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Highlights 

 

- A swAM model reflects enhanced pressure drops in planar contraction flows. 

- A model with greater flexibility in control of first normal-stress difference response. 

- Binding and Walters [1988] experimental pressure-drop data is quantitatively captured 

- Transition states detected between flow phases of steady, oscillatory and unstable form 

- Evolving patterns of salient-corner vortices and lip-vortex. 
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Abstract  

This study addresses a rheological problem that has been outstanding now for the past few decades, 

raised by the experimental findings of Binding and Walters [1]. There, it was established experimentally 

that planar contraction flows for some Boger fluids could display enhanced pressure-drops above 

Newtonian flows, as was the case for their tubular counterparts. Nevertheless, flow-structures to achieve 

this result were reported to be markedly different, planar to circular. In this article, it is shown how 

predictive differential-viscoelastic solutions with continuum models can replicate these observations. 

Key to this success has been the derivation of a new definition for the third-invariant of the rate-of-

deformation tensor in planar flows, mimicking that of the circular case [2-3]. This provides a mechanism 

to successfully incorporate dissipation within planar flows, as performed earlier for tubular flows. Still, 

to reach the necessary large deformation-rates to achieve planar enhanced pressure-drops, and whilst 

maintaining steady flow-conditions, it has been found crucial to invoke a continuous-spectrum 

relaxation-time model [3]. The rheological power and flexibility of such a model is clearly 

demonstrated, over its counterpart Maxwellian single-averaged relaxation-time approximation; the latter 

transcending the boundaries of steady-to-unsteady flow to manifest equivalent levels of enhanced 

pressure-drops. Then, the role of extensional viscosity and first normal-stress difference, each play their 

part to achieve such planar enhanced pressure-drops. As a by-product, the distinctive planar ‘bulb-flow’ 

structures discovered by Binding and Walters [1], absent in tubular flows, are also predicted under the 

associated regime of high deformation-rates where enhanced pressure-drop arise.   

 

Keywords: Boger fluids; planar contraction flow; pressure-drop enhancement; swAM model 
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1. Introduction 

Main theme and objective of this study may be outlined as follows. Having earlier quantitatively 

captured experimental vortex-trends and excess pressure-drops for Boger Fluids in circular contraction 

flows (López-Aguilar et al. [2, 3]), the focus shifts here to parallel this position for its counterpart of 

planar contraction flows, as demonstrated in Binding and Walters [1]. Such extraction of excess 

pressure-drops in circular flows by simulation was held as a significant breakthrough in differential-

viscoelastic continuum-modelling (also paralleled by counterpart enhanced drag results for falling-

sphere problem, see Garduño et al. [4, 5]). As such, one was already aware of the general trends 

observed in vortex-enhancement encountered for tubular flows with rise in flow-rate (Tamaddon-

Jahromi et al. [6]), and the fact that this could also be replicated in planar sister flows, but only after 

some delay until higher deformation-rates had been reached (sharp-corner 4:1, López-Aguilar et al. [7]). 

The outstanding omission under predictive modelling, has been the distinct lack of progress made over 

the last thirty years or so, in capturing experimental pressure-drops for some Boger fluids in planar 

contraction configurations. The present analysis attempts to fill this void by meeting this deficiency. 

 Preliminary breakthroughs on numerical prediction of Boger fluids complex-flow experimental data 

Firstly, it is informative to recognise the key advances found necessary to capture such tubular 

experimental excess pressure-drops (epd) for Boger fluids [7, 8]. That is prior to making the case for 

extending this success into the planar context. It was necessary to enhance the relevant constitutive 

models to imbue them with elements of dissipation, particularly responsive to extensional deformation, 

so that the constant shear-viscosity implied was not impaired. Then, it was found important to replicate 

experimental protocols through predictive procedures, to track steady viscoelastic solutions through rise 

in deformation-rate for fixed fluid-properties (as opposed to earlier common practice of adjusting fluid 

properties at fixed average deformation-rate). This lay in conjunction with various advanced 

stabilization techniques to pierce the setting of high deformation-rate steady viscoelastic solutions 

(retaining evolution tractability; akin to reaching High Weissenberg number solutions [9]). With these 

practical steps undertaken, the goal of extracting 4:1:4 tubular experimental excess pressure-drops for 

Boger fluids of Rothstein and McKinley [10] was realised with the swIM model, using an averaged 

Maxwelian relaxation-time. Predictive solutions in Tamaddon-Jahromi et al. [8], captured the initial 

pronounced rise in epd with flow-rate, large vortex-enhancement, the experimental limiting plateau for 

steady-solutions and the subsequent regime of unsteady oscillatory flow. Such epd-extraction was then 

further extended in López-Aguilar et al. [2] to the more extreme case of sharp-corner contraction flow, 

as reported by Nigen and Walters [11]. 
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 Further challenges on planar contraction flows Accordingly, one might have envisaged that 

findings for the counterpart planar configuration, would have followed naturally, and as a consequence 

of the above. Unfortunately, the distinction between circular and planar deformations reveals subtle 

differences that emerge in the representation of the flow-invariants, this being particularly apparent 

under extensional deformation with dependency on the third-invariant of the rate of deformation. 

Standard conventional treatment in the planar instance would provide a null result for the third 

invariant, whilst this has some non-vanishing and significant contribution to make under the circular 

setting. The consequence of this feeds into the functionality imposed on the dissipation boost, which was 

found necessary in circular flows to enhance pressure-drops above their Newtonian equivalents. Thus, 

following standard conventions and in planar flows, no such boost is provided, and there is no proof of 

any evidential excess pressure-drop. Hence, a new approach is required here for the planar context, in 

recognition of the separability and independence of each (x-y) plane from any other in the third z-

dimension; the details are exposed below. In this manner, a new in-plane definition is extracted for 

planar extensional deformation, which follows the circular case by analogy. This provides the key to 

supplying the dissipation boost for the planar configuration, from which only then, the associated excess 

pressure-drops may be accessed. 

 Flow transitions at high flow-rates and their description Further pursuit of the relevant high flow-

rate steady viscoelastic planar solutions, still retains some interesting aspects to address, and more 

particularly in respect of the steady-to-unsteady thresholds encountered under these more severe and 

dynamic flow states. It has been natural to first assess such solutions through an averaged Maxwellian 

single relaxation-time model approximation, using the so-called swIM–model [2]. Subsequently, one has 

appealed to the more general continuous-spectrum relaxation-time function swAM–approach [3]. The 

former discloses the difficulties faced in reaching the experimental pressure-drop data, with retention of 

steady solutions. Only pseudo-steady solutions could achieve this, principally through enhancement of 

the extensional viscosity properties. Under the more general continuous-spectrum function swAM–

approximation of López-Aguilar et al. [3], further functional dependence on the first normal-stress 

difference is also introduced, which allows this model to additionally impact on the pressure-drop. In 

this manner, steady viscoelastic solutions are gathered at the bespoke flow-rates in question, and the 

recorded experimental data is recovered, including the kinematic flow-transitions described by Binding 

& Walters [1], with bulb-flow and instability prediction at medium-to-high flow-rates. Other 

computational work of relevance, addresses on pressure-drop and vortex-structures in a particular 8:1 
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abrupt tubular contraction flow of Tamaddon-Jahromi et al. [6] (see below versus Nigen and Walters 

[11]). 

 Further related work would include that of Oliveira et al. [12], where comprehensive numerical 

simulations were performed with a finite-volume method on two models, Oldroyd-B and linear Phan-

Thien-Tanner (PTT). Such work addressed axisymmetric flow through abrupt contractions of varying 

contraction-ratio, from 2 up to 100. Usefully, these authors found the same extra pressure-drop (Couette 

correction) applied with rising Deborah number (De), for various contraction-ratios ranging from 10 to 

100, and for Deborah number up to 100. There, the PTT extensibility parameter was also varied (ε=0 to 

0.5) and found to impact on pressure-drop. For small values of ε, the Couette correction was a 

monotonically decreasing function of De, while for larger ε values, it became a monotonically increasing 

function of De. 

 Background studies Under citation of key comparative and background studies, for a detailed 

review of the many contributions to the study of contraction flows, the interested reader is referred to 

Tanner [13], Owens and Phillips [14], Walters and Webster [15], Aboubacar et al. [16, 17], Alves et al. 

[18], Phillips and Williams [19]. Experimentally, this covers both planar and circular configurations, the 

influence of contraction-ratio and rounding of sharp-corners (see, for example, Evans and Walters [20]; 

Boger et al. [21]; Binding and Walters [1]; Binding et al. [22]; Rothstein and McKinley [10, 23]; Nigen 

and Walters [11]). The case for Boger fluids and shear-thinning fluids was made in turn. 

