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Abstract

Recently, the search of new materials with improved performance, such as higher
strength, lower weight, fire resistance, less sensitive to fatigue,... has been fostered
and driven by industries such as aerospace, energy, and nuclear. The development
of composite materials has been an important step to achieve these goals since
it allows the combination of different materials in order to improve the overall
performance of the resulting composite. Composites, such as layered woven
composites or mixtures, are already heavy used in industry. These composite
materials are tailored to improve one or several specific properties, for example
higher strength or lower weight. However, composite materials are able not
only to improve the existing material properties but also to add new properties.
Self-sensing capabilities have drawn significant attention recently due to the
increasing requirements of safety and optimization. Self-sensing structures are
able to provide information in real time about its current state. Often self-sensing
systems are distributed in large structures which poses a problem for the energy
supply. Piezoelectric materials have been studied in depth for energy harvesting
due to its capability to convert strain to charge and charge to strain. This is
known as the piezoelectric effect and is used in many applications, from powering
small devices to acoustic sensors. The use of these materials to harvest energy
from the surrounding vibrations in the environment has been extensively studied
by the scientific community, although commercial devices are still scarce.

In this context, porous piezoelectric materials are a good option which can fulfil
some of the above mentioned requirements: low density, strain-sensing capabilities
and energy harvesting properties. Porous piezoelectric materials are composed of
a piezoelectric material matrix with embedded air pores, which make them very
light (up to 50% in some cases) while maintaining their piezoelectric properties.
The presence of air reduces its material coefficients, such as stiffness, piezoelectric
coupling and dielectric values, which opens the possibility to tailor the material
properties by controlling the percentage of air inside the matrix. The reduction
of capacitance is seen as beneficial for energy harvesting, since it reduces the
wasted energy in the self-induced electric field. Therefore, the porous piezoelectric
material are studied for energy harvesting applications. However, given the lack
of reliable material models for these type of composite, it is seems the necessity
to develop material models which can predict accurately the properties of the
piezoelectric composite. This is a requirement prior to the use of the material in
application or optimization.

In this thesis, the modelling of porous piezoelectric materials is presented
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and discussed, from the material point of view using homogenization techniques,
to the application of the material for energy harvesting purposes. The text is
divided in two main parts, material modelling and energy harvester modelling.
In the material modelling different methods to obtain the equivalent material
properties are presented and used on the porous piezoelectric material. It is seen
that the polarization has a great impact on the final properties of the composite
and hence a model is presented to account of it using finite element approach.
The models results are compared with measurements on experimental samples.
In the second part, an study on the energy harvesting capabilities of the material
is done. Different methods are used, single degree of freedom and multiple
degree of freedom, to study the material under linear and non-linear forces. The
energy harvesting modelling is supported with some experiments on the non-linear
behaviour of an impact energy harvester. Finally the conclusion of both parts are
presented and discussed.
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Motivation

Piezoelectric materials have drawn considerable attention over the last decades,
not only for energy harvesting purposes, but also for actuation or sensing appli-
cations. In most of these applications, it is beneficial to have high piezoelectric
coefficients in order to harvest more power or generate more strain. However
those high piezoelectric coefficients have associated high dielectric coefficients.
The dielectric coefficients measure the amount of energy which goes into the
generation of a parasitic self-inducted electric field, which cannot be used. Until
now, most of the conventional approaches in energy harvesting weredriven by
the desire to increase the piezoelectric coupling, paying little attention to the
dielectric coefficients. In this thesis, a different approach is followed. Using porous
piezoelectric materials, the dielectric coefficients can be reduced by increasing the
amount of air inside the material matrix. The presence of air alsodecreases the
other materials coefficients, hence a correct optimization and design must be done.
The porous piezoelectric materials open the possibility to control those material
parameters at the fabrication stage which allows us adapt the material to the
desired requirements. By modifying the dielectric coefficients, the wasted energy
can be decreased and the power output increased.

Although porous piezoelectric materialsare relatively old and well-known, most
of the works are experimental studiesfocused on sensor applications. Not many
studies are focused on predicting, from a theoretical point of view, the material
properties of the porous piezoelectric materials for different percentagesof air in
the matrix or for differentpore shape. These material properties are defined by
the material coefficients. Obtainingthese coefficients is a very important step,
previous to the design of applications of the material.

xxi



xxii CONTENTS

Modelling of Porous Piezoelectric Material and Potential Applications to Vibration Energy
Harvesting



Thesis Structure

The objective of this thesis is to study the modelling of the porous piezoelectric
materials as well as its applicability for energy harvesting. Therefore, this thesis is
divided intotwo main parts. The reader should notice that, given the two different
topics developed in this thesis, each part and chapter has a short review of the
state of art. The authors prefer to keep the completeness and consistency of each
chapter, to merge different literature review in the same text. Therefore, this
thesis lacks of a literature review chapter.

The present thesis is organised in two main parts with six chapters in total.

In the first chapter, the introduction to the thesis is presented . The principles
of linear piezoelectric theory are presented, followed by a short state of theart
review on the application of piezoelectric materials and its fabrication process.

In the first part, the modelling of the porous material is presented. In Chapter 2
the main analytical homogenization techniques are reviewed and compared in
Section 2.2. They are compared with numerical FE homogenization (Section 2.3)
and applied to the porous material (Section 2.4). This chapter is concluded with
the comparison of the models with experimental data in Section 2.5.

In Chapter 3, following the approach followed in the previous chapter, the
models are improved to account for the polarization process. This process is part
of the manufacturing and has a strong impact in the final equivalent material
parameters. The improved model is presented in Section 3.2 and compared with
experimental data in order to validate it in Section 3.4.

Later, in Part III an energy harvesting study is done on the porous piezoelectric
materials. In Chapter 4 the linear energy harvesting methods are studied from two
approaches, single-degree of freedom in Section 4.2 and multi-degree of freedomin
Section 4.3. Conclusions are extracted and presented in Section 4.4.

In Chapter 5 a non-linear energy harvester is studied. This harvester uses
mechanicalimpactsas asource of non-linearity to improve the harvester performance.
A short literature review on the impact energy harvesters is presented in Section 5.1.
followed by the finite element formulation developed in Section 5.2 to model the
energy harvester behaviour during the impact. The chapter is concluded with
Section 5.6.

The final conclusions are presented in Chapter 6 which summaries the main
contributions of this thesis.
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The complete list of symbol is detailed here. It should be notice also that the
notation used in this thesis is a modification of the Einstein notation where
repeated subscripts are summed over the range 1-3 when the subscript is lower
case and over the range 1-4 when the subscript is upper-case. In cases where
the indicial notation is not used, tensors are introduced using bold and capital
letters (e.g. C stands for elastic tensor) and vectors using bold and arrow over
them (e.g. ¥ stands for velocity). A comma in the sub-index denotes partial
differentiation. An overbar on the symbol denotes a volume-averaged quantity or
macro-parameter.

w Work

i Electromechanical stress tensor

0jj Mechanical stress tensor

Zij Electromechanical strain tensor

€ij Mechanical strain tensor

U, Electromechanical displacement tensor

U; Mechanical displacement tensor

E; Electrical field

D; Electrical displacement

0¥ Voltage or electric potential

Cijkl Elastic material matrix

€nij Piezoelectric material matrices measured at con-
stant strain and electrical field

dpij Piezoelectric material matrices measured at con-
stant stress and electrical field

€ Dielectric material matrix at constant strain

€7 Dielectric material matrix at constant stress

Cr Percentage of volume of phase r respect the total
volume

(o)M Parameter relative to matrix material

<.)1 Parameter relative to inclusion material

(o) Parameter relative to the equivalent homogenized
material

(o)’gX x) Parameter homogenized using the approach XX

E Electromechanical material tensor

S* Eshelby tensor

| Identity tensor

) Current
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Part 1

Introduction






Chapter 1

Piezoelectric Materials for
Energy Harvesting

1.1 Introduction

Nowadays humans live in an environment that is every day more hyper-connected.
To the very well known smart devices such as computers, laptops, tablets and
smartphones, we have to add smart TVs, music systems, home control systems,
lighting systems, etc. Devices which, until now, were not connected, hence
requiring little energy, are now connected to the internet ad sharing information.
These devices constitute the “Internet of Things” (IoT) which is defined as a
“network of physical devices, vehicles, home appliances and other items embedded
with electronics, software, sensors, actuators, and network connectivity which
enables these objects to connect and exchange data” [1]. The Internet of Things
market will grow to about $520 billions in 2021, which doubles the $235 billions
spent in 2017 [2]. This network will connect millions devices, some of which will
be autonomous and located in inaccessible places collecting information, such
as meteorological stations. Others will belong to huge arrays of small devices
which can monitor a diverse range of situations from large fields of crops to the
structural health of buildings or aircraft. These devices require a stable supply of
energy to perform their tasks. However, it is not always possible to have a wired
connection to the electrical network and sometimes batteries are not the most
efficient and reliable option. In this case, the most desirable option is to harvest
the energy from the surrounding environment.

