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It is important to be able to predict the creep life of materials used in power plants and in
aeroengines. This paper develops a new parametric creep model that extends those put forward
by Wilshire and Yang et al. by having them as restricted or special cases of a new generalized
model. When this generalized model was applied to failure time data on 316H stainless steel it
was found that neither of these established parametric models explained the greatest variation in
the experimentally obtained times to failure. Instead, a version of this generalized model was
most compatible with the experimental data. It was further found that the activation energy for
this material changed at a normalized stress of 0.41 due to a change from the domination of
dislocation movement within grains to movement within grain boundaries. Finally, when the
generalized model was used to predict failure times beyond 5000 hours (using only the shorter
test times), the new generalized model had better predictive capability at most temperatures.
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I. INTRODUCTION

THE selection of materials for high temperature
applications in power plants is typically based on the
requirement that creep failure should not occur under
the prevailing operating conditions during plant lives of
approximately 30 years. Although complex stresses and
temperatures are often encountered by materials used in
power generation, design decisions are generally made
on the basis of allowable tensile creep strength. This
strength is commonly taken to be 67 pct of the average
stress (up to 1088 K).[1] At present, protracted and
expensive test programs lasting 12-15 years are neces-
sary to determine the required long-term strengths and
lives. A reduction in this 12-15 years of ‘materials
development cycle’ was therefore defined as the No. 1
priority in the 2007 UK Energy Materials—Strategic
Research.[2]

With the aim of reducing this development cycle, a
new group of parametric creep models has been devel-
oped in recent years that are characterized through their
use of a normalized stress (defined as the ratio of stress
to tensile strength, r/rTS) for the determination of safe
life. The rationale behind this new group of creep
models is that by definition, failure will be instantaneous

when stress is equal to a material’s tensile strength. Then
when the material is subjected to a stress that is an
infinitesimally small fraction of its tensile strength, the
material should remain intact for a very long period of
time. That is, tf must vary from 0 towards ¥ as r/rTS
varies from 1 towards 0. Unfortunately, the rate at
which this happens is not fully understood, and so this
group of models assumes that the relationship between
r/rTS and tf (at a fixed temperature) is given by an
inverted S-shaped curve.[3,4] The models within the
group are then differentiated by the mathematical
function used to describe this inverted S-shaped curve,
and so consequently these models can end up producing
very different safe life predictions.
This paper aims to tackle this problem by specifying a

generalized model that nests the creep model first put
forward by Wilshire and Battenbough[3] and the model
proposed by Yang et al.,[4] i.e., these two models are
special cases within this more general model. Within
such a framework, it is then possible to use some basic
statistical tests to allow experimental creep data to
determine the correct shape of the inverted S-shaped
relationship between r/rTS and tf. Once identified, this
shape can be used to obtain safe life predictions that are
compatible with experimental data, rather simply using
some ad hoc functional form for the S-shaped relation-
ship. To achieve this aim, the paper is structured as
follows. The next section gives a brief review of old and
new parametric creep models and this is followed by a
section deriving the generalized creep model together
with a statistical test for the form of the inverted
S-shaped curve. The next section then estimates the
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unknown parameters of these models together with a
short discussion on likely failure mechanisms that could
account for the values of these estimated parameters.
There then follows a subsection comparing the predic-
tive accuracy of the Wilshire, Yang et al. and generalized
creep models when they are applied to experimentally
derived failure times for 316H stainless steel. The paper
ends with a conclusion section that outlines some areas
for future work.

II. PARAMETRIC CREEP MODELS

A. A Brief History

The basis for most of the existing parametric models
used for creep life prediction is the modification of an
equation put forward by Eyring[5] for explaining a rate
constant in the presence of both thermal and non-ther-
mal stresses. When studying creep, the chosen rate
constant is usually taken to be the minimum creep rate,
_em

_em ¼ ATa exp � Qc

RT
þ BfðrÞ þD

fðrÞ
T

� �
; ½1a�

where T is temperature, r stress, and Qc is the activa-
tion energy for self-diffusion. a, A, B, and D are model
parameters whose values are usually unknown. The
form of the stress function, f(r), however, is applica-
tion specific and it explains the variety of parametric
creep models present in the engineering literature. An
equation for the time to failure, tf, can then be
obtained from this by making use of the empirical
Monkman–Grant[6] relation that contains further con-
stants M and q (where q is close to unity in value for
many metal alloys):

_em ¼ ðM=tfÞq ½1b�

so that Eq. [1a] can be rewritten as

ln tfð Þ ¼ a0 þ a1fðrÞ þ a2 ln Tð Þ þ a3
1

T
þ a4

fðrÞ
T

; ½1c�

where a0 = {�ln(A)/q +ln(M)}, a1 = �B/q, a2 = �a/
q, a3 = Qc/(qR), and a4 = �D/q.