  Relevant kinetic-theory models Under a molecular constitutive modelling approach, kinetic theory 

models provide a coarse-grained description of molecular configurations. Such models tackle important 

features that govern the flow-induced evolution of configurations. In recent years, kinetic theory has 

advanced well beyond the classical reptation tube-model by Doi & Edwards (see more details in 

Keunings [24]). An large number of Brownian dynamics studies have emerged based on Kramers 

chains, bead-spring chains and dumbbells, with macroscopic constitutive equations, namely the FENE–

P, FENE–CR and FENE–L models, that are closely related to the FENE dumbbell kinetic theory. The 

interest in such theory has significantly advanced the understanding of polymer dynamics in general. 

Particularly, a comprehensive survey on mathematical formulation and numerical approaches, with a 

review of applications to polymer solutions and melts, liquid crystalline polymers and fibre suspension, 

is presented in Keunings [25]. Although kinetic theory models are much more demanding in terms of 

computer resources than conventional continuum computations, they allow the direct use of kinetic 

theory models in flow simulations, thus avoiding potentially inaccurate closure approximations (Ammar 

et al. [26, 27]). Furthermore, some constitutive equations applied in continuum modeling have 
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originated from molecular models and kinetic theory. This is typified through the pom-pom constitutive 

model introduced by McLeish & Larson [28], based on reptation dynamics of an idealized linear 

molecule with an equal number of branched arms at both ends (see section 2.1 of this work and Refs. [2-

8] on the main features of swIM and swAM models). 

 Experimental studies on contraction flow of Boger fluids In the Boger fluid contraction flows of 

Binding and Walters [1], of Fig.1 and Fig.2a, excess pressure losses were attributed to two distinct flow 

mechanisms. In the axisymmetric case, both vortex-enhancement and excess pressure loss were 

observed. In the planar case, there was substantial excess pressure loss at high flow-rates (but delayed 

over that of axisymmetric), yet without apparent vortex-enhancement, this being replaced instead with a 

‘bulb’ flow field in the vicinity of the re-entrant corner. In contrast, Nigen and Walters [11], as in 

Fig.2b, found significant differences in pressure-drop between Boger and Newtonian liquids in tubular 

flow. These authors attributed vortex-enhancement to a ‘lip-vortex mechanism’; prior to encapsulating 

any salient-corner vortex, and subsequent vortex-growth, often to extravagant size (see Tamaddon-

Jahromi et al. [6]). Interestingly, in Nigen and Walters [11] experiments, with their particular Boger 

fluid compositions (polyacrylamide PAA/glucose/water), no distinction could be drawn between 

corresponding pressure-drops for Newtonian and Boger fluids in planar configurations. So clearly, 

rheological distinction between different Boger fluids is a factor here. Notably, the swIM-predictions of 

Tamaddon-Jahromi et al. [6] for the Nigen and Walters [11] 8:1 tubular contraction flow, reflect well 

such experimental findings, under increasing flow-rate. There, rich vortex-characteristics were reflected, 

with significant vortex-enhancement captured, through evolving patterns of salient-corner, lip-vortex 

and elastic-corner vortices. As in the present study, rheological distinction could be drawn out over 

governing parameter-variation, through solvent-fraction (β), finite-extensibility parameter (L), and 

extensional-based dissipative time-scale parameter (λD1). In a similar vein, Rothstein and McKinley [10, 

23] covered a large range of Deborah numbers for axisymmetric contraction-expansion flows, various 

contraction-ratios (between two and eight) and degrees of re-entrant corner curvature. There, large epd 

was observed for Boger fluids, above that for a Newtonian fluid, independent of contraction-ratio and 

re-entrant corner curvature. 

 Overview This study addresses the problem of matching experimental findings with numerical 

prediction for the extreme experimental levels of pressure-drops observed in contraction flows reported 

by Binding and Walters [1]. There, significant differences in response were observed between Boger and 

Newtonian fluids in steady-state planar contraction flow.  
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2. Governing equations, flow problem specification and numerical algorithm 

 

For an incompressible fluid of density ρ, the equations of continuity and motion may be expressed as: 

p

0,

,

2 ,s

 p
t

η

 

 


    



 

u

u
T u u

T D

                 (1)    

with velocity vector u, fluid density ρ, total stress T, time t, rate-of-deformation tensor 

 † / 2  D u u , and  solvent viscosity sη . The total stress T is decomposed into two parts, a viscous 

component ( s2η D ) and a polymeric component (τp). An equation-of-state for the polymeric stress 

completes the system of equations. 

 

2.1. Discrete-Spectrum (swIM) and Continuous-Spectrum (swAM) approximations 

 

2.1.1 Rheology of the swIM model – discrete-spectrum approximation, single-mode 

The (swIM) constitutive equation may be expressed through the total-stress, T, the configuration-tensor, 

A, and the deformation-rate tensor, D , as: 

1

(Tr( ))( ( ) 2 ( )- I) 
p

sf


    


T A A D .              (2) 

 This is Kramers rule, where the dissipative-function ( )   is defined as  
2

1( ) 1  D    , based on a 

dissipative material time-scale parameter of  1D , and a generalised strain-rate invariant ( ) . Here λ1 is 

a relaxation-time, p  is a polymeric viscosity, and 
0 s p+    is a zero shear-rate viscosity, as ( 0)  . 

Under Boger-fluid approximation with constant functions {
s p,  }, the corresponding solvent-fraction 

ratio is  s s p= +    , so that equivalently {
s 0 p 0= , (1 )      }. 

Then, the equation for configuration-tensor A, is that taken from the base FENE-CR model, as: 

1 ( )( ) 0I


  f Tr( ) A A A ,                  (3) 

where the upper-convected material-derivative of the configuration-tensor is ( A


), defined as:  

 

†
( ( )u u) u


        
t

A
A A A A


,               (4) 

and the corresponding fluid internal-structure functional, f Tr( )  A , is defined on the trace ( )A  and 

the Hookean-dumbell bead-chain length L (an extensibility-parameter): 
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2

1
( ( ))

1 ( )
A

A
f Tr

Tr / L



.                  (5) 

Non-dimensional Weissenberg number may be defined as 
1

avgU
Wi  , which, through non-

dimensionalisation, appears in Eq.(3) modulating the viscoelastic response of the material. Here, 
avgU  is 

an averaged characteristic-velocity, based on the flow-rate (Q), and  is a characteristic length. The 

latter may be taken as the radius of constriction (circular), or half constriction gap-width (planar). Note 

that, since  avgQ / Area U  and 
1*( ) avgWi U / , then the Weissenberg number may be redefined as 

1( ) ( )Wi Q / Area * / . Consequently, (Q/Q0)
Sim

= (Wi/Wi0)
Sim

. Therefore, by employing (Q/Q0)
Sim

 

instead of (Wi/Wi0)
Sim

, one may have a direct comparison between pressure-drop and vortex-intensity. In 

this study, numerical predictions for the planar case, where compared with the planar experimental-data 

of Binding and Walters [1], are in terms of a relative flow-rate (Q/Q0) measure of 

0 0( ) ( )Exp SimQ / Q Q / Q , and 
0 550SimP pressure units, whilst selecting 1 unit and 

1 1Sim sec. The 

relative flow-rate (Q/Q0) for the circular case is taken to be 
0 0( ) ( )Exp SimQ / Q Q / Q ; see appendix for 

more details on scaling and boundary conditions for the planar and circular configurations.  

The associated rheometrical functions for the swIM model, of shear viscosity Shear, first normal-

stress difference in shear N1
Shear

 and planar extensional viscosity E can be represented accordingly, as: 

0

2

1

1

,

2
,

Shear

p

ShearN
f

 

  




                     (6) 

2

1 1

4 ( )
( 2 )( 2 )

  
    

  
E s p

f

f f +
    

   
. 

 Discussion on the two key rheological functions for the swIM model, of first normal-stress 

difference and planar extensional viscosity, is furnished through Fig.3, where one can distinguish 

departure from Oldroyd-B and base FENE-CR functionality, under a fixed-reference solvent-fraction of 

(β=0.9). There, variation in extensibility factor is (5≤L≤12) and on dissipation factor is (0≤λD1≤0.6). 

With swIM-response, the first normal-stress difference response (N1
Shear

) follows that of FENE-CR; this 

implies that there is weakening of N1
Shear

 at mid-range deformation-rates as L-declines (Fig.3b). 

Likewise, one also expects some N1
Shear

-weakening with rise in solvent-fraction from β=0.9 to 0.95. On 

extensional viscosity (Fig.3a), there is a rising trend in swIM-response with λD1>0, when compared 
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against that for FENE-CR(λD1=0); in addition, extensional viscosity rises sharply  around 1  =5*10
-1

 

units. 