There are different ways to harvest energy from the environment, and the most
important ones are based on one of the following physical effects: photovoltaic,
thermoelectric, electrostatic, electromagnetic and piezoelectric [3, 4]. The last
three (see Figure 1.1) depend on vibrations from the environment whereas the pho-
tovoltaic effect generates an electric potential on a cell when solar light illuminates
it. This effect allows the development of solar cells with a very favourable energy
density-power ratio, but its dependency on solar light, makes them less appropriate
for places where the cells can get obscured or for environments with reduced light
access or long dark seasons [3]. The generators based on the thermoelectric effect
have proved to be reliable, with almost no noise or vibrations. Unfortunately,
the fabrication methods are not yet mature enough for mass production. The
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Figure 1.1: Energy harvesting principles. Left, piezoelectric effect; cen-
tre, electromagnetic principle and right, electrostatic principle. From

5].

electrostatic effect is based on charging a capacitor made by two plates moving
with respect to each other [5, 6]. Some examples of electrostatic energy harvesters
are presented in [7, 8]. The electromagnetic effect is based on the coupling be-
tween magnetic and electric fields, generating an electric current when there is a
variation of the magnetic field and vice-versa [9, 10]. Some examples are given
in [11, 12]. The piezoelectric effect is the ability exhibited by some materials to
convert strain to electrical energy and electrical energy to strain. The materials
present a good relation between power density-voltage and covers a large range of
applications, from energy harvesters to sonars, pressure sensors, strain sensors,
ink-jet printers, etc. Piezoelectric materials are very durable, and able to work in
extreme conditions which makes them ideal materials for energy harvesters. The
energy is harvested from vibrations in the surrounding environment. This thesis
focusses on generating energy from this type of material, or more precisely from
porous piezoelectric materials, which will be introduced in Chapter 2.

The piezoelectric effect was discovered by Jacques and Pierre Curie in 1880
[13]. They realised when applying a deformation to quartz and Rochelle salt, a
voltage difference was measured across the test material. The converse effect,
where a mechanical deformation occurs when an electrical field is applied, was
mathematically predicted by Lippmann [14] in 1881 from the fundamental principle
of thermodynamics. The piezoelectric effect is present in some natural materials
such as crystals (Quartz, Tourmaline) and synthetic ceramics (PZT, BaTiO3).
When strain is applied to the material, this strain generates an unbalance in the
electrical charge equilibrium, breaking the symmetry of charges and generating
an electric field (see Figure 1.3). The material under no deformation has its
charges located in a symmetrical manner so they cancel each other. Similarly,
the converse effect is found in these materials, where strain is developed when
an electric field is applied. This electric field displaces the electrically charged
atoms, generating a relative displacement between them which is transduced at
the macroscale as strain. The latter effect is defined as the “actuator” effect since
it generates mechanical deformation from a source of electric energy. The former
is defined as the “sensor” effect and it generates electric charge from mechanical
strain. In the linear range of the material, higher strains generate higher electric
potentials. The value of these potentials is defined by the piezoelectric theory
explained in Section 1.2.1. In this thesis, we assume that the piezoelectric coupling
between strain and electric field is linear and this coupling is expressed using the
piezoelectric material tensor. This tensor couples the mechanical deformations
(€xws Eyys €22y Eyz, €z, Eay, ) With the electric fields (E,,, E,,, E..) as explained
in the following section.

Modelling of Porous Piezoelectric Material and Potential Applications to Vibration Energy
Harvesting



CHAPTER 1. PIEZOELECTRIC MATERIALS FOR ENERGY HARVESTING 7

1.2 State of Art of Piezoelectric Energy Har-
vesting

1.2.1 Theory of Linear Piezoelectricity

Piezoelectricity is the name given to the effect that couples the mechanical and
electrical fields [15] and it is found in different crystals and ceramics. Depending
on which field is applied on the material, the effect can be classified as direct or
converse. The direct effect produces an electrical field from an applied mechanical
strain, and the converse, sometimes called inverse effect, produces a mechanical
deformation when an electrical field is applied to the material. The nature of
piezoelectric materials make these effects reversible or interchangeable, meaning
that the presence of one requires the presence of the other.

The behaviour of piezoelectric materials is governed by the piezoelectric
constitutive laws which are briefly reviewed in this section. Firstly, the basic and
principle set of equations which govern the mechanical and electrical fields are
presented. In this thesis only the linear material behaviour is considered.Due to
the multiphysics nature of the piezoelectric effect, we need to use a consistent
notation which accounts for this coupled nature. The notation used here is a
modification of the Einstein notation (repeated subscripts are summed over the
range 1-3) and was developed by Barnett and Lothe [16] and by Dunn and Taya
[17]. This notation is used in [18] and is identical to the Einstein notation with the
exception that lower case subscripts have the range 1-3 while upper-case subscripts
have the range 1-4 and repeated upper-case subscripts are summed over 1-4. In
cases where the indicial notation is not used, tensors are introduced using bold
and capital letters (e.g. C stands for the elastic tensor) and vectors using bold
with an arrow over them (e.g. ¥ stands for velocity). A comma in the sub-index
denotes partial differentiation [19]. In this notation, Zyy, is the elastic strain and
electric field coupled vector, and is expressed as

Em M =1,2,3,
Dnim = 1.2.1
M {En M =4, (12.1)

The strain and electric field are obtained from the elastic displacements u,, and
electric potential ¢ ;, as

Emn = Z(Um,n n,m
Lt + )

E,=-Vo¢,=—¢n (1.2.2)

Let us introduce Uj;, which is the space of admissible displacements u,, and
admissible potential ¢, restricted to a given domain Q with boundary I' and

volume V, is given by
m M=1, 2,3,
Uy =1{" (1.2.3)
¢ M=4,
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Thus the tensor Z,, is derivable from U;. Similarly, we obtain the stress and
electric displacement coupled vector which is defined as

o,; J=1223
5, =0 49, 1.2.4
/ {Di J =4, (12.4)

Having defined these parameters, the piezoelectric constitutive laws are reviewed
based on the IEEE Standard on Piezoelectricity [20].
In linear piezoelectric theory, the electrical enthalpy takes the form

H = %Cijkleijekl — ekijEkeij — %eijiEj (125)
where Cijii, er;; and €;; are the elastic constant tensor (measured at constant
electric field), piezoelectric constant tensor and dielectric constant (measured
at constant strain) respectively. It is assumed that H depends on ¢;; and E;,
therefore the stress tensor and electrical displacement tensor can be obtained by
differentiating the electrical enthalpy with respect to the strain tensor and the
electric tensor respectively.

- OH
i = -
o _%8# (1.2.6)
)
where
Oe; . .
— = 1.2.

The electric displacement field D; is the vector field which describes the effect
of an electric field on the charges within a dielectric material, such as polarization
charges or bound charges.

Since the strain tensor is a second order tensor and the electric field is a first
order tensor, the piezoelectric tensor is a third order tensor, represented as a
matrix of dimension 6 by 3. The total number of independent constant are 45:
21 elastic, 18 piezoelectric and 6 dielectric constants. In the case of transversely
isotropicpiezoelectric materials, given the symmetry between two of the materials
axes, the number of independent constants reduces to 10: 5 elastic, 3 piezoelectric
and 2 dielectric. Given this definition, the stress tensor and displacement tensor
can be written using Equation (1.2.6) as:

Dz’ = eiklsij + €,kak

In these equations, the independent variables are the elastic strain ¢,,, and
the electric field E,. Depending on the independent variables, these equations
can be represented as:

Modelling of Porous Piezoelectric Material and Potential Applications to Vibration Energy
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o Elastic stress-Electric field

E
€ij = SOk — i B (1.2.9)
D; = dioi; + €5, Ey
o Elastic stress-Electrical displacement
 _ D . D
€ij = Sij1 Ok + Grij Dk (1.2.10)
E; = —ginoij + BhDr
o Elastic strain-electric displacement
D
E; = —hey; + BEDy,

The piezoelectric material properties may be represented by ey, dyij , gnij and
hyi; , depending on which properties are considered to be independent. These
representations are described by different parameters, however, they refer to
the same underlying material and their use is equivalent.These coefficients are
summarized in Table 1.1. In this thesis the main forms used are the charge-stress
(enij) and the charge-strain form (d,;; ). We can pass from one form to another
using;:

-1

Cijkl = (Sﬁm) (1.2.12)
€kin = dijnCijrl (1.2.13)
€ = €t — dignCijridni (1.2.14)
The electro-elastic material matrix can then be represented as
CZ]mn jvm: 172737
nij 1 =1,2,3; m =4,
B =4 ™ 7 " (1.2.15)

€imn ]:4am:17273
e,  jm=4,

The inverse of the electro-elastic material matrix (F;,,) is the compliance
electro-elastic matrix Flap;;. The properties of these matrices are derived from
their constitutive elements Cjjpy, €ni; and €;,, which means these matrices are
Table 1.1: Possible representations of the piezoelectric tensor based on
the independent variables of the mechanical and electrical fields.