The so-called first Soviet model[7] is very similar to
Eq. [1c] in that f(r) = ln(r) for the expression in front of
parameter a1, but f(r) = r in the expression in front of
a4. Although Larson–Miller[8] never specified a specific
stress function in their paper, the model is often
represented has having a1 = a2 = 0 with f(r) = ln(r)
and the Orr–Sherby–Dorn[9] model has a2 = a4 = 0
with f(r) = ln(r). The Minimum Commitment
Method[10] has a4 = 0 and uses T instead of ln(T) with
f(r) = ln(r) + b1r + b2r

2, where b1 and b2 are
additional model parameters. Finally, Manson and
Haferd[11] set a2 = a3 = 0 and replace a4f(r)/T with
a4f(r)[T�a5], while Manson and Brown[12] further gen-
eralize using a4f(r)[T�a5]

a6, where a5 and a6 are
additional model parameters (with f(r) being some
polynomial function of stress). Table I summarizes these
competing models expressing rupture life as an algebraic

function of stress and temperature. In recent years, a
newer group of parametric models has found their way
into the literature. They are different to those described
above as they emphasis the role of the normalized stress
in the determination of failure times, r/rTS, where rTS is
the tensile strength of the material under investigation.
Two examples of this group of models are the Wilshire[3]

equations (a2 = a4 = 0 with f(r) = ln½� ln r=rTSð Þ� in
Eq. [1c]) and the model by Yang et al.[4] (a2 = a4 = 0
with f(r) = ln r=ðrTS � rð ÞÞ in Eq. [1c]).

B. Normalized Stress Creep Models

1. Isothermal
At a given temperature, the approach towards mod-

eling stress taken by the more modern parametric
techniques is through the use of the normalized stress
r/rTS. The rationale behind this new group of creep
models is that by definition, failure will be instantaneous
when stress is equal to a material’s tensile strength. Then
when the material is subjected to a stress that is an
infinitesimally small fraction of its tensile strength, the
material should remain intact for a very long period of
time. Unfortunately, the rate at which this happens is
not really known, and the modern parametric tech-
niques assume that the relationship between r/rTS and tf
(at a fixed temperature) is given by an inverted S-shaped
curve. Thus, in the model by Yang et al.,[4] this inverted
S-shaped function takes the form

r
rTS

¼ 1þ tf
aL

� �bL
" #�1

; ½2a�

where aL and bL are model parameters (constants). aL
is termed a scale parameter because its value equals
the failure time associated with a normalized stress of
0.5 and this point on the S-shaped curve also corre-
sponds to the inflection point. bL is termed the shape
parameter as its value determines how flat the S
shaped curve is around the inflection point (bL values
close to 2 result in a very flat S shape that is almost
linear in nature). These characteristics can be seen in
Figure 1(a). Many readers with a statistical back-
ground may recognize this equation as the same as
that describing the Logistic cumulative distribution
function. This can be rewritten in terms of the time to
failure itself

ln tf½ � ¼ ln aL½ � þ 1

bL
ln

1

r
� 1

� �
; ½2b�

where r = r/rTS. Given that ln 1
r � 1
� 	

= � ln r
1�r

� 	
,

Eq. [1b] can be written in the way initially specified by
Yang et al.,

ln tf½ � ¼ ln aL½ � � 1

bL
ln

r

1� r

h i
: ½2c�

In the model by Wilshire,[3] this inverted S-shaped
function takes the form

698—VOLUME 51A, FEBRUARY 2020 METALLURGICAL AND MATERIALS TRANSACTIONS A



r
rTS

¼ exp � tf
aW

� �bW
" #

; ½3a�

where aW and bW are model parameters (again some
may recognize this equation as that describing the
Weibull cumulative distribution function). The value
for aW equals the failure time associated with a

normalized stress of 0.368 and this point on the
S-shaped curve also corresponds to the inflection
point. bL is termed the shape parameter as its value
determines how flat the S shaped curve is around the
inflection point (bL values close to 1.25 result in a very
flat S shape that is almost linear in nature and a value
close to 5 results in a very step but approximately
symmetric S shape around the inflection point). These

