηp is displayed for the finest
mesh described in Table 1. After ten computed modes, the stopping criterion is fulfilled
and the PGD enrichment stops.

As previously mentioned, five terms are required to describe the Dirichlet boundary
conditions in a separated form. Henceforth, only the computed modes, starting from the
sixth term of the PGD approximation are presented. In Figure 2(b), the first six normalised
computed parametric modes are displayed. The corresponding computed spatial modes for
pressure and velocity are presented in Figure 3 and 4, respectively.
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10-1
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Figure 1: Optimal convergence of the L2(Ω×I) error of the PGD approximation of the
Kovasznay flow with parametrised viscosity with respect to the exact solution as a function
of the characteristic mesh size hx.

(a) Amplitude of the computed modes
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(b) Computed parametric modes

Figure 2: PGD approximation of the Kovasznay flow with parametrised viscosity. (a) Rela-
tive amplitude of the computed modes fmu (black), fmp (blue) and the combined amplitude
of (fmu , f

m
p ) according to Equation (18). (b) First six normalised computed parametric

modes.
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(a) f1p (b) f2p (c) f3p (d) f4p (e) f5p (f) f6p

Figure 3: PGD approximation of the Kovasznay flow with parametrised viscosity. First
six computed spatial modes fmp , m = 1, . . . , 6 for pressure.

(a) f1
u (b) f2

u (c) f3
u (d) f4

u (e) f5
u (f) f6

u

Figure 4: PGD approximation of the Kovasznay flow with parametrised viscosity. First
six computed spatial modes fmu , m = 1, . . . , 6 for velocity.

(a) p6
PGD

(b) p8
PGD

(c) p15
PGD

(d) Exact p

(f) u6
PGD

(g) u8
PGD

(h) u15
PGD

(i) Exact u

Figure 5: Comparison of the PGD approximation to the analytical solution of the Kovasz-
nay flow for Re = 200, that is µ = 10−2. Pressure (top) and velocity (bottom) using n=6,
8 and 15 terms.
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The PGD approximation (un
PGD
, pn

PGD
) using n=6, 8, 15, that is with one, three and ten

computed modes, respectively, is compared to the analytical solution for the case of
Re=200, in Figure 5.

4.2 Two-dimensional cavity with parametrised lid velocity

In this section, the classical benchmark problem of the nonleaky lid-driven cavity is stud-
ied [87]. The unitary square Ω=[0, 1]2 is considered as spatial domain and homogeneous
Dirichlet boundary conditions are imposed on the lateral and bottom walls. On the top
wall, a velocity ulid(x, µ)=400µulid(x) is enforced, where the parameter µ ∈ [0.25, 1] acts
as a scaling factor of the maximum velocity of the lid, whereas ulid(x) is a velocity profile
featuring two ramps on the top-left and top-right corners of the domain to account for
the change between null and maximum velocity. As classical in the literature treating the
lid-driven cavity example, for x ∈ [0, 0.06] and x ∈ [0.94, 1], the horizontal component of
the lid velocity changes linearly from 0 to 400µ and vice versa. The dynamic viscosity is
set to ν=0.1 m2/s and the values considered for the Reynolds number span from 1,000 to
4,000.

The nonlinear term of the Navier-Stokes equations is now treated as described in Sec-
tion 3.2. The mode handling the boundary conditions is obtained as a full-order solution
of the Navier-Stokes equations using the simpleFoam algorithm for a lid velocity computed
using µ=1, that is for a maximum horizontal velocity of 400 m/s. The corresponding para-
metric boundary condition mode is set to be linearly evolving from µ=0.25 to µ=1, that
is φ(µ)=µ.

Following the rationale described in the previous section, two different stopping criteri-
ons are considered for the PGD enrichment strategy, namely η(u,p) ≤ 10−3 and η(u,p) ≤ 10−4.
Figure 6(a) displays the relative amplitude of the computed modes. Note that the first
stopping point is achieved after seven computed modes, whereas fourteen terms are re-
quired to fulfil the lower tolerance. The corresponding computed parametric modes are
presented on Figure 6(b). It is worth noting that all the computed parametric modes are
close or equal to 0 for µ=1. This is due to the fact that the boundary conditions of the
problem are imposed by means of a full-order solution computed for the maximum value
of µ in the parametric space. Hence, the case of µ=1 is accurately described by the PGD
approximation using solely the mode obtained via simpleFoam.