Mechanical Field
Stress Strain

Electrical Charge

> €nij dnij
Field Voltage

Gnij o j
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symmetric. With this notation we obtain the constitutive laws of piezoelectric
materials in matrix form as

Y= EijmnZun (1.2.16)
Zayb = FavigZiy (1.2.17)

Equivalently, the stresses L;; can be rewritten as [21]

011 Cin Cip Cig Ciy Ci5 Cig | —€11 —e12 —ens €11
O22 Cay Chy Oy Coy Oy Cog | —€21 —€22 —ea3 €22
033 Cs1 Csp Csz Csg Cs5 Css | —€31 —e32 —es3 €33
O23 Cy Cp Cug Cuy Cys Cas | —€41 —e€42 —eu3 €23
013 | = Cs1 Cso Css Csq Css Chg | —€51 —€52 —e53 1 €13
012 Ce1 Coa Coz Cea Ces Ces | —€61 —€62 —€63 €12
D, €11 €2 €13 € €5 € | €], €y  €j3 Ey
€ € £
D, €21 €29 €23 €24 €35 €6 | €y €99 €23 Es
D3 €31 €32 €33 €34 €35 €36 | €5 €5y €33 Ej3
(1.2. 18)

The values and distribution of the non-zero parameters inside this matrix
can vary significantly depending on the type of material. Some examples of the
distribution of the non-zero values of this tensor can be found in [20]. The ceramic
piezoelectric materials used in this thesis exhibit transverse isotropic behaviour and
its structure is defined in IEEE Standard for piezoelectricity as Cyy, represented
in Figure 1.2. The number of independent coefficients of these materials in the
elastic matrix is 5, in the dielectric matrix is 2 and in the piezoelectric matrix
is 3. In these types of transversely isotropic materials, the physical properties
are symmetric about an axis which is normal to a plane of isotropy [22] .  The
piezoelectric effect is developed in the material when the charge symmetry is
broken. This happens when the material reaches the Curie temperature where

Figure 1.2: Piezoelectric electroelastic matriz structure for transversely
isotropic materials. From [20].

Modelling of Porous Piezoelectric Material and Potential Applications to Vibration Energy
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Pb?* @ O% e Ti*t Zr 4+/

Figure 1.3: Polarization of piezoelectric material PZT-5A: When the
piezoelectric material reaches the Curie temperature there is a change
in its microstructure. The new configuration presents an unbalanced
electric field distribution (remanent polarization field). Left and right
pictures, configurations under and over the Curie temperature respec-
tively. From: [23]

it changes from tetragonal to cubic structure. Above the Curie temperature,
the structure is symmetric (cubic lattice) therefore there are no dipoles present
and the piezoelectric effect is not shown. Below the Curie temperature, the
material presents an asymmetric structure (tetragonal lattice) and its piezoelectric
properties are permanent. The polarization process is explained more in detail
in Chapter 3.

The material orientation and its structure defines the way the energy harvester
operates. Depending on the applied strain and its direction, different piezoelectric
coefficients are activated . To activate the piezoelectric coefficients eoy or €15, shear
strain is applied to the material [24]. The coefficient es3 is normally activated
using a force along the polarization direction [25, 26]. Finally, the piezoelectric
coefficients e3; and esp are activated in direction (1,2) perpendicular to the
polarization direction (3). The exploitation of the coefficients e3; and es is useful
for both sensors and actuators due to several reasons. First, the high voltages
required to polarize the material limit the thickness of the piezoelectric layer to a
few millimetres. This is limiting for devices working in the es3 mode, but not ez
actuators/sensors which can extend over large areas with the corresponding large
electrodes. Second, in the e3; mode the electrodes are orientated in a different
direction to the strain is applied, which can improve the durability of the electrodes
and allow piezoelectric patches to be placed in beams which have lower natural
frequencies than stack devices. The lower natural frequencies means that it is
easier to tune the harvester to match the same frequency as the excitation from
the environment. Having the harvester resonate in this way increases the energy
harvested. The e3; mode is the most common configuration of the piezoelectric
material for energy harvesting, and hence will be used later in this thesis.
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(a) Examples of linear response (blue) and (b) Non-linear jump due to multiple solu-
non-linear (hardening) responses (green and tions.
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1.2.2 Piezoelectric Energy Harvesting

Piezoelectric materials have received a lot of attention in recent decades. They are
used as sensors (e.g. strain gauges) [27, 28, 29, 30], as actuators (e.g. ink printers
in industrial applications) [31, 32| or energy harvesters [4, 33, 34]. Many authors
have investigated the use of the piezoelectric materials for energy harvesting.
Sodano extensively reviewed its applications in references [34, 35, 36]. An
interesting review on the vibration energy harvesting is given by Siang et al. [37].
In that review, apart of the piezoelectric effect, many more different effects are
discussed such as electrostatic, flexoelectric, electromagnetic, etc. A review paper
more focussed on piezoelectric energy harvesting using MEMS was presented in
Saadon and Sidek [38]. Among many papers in energy harvesting, the author
highlights Kim et al. [39] which is another interesting review on piezoelectric
energy harvesting where different types of energy harvesters are considered (beam,
shell, stack, etc.) and Liu et al. [40] which reviews different materials, mechanisms
and applications.

One of the most comprehensive studies on piezoelectric modelling was done by
Ertuk and Inman [15, 41, 42] who studied the cantilever bimorph energy harvester.
This model has two piezoelectric patches attached to each side of the cantilever
beam which is excited using sinusoidal displacement at its base. They used
analytical solutions assuming a limited number of modes and their results were
validated experimentally. There have been several attempts to use non-linearities
to increase the energy harvester performance or tolerance to mistuning between
the excitation frequency and its natural frequency for example, by widening
the response around the natural frequency. However this sometimes involves a
decrease in the amplitude of the response at the peak as seen in Figure 1.4a or the
presence of a jump due to the presence of multiple solutions. Friswell and Adhikari
explored the possibilities of piezoelectric devices to harvest energy under non-
linear vibrations [43] and broadband excitation [44]. Some authors have combined
piezoelectric patches with non-linear electromagnetic excitation in order to tune
the natural frequency of the beam and adapt it to the excitation frequency [7, 45].
Cammarano et al. [46] studied the impact of the resistive load on energy harvesters
with a stiffening nonlinearity. They found that the nonlinear energy harvesters
with stiffening nonlinearities have similar optimal resistance load, allowing themto
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reach similar levels of voltage output as the linear counterparts over a wider
range of frequencies. Other authors focused on optimizing the geometry of the
harvesters such as [47] who developed a zigzag structure to enhance the power
output by increasing the strain on the piezoelectric patches. Or Masana and
Daqaq [48] who developed an electromechanical nonlinear model of an axially
loaded energy harvester. A overview of the developments in the field of energy
harvesting is given in Priya and Inman [49]. Different technologies are summarized,
such as piezoelectric, electromagnetic, or thermoelectric. Several applications
are also introduced, specially in the field of biomechanics and structural health
monitoring (SHM). Lewandowski et al. [50] studied the feasibility of a piezoelectric
implant powered by muscles from a theoretical point of view. The generator
concept is based on the hypothesis that more electrical power can be converted
from stimulated muscle contractions than is needed for the stimulations. They
suggested Barium Titanate (BaTiO3) as a possible material for this type of
harvester because it has piezoelectric properties and is biocompatible, reducing
the amount of complications post-operation. Sodano [51] presented an energy
harvester implemented in a backpack which it is able to harvest between 0.015
and 0.04 W, depending on the weight loading and the number of piezoelectric
straps. These piezoelectric straps are made of polyvinylidene fluoride (PVDF)
and they are designed to work as a stack (using the e3; coefficient), and hence
it is anticipated that the actual power would be higher than the predictions
due to bending effects. In Mateu and Moll [52] an energy harvester made of
piezoelectric film-bending beams is implemented inside a shoe. Due to the limited
space for the beams to deflect, the power output is very limited and this space
needs to be considered as a key factor. No experiments support this study and no
other factors such as comfort have been considered. Deterre et al. [53] presented
the design, fabrication, and testing of a micro spiral-shaped piezoelectric energy
harvester that collects energy from blood pressure. This device has important
applications for powering small implantable medical devices such as pacemakers
or health monitoring devices. In Zhu et al. [54] an energy harvester of the size
of a credit card is presented as a node for sensor applications (See Figure 1.5).
This harvester produced a maximum output power of 240 W (for excitation at a
frequency of 67 Hz, with an amplitude of 0.4 g). The harvester is fabricated using
film printing technology and its generated power is sufficient to enable periodic
sensing and transmission. Piezoelectric materials have also found important
applications in the field of SHM and energy harvesting [49]. In Elvin et al. [55] a
self-powered damage sensor using piezoelectric patches is presented. A network of
these strain sensors is embedded in the structure and it is able to measure strain
and transmit it to a central node when dynamic loads are applied to the structure
such as moving vehicles. Ha and Chang [56] investigated the suitability of energy
harvesting techniques using a network of piezoelectric sensors and actuators on a
structure. They concluded that the total power requirement of the piezoelectric
device (based on Lamb-wave transmission of energy) far exceeds the current energy
harvesting capability. The electromechanical impedance (EMI) technique using
piezoelectric sensors, has been successfully applied to structural health monitoring
[57, 58, 59, 60, 61]. Recommended articles about piezoelectric materials for SHM
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are Na and Baek [62] and Tuloup et al. [63].