 

2.1.2 Rheology of the swAM model – continuous-spectrum function approximation 

The starting point in motivation and derivation for the continuous-spectrum function approximation 

embodied in the swAM model lies in the detail presented in López-Aguilar et al. [3]. As such, this 

follows as a functional generalization of the precursor swIM model, via a White–Metzner construction 

with both viscous and polymeric contributions, matching the functional form derived for viscous 

response [ ( , )   ] to a counterpart form on elastic material-time response [ ( , )   ]; embodying two 

master functions. Whilst retaining sufficient generality, this representation assumes functional 

separability across shear and extensional deformation. Crucially, this swAM model offers additional 

rheological control across wider rate ranges above and beyond the capability of the sister swIM model, 

which in particular has greatest impact upon control of N1-variation. Though implemented in 

conformation-tensor (A)-form, the model can be expressed in equivalent ( s ,
p )-form, through {

s p,  }-

splits as: 

s D1

p 1 p

2( ( ) ,

* ( , ) 2 ( , ) ,

s

p

η

f η f





   

        





D

D
               (7) 

where one may identify the two master functions, { ( , ), ( , )      }, and their respective sub-functions, 

sh 1 ext D2( , ) ( ) ( )         , and sh 1 ext D1( , ) ( ) ( )         , alongside their constant base-reference 

factors { 1  , 0 }. The outcome is a requirement for four sub-functions: { sh 1( )   , ext D2( )   , sh 1( )   ,

ext D1( )   }, such that: 

1 sh 1 ext D2 ext

0 sh 1 ext D1 ext sh

( , ) * ( ) ( ), ( 0) 1,

( , ) * ( ) ( ), ( 0) 1, ( 0) 1.

             

                 
       (8) 

In the present  fluid-material context of interest, that of Boger Fluids,  one can take 

sh 1( ) 1 0       , which leaves a specification requirement for three sub-functions: sh 1{ ( )   ,

ext D2( )   , ext D1( )}   . From the swIM-derivation, one can extract: 

 
2

ext D1 D1 D1( ) ( ) 1 ,                          (9) 

leaving the remaining two sub-functions on elastic material-time response to specify. These were 

suggested in [3], as: 
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1
sh 1 m

2

1

1
( )

1 ( )
  

    

 ,  
2

ext D2 m
2

D2

1
( )

1 ( )
   

    

.         (10) 

This leads one to the realisation that the shear sub-functions { sh sh( ), ( )   }, of the continuous 

spectrum (swAM)-model, allow one to predict exactly, the shear viscosity ( shear ) and first normal stress 

difference (
1

ShearN ) in steady simple shear flows, whilst 0 (being   a relevant shear-rate); and 

simultaneously, whilst 0 , these same two functions but in a shifted range, can match the dynamic 

oscillatory shear-data of dynamic viscosity (    ) and storage modulus (  G  ), where   represents 

the frequency in the oscillatory test. Independently, extensional viscous-response can be predicted 

exactly through the two sub-functions ext D2 ext D1{ ( ), ( )}       (Binding [32], López-Aguilar et al. [3]). 

Hence, in practical terms, and as necessity dictates, the (swAM)-model, with two constant base-reference 

factors { 1 , 0 }, two additional time-constants { 1D , 2D } and two power-indices {m1, m2}, can be 

manipulated to provide any common extensional viscosity response. Independent weighting of purely-

dissipative and mixed dissipative stress contributions is ensured. In addition, the power-indices {m1, m2} 

may be identified by matching to the experimental data for any particular polymeric liquid. Thus, {m1} 

may be generated from shear-viscosity ( Shear) and first normal-stress difference (
1

ShearN ) data; and 

{m2} likewise, from extensional viscosity data. 

 As above for the swAM model, one may extract the corresponding functional-forms for the key 

rheological properties of interest, the planar extensional-viscosity and first normal-stress difference, viz.:  

  
2

1 1 2 1 1 2

4 ( )
[ 2 ( ) ( ) ][ 2 ( ) ( ) ]

  
    

  
E s p

sh ext D sh ext D

f

f f +
    

               
, 

1
sh 1 m

2

1

1
( ) ,

1 3( )
  

    

                  (11) 

1

2 2

p sh 1 p 1Shear

1 m
2

1

2 [ ( )] 2

1 ( )

        
 

    

N
f f

. 

 

 Such functional variation is charted in Fig.4, whereby one may differentiate variation in each 

function with alternative parameter setting, and draw distinction between swIM and swAM response. So, 

for example, considering extensional viscosity (Fig.4a), swAM- E
η (m1=0.1) underestimates swIM- E

η  at 

rates 10.4 10    ; whilst, swAM(m1=-0.1) overestimates swIM- E
η  at rates 10.4 15    . Alternatively 

in Fig.4b, on first normal-stress difference and contrasting against swIM, 
1

shearN of swAM(m1=0.1) proves 

uniformly weaker, whilst it is consistently stronger with swAM(m1=-0.1, -0.25). On this basis, one may 
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proceed below to draw out rheological reasoning for the trends in pressure-drop observed. In addition, in 

Fig.4c, distinction in extensional-viscosity ( E
η ) is established between swAM(m1=-0.1, m2=zero) and 

swAM(m1=-0.1, m2=non-zero) models, through adjustment of the m2-power-index. Here, swAM (m1=-

0.1, m2=0.2) represents an underestimate of swAM(m1=-0.1, m2=zero) at rates 11.0 10    , whilst 

swAM(m1=-0.1, m2=-0.2) provides an overestimate at rates 11.0 20    . Notably, both swAM(m1=-0.1, 

m2=0.2) and swAM(m1=-0.1, m2=-0.2) share the same first normal-stress difference (N1
Shear

) with 

swAM(m1=-0.1, m2=zero) model (Fig.4c). 

Overall, these two novel swIM and swAM models represent well the rheology of the Boger fluids 

considered in the present work as target experimental model-fluids, as it is apparent in Fig.3-5. These 

fluids are based on diluted constant shear-viscosity highly-elastic Boger solutions under two 

compositions, i.e. a maltose-syrup/water/polyacrylamide solution used in Binding & Walters [1] (1988), 

and a corn-syrup/water/polyacrylamide solution reported in Nigen & Walters [11] (2002). These fluids, 

particularly those reported in Binding & Walters [1] (1988), display a nearly constant shear-viscosity, 

with a steep quadratic N1Shear-rise that softens with shear-rate increase, with an extensional viscosity 

Ext-response in a steep rising-trend with extension-rate. 

 In terms of the thermodynamic consistency of this swanINNFM(Q) model-family (swIM and swAM 

models) [2-3, 7-8], their origin trace back to the robust developments of Chilcott and Rallison [29] 

through their Finite Extendible Nonlinear Elasticity FENE-CR model-variant and its networked 

structure-function, whilst supplemented with a novel extra extensional-dissipation component of White-

Metzner-type (White and Metzner [30]). These family of fluids enjoys the benefits of further generalised 

corrections and numerical implementations to ensure their thermodynamically consistent, in the form of 

the ABS-f correction (López-Aguilar el at.  [9, 31]). Particularly, the ABS-f correction acts upon the 

fluid-structure f-functional, to enact proper physical-property estimation (such as viscosity) and to 

comply with the 2
nd

 Law of Thermodynamics. This correction is of general nature, and is implemented 

through the absolute-value of the driving flow-invariant in the internal-structure f-functional (López-

Aguilar el at. [9, 31]); in the case of the swIM and swAM family of fluids, the ABS-f correction appears 

on the trace of conformation-tensor A in Eq. (5). 

 

2.2 Flow problem specification  

 

 In this study, the flow problem is that of creeping flow within a 4:1 planar contraction. The 

geometry is one that possesses sharp-corners, to reflect re-entrant corner behaviour and mimic the 
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experimental set-up. Extensive mesh-refinement has been performed in previous articles (Tamaddon-

Jahromi et al. [6], Webster et al. [33]), satisfactorily establishing accuracy and mesh-convergence. As a 

consequence of these studies and to suit present purposes, here a medium mesh with 2897 quadratic-

elements, 6220 nodes, and 32717 degrees-of-freedom (dof) is retained, see [33] for more details on 4:1 

meshes.  

 To assess the time-stepping convergence, a temporal relative-increment L2-norm is defined per 

variable. This, then, governs convergence of the time-stepping process, and is interpreted against a set 

tolerance-threshold (Tol), viz.,
n 1 n

T

n 1

|| X X ||
E (X) Tol

1 || X ||






 


.The tolerance-threshold for acceptance of 

steady-state solution is typically set at 10
-6

. A typical time-step size is of order O(10
-4

).  

 On boundary conditions, no-slip is applied on solid boundaries, with shear-free symmetry on the 

flow centreline [9]. Velocity and stress are imposed at flow-inlet, in keeping with full-developed steady-

state flow and with vanishing inflow convection conditions. This only leaves a pressure-level to set at 

outlet. Steady-state solution continuation is adopted, through chosen initial-conditions, via prior flow-

rate or alternative parameter solution, as befitting each situation encountered. In principal, a flow-rate-

increase mode is favoured, as opposed to an increase in fluid elasticity, as described elsewhere (López-

Aguilar et al. [2]; Tamaddon-Jahromi et al. [8]). 