Now, the online evaluations of the PGD approximation of the velocity and pressure
fields for different values of the parameter µ are compared to the full-order solutions com-
puted using simpleFoam. The corresponding relative L2(Ω) errors are presented in Figure 7
as a function of the number of modes utilised in the PGD approximation. The boundary
condition mode and the first seven computed modes, for which η(u,p) ≤ 10−3, provide a
good approximation of both velocity and pressure and limited corrections are introduced
by the following modes until the stopping criterion of 10−4 is fulfilled. For the case µ=1,
a small error of the order of 10−4 appears starting from the fifth computed mode, i.e.
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(b) Computed parametric modes

Figure 6: PGD of the cavity flow with parametrised lid velocity. (a) Relative amplitude
of the computed modes fmu (black), fmp (blue) and the combined amplitude of (fmu , f

m
p )

according to Equation (18). (b) First seven normalised computed parametric modes.

210-4
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Figure 7: Relative L2(Ω) errors of the PGD approximation of the cavity flow with
parametrised lid velocity with respect to the full-order solution as a function of the global
number of modes (i.e. boundary conditions and computed) utilised in the PGD expansion.
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Figure 8: Comparison of the PGD approximation (top) and the full-order solution (bottom)
of the parametrised lid-driven cavity problem for µ=0.25, µ=0.625 and µ=1, corresponding
to a maximum velocity of the lid of 100, 250 and 400 m/s, respectively.
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n=6. This is due to the fact that the boundary condition mode already captures all the
features of the flow, being a full-order solution of the Navier-Stokes equations as previously
mentioned.

A qualitative comparison of the reduced-order and full-order solutions of the parametrised
lid-driven cavity problem is displayed in Figure 8. The PGD approximations for µ=0.25,
µ=0.625 and µ=1 are presented as long as their corresponding simulations obtained using
simpleFoam. The cases under analysis are associated with a maximum horizontal velocity
of the lid of 100, 250 and 400 m/s, respectively. It is worth noting that pgdFoam is able
to capture the topological changes of the flow with great accuracy, managing to identify
location and size of the vortices, as well as their appearance and disappearance according
to the values of the Reynolds number considered in the analysis.

5 Application to parametrised laminar flow control

problems

Dynamically controlling the features of a flow is a challenging problem with several high-
impact applications including, e.g., drag minimisation, stall control and aerodynamic noise
reduction [88–90]. A major bottleneck to the design of flow control devices is represented
by the large number of simulations involved in the tuning of the control loop. In this
section, the potential of the described nonintrusive PGD implementation in OpenFOAM is
demonstrated for parametrised flow control problems. Two- and three-dimensional internal
flows with jets are studied. Specifically, a parametric study involving the peak velocity
of the jets as extra-coordinate of the problem is considered to test the proposed PGD
methodology.

5.1 Lid-driven cavity with parametrised jet velocity

Consider the nonleaky lid-driven cavity problem introduced in Section 4.2. The lid velocity
is defined with two linear ramps, increasing from 0 to 10 m/s on the top-left corner and
decreasing correspondingly on the top-right one. Three jets of size 0.12 m are introduced on
the vertical walls, two on the right wall and one on the left, respectively. The parametrised
velocity of the jets is ujet(x, µ)=µujet(x), where the maximum velocity is controlled by the
parameter µ ∈ [0, 1] and the profile ujet(x) is defined as

ujet(x, y)=


(
−1+ cos

(
2πy/0.12

)
, 0
)

for x=1, y ∈ [0, 0.12],(
1− cos

(
2π(y−0.88)/0.12

)
, 0
)

for x=1, y ∈ [0.88, 1],(
1− cos

(
2π(y−0.88)/0.12

)
, 0
)

for x=0, y ∈ [0.88, 1].

(19)
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(a) B.C. mode for the lid (b) B.C. mode for the jets

Figure 9: Cavity flow with parametrised jet velocity. Spatial boundary condition modes
for velocity.

An outlet boundary is added on the left vertical wall for y ∈ [0, 0.12] and a free-traction
condition is enforced. The dynamic viscosity is set to ν=0.01 m2/s, therefore the corre-
sponding Reynolds number is Re=1,000.

