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Abstract: Habitat loss is the primary driver of biodiversity decline worldwide, but the effects of 
fragmentation (i.e., the spatial arrangement of remaining habitat) are debated. We tested the 
hypothesis that forest fragmentation sensitivity – affected by avoidance of habitat edges – 
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should be driven by historical exposure, and therefore species’ evolutionary responses, to 60 
disturbance. Using a database containing 73 datasets worldwide (4,489 animal species), we 
found that the proportion of fragmentation-sensitive species was nearly three times higher in 
regions with low versus high rates of historical disturbance (i.e., fires, glaciation, hurricanes, and 
deforestation). These disturbances coincide with a latitudinal gradient in which sensitivity increases 
six-fold at low versus high latitudes. We conclude that conservation efforts to limit edges created 65 
by fragmentation will be most important in the world’s tropical forests. 

 

One Sentence Summary: Animal species that have evolved, and survived, in low-disturbance 
environments are more sensitive to forest fragmentation. 
  70 
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Main Text:  

Global biodiversity loss is occurring at over 100 times the background rate (1) and there is 

general consensus that most species declines can be attributed to habitat loss (2, 3). Nevertheless,   

the degree to which habitat fragmentation, defined as the spatial arrangement of remaining 75 

habitat, influences biodiversity loss has been a source of contention for over 40 years (4–7).  

Reconciling this debate is important to conservation planning, which can entail designing the 

configuration of landscapes as well as spatially prioritizing areas for conservation (8). Forest 

fragmentation is particularly pressing given that 70% of Earth’s remaining forest is within 1 km 

of the forest edge (9), and that fragmentation of the world’s currently most intact forest 80 

landscapes – the tropics – is predicted to accelerate over the coming five decades (10).  

 

Central to the fragmentation debate is the variation across taxa and regions in species responses 

to fragmentation and edge effects in particular (6, 11, 12). It is well known that life-history and 

other ecological traits mediate species’ responses to habitat edges (13), but the degree to which 85 

there are predictable geographical patterns in species’ sensitivity has yet to be quantified across 

multiple taxa at the global scale.  

 

Species’ evolutionary histories can shape their capacity to deal with novel stressors. The 

‘extinction filter’ hypothesis predicts that species that have evolved, and survived, in high-90 

disturbance environments should be more likely to persist in the face of new disturbances, 

including those of habitat loss and fragmentation (14). Further, more frequent disturbances could 

act as a barrier to sensitive species, preventing them from colonizing disturbance-prone regions.  

Disturbances often create edges, and in environments with frequent and large-scale disturbances, 
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persistent species are more likely to be adapted to ubiquitous edge habitats. The extinction filter 95 

hypothesis is at least several decades old, and has been suggested to apply in forest (15, 16) and 

grassland systems (14). Both natural (e.g., wildfires, glaciation) and anthropogenic disturbances 

(e.g., logging, burning, hunting) are thought to exert such evolutionary pressures (14). 

Nevertheless, there has been no global test of whether historical disturbance regimes can explain 

fragmentation effects. 100 

 

We used 73 datasets worldwide containing 4,489 species (from four major taxa: arthropods: 

2,682; birds: 1,260; herptiles (reptiles and amphibians): 282, mammals: 265 (Figs. 1 & S1, 

Tables S1 & S2) to provide a global test of the extinction filter hypothesis in forest ecosystems 

(17). In the presence of an extinction filter, species inhabiting a ‘filtered’ landscape with high 105 

levels of disturbances over historical (evolutionary) time-scales should be resilient to new 

disturbances – either because sensitive species have been driven locally extinct or because extant 

species have adapted to disturbance. Either mechanism would lead to a reduced prevalence of 

fragmentation-sensitive species in regions of the globe where disturbance has been historically 

common.   110 

 

We used a recently developed approach to quantify the landscape-scale impacts of forest edges 

on biodiversity (11, 13). By definition, habitat fragmentation for a given habitat amount leads to 

more, smaller patches, with a greater proportion of edge. We focus on landscape-scale variation 

in edge effects rather than the number of patches, because edge effects have long been known to 115 

have widespread effects on biodiversity (13) and the approach we use comprehensively captures 
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the process of fragmentation at the landscape-scale [see supplementary materials (17), Figs. S2 

& S3]. 