Table I. Summary of Some Parametric Creep Models for Predicting Time to Failure

Model Name Single Comprehensive Equation

Orr–Sherby–Dorn[9] (OSD) ln tfð Þ ¼ a0 þ a1 lnðrÞ þ a3
1
T

Larson–Miller[8] (LM) ln tfð Þ ¼ a0 þ a3
1
T þ a4

lnðrÞ
T

Minimum Commitment[10] (MC) ln tfð Þ ¼ a0 þ a1 lnðrÞ þ a2Tþ a3
1
T þ b1rþ b1r2

Manson and Haferd[11] (MH)* ln tfð Þ ¼ a0 þ a1fðrÞ þ a4
fðrÞ
T T� a5½ �

Manson and Brown[12] (MB)* ln tfð Þ ¼ a0 þ a1fðrÞ þ a4
fðrÞ
T T� a5½ �a6

Soviet Model 1[7] (SM1) ln tfð Þ ¼ a0 þ a2 lnðrÞ þ a3
1
T þ a4

r
T

Wilshire[3] (W) ln tfð Þ ¼ a0 þ a1 ln � ln r=rTSð Þ½ �;þa3
1
T

Yang et al.[4] (Y) ln tfð Þ ¼ a0 þ a1 ln r= rTS � rð Þ½ � þ a3
1
T

*In these models, f(r) is a polynomial function of stress. ln stands for natural log, tf is the time to failure, T the test temperature, r the test stress,
and rTS the tensile strength. a0 to a6 are model parameters that require estimation and have different meanings and values in each of the models.
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Fig. 1—Showing the form of (a) Yang et al’s. model for different values bL when aL =12 and, (b) Wilshire’s model for different values of bW
when aL =12, (c) generalized model for different values of k* when a = 12 and b = 3.
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characteristics can be seen in Figure 1(b). Again this
can be rewritten in terms of the time to failure

ln tf½ � ¼ ln aW½ � þ 1

bW
ln � ln rð Þ½ �: ½3b�

Given that the exact shape of the function linking r/
rTS to tf is unknown, it is advantageous to formulate a
more flexible inverted S-shaped curve that contains the
above two models as special cases. Put differently, each
model above assumes the inflection point occurs at a
specific normalized stress and the actual creep data may
not display this characteristic. By creating a generalized
model, it then becomes possible to create a statistical test
to determine the nature of the relationship between r/
rTS and tf that is most supported by the experimental
creep data. Generalization can be achieved by introduc-
ing an extra parameter k into Eq. [2a] such that when
k = 1 the model by Yang et al. is obtained and when k
becomes very large the model by Wilshire emerges. For
k values in between, completely new models emerge with
a range of different S-shaped curves. This paper pro-
poses the following generalized model that nests the
above two models through the introduction of an
additional parameter k that has inflection points occur-
ring at differing normalized stresses depending on the
value for k

r
rTS

¼ 1þ 1

k

tf
a


 �b
� ��k

½4a�

or in terms of the time to failure

ln tf½ � ¼ ln a½ � þ 1

b
r�; ½4b�

where

r� ¼ ln k
r
rTS

� ��1=k

�k

" #
: ½4c�

Now, when k = 1, r* = ln 1
r � 1
� 	

; and so Eqs. [4a]
and [4b], simplify into Eqs. [2a] and [2b] with a = aL
and b = bL. Thus k = 1 results in the model proposed
by Yang et al. Further, as kfi ¥, r* fi ln � ln rð Þ½ � and so
then Eqs. [4a] and [4b], simplify into Eqs. [3a] and [3b]
with a= aW and b= bW. Thus, k tending to ¥ results in
the model by Wilshire. Other inverted S-shaped curves
exist for k values between these two limits. The different
inverted S-shaped curves associated with the different
values for k are shown in Figure 1(c), where k is rescaled
to fall within the limits 0 to 1 through the transforma-
tion k* = k�0.5 (so that when k = 1, k* = 1 and as k fi
¥, k* fi 0). In this rescaling, Yang et al.’s model
corresponds to k* = 1 and Wilshire’s model emerges
when k* = 0. Figure 1(c) shows the different shapes
produced by different values for k* in Eq. [4c] when b =
3 and a = 12.