The pressure-drop (p) and flow-rate (Q) are scaled, respectively, using base-values extracted from 

the experimental studies of Binding and Walters [1] of  p0
Exp

= 410  Pa and Exp 6 3

0 0 10 (m / s)Q Q     ; see 

Fig.1 & 2b. This provides for scaling of the corresponding Newtonian flows (of comparable viscosities), 

establishing unity in (Q/Q
0
)
Exp

, and parity at low deformation-rates between Boger fluid and Newtonian 

pressure-drop data. This is performed independently on circular and planar data, so that, in each case, 

pressure-drops can be interpreted on their own difference from their equivalent Newtonian fluid. 

 

2.3 Numerical algorithm - a subcell finite element/finite volume scheme 

 

The numerical algorithm employed is a well-founded hybrid scheme of finite-element (fe) and finite-

volume (fv) form, being both second-order accurate and consistent in time, see (Wapperom and Webster 

[34]; Aboubacar and Webster [16]; Webster et al. [35]). It is a time-stepping, fractional-staged (three) 

equation formulation. The constitutive stress-equation is resolved via a subcell/cell-vertex finite-volume 

(fv) scheme; whilst the momentum-continuity equation subset is handled through a combination of 

incremental pressure-correction and a Taylor-Petrov-Galerkin (fe) schemes, applied over a parent-cell 
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triangular tesselation. This choice meets the respective typing of these equations with their various 

space-time properties. On the parent fe-grid, velocity-pressure interpolation is quadratic-linear, 

respectively. With four fv-subcells per parent fe-triangular-cell, each subtended fv-sub-cell is constructed 

by connecting the mid-side nodes of the parent fe-cells. Stress variables are located at fv-sub-cell 

vertices, avoiding solution reprojection, and yielding equivalent to linear stress-interpolation per child 

subcell. The temporal stress-equation has conservation-form, which is non-linear and has 

inhomogeneous source terms. On time-convection terms, fluctuation-distribution for fluxes (upwinding) 

is the scheme of choice, alongside a median-dual-cell treatment for source terms. Then on each time-

step, a mixture of direct and iterative solvers is employed, leading to a highly effective and space-

efficient implementation, well-oriented to parallelisation.  

 More recently, a series of improved stabilization techniques have been developed to handle 

viscoelastic solution tractability, and more generally, solution acquisition under severe flow conditions. 

These now lie well-documented in López-Aguilar et al. [2, 9]. This series would include - use of 

velocity-gradient recovery, a uniform discrete continuity correction, and additional compatibility 

conditions satisfied on the pure-extension flow-centreline; the imposition of absolute value on structure-

network function (f) in the constitutive equation (f-ABS) and within Kramers’ transformation; use of 

configuration variables in the stress-equation; continuation through steady-state solutions via flow-rate 

(Q)-rise, as opposed to elasticity-increase; and use of feedforward exit-procedures on velocity-gradients. 

 

3. Flow invariants and alternative measures in circular and planar deformations 

 

I - Circular: conventional shear and extensional flow-invariants and regularisation 

 

First, with coordinates ( 1 2 3, ,x x x )=( , ,z r  ), one considers the rate-of-strain tensor D, with its in-plane 

Drz-subtensor indicated in the red-dashed square: 

0

0

0 0







 







 
 
 
 
 
 
 
 

z

r

u

z

u

r

u




D

,                (12) 
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where, under steady simple-shear flow and generalised coordinates (in which one may take the axial 

velocity-component uz as the flow-direction velocity u1, the radial velocity-component ur as the velocity-

component in the gradient-direction u2, and the azimuthal velocity component u as the velocity-

component in the neutral direction u3), one may identify velocity and stress functional-forms as: 

1 2 2 3x , 0,  u u u  

12

11 22

22 33

 

 

 

1

2

( ),

N ( ),

N ( ).

   

  

  

                   (13) 

Similarly, under uniaxial extensional flow, one gathers: 

32
1 1 2 3, , ,

2 2
    

xx
u x u u


  

11 22 22 33 ( ),    E                      (14) 

 

for which: 

0 0

0 0
2

0 0
2



 



 
 
 
 
 
 

D
.                (15) 

As a consequence, one may identify the various derived invariants and functions: 

2
det( ) r z

rz

u u

r z

 

 
 

D ; 
1

2

r zu u

z r

  
   

  
;  ( ) 0r r ztrace

u u u

r r z


    
     

    
D . (16) 

Then, the second-invariant of D, is: 

2 2 2 2

2

2 det( )
1 1 1

2 2 2

axi r z r r zI
u u u u u

r z r z r


           
            

            

D ,      (17) 

and, the third-invariant of D, 

 
2

3 det( ) ( )
1

4

axi r r z r z r
rzI det

u u u u u u

r r z z r r


         
         

          

D D .     (18) 
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One recognizes in the circular context, in 3

axi
I  (Eq.18), the product dependency upon det( )rzD  and the 

out-of-plane extensional component ru

r

 
 
 

. Yet, from continuity and via the identity ( ) 0trace D , the 

out-of-plane extensional component ru

r

 
 
 

 can be directly related to the in-plane extensional 

components, viz.: 

  r r zu u u

r r z

    
     

    
= - trace (Drz). 

Hence, one may rewrite 3

axi
I   in terms of its equivalently in-plane interpretation, with segregation of 

shear and extensional components, as: 

       3 det det detaxi r z
rz rz rz

u u
I trace

r z

  
           

D D D D .       (19) 

One notes, beyond the ideal deformation settings above, and whilst maintaining frame-invariance, a 

generalised shear-rate (
axi

gen  ) and extension-rate (
axi

gen  ) may be defined on the basis of the 

second invariant (I2) and third invariant (I3) of D (see Debbaut and Crochet [36]), yielding: 

2
2

axi

gen
I ,  reg3 23 / ( )  

axi

gen

axi axi
I I .            (20) 

 In the above, constant components satisfy suitable specification in pure shear and extension, and 

regularization is imposed through the reg –factor [small, typically ~O(10
-4

)], on the denominator of 

axi

gen , to ensure a generalized and robust definition for extension. This guards against the situation 

where 2I may tend to zero, as would occur for example on the symmetry centreline in shear-free flow. 

From Debbaut and Crochet [36], instead, one may look at the alternative choice of 3 4
d

III , to avoid 

reference to the second-invariant and regularization. Yet still, this form is found lacking in 

inhomogeneous complex flow with both shear and extension arising, wherever sharp gradients on the 

deformation are present (as here with a flow singularity). This exposes the issue of solution tractability, 

and the need for scaling of the third-invariant with the second-invariant, revealing its nature in the wider 

flow context. Further alternative definitions that have been explored (but discarded) are provided in 

Table 5, where their deficiencies are also identified; crucially, the lack of a shear contribution to the 

third-invariant, in inhomogeneous complex flow.  

 

                  



16 

 

II - Planar: conventional shear and extensional flow-invariants and regularization 

 

Mirroring the circular configuration theory above, one may now pass to consider the planar equivalent 

rate-of-strain tensor D, with coordinates ( 1 2 3, ,x x x )=( , ,x y z ) and its in-plane Dxy-subtensor (boxed in 

dashed red), as indicated: 

0

0

0 0 0

x

y

u

x

u

y

 
 

 
 

  
 
 
  

D
.                 (21) 

 

Now, under steady simple-shear deformation and generalised coordinates (and accordingly, relating ux 

to u1, uy to u2 and uz with u3), again one may identify velocity and stress functional-forms as: 

2 2 3, 0, 0,  u x u u1  

12

11 22

 

  1

( ),

N ( ),

   

  
                   (22) 

whilst, under planar extensional flow, one gathers: 

1 1 2 2 3, , 0,   u x u x u   

11 22 ( ),  E                       (23) 

whence, 

0 0

0 0

0 0 0

 
 
 
  

 



D .                     (24) 

This leads to counterpart, derived invariants and functions: 

2
det( )

yx
xy

uu

x y



 

 
D ; 

1

2

yx
uu

y x

 
   

  
; ( ) 0

yx
trace

uu

x y


 
  

  
D ,    (25) 

where, the second-invariant of D, is: 
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2 22

y y2

2 det( )
1 1 1

2 2 2

plane x x
I

u uu u

x y y x


       
        

         

D .        (26) 

Following the logics above from the circular setting, in the planar case, the third-invariant (
3

plane abs
I

 ) can 

also be expressed in terms of in-plane components alone. However, one observes now, the necessity of 

taking absolute values within the trace function, as in ( )xytrace D , to ensure a non-zero quantification of 

in-plane extension (as secured in the circular case). Standard convention would otherwise return a null 

value, since ( ( ) 0)xytrace D  from continuity. This identifies the key-distinction between these two 

alternative forms of deformation, in planar extension and uniaxial extension. Under planar extension, 

each (xy)-plane (in-plane) contribution is uncoupled, and therefore, independent of the third (z)-

dimension (out-of-plane) contribution. In the circular case, this is not the case, where in-plane and out-

of-plane components are linked. Thus: 

3 det( ) det( ) det( )( )
yplane abs x

xy xy xyI
uu

trace
x y




  
          

D D D D .   (27) 

Beyond ideal deformation, this yields equivalent generalised shear-rate ( 22 plane

gen I  ) and 

extension-rate (
plane abs

gen 
 ), with suitable constants and regularization, where now accordingly, 

3 2reg(0.5* ) / ( )plane abs planeplane abs
gen I I


    .           (28) 

Field distributions of these quantities, in the circular and planar context, are displayed under the results 

section below, where one can compare directly the quantification of extension extracted under each 

deformation setting. This may be mirrored in the counterpart, all-important dissipation contributions 

generated under  
2

1( ) 1  D    , noted as an even function of extension-rate, see below for more 

detail. 