The boundary conditions of the problem are enforced through two modes computed as
full-order solutions via simpleFoam as shown in Figure 9: the first one, for µ=0, corresponds
to lid velocity of 10 m/s and inactive jets; the second one, for µ=1, is associated with the
maximum velocity of the jets and a zero velocity of the lid. The corresponding parametric
modes for the boundary conditions are set to φ(µ)=1 and φ(µ)=µ, respectively.

Following the rationale previously discussed, the PGD enrichment process is stopped
when η(u,p) ≤ 10−4. In Figure 10, the generalised solution computed by the PGD is inter-
polated in different points of the parametric space under analysis and compared with the
corresponding full-order solutions provided by simpleFoam. The flows for µ=0.1, µ=0.3,
µ=0.5, µ=0.7, µ=0.8 and µ=1 are displayed, covering a wide range of flow regimes in
the cavity. It is worth noting that the discussed reduced-order strategy is able to capture
the topological changes in the flow features and accurately reproduce the appearance and
disappearance of vortices localised in different regions of the domain.

The accuracy of the PGD approximation with respect to the full-order solution is also
verified by computing the relative L2(Ω) error of the spatial discretisation while enriching
the modal description of the solution. More precisely, Figure 11 shows that using two
boundary condition modes and six computed modes all approximations achieve a plateau
with relative errors of 10−2 or lower.
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Figure 10: Comparison of the PGD approximation (top) and the full-order solution (bot-
tom) of the lid-driven cavity with jets for µ=0.1, µ=0.3, µ=0.5, µ=0.7, µ=0.8 and µ=1,
corresponding to a maximum velocity of the jets spanning from 0.2 to 2 m/s.
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Figure 11: Relative L2(Ω) error of the PGD approximation of the cavity flow with
parametrised jet velocity with respect to the full-order solution as a function of the global
number of modes (i.e. boundary conditions and computed) utilised in the PGD expansion,
for µ=0.1, µ=0.5, µ=0.7 and µ=1.
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(a) Front view (b) Bottom view

(c) Perspective view (d) Patches of the duct

Figure 12: Geometrical model of the S-Bend. On the bottom-right image, the jet patch is
highlighted in red.

5.2 S-Bend with flow control driven by a jet

In this section, the proposed PGD methodology is applied to a flow control problem using a
three-dimensional geometry of industrial interest. The model of a heating, ventilation and
air conditioning (HVAC) duct section provided by Volkswagen AG is shown in Figure 12.
A jet is introduced on the red patch, at the first bend of the duct. The velocity profile of
the jet is a sinusoidal function defined on the reference planar square [0, 1]2 as

uŷ(x̂, ẑ) = 0.0375(1− cos(−2πx̂))(1− cos(2πẑ)) (20)

and pointing in the direction ŷ orthogonal to the plane (x̂, ẑ). The parametrisation is con-
structed as a scaling of the jet velocity from uy=−0.015 m/s, i.e. blowing, to suction with
uy=0.15 m/s. A single parameter µ is introduced and the parametric domain considered
for the analysis is I=[−0.1, 1]. Note that this problem is especially challenging due to the
change of sign in the interval of parametric values considered leading to different physical
phenomena. The remaining boundary conditions feature homogeneous velocity on all the
lateral walls, a parabolic velocity profile with mean value u=(0.83, 0, 0)m/s on the inlet
and a free-traction on the outlet. The dynamic viscosity is set to ν=1.588×10−5 m2/s and
the corresponding value of the Reynolds number is Re=280. The quantity of interest in
this problem is the pressure drop computed along the duct.

As previously done for the lid-driven cavity with jets, two modes to account for the
boundary conditions are computed using simpleFoam. The first mode is a full-order solu-
tion corresponding to the case of inactive jet and given inlet parabolic profile; the second
one, is obtained setting a zero inlet velocity and a jet of maximum velocity uy=0.15 m/s.
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Figure 13: Internal flow in the S-Bend with parametrised jet velocity. (a) Relative am-
plitude of the computed modes fmu (black), fmp (blue) and the combined amplitude of
(fmu , f

m
p ) according to Equation (18). (b) Relative L2(Ω) error of the PGD approxima-

tions of pressure and velocity with respect to the full-order solutions for different values of
µ.

The corresponding parametric modes are φ(µ)=1 and φ(µ)=µ, respectively.