2. Temperature compensated
If the effect of temperature on creep life is determined

by the Arrhenius equation, the role of the reciprocal of
temperature is simply to alter the value for the intercept
term in Eq. [4b]

ln tf½ � ¼ ln a½ � þQc
1

RT

� �
þ 1

b
r�; ½5a�

where R is the universal gas constant. Rearranging
Eq. [5a] for r = r/rTS gives

r ¼ r
rTS

¼ 1þ 1

kab
tf exp �Qc

1

RT

� �� �b
" #�k

: ½5b�

Again, Yang et al.’s model corresponds to k* = 1 and
Wilshire’s model emerges when k* = 0.
The Wilshire and Yang et al. models have been

applied to a wide range of materials and in all cases
there is a need for partitioning, in the sense that the
model parameters only remain constant over a limited
range of normalized stress values

ln tf½ � ¼ ln aj
� 	

þQcj
1

RT

� �
þ 1

bj
r� ½5c�

j = 1 when r=rTS � rc1; j = 2 when
rc1<r=rTS � rc2;….; j = p when r=rTS>rcp�1

rc1<rc2< � � �<rcp�1

rcj are critical values for the normalized stresses and so
fall between 0 and 1. In partitioning, there are p creep
regimes that occur in distinct ranges for the normalized
stress and the p versions of Eq. [5c] then apply to each
regime. Typically, p varies between 1 and 4 depending
on the material being studied and the test conditions
present in the creep data base on that material. Some of
the first studies to appear in the literature include
applications to Copper[3] and 1Cr-1Mo-0.25 steel[13]

where p was found equal to 2 and where the activation
energy was the same either side of rc1 (so Qcj ¼ Qc).
Later studies by Whittaker and Wilshire using
2.25Cr-1Mo steel[14] found p equal to 3 and again the
activation energy was the same either side of rc1and rc2
and Evans[15] found p = 2 but with a varying activation
energy either side of rc1 when studying a 12Cr steel.
Finally, Whittaker et al.[16] found p = 2 with varying
activation energies around rc1 when studying a particular
grade of Waspaloy.

3. Estimation and a statistical test for the stress
function (i.e., for the value for k)
As Eq. [5b] contains a number of unknown param-

eters, including the activation energy, data are required
on the time taken for specimens tested under different
stresses and temperatures to fail. A number of large
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creep data sets of this nature exist and what is clear from
them is that failure times exhibit variation over and
above that explainable from test conditions alone. To
account for this stochastic nature of creep failure times,
a random error term, e, whose standard deviation is
given by s, can be added to Eqs. [5a] and [5c]

ln tf½ �i ¼ ln a½ � þQc
1

RTi

� �
þ 1

b
r�i þ ei ½6a�

or with partitioning

ln tf½ �i ¼ ln aj
� 	

þQcj
1

RTi

� �
þ 1

bj
r�i þ ei j ¼ 1; p ½6b�

where the subscript i designates the failure time of the
ith specimen tested at temperature Ti and transformed
stress r�i . ei is then the component of ln tf½ �i that cannot
be explained by the stress and temperature experienced
by the ith specimen. Given this, it makes sense to select
values for the unknown parameters in Eqs. [6a] and [6b]
so as to minimize this random or unexplained variation.
The well-known least squares procedure does exactly
this—it makes use of simple equations that attach values
to Qc, a, and b so as to minimize the sum of squared
errors,

P
e2i , where this summation is over all i = 1 to n

observations on tf. To minimize the sum of squared
errors, a value for k must first be chosen so that r�i can
be calculated using Eq. [4c]. For the unpartitioned
version, all these parameters are estimated by a regres-
sion of ln tf½ � on r* and 1/RT. This regression will have an
associated coefficient of determination (R2)—that shows
what percentage of the variation in ln tf½ � can be
explained by variations in all the test variables on the
right-hand side of Eq. [6a]. The values for ln(a), b, and
Qc obtained in this way are designated through the use

of a hat symbol, i.e., â; b̂and Q̂c are the least squares
estimates of ln(a), b, and Qc.

For the partitioned version when p = 2, estimation
first requires the construction of a dummy variable D by
initially estimating (by eye) a value for rc1

ln tf½ �i ¼ ln a1½ � þQc1
1

RTi

� �
þ 1

b1
r�i þ d0Di þ d1½r�i Di�

þ d2
Di

RTi

� �
þ ei;

½7a�

where the dummy variable D = 0 when r=rTS>rc1 but
D = 1 otherwise. Thus when j = 2 because
r=rTS>rc1, Eq. [7a] collapses to

ln tf½ �i ¼ ln a1½ � þQc1
1

RTi
þ 1

b1
r�i þ ei: ½7b�

Then when j = 1, because r=rTS � rc1, D = 1 and
Eq. [7a] can be re-arranged as

ln tf½ �i ¼ fln a1½ � þ d0g þ Qc1 þ d2f g 1

RTi
þ 1

b1
þ d1

� �
r�i

þ ei

½7c�

and so Qc2 = Qc1 + d2, 1/b2 = 1/b1 + d1, and ln[a2] =
ln[a1]þd0. All these parameters are estimated by a
regression of ln tf½ � on r*, 1/RT, D, r*D, and D