There is significant research on the optimization of the geometry of energy
harvesters, but little has been done on the optimization of the material used
for the piezoelectric layers. The properties of a material may be changed by
mixing the material with other materials in order to improve the overall properties
of the resultant composite material. It should be noted that the efficiency of
a material for energy harvesting is roughly defined by two parameters: the
electromechanical coupling and the capacitance. The electromechanical coupling
defines the energy transformed from strain to the electric field or the vice-versa
and it depends directly on the piezoelectric coefficients (e , d ). The capacitance
is defined by the energy lost in the generation of parasitic electric fields inside the
material and depends on the dielectric coefficients. One approach to increasing
the efficiency of piezoelectric devices is to improve the mechanical properties in
order to harvest more energy. This can be achieved by mixing elastic materials
within a piezoelectric matrix. The additive matrix presents better material
properties, such as higher elastic modulus, higher yield strength, etc. Typical
materials used as additives are polymers, which much more flexible and less
brittle than the piezoelectric ceramics. The resultant composite generally presents
properties within the range defined by the piezoelectric and elastic properties
of its components. The other approach is to improve the electric properties by
modifying the piezoelectric and dielectric coefficients by adding a new phase to
the composite material. Capacitance is one of the main phenomena responsible
for the losses in the energy harvester, and therefore it is reasonable to aim
to reduce the capacitance in order to optimize the material and consequently
the energy harvester. Porous piezoelectric materials are able to reduce the
capacitance because its dielectric properties, responsible for the capacitance, can
be controlled by increasing or decreasing its porosity. Hence this represents
a good alternative to the traditional PZT-polymer composites; little emphasis
has been given to them, although they exhibit good piezoelectric properties
and low capacitance [64]. Early experimental work on this type of material
was reported by Roncari [65] who gave a comprehensive review of the different

Sensors

Power
Conditioning

Generator

Figure 1.5: Energy harvester of the size of a credit card. From [54].
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methods to prepare porous piezoelectric ceramics. Li et al. [66] characterized
porous piezoelectric material from experimental results. Bowen et al. [67] reviewed
how the porosity affects the piezoelectric and dielectric coefficients through the
experimental figures of merit (FOM) for different fabrication processes, such as
freeze-casting or self-raising and the burn out polymer spheres process (BurPS).
Roscow et al. [68] used piezoelectric porous materials for energy harvesting
depending on their piezoelectricity, pyroelectricity and ferroelectricity properties.
Ferroelectric materials are those materials which possess one or more ferroelectric
phases. The ferroelectric phase is a particular state exhibiting spontaneous
polarization which can be reoriented by an external field [69]. This polarization
might produce a coupling between the electric field and the mechanical field
or between the thermal field and the electric field. The former coupling is
referred as piezoelectric coupling and converts electrical energy from/to mechanical
vibrations. The later is known as pyroelectric coupling and converts energy from/to
temperature fluctuations [68] . Roscow [70] reviewed the manufacturing processes
for porous piezoelectric materials. Martinez-Ayuso et al. studied the use of these
porous materials for energy harvesting using harmonic base excitation [71] and
using mechanical impacts as the source of vibration [72].

As stated above, the material properties of porous piezoelectric composites
depend on the percentage of each phase in the material. Hence, for each percent-
age step there will be a unique change in the material coefficients. Performing
experiments over the whole range of the percentage variations is costly, and hence
the most efficient approach is to predict the material properties using a homoge-
nization scheme. In the next chapter, the homogenization of porous piezoelectric
material is undertaken using different schemes, which includes both analytical
and numerical methods. The complete set of material properties is obtained, i.e.
mechanical, electrical and dielectrical properties. This homogenization process is
further developed in Chapter 3 by including the polarization.

1.2.3 Fabrication Process

To manufacture porous piezoelectric material, commercially available barium
titanate powders (BaT'iO3, d33=147 pC/N, relative permittivity el;/eq =1470
[70, 73], deionized water and poly (acrylic acid) (PAA, Mv 100,000, Sigma Aldrich)
and polyethylene glycol (PEG, Mv 8,000, Sigma Aldrich) are used as the starting
materials, the freezing vehicle, the dispersant and the binder/pore forming agent
(PFA), respectively.

There are two main methods to manufacture porous materials, namely the
burned out polymer sphere method (BURPS) and the freeze casting method. In
the BURPS method, the samples are made by ball milling PZT-5H or barium
titanate powder, PVA binder, a volatile additive and water. The amount of
volatile additive defines the percentage of porosity. After apply pressure at 50
MPa, a heat treatment at 400 °C is applied to burn off the additive, followed by 2
h at 1125 °C to sinter the ceramic material [67]. In this method, the resulting
inclusions are sphere-like or slightly ellipsoidal.

For the freeze-casting method , the technique consists of freezing a mixture
of barium titanate powders, 3 wt.% dispersant and 3 wt.% binder. The slurry
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(a) (b) (c) (d)

Figure 1.6: Freeze casting method. a) Suspension of piezoelectric
particles. b) Growing of the ice pillars. c) Structure after sublimation
of the ice pillars. d) Stratification of porous structure across mould.
From Deville et al. [17]

is poured into a transparent aligned cylindrical polydimethylsiloxane (PDMS)
mould, which is then transported to a copper cold finger and placed in a liquid
nitrogen container. Given the low temperatures, ice pillars grow from the bottom
(in contact with the liquid nitrogen) to the top of the mould. The frozen barium
titanate pillars are then freeze-dried under reduced pressure to remove the ice
dendrites. Later the samples are sintered to consolidate and densify the structure
by raising the temperature up to 500 °C for 2 hours to remove the organic
additives, followed by heat-treatment at 1200 °C for 2 hours and then finally
allowed to cool down naturally. This heat treatment leads to a porous structure
with unidirectional channels in the case of unidirectional freezing[74]. More details
about this method and the details of the freezing of the suspension and aqueous
solution chemmical composition can be found in [75, 76] Finally the sintered
ceramics are cut to a diameter of 10 mm and a thickness of 1 mm with a cutting
machine.

After the manufacture of the porous disks, the piezoelectric strain coefficient,
d31, was measured using a Berlincourt Piezometer (PM25, Take Control, UK),
which applies an alternating force of 0.1 N at a frequency of 97 Hz. The applied
force frequency is low compared with any sample resonances, yet high enough
that a conclusive and accurate measurement can be obtained. The magnitude of
the applied force is not important, as long as the material is still operating in
the linear regime.Measurements of the relative permittivity of the sintered porous
barium titanate were carried out at room temperature using an impedance analyser
(Solartron 1260, Hampshire, UK). However, not all the material properties required
to model the composite using the finite element (FE) method can be obtained
without more advanced testing. For example, the elastic modulus cannot be
measured with the widely used resonance technique because the air in the porous
material attenuates the resonance, reducing the reliability of the measurement.
Other mechanical tests which measure these elastic properties might destroy the
patches. Therefore, to avoid these problems, homogenization processes are used
to predict the complete set of material properties [78].
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Chapter 2

Homogenization of Porous
Piezoelectric Composites

2.1 Introduction

Chapter 1 highlighted that piezoelectric materials play an important role in scav-
enging energy from vibrations from the surrounding environment. Unfortunately,
these materials also have some disadvantages, such as energy losses due to the
electrical field induced in the material [18]. These losses are proportional to the
dielectric coefficients. When the material has high dielectric coefficients, the
electric field stored inside the material due to its capacitative properties is higher,
which results in less usable energy . In recent years, the efforts of researchers
from different disciplines have led to the development of composite materials
which improve the overall behaviour of the raw materials. The use of composite
materials has beenexpanded and generalized to different industrial applications,
such as naval or aerospace. These composite materials aim to achieve specific
required values of parameters, such as elasticity, strength, thermal properties or
piezoelectric coupling, by mixing different materials, called phases, in specific
percentages. These mixes are limited mainly by the material properties of the
raw materials, but other factors, such as the fabrication process, can limit the
composition too. Since composites are a mix of different materials, their properties
are always in between the maximum and minimum values for the raw materials.
One approach to enhance the properties of the piezoelectric materials is to improve
the elastic properties to allow higher strains which generate more energy in the
case of energy harvesters. This can be achieved by mixing the brittle PZT with
more flexible materials such as polymers, so that the resultant composite has
better overall elastic properties, such as the Young’s modulus or the fracture
limit. These final properties depend on the properties of the material added to the
piezoelectric phase, e.g. its structure, electromechanical properties, percentage
added, etc.