4. Planar versus circular comparison, streamlines and third-invariant definition – swIM 

predictions  

In this section, evidence is provided of the benefits rendered from the proposed third-invariant definition 

3

plane abs
I

  and its consequences in the estimation of the extension rate in complex flow. Solution flow 
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fields are reported in Fig.5 and 7, where comparative representations, planar to circular, are presented in 

streamline-patterns and third-invariants. Then, vortex-intensity (-min) is charted graphically in Fig.6, to 

be read alongside Fig.5, hence providing completion in tracking of the vortex behaviour, observed 

through rising flow-rate (Q/Q
0
). Results are also included in Fig.5 and 6 on vortex-structures, where one 

can compare and contrast directly on the impact that inclusion of dissipation has caused; in the planar 

case, viz. adoption of conventional (
plane

gen ) versus proposed third-invariant (
plane abs

gen


; Eq.(28)) 

definitions. In this data, swIM[L=5, λD1=0.1, β=0.9]-solutions are provided for flow-rate equivalents of 

1≤(Q/Q
0
)
Sim

≤30. Moreover, one notes the modest level-setting of dissipation-parameter λD1=0.1. 

Overall, observations can be deduced from the graphical evidence of Fig.6, in that, the circular instance 

is uniformly more dynamic in vortex-activity, with a sharp rise in -min (terminating slope -min~0.4/5) 

gathered from Q/Q0≥4. Equivalently, this departure point is somewhat delayed in the planar instance to 

Q/Q0≥10, notably at these early rates, independent of choice on the third-invariant definition. 

Subsequently, the rise in vortex-intensity slope is more shallow for the conventional 
plane

gen -definition 

(terminating slope ~0.3/18), as compared to the outcome for the proposed 
plane abs

gen


 -definition 

(terminating slope ~0.5/18). For example, at the largest Q/Q
0
=30 recorded, this provides for extrema in 

planar vortex-intensities of -min={0.32, 0.50} on {conventional, proposed}-definitions, respectively. 

One refers to Fig.5 to address change in shape and orientation of the corner-vortex and its separation-

line with rising flow-rate. For the circular case, such concave-to-convex adjustment in the separation-

line is occurring in the interval 5≤Q/Q
0
≤10; where greatest curvature is also picked-up in the vortex-

intensity plot (Fig.6). Subsequent flow-rates reinforce this trend. In the corresponding planar instance, 

such adjustment appears in the interval 10≤Q/Q
0
≤15 under 

plane abs

gen


 -definition; whilst, it is barely 

apparent under 
plane

gen -definition. At around Q/Q
0
=15, the jump in vortex-intensity magnitude between 

plane abs

gen


 and 

plane

gen results is practically doubled, from values -min~0.05 to 0.09. This trend of increase 

widens through the extended range 20≤Q/Q
0
≤30, with extrema commented on above; and in which the 

outward bulge into the core flow with convex-shaped separation line is clearly prominent under 
plane abs

gen




-approximation. These facts render the proposed extension-rate measure 
plane abs

gen


  as more active than 

the traditional 
plane

gen ; 
plane abs

gen


  appears capable of delivering relatively larger levels of extensional 
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deformation-rates, required to trigger viscoelastic enhanced pressure-drops and asymmetrical flow-

structures observed experimentally in planar contraction flows of Boger fluids [1]. 

 Counterpart field data on third-invariant of D and dissipation-function representation is provided in 

Fig.7, at three sample flow-rates Q/Q
0
={1, 10, 20} and comparatively across planar to circular instances. 

In this, attention is centred on {
plane abs

gen


 , 

axi

gen }-definitions. In Fig.7a, the general field distributions are 

similar in both instances, with spread of influence rising to its extrema at the contraction plane before 

falling away subsequently downstream, notably peaking both at the centreline and about the corner 

singularity. On third-invariant of D and at Q/Q
0
=10, a distinguishing feature of the planar instance is the 

greater penetration into the corner-vortex, and a greater dip away from the corner singularity across the 

flow towards the centreline. This dip is absent in the circular equivalent. Moreover, from Q/Q
0
=1 to 

Q/Q
0
=10, the planar third-invariant maxima scales from 2.41 to 15.6 units, respectively (~6 times); 

comparably, the position on the circular case in scaling is from 3.94 to 44.2 units, respectively (~11 

times) and almost twice as large as the planar instance. This has consequences on the localisation and 

distribution of extensional dissipation contributions. The corresponding dissipative-functions 

 
2

1( ) 1  D     are provided in Fig.7b, with both 
plane abs

gen


  and 

axi

gen definitions displayed at Q/Q
0
={1, 

10, 20}. Between these two definitions, there is no apparent distinction in the dissipative-function at low 

Q/Q
0
-levels, of say Q/Q

0
~1; whilst at higher levels, of say Q/Q

0
=10, there is almost 6 times factor of 

increase in ( )  -peak, from planarmax- ( )  =3.42 to circularmax- ( )  =20.55. At Q/Q
0
=20, this factor of 

increase becomes nearly 22. Note that with 
plane abs

gen


 , the red-positive zone appears more squeezed up 

around the contraction region, when compared to its counterpart 
axi

gen definition. 

 

5. Averaged Maxwellian single-mode relaxation-time approximation – swIM predictions 

In this section, prediction under a single-mode swIM model variant are displayed, with the purpose of 

exposing the need of further versatility required to reproduce numerically the Binding & Walters [1] 

experimental epd findings. Limitation of the swIM model arise through a relatively poor epd rising 

trends relative to counterpart Newtonian response, although evidence of premature oscillatory flow-

regime onset at medium-to-high flow-rates is gathered as in experiments, and observed under prediction 

through pressure time-fluctuation. 
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Base solutions, swIM[L, λD1, β=0.9]-predictions; 5≤L≤15, 0.5≤λD1≤0.7. 

In Table 1 with solvent-fraction β=0.9, numerical pressure-drop prediction (ΔP/ΔP
0
) is reported at 

relative flow-rate calibrations of (Q/Q
0
) of {5.5, 6.5, 7.5} units, where Q

0 
is determined from the 

counterpart Newtonian flow-rate. These locations represent {first departure, mid-range departure, high-

range departure} in (ΔP/ΔP
0
) from Newtonian response. The corresponding graphical plot of such data 

is charted in Fig.8a, alongside stable steady-state swIM-model predictions. Therein one gathers, 

pressure-drop results for swIM[λD1=0.1, L=5] lie only marginally above the Newtonian reference-line. 

Only slight elevation is incurred with increase of the swIM dissipative extensional time-scale parameter 

(λD1) from 0.1 to 0.6. At fixed λD1=0.6, the more significant impact on pressure-drop elevation is 

stimulated through rise in hardening L-parameter, this being detected between results for L=5 and L=10. 

 Quantifying at the first departure rate Q/Q
0
=5.5 in (ΔP/ΔP

0
), the first row of Table 1 with {λD1=0.7, 

L=5}, there is ~2% difference against those under Newtonian equivalents. Through rise in hardening L-

parameter, ΔP/ΔP
0
 rises to 4% with (L={10,12,15}). In addition, at this relatively low flow-rate measure 

and for 0.1≤λD1≤0.7, there is imperceptible adjustment in ΔP/ΔP
0
. Upon increasing flow-rate to the mid-

range departure level of Q/Q
0
=6.5 (third row), percentage differences in (ΔP/ΔP

0
) become slightly 

larger; being some 5% difference with (λD1=0.6, L={10,12,15}). One detects at this mid-range level of 

flow-rate that at the larger L-parameter setting of 12≤L≤15, steady flow (for 5≤L≤10) is beginning to 

give way to transitionary flow (star symbol notation in Table 1), a harbinger of oscillatory flow onset. 

This is particularly characterised at isolated zonal locations, above and downstream of the re-entrant 

corner, in the temporal evolution of the pressure variable through its time-increment relative pressure-

norm, 
2

pressureL , where (10
-6

≤
2

pressureL ≤10
-5

). On a field basis, such change would barely be perceptible 

under any practical measurement. Viewing the high-range ΔP/ΔP
0
 departure levels together (rows 4-6), 

taking (7≤Q/Q
0
≤8) and with {λD1=0.5, L=5}, percentage differences remain relatively static around 2% 

for 7<Q/Q
0
≤8. Once again, such relative percentage differences rise by some 3-4% for larger L-values, 

of 10≤L≤15. 