RT

� 	
once a

value of k has been chosen. This regression will have an
associated coefficient of determination (R2)—that shows
what percentage of the variation in ln tf½ � that can be
explained by variations in all the variables on the
right-hand side of Eq. [7c]. The values for ln(a1), ln(a2),
b1, b2, Qc1, and Qc2 obtained in this way are designated
through the use of a hat symbol, i.e.,

â1; â2; b̂1; b̂2; Q̂c1 and Q̂c1 are least squares estimates of
ln(a1), ln(a2), b1, b2, Qc1, and Qc2. This regression is
carried out for all values of rc1 within the experimental
range of normalized stresses and the value rc1is taken to
be that value which gives the largest R2 value.
Further, minimizing the sum of the squared errors is

equivalent to maximizing the joint probability or like-
lihood of observing all n failure times, provided the
random errors (and thus the logged times to failure)
follow a normal distribution. Given this assumption, the
log of this joint probability, termed the log likelihood,
can be calculated as

lnðLkÞ ¼ � n

2
ln 2pð Þ � n

2
ln ŝ2
� 


� 1

2ŝ2
Xn

i¼1
ê2i ; ½8a�

where without partitioning

ê2i ¼ ln tf½ �i� ln â½ � þ Q̂c
1

RTi
þ 1

b̂
r�i

" #( )2

½8b�

and with partitioning (when p = 2)

ê2i ¼ ln tf½ �i� ln â1½ � � Q̂c1
1

RTi
� 1

b̂1
r�i � d̂0Di � d̂1½r�i Di� � d̂2

Di

RTi

� �( )2

:

½8c�

In both cases,

ŝ2 ¼
Pn

i¼1 ê
2
i

n� number of estimated parameters
; ½8d�

where n equals the total number of tests in the data
set. Such a value for this log likelihood can be calcu-
lated for all values for k, Ln(Lk), and there will be
some value for k that results in the largest log likeli-
hood, Ln(Lk

+). The test statistic (or relative log
likelihood)

v2 ¼ 2 Ln Lþ
k

� 

� Ln Lkð Þ

� 	
½9�

has a v2 distribution with one degree of freedom under
the null hypothesis that (k+ � k) equals zero. k+ is thus
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the value for k most supported by the data, and values
for k that lead to v2> 3.814 are not supported by the
failure time data at the 5 pct significance level.

III. THE DATA

The NIMS Matnavi website,[17] in which Creep Data
Sheet 14B resides, provides extensive rupture data for
two batches (labeled AaA and AaB) of 316H stainless
steel plate (18Cr-12Ni-Mo with up to 0.08 �C). These
two plate specimens were hot rolled and held at 1323 K
for either 40 or 80 minutes before water quenching and
each batch had a different chemical composition which
can be found in Creep Data Sheet 14B.[18] This paper
uses both batches and so is made up of 60 specimens
that were tested at nine different temperatures ranging
from 873 K to 1123 K, and stresses ranging from 265 to
20 MPa. The resulting shortest failure time was 175, 320
seconds and the largest was 469, 720, 440 seconds (or
approximately 15 years). Figure 2 shows all the nor-
malized stresses and temperatures applied to the test
specimens together with the time at which each specimen
failed and Table II shows the temperature dependency
of this material’s tensile strength as well as its batch to
batch variability.

IV. RESULTS

A. The Wilshire Model (k* = 0)

Whittaker et al.[19] carried out a detailed study of this
material using the Wilshire model and found there to be
two distinct creep regimes (p = 2). This finding was

obtained using steel tubes, plate, and piping material
rather than just the tube data used in this paper. Sticking
with this finding, and using the estimation techniques
described above when k* = 0 (so leading to the Wilshire
model), resulted in the largest R2 value being associated
with rc1 = 0.41 and this is similar in value to that found
by Whittaker et al. The resulting least squares estimates
of the models parameters were then found to be
If r/rTS> 0.41

ln tf½ � ¼ �22:532
�9:23f g

þ 7:543 ln � lnðr=rTS½ Þ�
14:99f g

þ 306; 131 1=RT½ �
15:91f g

:

If r/rTS £ 0.41

ln tf½ � ¼ �8:025
�2:21f g

þ 7:377 ln � lnðr=rTS½ Þ�
10:03f g

þ 181; 573 1=T½ �
6:33f g

:

½10�

The parameter estimates shown in Eq. [10] imply that
when r/rTS > 0.41, aw =exp(�22.532) = 1.6386E-10,
bw = 1/7.543 = 0.1356 with an activation energy of 306
kJmol�1. But at a normalized stress below 0.41 the
activation energy drops to 182 kJmol�1 with aw =
exp(�8.025) = 0.0003 and bw = 1/7.377 = 0.1355. The
estimated parameters shown in Eq. [10] are based on all
the experimental failure times and the numbers in
squiggly brackets below these estimated values are the
student t values associated for testing the null hypothesis
that the population parameter values are really zero.
Consequently, all the parameters are statistically signif-
icant at the 5 pct significance level. The student t values
for d0 and d2 also revealed that both these parameters
are also significantly different from zero at the 5 pct
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Fig. 2—Plot of time to failure against the normalized stress at various temperatures for all batches of 316H austenitic stainless steel taken from
the NIMS creep data sheet 14B.
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significance level, but that the student t value for d1
revealed that this parameter was not significantly
different from zero at the same significance level.
Consequently, at a normalized stress of 0.41 there is a
real change in the value for aw and the activation energy,
but no change in the slope parameter bw. This structure
is shown visually in Figure 3(a), where the fitted line has
essentially the same slope over the full range of stresses.
The overall R2 value was 96.62 pct.

B. The Model by Yang et al. (k* = k = 1)

Again working with p = 2, and using the estimation
techniques described above when k* = 1 (so leading to
the Yang et al. model), resulted in the largest R2 value
being associated with rc1 = 0.38—only marginally lower
than when using the Wilshire model. The resulting least
squares estimates of the models parameters were then
found to be
If r/rTS> 0.38

ln tf½ � ¼ �25:147
�10:74f g

þ 5:528 ln ðrTS=r½ Þ � 1�
16:28f g

þ 305; 111 1=RT½ �
17:14f g

:

If r/rTS £ 0.38

ln tf½ � ¼ �9:763
�2:81f g

þ 3:737 ln ðrTS=r½ Þ � 1�
7:56f g

þ 181; 210 1=T½ �
6:82f g

:

½11�

The parameter estimates shown in Eq. [11] imply that
when r/rTS>0.38, aw=exp(�25.145)= 1.199E-11, bw=
1/5.528= 0.181 with an activation energy of 305 kJmol�1.
But at a normalized stress below 0.38 the activation
energy drops to 181 kJmol�1 with aw =exp(�9.763) =

Table II. Variation of Tensile/0.2 Pct Proof Stress (MPa)

with Temperature (K) and Batch

Temperature Batch AaA Batch AaB

873 413/120 405/114
923 362/123 357/128
973 294/109 292/116
1023 242/110 239/108
1073 190/92 188/101
1123 151/85 151/92
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Fig. 3—The variation of ln[tf] – Qc/RT � d0D with r* when (a) k* = 0 and d0 = 14.507 with Qc � 306 kJmol�1 and D = 0 when r/rTS> 0.41
and Qc � 182 kJmol�1 with D = 1 otherwise (b) k* = 1 and d0 = 15.384 with Qc � 305 kJmol�1 and D = 0 when r/rTS> 0.38 and Qc � 181
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with D = 1 otherwise.
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5.754E-05 and bw = 1/3.737 = 0.2676. So these
activation energies are not dissimilar to that obtained
when using the Wilshire model. The estimated param-
eters shown in Eq. [11] are based on all the experimental
failure times. All the parameters are statistically signif-
icant at the 5 pct significance level and the student t
values for d0 through to d2 also revealed that all these
parameters are significantly different from zero at the
5 pct significance level. Consequently, at a normalized
stress of 0.38 there is a real change in the value for a and
the activation energy, but also and unlike in the Wilshire
model, a real change in the slope parameter b. This
structure is shown visually in Figure 3(b), where the
fitted line has a steeper slope after the break point. The
overall R2 value of 97.08 pct is a little higher than that
associated with the Wilshire model.

C. The General Model

Figure 4 plots the value for v2 in Eq. [9] for different
values of k* and as can be seen the value for k* most
supported by the data is 0.7 (and so k = 2.041). This
corresponds to neither the Wilshire nor the model by
Yang et al. Further, based on the 5 pct significance level
it can be concluded that values for k* less than 0.45 (k
more than 4.938) and more than 1.1 (k less than 1.1) are
not supported by the experimental data. Thus, for this
material, the Wilshire model is not consistent with the
experimental data, while the model by Yang et al. is only
just supported by the data, with the general model being

most supported by the data when k = 2.041. Using this
value for k and using the estimation technique described
above, resulted in the largest R2 value being associated
with rc1 = 0.41—the same as when using the Wilshire
model—withIf r/rTS> 0.41

ln tf½ � ¼ �23:971
�10:53f g

þ 6:413 ln 2:041
r
rTS

� �� 1
2:041

�2:041

" #

16:50f g

þ 305; 735 1=RT½ �
17:37f g

:

If r/rTS £ 0.41

ln tf½ � ¼ �9:223
�2:73f g

þ 5:164 ln 2:041
r
rTS

� �� 1
2:041

�2:041

" #

9:02f g

þ 181; 735 1=T½ �
6:92f g

: ½12�

The parameter estimates shown in Eq. [12] imply that
when r/rTS>0.41, a =exp(-23.971) = 3.886E-11, b =
1/6.413 = 0.1559 with an activation energy of 306
kJmol�1. But at a normalized stress below 0.41 the
activation energy drops to 182 kJmol�1 with a =
exp(�9.223) = 9.874E-05 and b = 1/5.164 = 0.1936.
So these activation energies are not dissimilar to that
obtained when using the Wilshire model and the model
by Yang et al. The estimated parameters shown in
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Eq. [12] are based on all the experimental failure times.
All the parameters are statistically significant at the
5 pct significance level and the student t values for d0
through to d2 also revealed that all these parameters are
significantly different from zero at the 5 pct significance
level. Consequently, at a normalized stress of 0.41 there
is a real change in the value for a and the activation
energy, but also and unlike in the Wilshire model, a real
change in the slope parameter b. This structure is shown
visually in Figure 3(c), where the fitted line has a steeper
slope after the break point. The overall R2 value of
97.16 pct is a little higher than that associated with the
Wilshire model.

D. Deformation Mechanisms Behind the General Model

Whittaker et al.[19] have found for this material that
the processes responsible for creep change at stresses
above and below the yield stress. They found that when
the stress exceeds the yield stress, creep occurs by
movement of new dislocations generated during the
plastic component of the initial strain on loading (e0),
whereas creep takes place by grain boundary zone
deformation when fully elastic e0 values only are
recorded when the stress is below the yield stress. This
is confirmed by the results of this paper, where below a
normalized stress of 0.41, all the test stresses are below
the 0.2 pct proof stresses (that are approximately equal
to the yield stress) shown in Table I. This suggests that
for these materials all creep models based on the
normalized stress should be of the partitioned variety
with one break around the yield stress.

Whittaker et al.[19] further found that under all stress/
temperature conditions, failure occurred by cavitation.
If cavity development is strain controlled, then the creep
life is determined principally by boundary zone defor-
mation. Assuming that a comparable level of grain
boundary zone deformation is necessary to cause failure,
the contribution of grain deformation to the overall
creep rate decreases with decreasing stress. If this is the
case then this should be accompanied by a decrease in
the strain at rupture as well. This is what is actually
observed in creep data sheet 14B[18] where, for example,
at a temperature of 1023 K the percentage elongation at
rupture drops from 88 pct as a normalized stress of 0.3
to just 45 pct at a normalized stress of 0.1. The reader is
referred to Whittaker et al.[19] for further details on
creep mechanisms and microstructure.

E. Predictive Performance

Using the general model yields similar estimates of the
activation energy to those obtained using the model by
Yang et al. or Wilshire—but it is the model most
supported by the data. It is then interesting to discover if
this fact results in better life time predictions. To assess
this, the parameters of all the three modes shown above
were re-estimated using data only up to 5000 hours and
the resulting equations were then used to predict the
failure times for all those specimens that had a life in
excess of 5000 hours. This acid or blindfold test of

extrapolation was assessed using the root mean per-
centage squared error (RMPSE) and Theil’s[20] inequal-
ity coefficient U, both defined as

RMPSE ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiPn
i¼1 ln tf½ �i� ln tf½ �pi

� 
2
n

s

ffi

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiPn
i¼1 tf½ �i� tf½ �pi

� 	
= tf½ �pi

� 
2
n

s
½13a�

U ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiPn

i¼1
tf½ �i� tf½ �p

ið Þ2
n

r
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1
n

Pn
i¼1 tf½ �i

� 
2q
þ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1
n

Pn
i¼1 tf½ �pi

� 
2q ; ½13b�

where ln tf½ �pi is the value predicted for ln tf½ �i and tf½ �pi is
the value predicted for tf½ �i by one of the above three
creep models. In Eq. [13a], the approximation comes
about because the difference between the predicted and
actual log failure time is approximately equal to the
percentage difference between the actual and predicted
failure times (with the approximation being better the
smaller the percentage difference). In Eq. [13b], the
numerator is the average of the squared differences
between the actual and predicted failure times. The
denominator of Eq. [13b] scales U to fall between 0 and
1. If U = 0, then tf½ �i� tf½ �pi = 0 for all i (i.e., over all the
different test conditions) and the model is a perfect
predictor of the creep properties under analysis. If U =
1, the predictive performance of the creep model is as
bad as it could possibly be. Hence U measures predictive
accuracy in relative terms.
The results of applying Eq. [13] to the experimental