In this thesis, a different approach is proposed, which aims to improve the
overall behaviour of the energy harvester using an improved composite material
with lower dielectric coefficients, such as porous piezoelectric materials. Composite
science allows the decrease in the dielectric coefficients using a material with lower
dielectric values, for instance air which has almost zero permittivity. The drawback
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of this approach is that the elastic and piezoelectric coefficients also decrease,
but at a different rate than the dielectric coefficients. In this sense, the porous
piezoelectric materials represent a good alternative to the traditional PZT-polymer
composites. Nevertheless little emphasis has been given to porous piezoelectric
materials, although they exhibit good piezoelectric properties and low capacitance
[64]. The detailed study of how to optimise these parameters with respect to
the percentages of the phases is critical for the correct design and optimisation
for possible applications. Initially , experiments are the best way to obtain
a prediction of the final material properties, but their disadvantages are quite
important:

o Expensive. The cost associated with the realization of experiments can be
quite high, not only because of the materials used, also because of the tools
used for the fabrication or the sensors used for the characterization process.

e Time. The experiments require time to realise a single test. This time varies
depending on the fabrication process, but in some cases can be quite long,
and is an important factor to control in the experimental study.

» Repeatability and errors. Due to the nature of the experiments, smalls
errors or differences can be introduced in the test which results in different
values of the parameters for similar tests. In some cases, these differences
can be considerable.

o Discrete nature. The experiments only provide information of the tested
material, requiring a mathematical model for the extrapolation of other
parameter values.

Due to all these factors, it is preferred to use analytical or numerical models which
can predict the material properties of the equivalent composite. These models
have to be validated with experimental results in order to ensure the applicability
of the model to the given material. The application of these models can help
to optimize the percentage of each phase or the distribution of the phases in
case of functionally graded materials. The process to obtain or estimate a priori
the material properties of a composite material is called homogenization. The
homogenization process to obtain the homogenized propertiescan be performed
using different methods or approaches, such as:

o Finite Element Method. Based on solving the cell problem using the finite
element method and later averaging the stresses and strains.

o Mean-Field Homogenization. Based on solving analytically the inclusion
problem.

o Asymptotic Homogenization. Based on computing the homogenization
solution using a parameter € which tends asymptotically to zero.

o Generalized Method of Cells. Based on assuming a piece-wise uniform strain
and stress distribution inside each subcell of the analysed volume.
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In this thesis, two main methods are used: the numerical finite element scheme
and the analytical mean-field homogenization. These are the main methods to
homogenize composite materials and they are explained in the following sections.
Many authors have investigated the homogenization of piezoelectric materials
using analytical approaches. One of the earliest works using analytical models
of piezoelectric composites was by Newnham [79] who explored the properties,
connectivity patterns, and symmetry of the composite. He realised the relation
between the connectivity and the field and the force concentration. Nemat-Nasser
and Hori [80] wrote the book “Micromechanics: Overall Properties of Heteroge-
neous Materials” in 1993, which is considered to be one of the main works on
the homogenization of heterogeneous materials. In this book, an analytical study
of different heterogeneous composites was given, from composites which contain
inhomogeneities to those which have micro-cracks. Dunn and Taya [81] extended
the Mori-Tanaka method, one of the most reliable analytical homogenization
methods, to include the electrical coupling of piezoelectric materials. Also, they
calculated the corresponding Eshelby tensor [81] which is required to calculate an-
alytically the relation between the strain inside the inclusion and the macro-strain
[82] and hence the electro-mechanical matrix of the corresponding homogenized
material. In addition to the analytical models, homogenization can be performed
by a numerical approach using FE techniques. Different authors have highlighted
the validity of such techniques for different fields such as elasticity [19, 83, 84, 85],
plasticity [86, 87], non-linearities [88, 89], and complex microstructures [19, 90].

Until now, few studies have been performed on the homogenization of porous
piezoelectric material. Dunn and Taya [21] used the analytical Mori-Tanaka
approach to evaluate the properties of porous PZT. Lewis et al. [91] accounted for
the distribution of inclusions in porous piezoelectric material showing a good match
with experimental results, but not accounting for the inclusion shape. Roscow et
al. [92] estimated the homogenized properties of porous piezoelectric materials
with randomly distributed inclusions using FE techniques, and accounted for the
polarization effect. Kar-Gupta and Venkatesh [93] used a finite element model
to analyse the influence of the porosity percentage and the orientation of the
inclusion on the effective parameters. Other authors have studied the distribution
of inclusions using statistical approaches to account for randomness in the location
of the inclusions [94, 95].

The two main types of homogenization scheme used in this thesis are the
mean-field homogenization theory and the finite element method. The former is an
analytical theory on which many analytical approaches to homogenize composite
materials are built, such as the Mori-Tanaka scheme or the Self-consistent theory.
Section 2.2 summarises the analytical homogenization approach based on the
Hill-Mandel principle and the Eshelby solution for inclusions in an infinite matrix,
to derive the well-known Mori-Tanaka method and the Self-consistent scheme. In
addition, two methods to estimate the limits of the properties are given. The
second approach is a numerical method which uses the finite element method to
simulate the discrete nature of the composite material, to test it virtually and to
estimate the equivalent material properties by averaging of the properties over the
whole domain. This is explained in Section 2.3 where the boundary conditions
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and homogenization assumptions are detailed. The numerical homogenization
method uses commercial FE software to obtain the equivalent material properties.

2.2 Analytical Homogenization

2.2.1 Introduction

Since linear behaviour is assumed through the composite, it is logical to assume
thatthe response of the composite material is a superposition of the response of
the different phases averaged in some way. The composite response is determined
by the homogenized composite properties called “effective properties” or “macro-
properties”, denoted with an overbar over the correspondent variable symbol.
These macro-properties, £ and Z, also have to be consistent with the energy
conservation principle, that means the virtual work Won a given material volume
(V) at the macro-scale must be equal to the virtual work at the micro-scale. Thus

SW = l/ SWav (2.2.1)
Vv

The overbar denotes a volume-averaged quantity or macro-parameter. This
principle is also called the “Hill-Mandel condition”. The simplest way of under-
standing a heterogeneous material is seeing its macroscopic behaviour as defined by
different elastic parameters called “effective elastic properties” which are constants
and depend on the constituents of the composite material. These assumptions are
derived from the linear behaviour assumed at all the material points contained in
the composite material. Therefore the following condition must be satisfied, for
both mechanical and electrical behaviour,

1 — —= 1
E:FZV/VG:ECZV : D:E:V/‘/D:Edv (2.2.2)

where V is the domain where the homogenization is performed. From this
condition, we can obtain

—=I 1 =m 1
S =— [ zav , Z"=— [ Zzav 2.2.3
VI VI ) Vm vm ( )
AR B ¥V L Zdv (2.2.4)
VI ’ SV fom -
and therefore
af:i/ odv , o= — [ oav (2.2.5)
VI VI ’ Vm yvm o
1 1
= d = d 2.2.
€ =y /VI edV | € v f edV (2.2.6)
=L [ pav , D"=L [ pav (2.2.7)
o VI VI ’ - Vm vm o
-t g , "=t EdV (2.2.8)
a VI VI ’ N Vm vm o
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The Hill-Mandel condition is fulfilled when we apply linear displacements,
uniform tractions, mixed boundary conditions or periodic boundary conditions on
the analysed volume [80, 96]. The choice of boundary conditions will be discussed
later. When we apply one of these boundary conditions, the variables such as
strain, stress, electrical displacement and electrical field in a finite volume V' are
equal to the macro equivalent variable, namely macro strain, macro stress, macro
electrical displacement, and macro electrical field. Hence we can extrapolate the
results of a representative volume to the macro scale.

From the assumptions made previously, Equation (2.2.2) are simple volume
averaged quantities over a suitable cell, called a representative volume element
(RVE), that can estimate the overall properties [17, 21, 97, 98]. The chosen volume
must be statistically representative of the material at the macroscale. Accordingly
to these suppositions, the volume-averaged fields of the composite with N phases
can be obtained using the averaged summations as

N

I=> ¢ (2.2.9)
r=1
N

Z=> oZ (2.2.10)
r=1

where ¢, is the volume fraction of the phase r. The matrix is the phase r = 1.
Following this approach, the constitutive equations for the composite can be
expressed in terms of the volume-averaged fields.