 

Adjusting solvent fraction, swIM[L=15], 0.5≤λD1≤0.8, 0.9≤ β ≤0.95: 

Data reported in Table 2, follow on consecutively from Table 1, with the focus shifting to (ΔP/ΔP
0
)-

results for larger hardening L-parameter (L=15) and switch in solvent-fraction from β=0.9 to β=0.95. 

Again, star notation (*) is invoked on transition setting, denoting the onset of oscillatory flow (10
-6

≤
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2

pressureL ≤10
-5

); and double-star notation (**) depicting stronger oscillatory flow conditions (10
-2

≤
2

pressureL

≤10
-1

). Clearly, as flow-rates advance and at this more elevated (L=15) setting, rising levels of λD1 at 

fixed solvent fraction (β=0.9), provide for both transitionary and oscillatory states. Similarly, Fig.8b is 

the counterpart to Fig.8a, but now charts the relative trends in transitionary and oscillatory flows. 

 Covering the first row of (ΔP/ΔP
0
)-data of Table 2 with 0.5≤λD1≤0.8 and for the first departure rate 

Q/Q
0
=5.5: solvent-fraction (β=0.9)-solutions generate stable steady-states, with 3~7% difference in 

(ΔP/ΔP
0
) from the Newtonian value of 4.07 units. Then, upon elevation in solvent-fraction from β=0.9 

to β=0.95, transitionary state is first observed for λD1≥0.8; whereupon pressure-drop matching is highly 

precise, to within 7% of the Newtonian-base value. Following Table 1 and at the mid-range departure 

level of Q/Q
0
=6.5 (row 3, Table 2, target Newtonian-value 4.81 units), percentage differences in 

(ΔP/ΔP
0
) rise from 3% with {λD1=0.5, β=0.9}, as much as 8% when approaching (λD1=0.8). Here and 

relative to {λD1=0.5, β=0.9}-solution, transition arises at relatively smaller λD1=0.6, 5% difference, and 

oscillatory state at λD1=0.8, 8% drop. Notably within oscillatory flow, when contrasting against 

{λD1=0.8, β=0.9}-solution, but with the larger solvent-fraction (β=0.95), (ΔP/ΔP
0
) rises yet further to 

5.33 units, being some 2% larger in difference from the {λD1=0.8, β=0.9}-solution. Sampling the high-

range (ΔP/ΔP
0
) departure level (row 5, Table 2), with Q/Q

0
=7.5 and (β=0.9), variation from the 

Newtonian reference remains within 5-6% for 0.5≤λD1≤0.8. Transition and oscillatory states gradually 

shift to lower λD1-values, as rates rise throughout (7.5≤Q/Q
0
≤8). At λD1=0.8 and for (7.5≤Q/Q

0
≤8), the 

switch in solvent-fraction from (β=0.9) to (β=0.95), stimulates a marked rise in (ΔP/ΔP
0
) percentage 

differences of between 11~12%. So, for example, at Q/Q
0
=7.5, this yields departure from the Newtonian 

value (5.56 units) of 11%, reaching a predicted value of (6.25 units). 

 Trends in solution temporal convergence are conveyed in Fig.9, furnishing the evidence to support 

the discussion on (ΔP/ΔP
0
)-data above in Tables 1, 2 and in Fig.8. This includes steady-state, 

transitionary and oscillatory solution phases, as gathered under the swIM-model at (Q/Q
0
=6.5). Plots are 

provided per individual solution-component, through velocity, stress, and pressure variables. Parameter 

settings range over 0.6≤λD1≤0.9, 0.9≤β≤0.95, and 5≤L≤15; with default base-values of {λD1=0.6, β=0.9}. 

General flow-state categorization and points of observation are as follows. Stable solutions apply under 

(λD1=0.6), with both swIM[L=5] and swIM[L=10]; yet the former implementation supplies superior 

temporal-convergence behaviour in rates for all solution-components. The transitionary phase, to 

oscillatory flow conditions, arises with swIM[L={12, 15}, λD1=0.6], under levels of time-increment 
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relative component norms of {10
-6

≤
2

pressureL ≤10
-5

, 10
-7

≤
2

velocityL ≤10
-6

, 10
-6

≤
2

stressL ≤10
-5

}; notably, 
2

pressureL is 

always dominant. Oscillatory flow phase conditions are observed for swIM[L=15, λD1=0.8], under time-

increment norms of {10
-2

≤
2

pressureL ≤10
-1

, 10
-4

≤
2

velocityL ≤10
-3

, 10
-5

≤
2

stressL ≤10
-4

}; clearly, 
2

pressureL now 

dominates. Unstable solutions, encountering intractability, are observed with swIM[L=15, λD1=0.9]. 

 Anchoring flow-rate at Q=6.5, Fig.10 and 11 cover planar temporal swIM-traces for parameters {Q, 

β, L, λD1}={6.5,[0.9,0.95], [5-15], [0.6-0.9]}. Of these, Fig.10 plots individual solution-components of 

{pressure, velocity, stress}, at a sample-point location within the contraction-zone above the re-entrant 

corner. For comparison, Fig.11 provides only temporal pressure traces at a second point, located on the 

inlet-centreline. Four distinct flow phases are identified of {steady, transitionary, oscillatory, unstable} 

in the component temporal traces of Fig.10. Such fluctuation shows up strongly in both pressure and 

velocity, whilst only mildly in stress. In contrast at the inlet-centreline, the temporal pressure traces of 

Fig.11 again follow the four flow phases identified around the contraction zone, whilst velocity and 

stress traces remain unaffected by fluctuation (thus not shown). In the oscillatory phase, increase of 

solvent-fraction between β=0.9 and β=0.95, is noted to considerably reduce the amplitude of fluctuation. 

In detail and for L=15 solutions, the pressure-trace at λD1=0.6 (β=0.9) is steady-stable (smooth, non-

oscillatory), at λD1=0.8 (β=[0.9,0.95]) is oscillatory, and at λD1=0.9 (β=0.95) is unstable. One notes the 

elevation of solvent-fraction into the unstable phase, necessary to capture these solutions. 

 Fig.12 and 13 include streamline-patterns and third-invariant distributions, as counterpart to Fig.10 

and 11. The streamline and third-invariant of D patterns indicate that steady-stable and transitionary 

solutions are practically indistinguishable, {β, L, λD1}={0.9, [5-15], 0.6}. With a shift into the oscillatory 

phase {β, L, λD1}={[0.9, 0.95], 15, 0.8}, the salient-corner vortex strength increases some 1.5 times 

(Fig.12), and lack of smoothness is beginning to appear in third-invariant, particularly around and above 

the contraction zone (Fig.13). The unstable phase is captured, just prior to divergence, with solvent-

fraction elevation, via {β, L,λD1}={0.95, 15, 0.9}. Here in Fig.12, again there is amplification in salient-

corner vortex strength, but also a zoom reveals an intense vortex-cap appearing just above the re-entrant 

corner, this being some 10 times stronger in rotational intensity than the salient-corner vortex. This also 

corresponds to a sudden burst of intensity in third-invariant (extrema ~2000 units, Fig.13) about the re-

entrant corner.  
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6. Continuous-spectrum relaxation-time function approximation – swAM predictions 

In this section, numerical solutions with the proposed new hybrid model of swAM is considered to 

demonstrate the effective capture of enhance levels of pressure-drop and the ‘bulb-flow’ reported by 

Binding & Walters [1]. As such, for experimental pressure-drop prediction, it is necessary to adjust the 

m1–parameter selection within the predictions with a solution window of m1=[-0.01, -0.25], see Table 3 

and Fig.14 with both linear and logarithmic scales. One may classify six pressure-drop data subsets (I-

VI), based on the experimental pressure-drop data as shown in Fig.14a. Here, the slope of the piecewise 

linear-function (m1=a(Q/Q
0
)+b) to each pressure-drop subset is correlated against an averaged m1-value 

across each Q/Q
0
-range (Q/Q

0
={{0,5}, {5,5.5}, {5.5,6}, {6,6.5}, {6.5,7}, {7,8}}. With the spline-slopes 

of a={-0.02, -0.18, -0.1, -0.1, -0.1, 0.0}, and under swAM-linear spline, this generates average (m1)-

values per interval and a 6-tuple of (m1)={-0.01, -0.1, -0.15, -0.2, -0.25, -0.25} over six intervals, with 

the averaged m1 factor of 
1

1

6

0.16






  
i

avg i

n

m m . One can gather that swAM six-interval spline-fit 

solutions match closely across all six interval rate-ranges and data-points, as desired. The rheology for 

such a fit is presented in Fig.4d,e. Here, the values of swAM spline-fit- e
 (Fig.4d) are higher than swIM-

e
  at rates 17 10     and swAM spline-fit-

1

shearN  (Fig.4e) are stronger than swIM-
1

shearN  at rates 

1 7   . See also López-Aguilar et al. [3] for various spline-fit matching through extensional-based 

dissipative parameter (λD1) and (m2)-power-index parameter. Note that, in the present study with the 

planar contraction flow¸ swAM(m1, m2=-0.2) model leads to unstable solutions. This could be due to 

larger extensional viscosity in comparison to swAM(m1, m2=0.0) model, see Fig.4c. Alternatively, one 

may adjust the level of extensional viscosity by employing different functions for 
ext D1( )    or different 

values of 
D1  for viscous (

D1v ) and polymeric (
D1p ) parts, see Eq.(27). In the present study, 

D1  is 

taken to be the same values as 
D1v  and 

D1p (i.e. 
D1 D1v D1p     ). Earlier experience with the circular 

contraction and contraction-expansion flows and the present work, have revealed that the extensional 

viscosity effects sustain a strong influence on pressure-drop outcome; see [2-3, 6, 8, 37]. Moreover, in 

Nyström et al. [37], a new means emerged to practically measure the extensional viscosity of Boger 

fluids via pressure-drop measurement for the axisymmetric hyperbolic contraction-expansion flow. 