 

These data and methodology have been documented extensively elsewhere (13), so we present a 120 

brief overview relevant to our analysis. Each dataset contains a set of sample points within a 

fragmented forest region where abundances of one or more species from major taxonomic 

groups were sampled. We quantified two key aspects of edge effects: edge influence across the 

region, and edge sensitivity of species. We quantified edge influence (EI) surrounding sample 

points based on variation in percentage of forest cover [see supplementary materials (17) and 125 

Pfeifer et al. (13) for details]. This metric accounts for the cumulative effects of multiple edges 

(including edge shape and patch size) that magnify the realized impact of edges on species. Edge 

sensitivity (S) is a population-specific measure of fragmentation sensitivity that ranges from 0.0 

(no edge response) to 1.0 (high edge avoidance or preference). Because S does not distinguish 

between forest and matrix species and between edge avoidance and edge preference, we 130 

additionally used abundance, percentage tree cover within 30 m of sample points, and EI to 

classify species as forest, non-forest matrix, or generalist habitat users and ‘core,’ ‘edge,’ or ‘no 

preference’ [(17) and Fig. S4]. We did so by simulating sets of example abundances in each 

category (e.g., ‘forest core’) and then using a naïve Bayes classifier to estimate the most likely 

category for each actual species based on abundance versus point cover and EI relationships. By 135 

definition, forest core species are those that are restricted to forest areas that are distant from the 

edge, hence are sensitive to fragmentation of large patches into smaller ones (Figs. S2 & S3). We 

used this classification as the basis for our statistical models, focusing both on the probability of 

forest species being classified as core and the probability of species being classified as forest, 
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matrix, or generalist. For each study site, we assembled previously available data on forest fire 140 

severity (19), whether or not its location was glaciated in the last glacial maximum (20), whether 

or not it experienced tropical storms (21), and if historical anthropogenic forest loss exceeded 

50% (3) [Fig. 1, (17)]. 

 

Across all species combined, we found strong support for the extinction filter hypothesis 145 

explaining geographically variable sensitivity to forest edge. The odds of forest species being 

classified as forest core were 79.0% [95% CI: 65.9%, 87.0%] lower in study regions that have 

experienced historically severe disturbances (Fig. 2, p < 0.001, Table S3).  A substantial 51.3% 

of forest species tended to avoid edges in low-disturbance regions, while only 18.1% of forest 

species in high-disturbance regions avoided edges (Fig. 2). Edge-sensitive species are therefore 150 

largely absent from communities in historically disturbed locations, suggesting they have either 

disappeared from these regions or adapted to become less edge sensitive.  This result was 

particularly strong for arthropods and birds, and in the same direction for herptiles and mammals, 

though non-significant, likely owing to lower sample sizes. Results were stronger still when we 

considered the proportion of forest species as a function of disturbance severity. The odds of a 155 

species being forest-associated versus being associated with other habitats were 729% [95% CI: 

608%, 891%] higher in low-disturbance versus high-disturbance regions (Fig. S5, Table S4). 

 

Edge sensitivity (S) of forest core species tended to be 1.16 times higher in low (S=0.660 ± 0.004 

𝑆𝑆𝐸𝐸𝑥̅𝑥) versus high (S=0.568 ± 0.004) disturbance regions. This effect size is considerable; species 160 

with values of S >0.75 are only found within the forest interior far away from edges, whereas 

forest species with S=0.5 are abundant up to the edge (13). In addition, historical anthropogenic 
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forest loss alone was substantially less effective at predicting the proportion of core species than 

either the combination of historical disturbances, or natural disturbance alone (Table S3). Thus, 

evolutionary responses and patterns of extinction in of forest species in high-disturbance regions 165 

is not driven solely by anthropogenic habitat loss and fragmentation. 

 

The effects of disturbance on edge influence sensitivity and the proportion of forest core species 

are unlikely to be an artifact of under-sampling in high-disturbance regions (Fig. S6). Also, these 

results were robust to other potential confounding variables – phylogenetic relatedness (Fig. S7), 170 

migratory behavior (Table S5), geographic range size (Table S6), and distance to range edge 

(Table S6). Importantly, the strong disturbance effect could not be reproduced when species 

were categorized using forest amount alone (6), indicating that our findings relate primarily to 

fragmentation in addition to landscape-scale forest loss (Tables S7 & S8). The disturbance effect 

generally remained after statistically accounting for absolute latitude (Table S9); the proportion 175 

of forest core species declined roughly six-fold, and the proportion of forest-associated species 

declined 1.5-fold, over the entire latitudinal gradient observed (0.7 – 51.8 degrees) (Figs. 3, S8 – 

S9).  Tropical species have been confronted with less historical disturbance (Fig. 1b) and 

therefore tend to be more edge sensitive, and more likely to be associated with forest (Table S4, 

Fig. S8).  180 

 

The extinction filter hypothesis can be generalized beyond forest species to predict that in areas 

typified by large-scale historical disturbances, we should see a greater proportion of species that 

have evolved with non-forest land-cover types including disturbed habitats (hereafter the 

‘matrix’). For example, a wide range of species in the Pacific Northwestern USA –where stand-185 
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replacing crown fires are common– are associated with early successional ecosystems (22). Our 

data supported this prediction; the odds of species using matrix habitat relative to using forest 

habitat were estimated to be 644% higher in high disturbance regions than in low disturbance 

regions (95% CI: [523%, 788%]; Fig. S5, Table S4). The proportion of matrix species also 

strongly increased with latitude (Fig. S9, Table S4).  190 

 