I-EZ (2.2.11)

Define the strain-potential gradient concentration tensor, or simply the con-
centration tensor, A", for each phase r as the tensor which relates the average
strain and potential gradient in phase r to that in the composite. Hence

Z"'=A"2 (2.2.12)
which together with equation 2.2.10 gives:
N N
Z-= Z 2" = Z o A"Z (2.2.13)
r=1 r=1
N
1= A" (2.2.14)
r=1

This relationship must be fulfilled by all the concentration tensors [97]. Combining
this relation with the above equations, yields the electromechanical modulus of
the composite in terms of the constituent moduli as

N N
E=> ¢EA"=EY+> ¢(E' - EM)A” (2.2.15)
r=1 r=2

The procedure used to evaluate the concentration tensor defines the different
methods, such as the self-consistent or Mori-Tanaka methods, as discussed in the
following sections.
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Figure 2.1: Eshelby tensor definition: Relates the strain tensor between
inside and outside of the inclusion.

2.2.2 Eshelby Solution

A composite material can be described as one or more well-defined phases inside a
matrix made of other material different from those of the phases. These phases have
a defined boundary with the matrix, so these phases have specific shapes (layers,
fibers, spheres, ellipsoids, etc.). Depending on the geometry of the inclusions,
the procedure is different. The study of the analytical solution of an ellipsoidal
inclusion inside a matrix was pioneered by Eshelby [82] in 1957. He considered that
the matrix is infinitely larger than the inclusion. This assumption holds for non-
high inclusion percentages, and some authors reported the maximum percentage
is about 50 percent of the volume[21, 81]. Eshelby developed relations between
the stress and strain in the inclusion and the matrix through a concentration
tensor called the “Eshelby Tensor” S§*. This tensor relates the constrained strain
inside the inclusion (Z*)with the strain outside of the inclusion Z [82]. Hence:

Z=5*7 (2.2.16)

This solution, based on the linearity of the material behaviour, solves the Green’s
function for the elliptical shape. The solution has been extended by varying the
dimensions of the ellipsoid axis, for fibers (one of the axis is infinite), spheres
(all axis are equal) or cracks (one of the axis is zero) or for non-elliptical shapes
as arbitrary polygonal ones or those characterized by the finite Laurent series
[99, 100]. For an ellipsoidal inclusion in a homogeneous infinite matrix, the Eshelby
Tensor is constant, due to the uniform relationship between the stress and strain
fields. This relationship was demonstrated in reference [82] using a tensor D,
(please note this is different from the electric displacement tensor D; used later)
which relates the displacement gradients to the stress inside the inclusion. The
Eshelby tensor can be calculated using different approaches, such as calculating
the electro-elastic Green’s function or solving the integrals associated with the
inclusion problem.

Based on the previous works of Degg [101], Dunn and Taya extended this
tensor to include piezoelectrical materials [81] obtaining the Eshelby tensor for
piezoelectric materials which accounts for the mechanical and electric field. Dunn

Modelling of Porous Piezoelectric Material and Potential Applications to Vibration Energy
Harvesting



CHAPTER 2. HOMOGENIZATION OF POROUS PIEZOELECTRIC COMPOSITES 27

and Taya obtained the Eshelby tensor expressed as implicit integrals. Later,
Mikata [102] obtained this tensor explicitly and this is the form we are using in
this thesis. To obtain the Eshelby tensor for a given material, only the elastic
properties of the matrix (isotropic, transverse isotropic, orthotropic, etc) and the
shape of the inclusion are required, and this tensor changes depending on the
geometry considered such as, fibre, sphere or ellipsoid. In our case, we consider
a piezoelectric material matrix behaviour which is transverse isotropic and with
spherical inclusions. As mentioned before, in this thesis, the approached proposed
by Mikata [102] is followed in order to obtain the piezoelectric Eshelby tensor
which is given by (indicial notation is used here):

1
8_ iJAb(IinmJ + Izan) M = 17273
Shtnap = 177 (2.2.17)
4_FiJAbIm4J M =
T
where:
1 -1
[mMJ = a1Q2a3 —Bl'll'nKMJdS (2218)
lz|=1 M
p= \/a%x% + a3x3 + a3xd (2.2.19)
K = By g% = B, 140t (2.2.20)

and a; is the lenght of the semi-axis of the ellipsoid in the x; direction. u is a factor
which accounts for the shape of the inclusion. x; are the integration variables
and Ej;i; is the constitutive tensor. It should be noticed that the Eshelby tensor
is not a real tensor from the mathematical point of view, because it does not
transform according to the tensor transformation rule [102]. In his paper, Mikata
uses several transformations in the previous equations to obtain the Eshelby tensor
for a general ellipsoid in a transverse isotropic piezoelectric material which is the
case of this thesis. For the sake of brevity, the mathematical development and the
final equations are not stated in this thesis, since they are not the objective of the
research. The author refers to Mikata [102] to obtain these equations and further
understanding about how the Eshelby tensor is obtained. The Eshelby tensor by
itself cannot be used to homogenize a composite material, but it is the basis of
the analytical homogeneization and will be used in the most important theoretical
approaches such as the Mori-Tanaka method and the self-consistent scheme [103].

2.2.3 Mori-Tanaka Method

The Mori-Tanaka method [104] was developed for calculating the average inter-
nal stress in one matrix which contains precipitates with eigenstrains. Later,
Benveniste [105] extended this approach to composite materials, considering
anisotropic phases and ellipsoidal phases [106]. In this method each inclusion
behaves as an isolated inclusion, embedded in an infinite matrix with properties
EM that is loaded remotely by an applied strain. Hence each inclusion is subjected

German Martinez Ayuso



28 2.2. ANALYTICAL HOMOGENIZATION

to the averaged stress fields acting on it from all the other inclusions, through the
superposition of stresses. The procedure of this method is detailed next. Firstly,
an influence tensor has to be calculated for every phase r which is denoted as
A[". This concentration tensor is assumed to be equal to the relation between
the strain in the inclusion with the strain in the matrix [103], EM, as

E'" =Al" EY (2.2.21)

This concentration tensor is written in terms of the Eshelby tensor, §*, as

-1

A = |1+ 5% (EY) " (B — EY)] (2.2.22)

These concentration tensors are then averaged to obtain a general influence tensor

I,r
(A(MT)) as

Ir
A

—1 N . -1 -
eIl + M (Agr) +3 Al (Ag”) ] (2.2.23)
=1

=

Finally we obtain the effective electro-elastic material tensor (E*) by Equa-
tion (2.2.15) as

Eivr = EY + ) ¢l (B —EY) Al (2.2.24)

r=1

This method is also considered to be consistent since the inverse of the elec-
tromechanical matrix E* is equal to the compliance electromechanical matrix

F.

2.2.4 Self-consistent Method

The self-consistent method of Hershey [107] and Kroner [108] was originally
proposed for aggregates of crystals and extended by Hill [109] for application
to composites. The self-consistent method (SCM) approximates the interaction
between the phases by assuming that each phase is embedded in some equivalent
medium with electroelastic properties E*, which represents the influence of all
other inclusions [18, 110]. A priori, the value of E* is unknown, so an iteration
scheme has to be used. According to Norris [111], the SCM has two groups,
symmetric models where the phases are interchangeable and none of them are
dominant, or asymmetric models were one phase is taken as a matrix phase, and
the rest are all inclusions. Asymmetric models are preferred by Wu [112] and
Boucher [113] although, for the sphere inclusion shape, both approaches lead to
the same result. In general, the self-consistent method gives a sufficient prediction
of the behaviour of poly-crystals but it is less accurate in the case of two-phase
composites [114]. In the present thesis, a variant of the self-consistent method is
used based on the Zouari approach [115]. The procedure relies on a progressive
introduction of the inclusions in the matrix. For each step, the behaviour of the
homogenized medium is obtained by the self-consistent method and is used as the
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matrix for the following step. In the SCM, we account for the influence of each
phase through an influence tensor, which is also related to the Eshelby tensor. We
can obtain the influence tensor at each step N as

Ay scs) = [' + 8" (Ex_,) ' (EI’T - E}kv_l)} (2.2.25)

The parameter A7, (sCM) is the concentration tensor for the self-consistent method
(SCM) for the phase rin step N. This parameter is introduced in Equation (2.2.15),
which gives the electromechanical properties E} for the self-consistent scheme as

Ex.scu = EY + Z (ern = Crov—n) (E'" —EY) Ay (scs) (2.2.26)
r=1

The main difference between the self-consistent scheme and the Mori-Tanaka
method is that Mori-Tanaka accounts for the effect of other inclusions through the
concentration tensor, whereas the self-consistent method considers this effect using
the effective properties of the embedded material inclusions as matrix properties.