data set are shown in Table III. The greater log likelihood
andR2 values that are associated with the model by Yang
et al. (relative to the Wilshire model) translate to a lower
RMPSE over all test temperatures: 46.49 pct for the
model by Yang et al. compared to 53.8 pct for the
Wilshiremodel. As the k value for the generalmodel is not
to different to that for the model by Yang et al., the
RMPSE for these two models are virtually the same. The
same picture emerges when looking at Theil’s U statistic.
The general model and that by Yang et al. have very
similar U statistics, suggesting they have very similar and
good predictive performance (U = 0 implies a perfect
model and U = 1 is the poorest performance possible).
The Wilshire model has a much higher U value.
Table III also reveals some interesting differences in

predictive performance at specific temperatures. Based
on a comparison of Theil’s U, all models predict failure
times best at a mid-temperature of 973 K, with the
general model performing slightly better than the other
two nested models. All models predict failure times
worst at the temperatures of 873 K and 1023 K. At 873
K the general model is the better of the three models,
while at 1023 K the model by Yang et al. is the better
performing one, with the general model performing
much better than the Wilshire model (U = 0.3< 0.36)
but about as well as the model by Yang et al. Actually,
at the highest two temperature, the model by Yang et al.
has better U statistic.
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The predictive performance shown in Table III can be
seen in Figure 5 where the predicted curves fit the
experimental failure times above 5000 hours much better
at temperatures above 923 K. The zig-zag nature of the
isothermal prediction curves reflects the change in the
activation energy at a normalized stress of around 0.41.
It should be noted that this is a model simplification in
that in reality the deformation mechanism is likely to
gradually change around this critical normalized stress
leading to smooth isothermal lines.

V. CONCLUSIONS

This paper develops a new parametric creep model
that extends the Wilshire and Yang et al. models by
having them as restricted or special cases of this new
generalized model. These models were then applied to
data obtained by NIMS[18] on 316H stainless steel where
blind tests of extrapolative capability for times to failure
exceeding 5000 hours were carried out. The main
findings from this approach were:

1. There is a large and statistically significant change
in the activation energy for 316H stainless steel at a
normalized stress of 0.41 (from around 306 kJmol�1

to around 182 kJmol�1).
2. This change is attributed to stress test conditions

being below the yield stress when the normalized
stress is below 0.41, and so there is a change away
from dislocation movement within grains to move-
ment within grain boundaries—where the activation
energy is considerable lower.

3. The Wilshire model[3] was found to be incompatible
with the experimental data at the 5 pct significance
level, and while the model by Yang et al.[4] was
compatible with the data, it was not a model that
was most supported by the data. Such a model was
the generalized equation developed in this paper
with k � 2.

4. The Wilshire model[3] produced life time predictions
at test conditions leading to lives in excess of 5000
hours that were less accurate than those obtained
from the generalized model and the model put
forward by Yang et al.[4] Over all test temperatures
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Fig. 5—Stress and temperature dependency of creep life, together with the predicted life times produced by the generalized creep model.

Table III. Predictive Performance of Various Models of Creep Life

Model
k* = 1 (Yang et al.) k* = 0 (Wilshire) k* = 0.70 (General)

Temperature (K) RMPSE (Pct) U RMPSE (Pct) U RMPSE (Pct) U

873 62.85 0.31 76.58 0.36 60.05 0.30
923 58.90 0.29 62.27 0.31 58.39 0.29
973 30.72 0.15 32.81 0.15 29.39 0.13
1023 45.97 0.28 51.51 0.41 45.82 0.33
1073 45.01 0.23 56.01 0.35 46.69 0.28
All 46.49 0.25 53.80 0.39 46.53 0.27

The RMPSE is given by Eq. [13a] and U is given by Eq. [13b].
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the generalized model produced the most accurate
life time predictions.

Areas for future work include the application of this
new generalized model to other materials within the
NIMS creep data base to see if a k value of around 2 is
appropriate for these materials as well. It may turn out
to be the case that k (like the Monkman–Grant
parameter M) is materials specific. When then compar-
ing the predictive accuracy of this new model with
existing models in the literature, it would be important
to use the same number of implied creep regimes and use
the same data sets/test conditions.
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