Our results support the extinction filter hypothesis; climatic, ecological and anthropogenic 

disturbances have already filtered out many of the species that would be more susceptible to 

forest edges and the process of fragmentation caused by deforestation (16). Proportions of forest 

core species are substantially greater in regions that have not experienced large-scale historical 195 

disturbances. This effect results in a latitudinal gradient in fragmentation sensitivity, and helps to 

explain surprising rarity of extinctions following recent anthropogenic disturbance in Europe and 

eastern North America (23). Species that were strongly sensitive to disturbance-created edges 

have likely either undergone local extinction or adapted to repeated glaciation or historical land 

clearance. 200 

 

Our results partly reconcile the debate about the conservation importance of fragmentation and 

its effect on biodiversity (6, 7).  Many studies finding reduced fragmentation effects were 

conducted in already denuded landscapes (24), in locations with stand-replacing disturbance 

(glaciers, fire, 25) and at high latitudes, which experienced glacial advances and retreats (26). 205 

Conversely, studies finding strong, negative fragmentation effects are often from the tropics 

where broad-scale disturbance is rarer (27) or for matrix-associated temperate zone species – 

which are adapted to unfragmented but disturbed habitat (28, 29). Exceptions to this general 
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pattern do, of course, exist (30, 31). Further, we caution that temperate species are not 

necessarily robust to anthropogenic change of other types, and synergistic effects of stressors 210 

may pose novel threats. For instance, climate change may interact with habitat loss and 

fragmentation to reduce species’ capacity to adapt (32). Nevertheless, our data highlight a strong 

underlying pattern that has the potential to explain why fragmentation studies are known for 

generating such widely variable results. It will be essential to tie our broad-scale analyses to the 

analysis of the mechanistic underpinnings of fragmentation sensitivity to better generalize across 215 

biomes and taxa. 

 

These results indicate that conservation actions designed to mitigate edge-driven fragmentation 

effects can be tailored to the particular regions most likely to host sensitive species, rather than 

applying simple rules to the entire globe. Regions in temperate zones with greater historical 220 

disturbance might focus more on conserving mature forest habitat, regardless of its spatial 

configuration (6). On the other hand, efforts to reduce forest fragmentation should be 

concentrated in regions with low historical disturbance, particularly tropical forests (13) – 

especially those in biodiversity hotspots (33) – where fragmentation continues at a rapid rate and 

poses the greater extinction risk.  225 
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Figures and Tables 
 

   
Fig. 1. Geographic distributions of sample study regions and historical disturbances.  (A.) 
Locations of the 35 regions where the 73 datasets included in our analysis were collected. Areas 375 
that can support forests are shown in green. The BIOFRAG regions are colored according to 
disturbance severity. (B.) Distributions of historical disturbances: tropical storms, historical (long-
term) deforestation, high intensity-crown fires, and glaciation. (C.) Typical periods over which 
high-severity disturbances return to the same location.  
 380 
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Fig. 2. (A) Estimated proportions (with 95% confidence intervals) of forest species associated 
with core habitat at low and high disturbance sites, according to mixed-effects logistic 385 
regression models. The binary ‘disturbance’ variable indicates whether or not each of the 73 
BIOFRAG datasets comes from a location that has had high severity disturbances of any type 
(glaciation, tropical storms, crown fires, or greater than 50% historical forest loss). Numbers of 
species are shown beside point estimates. (B) Tropical rainforest, undisturbed by stand-replacing 
disturbance and (C) tropical deforestation for pastureland versus (D) temperate forest landscape 390 
that has been disturbed by wildfire and (E) temperate forest clearcuts. The extinction filter 
hypothesis predicts that species in disturbance-prone regions (D) should be less sensitive to habitat 
edges creased by anthropogenic fragmentation (E) than species that have evolved in landscapes 
where disturbances are rare (B,C).  
 395 
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Fig. 3. Logistic regression models used to estimate the proportion of forest core species as a 
function of absolute latitude. In panel (A), each point shows the proportion of species classified 
as core within each BIOFRAG region. Point sizes indicate the dataset rating, with higher values 
reflecting better estimation of edge sensitivity. Point colors indicate disturbance level associated 400 
with each region. The response variable is whether or not a species was classified as preferring 
forest core habitat.  Overall, the general pattern observed (decreasing relationship with latitude 
for forest species) is what one would predict if high-latitude species have evolved to cope with 
disturbance. Numbers of observations are shown in panel titles.  Study region absolute latitudes 
are shown using black tick marks (panel B). All p-values were false discovery rate (FDR) adjusted 405 
to control the expected proportion of Type I errors, and taxonomic class was included as a 
random effect in the “All species” model.  
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