There, one found a best fit to measured epd from predicted epd (simulation) to determine a material 
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time-constant λD1 and reproduce extensional viscosity (ηE) from relationship between extensional 

viscosity and epd, a motivation for the above swAM L-spline fit to pressure-drop data.  

 The pressure-drop data in Fig.15 and Table 4 summarise the key results of this study, in the 

successful and beneficial use of the continuous-spectrum approximation, viz. the swAM–model 

implementation. The data is presented in comparative form to discrete-spectrum swIM –predictions, at 

parameter settings of {β,  L, λD1}={0.9, 10, 0.4}. One notes directly, in the election of a sub-function 

sh 1( )    to represent the relaxation-time variation under the continuous-spectrum swAM approximation, 

that the necessity to elevate other parameters, such as (λD1) as under swIM–predictions, is now somewhat 

relieved (Fig.15). It becomes immediately apparent that swAM–predictions are well capable of capturing 

the target experimental excess pressure-drops, whilst retaining steady-stable solutions, and this at the 

modest level of dissipative parameter of (λD1=0.4). Here, the (swAM, L-spline, m1≠0)-pressure-drop-data 

match closely across all interval rate-ranges with the experimental data (Fig.15). This is achieved by 

commencing solution search from swIM(λD1=0.4) form, at each flow-rate setting. One recalls that a 

principal reason for this is the wide choice of N1–response, departing from the rigid FENE-CR selection 

of the swIM–alternative (see below). As such, there are significant differences from swIM(λD1=0.4)-

pressure-drop data for all flow-rates, where swIM–data only track the Newtonian response (Fig.15, 

Table 4). 

 In terms of accuracy in pressure-drop prediction (see Table 4), at the relatively low flow-rate level 

of (Q/Q
0
)=0.53 units, there is no departure in (ΔP/ΔP

0
) prediction from the Binding & Walters [1] 

experimental data under swIM swAM (m1=-0.1). At the intermediate flow-rate of (Q/Q
0
)={1.7, 2.01} 

units, a marked underprediction (~{12, 56}%) is recorded for the single averaged swIM model-variant, 

whilst the continuous-spectrum swAM-model predicts experimental pressure-drop level with a minimal 

difference (~{0, 1}%). At the higher rate of (Q/Q
0
)=6.5 swAM1(m1=-0.3) and swAM2 (m1=-0.625) fluids 

depart in pressure-drop prediction capabilities, with swAM2 matching experimental pressure-drop, 

whilst swAM1 remains short with a 45% underprediction. This establishes the close quantitative 

agreement between the swAM-predictions and those of the experimental data (within 2% of target at 

maximum), with oscillatory flow condition. In addition, this concurs with the material properties of both 

swIM and swAM models, as shown in Fig.4. One refers here in particular to the higher level of 

extensional viscosity achieved with swAM at medium rates, when compared to that of swIM; and even 

stronger N1, which is stronger still than Oldroyd-B at rates 11 20    . 
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 With the major rheological differences between swIM and swAM models lying within N1–

representation, this is exposed in corresponding field plots of Fig.16, over a range of flow-rates, 

4≤Q/Q
0
≤8 with {β, L,λD1}={0.9, 10, 0.4}. Here, one observes similar swIM and swAM trends at Q/Q

0
=4, 

where pressure-drops equate. Shifting forward in flow-rate to Q/Q
0
≥6.5, larger values of N1 are detected 

in swAM-predictions (N1max=153.9), above and around the contraction, being some 35% larger than with 

swIM-predictions at Q/Q
0
=6.5 (N1max=100.6). This trend is continued to still higher flow-rates of 

Q/Q
0
=8, where N1max considerably strengthens. With swAM, there is emergence of a sharp negative N1-

peak (-204.4 units) around the wall-location at the re-entrant corner vicinity; proving almost 13 times 

larger than that with swIM (-15.9 units). On positive extrema, swAM N1-max is 468.7 units, whilst it is 

135.1 units under swIM, some 3.5 times lower in peak-value. Similar factor differences (4 times across 

models) are observed upstream along the wall, which is consistent with N1
shear

 data of Fig.4b.   

 There are some interesting new vortex-dynamics to explore with swAM( 1D =0.4, m1=-0.25)-

predictions, as flow-rate rises into fresh territory, above and beyond Q/Q
0
=10 units (Fig.17). All four 

flow phases of {steady-stable, transitionary, oscillatory, unstable} are identified via the attendant 

temporal norm plots. Steady numerical solutions are predicted up to Q/Q
0
=10 (Fig.17a), at which limit a 

lip-like vortex first appears (lv, ψmin=-0.0011), proving one order of magnitude lower than its salient-

corner counterpart (scv, ψmin=-0.01147). This lip-like vortex is not detected at Q/Q
0
=9, for example. 

Transitionary flow applies for 10.5≤(Q/Q
0
)≤11 (Fig.17b), switching to oscillatory flow for 

11.5≤(Q/Q
0
)<12 (Fig.17c), becoming unstable ~ Q/Q

0
=12 (encountering solution divergence through 

temporal evolution). On entering the transitionary flow phase (Fig.17b), the lip-like vortex resembles a 

bulbous shape (as reported in Binding and Walters 1988 [1]), that is growing with Q/Q
0
-rise and 

dominating the salient-corner vortex, which itself is now shrinking accordingly. At Q/Q
0
=10.5, lv-

intensity is ~6 times larger than that of the salient-corner vortex; at Q/Q
0
=11, this factor rises to ~ 13 

times larger. In the oscillatory phase at Q/Q
0
=11.5, lv-intensity is ~24 times larger than scv-intensity. 

This trend continues into the unstable phase at Q/Q
0
=12, and just prior to temporal divergence, where lv-

intensity is ~33 times larger than scv-intensity. 

 In Fig.18, an expanded range of flow-rates is interrogated, made accessible to steady-stable solution 

states by decreasing the dissipative parameter (λD1), from λD1=0.4 to λD1=0.2. Hence and for swAM{β,  L, 

λD1, m1}={0.9, 10, 0.2, -0.25}, one can detect the gradual switch-over in domination of vortex-intensity, 

from  lip-vortex to elastic-corner vortex. At Q/Q
0
=10, svc-intensity (ψmin=-0.07798) is ~24 times larger 
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than lv-intensity (ψmin=-0.00329); by Q/Q
0
=11, the position is almost balanced; beyond and for 

Q/Q
0
≥12, the pattern for λD1=0.4 of Fig.17 is recovered for (10≤( Q/Q

0
)≤14), with lv-intensity rising and 

scv-intensity falling. The transitionary phase is now encountered at Q/Q
0
~13 (lv-intensity 60 times scv-

intensity), and the oscillatory phase Q≥14 (lv-intensity two orders-of-magnitude larger than svc-

intensity). The upper reaches of flow-rate solutions of Q/Q
0
=15 and Q/Q

0
=17, still retain oscillatory 

character, whereupon at Q/Q
0
=15 one is able to observe a single large elastic-corner vortex, such that the 

dominant bulging lip-vortex has subsumed the receding salient-corner vortex, with its tell-tale convex-

concave shaped vortex separation-line highly prominent. From Q/Q
0
=15 to Q/Q

0
=17, the elastic-corner 

vortex intensity has now doubled in strength, and the vortex separation-line adopts a fairly uniform 

convex-shape. The corresponding vortex-intensity trends with rising flow-rate are charted in Fig.19 for 

both swAM(λD1=0.4) and swAM(λD1=0.2). This information identifies the construction of salient-corner 

vortices (scv), the emergence of lip-vortices (lv) and the appeareance of the ‘bulb flow’ structure 

reported by Binding and Walters 1988 [1], to finalise in the establishment of elastic-corner-vortices 

(ecv). Here, one may detect the reduction in scv-intensity with lip-vortex appearance, when anticipating 

vortex-growth with increasing flow-rate. 