Setting a tolerance of 10−3, pgdFoam computes five modes before fulfilling the stopping
criterion for η(u,p), see Equation (18), whereas seventeen computed modes are required for
the amplitude to drop at 10−4, as displayed in Figure 13(a).

The PGD approximation obtained is compared with the full-order solutions given by
simpleFoam for the values µ=−0.1, µ=0.45 and µ=1 of the parameter under analysis. In
Figure 13(b), the relative L2(Ω) error for these configurations is reported. The numerical
experiments confirm that an accuracy of 10−2 is achieved, for all parameters, using two
computed modes additionnally to the two terms accounting for the boundary conditions.
Note that the first computed mode is one order of magnitude more relevant than the
following ones (Fig. 13(a)) and after two computed modes only limited corrections are
introduced to the existing PGD approximation. It is worth observing that a comparable
accuracy of the PGD solution is achieved throughout the whole parametric space for both
velocity and pressure.

A qualitative comparison of the pressure and velocity fields computed using the PGD
solution interpolated in different points of the parametric interval I and the corresponding
full-order discretisations is presented in Figures 14 and 15.

As mentioned at the beginning of this section, the quantity of engineering interest in
the analysis of this problem is the pressure drop computed along the duct. Considering a
zero reference pressure on the outlet, the weighted average pressure drop is defined as

pdrop :=
1

Ain

Nin∑
i=1

Aipi, (21)
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Figure 14: Comparison of the PGD approximation (top) and the full-order solution (bot-
tom) of the pressure field of the internal flow in the S-Bend with a jet configuration of
µ=− 0.1, µ=0.45 and µ=1, corresponding to a jet which spans from blowing at maximum
velocity 0.015 m/s to suction with peak velocity 0.15 m/s.
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Figure 15: Comparison of the PGD approximation (top) and the full-order solution (bot-
tom) of the velocity field of the internal flow in the S-Bend with a jet configuration of
µ=− 0.1, µ=0.45 and µ=1, corresponding to a jet which spans from blowing at maximum
velocity 0.015 m/s to suction with peak velocity 0.15 m/s.
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Figure 16: PGD approximation of the internal flow in the S-Bend with parametrised jet
velocity. (a) Relative error of the pressure drop enriching the PGD modal approximation.
(b) Pressure drop with respect to the maximum jet velocity.

where Ain is the area of the inlet surface, Nin the number of faces Si, i=1, . . . , Nin on the
inlet patch and pi, Ai are the pressure and area on the face Si, respectively. For µ=−0.1,
µ=0.1, µ=0.45, µ=0.55 and µ=1, the pressure drop is evaluated interpolating the gener-
alised PGD solution in the corresponding values of the parametric space and using the
full-order solver simpleFoam. Figure 16(a) presents the convergence history of the error
in the pressure drop as a function of the number of modes in the PGD approximation.
It is straightforward to observe again that using the modes accounting for the boundary
conditions and two computed modes is sufficient to capture the flow features of a wide
range of parameters, with a maximum error in the pressure drop below 10−2. Moreover, by
comparing the pressure drop with respect to the maximum velocity of the jet for different
configurations with the corresponding values provided by the full-order solver, the capabil-
ity of the discussed reduced-order strategy to accurately capture the evolution of a quantity
of interest throughout the range of values of the parameter µ is confirmed (Fig. 16(b)).
Finally, these experiments highlight that the proposed PGD algorithm is able to provide
an accurate approximation of the solution both in terms of a global measure of the error
in the domain, see the L2 error in Figure 13(b), and of a localised quantity of interest as
the pressure drop in Figure 16(a).

6 Concluding remarks

A nonintrusive PGD implementation in OpenFOAM has been proposed in the context of
parametrised incompressible laminar flows. The main novelty of such approach is rep-
resented by the seamless exploitation of OpenFOAM native SIMPLE solver, making the
resulting reduced-order strategy suitable for application in a daily industrial environment.
The pgdFoam algorithm relies on the industrially-validated solver simpleFoam to compute
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the spatial modes of the solution, whereas the parametric ones are determined via the
solution of a linear system of algebraic equations.

The developed strategy has been validated using a manufactured solution to verify the
optimal order of convergence of the PGD-FV approximation and the classical benchmark
test of an incompressible flow in a nonleaky lid-driven cavity parametrising the Reynolds
number. Moreover, the capability of the proposed pgdFoam algorithm for fast and accurate
simulation of flow control problems has been verified, introducing parametric jets in a 2D
cavity flow and in a 3D geometrical model of an air duct provided by Volkswagen AG.