2.2.5 Modified Halpin-Tsai Bounds

These bounds are one of the most popular approaches for composite homogeniza-
tion. They are based upon the “self-consistent method” developed by Hill [98]
which Hermans [116] employed to obtain a solution in terms of Hill’s “reduced
moduli”. Later Halpin and Tsai reduced Hermans solution to a simpler analytical
form and extended its use to different geometries. In this thesis, a variation based
on the Halpin-Tsai bounds will be used. This variation was developed and used
by Odegard [97], and it establishes a geometrical relation between the different
electroelastic matrices averages with their percentage of inclusions:

L+ 3 s
k= B ZN_Q TJKI . (2.2.27)
L= o MiykiC
where
EIJKI - E‘Afm
MKl =37 i (2.2.28)
ElL i+ EN

The upper and lower values are defined by considering one material or the other as
the matrix material ([F][M]), being the higher bound when the stiffer material is
considered, in this case the piezoelectric material. The lower bound is calculated
considering the air as the matrix material which in our case is not physically
meaningful. Furthermore the result is zero due to negligible stiffness of the air.
Hence

L4 0f

Upper bound — E}; 5, = Elpﬁ?fl — (2.2.29)

T T
Nigk1€
where

air piezo
EzJKl E ki

(2.2.30)
B+ BN

anKl
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2.2.6 Hashin-Sthrikman Bounds

The approach of Hashin and Shtrikman [117] was to calculate the tightest bounds
possible for a two-phase material. This method is based on the Mori-Tanaka
method. It leads to upper and lower bounds, which can be calculated by applying
the Mori-Tanaka method considering the matrix material to have the best proper-
ties for the upper bound, and interchanging phases for the lower bound. In our
case, the piezoelectric material has better properties, so using it for the material
matrix, gives the lower bound.

Upper bound — E{ys., = E' + ¢ [ (EY — E') " + /s (E') | (2231
Lower bound — E{g_) = EY + ¢! [(EI - EM)_1 + MsM (EM)_I} - (2.2.32)

As we can see, the upper Hashin-Shtrikman bound cannot be calculated, because
it involves the inverse of the inclusion electroelastic material matrix, which in our
case (air) is considered as zero. Since the stiffness of the air inclusion is negligible,
the bound defined in Equations (2.2.31) and (2.2.32) as the higher bound, E{;g.),
tends to zero in the resultant electromechanical stiffness matrix, and in contrast,
the lower bound, ETHS_), represents the maximum values for this method. Hence,
for the porous material case, the results are inverted, but to keep consistency with
the literature, in this thesis these results are not inverted. Hence, in this thesis,
similar to the Halpin-Tsai bounds, only the lower bound is obtained and shown in
the results.

2.3 Numerical Homogenization

2.3.1 Representative Volume Element (RVE).

To apply the Finite Element Method (FEM), we need to define the dimensions and
characteristics of the model or the part of the model we are going to design. The
part to bemodelled should be statistically representative of the macro-element,
and it is called a“representative volume element” (RVE). We can ensure that
the element is representative by choosing the correct size of the RVE, which for
material homogenization is normally a cube with a specific side length Lgy . The
size of the RVE should be big enough to account for all the properties of the
model, e.g. the number of phases, the percentage of the phases, etc., but small
enough to make the computation time reasonable and with the precision required.
That the RVE is sufficiently small means that the averaged field variables, e.g.
stress and strains, vary at most linearly within the RVE, a condition known as
scale separation (or 1st order homogenization) [80]. That the RVE is sufficiently
large means that the averaged field variables for a given macroscopic “point” do
not change significantly with a further increase of the RVE size. The size of the
RVE is discussed more carefully by Nemat-Nasser and Hori [80]. Obviously, the
RVE size will be also conditioned by the size of the inclusions. The porous regions
or inclusions are air spheres whose diameter depends on the fabrication method.
For polymers made using self-raising powder, the diameters are between 30-90
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(a) Inner inclusion view. (b) Mesh element view.

Figure 2.2: Different views of the representative volume element. a)
Inner inclusion view. b) Mesh element view.

pm [67]. When the BurPS process is chosen, which burns out polymer spheres
when the mix is exposed to high temperatures, the diameters are between 70-200
pm [67]. In some cases, for example when poly(methyl methacrylate) is used, the
diameters can be over the 200 pum. These processes are detailed in Section 1.2.3.
Knowing the distribution of the inclusions inside the matrix and their size, we
can choose an appropriate RVE size. The distribution of inclusions in the RVE in
the numerical model developed in this thesis corresponds to an homogeneous and
perfect distribution, as seen in Figure 2.2. This geometry does not fully represent
the random distribution of pores present in real samples. However, it allows us,
in a simple manner, to compare this model with the analytical results which do
not account for randomness effects since they do not include the location of the
inclusions. Also, this approach helps to reduce the computational cost significantly
since only one distribution model is considered. The samples manufactured in the
laboratory have a random location of the inclusions, however, if this randomness
is equally distributed from a macroscopic point of view, the results between the
random and non-random distributions are comparable. If randomness or clustering
effects are important, these features can be included in the FE homogenization
by implementing inclusion location distributions such as the Gauss distribution,
constant randomness, etc.

On this previously defined RVE, the effective properties of the material are
obtained by volume averaging (or homogenization). For a random micro-structure,
the true effective properties are obtained as the converged values when Lgzyg
becomes sufficiently large. However, in practice, to avoid excessive computational
costs, it is necessary to choose a cell of finite size. For our non-random case it is
only required to use a size which represents the smallest periodic geometry which
is still representative of the material configuration. If the RVE is statistically
representative of the composite geometry and properties, then E= Fil as seen in
Equations (1.2.16) and (1.2.17). A consistent averaging technique is expected to
satisfy this inverse relation with reasonable accuracy

German Martinez Ayuso



32 2.3. NUMERICAL HOMOGENIZATION

2.3.2 Periodic boundary conditions

A numerical model is simulated to check the analytical results, using a finite
element model, based on the simulated RVE. These elements have properties
corresponding to the phase they are contained within. The definition of the
element properties is straightforward as soon as we know the properties of the
phases (PZT and air) and the geometrical distribution.

To define completely a numerical model, appropriate boundary conditions
have to be defined. These boundary conditions have to represent the behaviour of
the heterogeneous material RVE in a specific situation, for example in a traction
test (Dirichlet conditions or Neumann conditions) or inside a matrix of a repeated
RVE (Periodic Boundary Conditions). The most common boundary conditions in
micro-mechanics homogenization were, until recently, kinematic uniform boundary
conditions or Dirichlet boundary conditions. Under these conditions, uniform
displacements are applied to the boundary, fixing some points of the RVE. On
the opposite side, the static uniform boundary conditions, or Neumann boundary
conditions, applied by uniform tractions to the edge of the RVE are considered.
According to Hill [98], an RVE is well-defined when the responses under Dirichlet
and Neumann boundary conditions converge. This convergence of the effective
properties as a function of the size of the unit cell has been studied by Huet
[118] and Amieur et al. [119]. In addition to the mentioned uniform boundary
conditions, mixed boundary conditions were proposed by Hazanov and Huet
[120]. These boundary conditions were proposed due to the difficulty in setting
up experimentally the uniform conditions (Dirichlet and Neumann conditions).
Huet [118] and Hazanov [121] demonstrated that these mixed boundary conditions
yield better approximations of the effective properties than the uniform ones.
Finally, periodic boundary conditions can be formulated for unit cells when the
volume represents a periodic structure. Terada [19] investigated the application
of periodic boundary conditions in micromechanics. He showed that:

e Periodic boundary conditions applied on a relatively small RVE provides
reasonable estimation of the effective properties even if the medium doesn’t
have actual periodicity.

o Periodic boundary conditions give a more reasonable estimate of the effective
moduli than either Dirichlet or Neumann boundary conditions.

For these reasons, periodic boundary conditions are imposed in our model. Further
information about the formulation and justification of these conditions can be
found in [19]. As shown in Figure 2.3b, the chosen boundary conditions imply that
the opposite edges have identical deformation, and opposite stress direction [122].
These conditions simulate the boundary conditions created by an infinite matrix
surrounding the RVE, as shown in Figure 2.3a. This matrix is supposed to consist
of an infinite series of RVEs repeating in all directions. This assumption allows us
to choose the minimum RVE which ensures a representative geometry, and hence
simplify the model to a single one. For a hexahedral RVE in z € [0, L,],y € [0, L,]
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(a) Periodicity: RVE inside
an infinite matrix of RVEs.

(b) Periodic boundary condi-
tions definition

Figure 2.3: Periodic boundary conditions for a representative volume

element
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(b) Edges without cor-
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(c) Surfaces without
edges.