7. Conclusions   

 

This study has achieved its principal objective, as set out. That is, through the use of the continuous-

spectrum relaxation-time function approximation and its swAM implementation, the experimentally 

determined enhanced pressure-drops of some planar contraction flows with Boger fluids have now been 

captured (Binding & Walters [1]). This has revealed the rheological dependencies in achieving this goal, 

in particular via extensional viscosity and first normal-stress difference properties. In addition, the 

systematic approach taken has demonstrated the threshold nature of some of the solutions discussed, as 

they pass between steady-stable, transitionary, oscillatory to unstable flow states. A key aspect of 

achieving enhanced pressure-drops in planar contractions at high flow-rates has been in a reformulation 

of strain-rate invariants. Counterpart flow dynamics also mirror experimental observation. The use of a 

continuous-spectrum relaxation-time function in the constitutive model has also permitted greater 

flexibility in control of first normal-stress difference response that has in turn lead to steady-stable 

solutions, which may not have been possible to extract otherwise.  
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Appendix: Scaling and boundary conditions (Planar vs circular) 

By imposing the following boundary conditions for the planar and circular configurations, fully 

developed outflow conditions are established ensuring no change in streamwise and vanishing cross-

stream kinematics. One may derive the flow-rates in terms of averaged velocity (U
avg

) by integrating the 

rates of flow through whole cross-section: 

 

 Planar circular 

 

Boundary 

condition 

(exit profiles) 

 

( ) ( 3)(5 )
max

  
p

U y U y y
exit

 

 

2
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 
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exit
 

 

Flow-rate 

41
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 
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2
.1.
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A
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exit
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


 

 

 

 

Consequently, one could establish a relationship between Weissenberg numbers for the planar and 

circular configurations by assuming the same flow-rates (Q) for both configurations ( p A

exit exitQ Q ), then 

2


avg avg
p A

U U


 and 

2
p AWi Wi


. The similar line of argument may be adopted if assuming the same 

averaged velocity (U
avg

) for both planar and circular ( avg avg

p AU U ). So, per unit area 
2


p A

exit exitQ Q


 and

p AWi Wi . 
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Table 1. Base solvent fraction: Numerical pressure-drop prediction (ΔP/ΔP
0
) vs  Newtonian values, with flow-rate 

(Q/Q0) increase; swIM model, planar, {β, L, λD1}={0.9, [5-15], [0.5- 0.7]}; steady and transition to oscillatory 

flow. Values in brackets (in red) indicate percentage increase in (ΔP/ΔP
0
) to Newtonian equivalent 
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-5
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Table 2. Solvent fraction increment: Numerical pressure-drop prediction (ΔP/ΔP
0
) vs  Newtonian values, with 

flow-rate (Q/Q0) increase; swIM model, planar, {β, L, λD1}={[0.9,0.95], 15, [0.5- 0.8]}; transition to oscillatory 

flow. Values in brackets (in red) indicate percentage increase in (ΔP/ΔP
0
) to Newtonian equivalent 

 

Table 3. Numerical pressure-drop prediction (ΔP/ΔP
0
) vs  Newtonian values, flow-rate (Q/Q0) increase, swIM vs 

swAM model, planar, {β, L, λD1}={0.9, 10, 0.4}, stable flow conditions, Values in brackets (in red) indicate the 

percentage increase in (ΔP/ΔP
0
)  to  Newtonian equivalent. 
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Table 5. Alternative measures for I3-planar case 

Table 4. Experimental pressure-drop vs numerical prediction, flow-rate (Q/Q0)
Exp

 increase, swIM vs swAM model, 

planar, {β, L}={0.9, 10}, { λD1}={0.2, 0.6 }stable flow conditions, Values in brackets (in red) indicate the percentage 

differences with the pressure-drop experimental data. 
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Axisymmetric 

Planar 

 

Fig. 1. Entry pressure data and Flow fields for the Boger fluid, axisymmetric and planar 

contraction geometries, (from Binding and Walters [1]); the points A’, B’, C’, D’ correspond 

to flow rates of 0.53, 1.7, 3.3 and 6.5 mL/s respectively in the planar geometry.  

 
 

Binding and Walters, JNNFM (1988) 
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Fig. 2. a) Binding and Walter [1] experimental data; Planar and axisymmetric contractions 

(logarithmic scale), the points A, B, C, D correspond to non-dimensional flow rates of 0.53, 1.7, 3.3 

and 6.5 mL/s, respectively in the planar geometry; b) Pressure-drop vs flow-rate, Nigen and 

Walters [11] 4:1 experimental vs swIM(λD1=1.2) model [López-Aguilar et al.2016]. 
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swIM Model 

b)  

 
 

Fig. 3. a) Planar extensional viscosity and b) first normal stress difference, Oldroyd-B, swIM  

model; { β, L,λD1}={0.9, [5-12], [0.0-0.6]} 

swIM Model a)  

 

b)  

 

a)  

 

Fig. 4. a), c) Planar extensional viscosity and b) first normal-stress difference, Oldroyd-B, 

swIM and swAM models; {β, L, λD1}={0.9, 10, 0.4} 

swAM Model 

c)  
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Fig. 4. d) Planar extensional viscosity and e) first normal-stress difference, Oldroyd-B, swIM 

and swAM (spline-fit) models; {β, L, λD1}={0.9, 10, 0.4} 

d)  

 

e)  
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Q/Q0=25 

Q/Q0=20 

Q/Q0=30 

Fig. 5. Streamlines,  vs , 1≤ (Q/Q0)<30, swIM[L=5, λD1=0.1, =0.9]; planar vs circular 
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Fig. 6. Vortex intensity (ψmin), 1≤(Q/Q0) ≤30, swIM[L=5, λD1=0.1, =0.9]; planar vs circular 

Fig. 7a. Third-invariant fields, (Q/Q0)= 1, 10, 20 units, swIM[L=5, λD1=0.1, =0.9],  planar vs circular 
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Fig. 7b. , (Q/Q0)= 1, 10, 20 units, swIM[L=5, λD1=0.1, =0.9], planar vs circular 
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Fig. 8. Pressure-drop vs (Q/Q0), swIM model; a) Steady flow condition, b) Transitionary and 

oscillatory flow conditions, linear scale 
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Stress 

Fig. 9. Temporal convergence plots, swIM model;  

{(Q/Q0), β, L,λD1}={6.5,[0.9,0.95], [5-15], [0.6-0.9]} 
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Fig. 10. Temporal component development, contraction zone; swIM model;  

{(Q/Q0), β, L,λD1}={6.5,[0.9,0.95], [5-15], [0.6-0.9]} 
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Fig. 11. Temporal pressure development, inlet centreline; swIM model;  

{(Q/Q0)
Exp

, β, L,λD1}={6.5,[0.9,0.95], [5-15], [0.6-0.9]} 

Pressure Q/Q0=6.5 

Steady (stable) 

 

Oscillatory  

 Unstable 

 flow 
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Fig. 12 Streamlines, swIM model; {(Q/Q0), β, L,λD1}={6.5,[0.9,0.95], [5-15], [0.6-0.9] 
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Fig. 13. Third invariant [ fields],  

swIM model; {(Q/Q0), β, L, λD1}={6.5,[0.9,0.95], [5-15], [0.6-0.9]} 
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Fig. 14. Pressure-drop vs (Q/Q0), swIM vs swAM model, a) linear scale, b) logarithmic scale 
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Oscillatory  

Stable  

Fig. 15. Pressure-drop vs (Q/Q0)
Exp

, swIM vs swAM model, (logarithmic scale), The points 

A, B, C, D correspond to non-dimensional flow rates of 0.53, 1.7, 3.3 and 6.5, respectively in 

the planar geometry 
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Fig. 16. First normal-stress difference (N1= τ11- τ22); swIM vs swAM (m1=-0.25) model;  

{[Q/Q0], β, L,λD1}={[6, 8.5, 10], 0.9, 10, 0.4} 
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Fig. 17. Temporal convergence and streamlines, a) stable, b) transitionary,  

c) oscillatory/unstable, increasing Q, swAM model; {β, L,λD1, m1}={0.9, 10, 0.4, -0.25} 
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Fig. 17. Temporal convergence and streamlines, a) stable, b) transitionary,  

c) oscillatory/unstable, increasing Q, swAM model; {β, L,λD1, m1}={0.9, 10, 0.4, -0.25} 
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Fig. 18. Temporal convergence and streamlines, increasing Q,  

swAM model; {β, L,λD1, m1}={0.9, 10, 0.2, -0.25} 

swAM(λD=0.2, m1= -0.25) 
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Fig. 19. Salient-corner (svc), lip-vortex(lv), and elastic-corner (evc) vortex intensity (ψmin), 

 swAM[L=10, λD1=(0.2, 0.4), =0.9] 

  

                  