The proposed PGD methodology has proved to be able to compute an accurate re-
duced basis for the problems under analysis with no a priori knowledge of the expected
solutions. Accuracy of 10−2 or higher was achieved for the L2 error of the generalised
PGD solution with respect to the full-order one, in all computations using between ten
and twenty modes. Moreover, the pgdFoam algorithm has shown robustness dealing with
a large range of values of the parameters (e.g., Reynolds number from 1,000 to 4,000) and
spanning different physical configurations (e.g., control jets from suction to blowing). On
the one hand, the generalised PGD solution has proved to be able to qualitatively capture
significant topological changes as well as localised features of the flow in an accurate way.
On the other hand, it has shown reliability in the quantitative evaluation of engineering
outcomes providing a maximum relative error of less than 10−2, for all values of user-defined
parameters, with a computing effort between ten and twenty runs of the full-order solver.
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A Separated representation of the residuals

Consider a separable expression of the source term s(x,µ):=η(µ)S(x). For the spatial
iteration, the residuals in separated form read as

Rn
u :=

∫
Vi

α4S dV −
n∑

m=1

n∑
q=1

αmq5

∫
Vi

∇·(σmu fmu ⊗σquf qu ) dV

+

∫
Vi

∇·
(
D∇

( n∑
m=1

αm6 σ
m
u f

m
u

))
dV −

∫
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∇
( n∑
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m
p f

m
p

)
dV ,

(22a)

Rn
p := −

∫
Vi

∇·
( n∑
m=1

αm7 σ
m
u f

m
u

)
dV , (22b)

where the following expressions for the coefficients are devised
α4 :=

∫
I
φnη dI, αmq5 :=

∫
I
φnφmφq dI,

αm6 :=

∫
I
φnφmψ dI, αm7 :=

∫
I
φnφm dI.

(23)

For the parametric iteration, the separated expression of the residuals is

rnu := a4η +
n∑

m=1

(
−

n∑
q=1

amq5 φq + am6 ψ − am7

)
φm, (24a)

rp := −
n∑

m=1

am8 φ
m, (24b)

where the coefficients depend solely on the spatial modes, namely
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B simpleFoam: the semi-implicit method for pressure

linked equations in OpenFOAM

In OpenFOAM, the steady laminar Navier-Stokes equations are approximated by means
of an iterative procedure, namely simpleFoam. This algorithm implements the SIM-
PLE method proposed in [80]. SIMPLE is a fractional-step Chorin-Temam projection
method [91, Sect. 3.7] that has been extensively studied in the literature [92, 93]. A de-
scription of the relationship between SIMPLE and Chorin-Temam projection methods is
detailed in [94, Sect. 17.7, 17.8], whereas the implementation details of simpleFoam are
provided in the official OpenFOAM documention [79].

First, an intermediate velocity uk is computed starting from the momentum equation
and neglecting the contribution of pressure, see Equation (26a); second, the step involving
the incompressibility constraint is rewritten in terms of a Poisson equation for the pressure
p, see Equation (26b); eventually, a correction is applied to the intermediate velocity field
to determine the final value u in Equation (26c). Special attention is required to impose
the correct set of boundary conditions in each step of the algorithm [95].

uk − uk−1

∆t
+ ∇·(uk⊗uk−1)−∇·(ν∇uk) = s in Ω,

uk = uD on ΓD,

n·(ν∇uk) = t on ΓN ,

(26a)


∇·(∇p) =

1

∆t
∇·uk in Ω,

n·∇p = 0 on ΓD,

np = 0 on ΓN ,

(26b)

u = uk −∆t∇p. (26c)

Remark 5. A variant of the above numerical scheme, known as incremental Chorin-
Temam projection method, is obtained by adding the term −∇pk to the right-hand side
of Equation (26a) to compute the velocity prediction. Hence, the Poisson problem for
pressure in Equation (26b) is solved to compute a pressure variation ∆p, whereas the
correction step in Equation (26c) remains unchanged, now being p=pk+∆p.

Note that the algorithm in Equation (26) may also be rewritten in the framework of
an algebraic splitting method [96]. For a complete introduction to the subject, interested
readers are referred to [81, Sect. 6.7].
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