Figure 2.4: FExample of the coupling between nodes located on the
boundaries depending on the location on the RVE boundary.

and z € [0, L,], these conditions are expressed mathematically as:

jz(()?yvz) = _XTJ(Lamya Z)
Si(x,0,2) = —=%;(z, Ly, 2)
iz(x7y70) = - _;('T?:% LZ)

<

Zi(0,y,2) = Z;(Ls.y, 2) (2.3.1)
Zi(2,0,2) = Zj(x, Ly, 2) (2.3.2)
Zi(2,y,0) = Z(x,y, L.) (2.3.3)

To simulate the periodic boundary conditions in ANSYS®, a macro written by the
thesis authorlinks all boundary nodal displacements depending on their position,
as Figure 2.4 shows [123]. To link correctly the values of the displacements between
opposite nodes, the relative positions of these nodes with respect their surface
have to be the same. This means that the meshes should be equal on opposite
faces. To achieve this, we mesh the primary surfaces and copy this mesh to the
secondary surfaces. When all surfaces are generated, we generate the volume
mesh. Berger et al. [123] used only one element in the transverse direction due
to the transverse isotropic behaviour, but here we consider the volume is a 3D
cubic volume with side equal to L. Also the nodes have only three mechanical
(directions X, Y and Z) and one electrical (voltage VOLT) degrees of freedom, so
appropriate relative displacements between surfaces in the correct directions have
to be set up to simulate the tangential stresses.
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2.3.3 Finite Element Model

To model the representative volume of our porous piezoelectrical material, first we
need to define the materials that will be used. Formed by two phases, the RVE
is made of two materials: air and piezoelectrical material. The air phase will be
meshed and modelled as a material with low elastic properties, about 100 N/m?
which is small compared to the piezoelectric elastic properties, which has order
10° N/m?. The relative permittivity of the air is defined as 1. The air parts are
meshed in order to fulfil the requirements of Equations (2.2.5) to (2.2.8) which
means the values measured have to be averaged over all parts of the RVE. Also,
although the permittivity of air is very low, it is not zero, and hence we need
to mesh the air inclusions. Furthermore, meshing the air allows us to build a
general purpose framework for computational optimization and it decreases the
possibilities of numerical issues arising from the use of zero elastic properties in the
FEM model. The piezoelectrical material chosen is the synthetic ceramic PZT-5A,
which is one of the most used in engineering. The properties of this material are
given by Erturk and Inman [15]. The PZT-5A is a transversely isotropic material
and the properties are detailed in Equation (2.3.4).

121 754 752 0 0 0 0 0 5.4

121 7.2 0 0 0 0 0 5.4

111 0 0 0 0 0 —15.8

21.1 0 0 0 —12.3 0

EM — Symmetric 21,1 0 | —12.3 0 0
22.9 0 0 0

0 0 0 0 123 919 0 0

0 0 0 123 O 0 919 0

—54 —54 158 0 0 0 | Symm. 826.6

(2.3.4)

C (GPa) e (C/m?)

Units = ko = 8.854 - 107"*(pF/m) (2.3.5)

e (C/m®) | ek

where kois the permittivity of free space. Once the material properties of the
different phases are defined, the next step is to model the geometry of the volume.
The geometry is composed of two spheres in a matrix, one in the center and
the other distributed equally in the corners of the RVE. We should note that
imperfections in the sphere shapes are possible as result of the fabrication process
but for now they are ignored.

As detailed in Section 1.2.3, there are three main processes to generate porosity
in a piezoelectric matrix. Using the BurPS process, the overlapping of inclusions
is minimum, reduced only to spheres “touching” each other, because the spheres
are actually material spheres which cannot overlap each other. The shape of
the inclusions is consistent, because the spheres maintain their shape during the
process of increasing heat until they disappear. Also an elaborate and careful

Modelling of Porous Piezoelectric Material and Potential Applications to Vibration Energy
Harvesting



CHAPTER 2. HOMOGENIZATION OF POROUS PIEZOELECTRIC COMPOSITES 35

fabrication process can lead to a relatively homogeneous and regular distribution.
The second most common process to manufacture porous piezoelectric materials
is the self-raising method. In this process, the final inclusion size is finer than in
the BurPS case. In this process, the porous inclusion are grown from inside of the
matrix. The deformation of the inclusion and overlapping are both likely because
the bubbles of air created in the process intersect and connect to each other,
changing their size and shape making very difficult to predict their final shape.
The third process is freeze-casting, in which the porosity appears when ice pillars
sublime. This process leads to cylindrical shapes mainly with tree-like percolation
schemes. In our model, we suppose the test is prepared using a BurPS process,
so the possible deformation of the inclusions and the overlapping of particles are
neglected. Also a regular distribution of the inclusions in the matrix is considered.
Although clearly some heterogeneity can occur in the matrix, a reliable fabrication
process should avoid conglomeration effects, shape deformations and particles
overlapping. Also the comparison with the analytical theories is then more fair.
The geometry of the model is defined by an inclusion in the centre of the RVE
and a segment of an inclusion at each corner, as shown in Figure 2.2. The size of
the RVE is chosen to reduce computational cost but is still representative of the
geometry of the material.

In the finite element model one of the most important steps is to configure
the boundary conditions, and periodic boundary conditions will be used here. In
terms of the modelling, this means that each node (i) has its displacements related
with those of node () on the opposite surface. These displacements are related
through the strain applied in the model as Berger et al. [123] explained. Thus

U%z - Ufn = emn@% - 1’2)

U&_U&:ZM”(x%_x;):’{W—cﬁ — B () — )

To avoid rigid body motion, the displacements, rotations and voltage of one of
the points are fixed to zero. In our case, the point (0,0, 0) is fixed. The geometry
is programmed into the FEM software ANSYS® using its programming language
APDL. A script with all of the geometry and boundary conditions was written as
a function of the displacement applied and the percentage of inclusion.

2.3.4 Evaluation of the different effective coefficients

The boundary conditions are applied and the results are obtained using the
ANSYS® integrated solver, namely the stress and strain for each element and
node. The macro parameters are obtained through the volumetric mean using
Equations (2.2.5) to (2.2.8). These equations are approximated by the weighted

German Martinez Ayuso



36 2.3. NUMERICAL HOMOGENIZATION

average over the RVE volume as

@

1

v > eV
v (2.3.6)

Rk
I

C( 2

where the subindex means the element number. From the volumetric mean
of the parameters, the material parameters of the homogenized material are
calculated by substituting into Equation (2.3.7).

O11 Cii Cip Cig Ciy Ci5 Cig | —€11 —e12 —en €11
O22 Cy1 Cp Cog Cy Oy Chs | —€21 —e2r —eas €22
033 Cs1 Csp Csz Oy Cs5 Css | —€31 —e32 —es3 €33
023 Cy Ca Cug Cu Cus Cag | —€41 —€42 —eu3 €23
O3 | = Cs1 Cso Css Csy Css Chg | —€51 —€52 —e53 1 €13
012 Ce1 Ce2 Coz Cea Cgs Cgs | —€61 —€62 —€63 €12
D, €11 €2 €13 € €5 € | €], €y  €j3 Ey
D, €21 €22 €23 €4 €5 €96 | €5 €5y  €ng Es
€ € €
Ds €31 €32 €33 €34 €35 €35 | €3 €30 €33 Ej3
(2.3.7)

To obtain these 81 parameters which appear in Equation (2.3.7), and constitute the
electroelastic material properties matrix, we need at least 81 equations. Following
the continuum mechanics principles, we can establish some symmetries with respect
to the material principle axes which will lead to many of these parameters being
zero or related. For more detail about how to obtain the non-zero parameters, any
continuum mechanics book may be consulted, such as [124]. Also we notice that
the piezoelectric material is transversely isotropic and the air can be considered
homogeneous, so that the composite material may have equal or higher anisotropy
compared to its components; in our case the composite will be transversely
isotropic too. In addition, the electromechanical coupling coefficients located in
the upper triangular half have equal values and opposite signs with respect to the
lower half. Thus only 10 parameters are needed to define a transversely isotropic
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material (5 mechanical, 3 piezoelectric and 2 dielectric), as Equation (2.3.8) shows.

011 Cnu Cr Ciz 0 0 0 0 0 —€31 €11
022 Cor Cin Ciz3 0 0 0 0 0 —€31 €922
033 Csi G310 C3 0 0 0 0 0 —es €33
0923 0 0 0 Cu O 0 0 —es5 O €93
o3| = 0 0 0 0 Cyu 0 |—e5 O 0 | es
012 0 0 0 0 0 Ce| O 0 0 €12
Dy 0 0 0 0 es5 O €5, 0 0 by
D,y 0 0 0 e5 O 0 0 €51 0 Ey
D3 e31 e3; e33O 0 0 0 0 €54 Es
(2.3.8)

To obtain the values of the electroelastic matrix E, we will follow the procedure
given below.

o A displacement Uj; is applied to the RVE
e The model is solved using FE
+ Average the stresses/electric displacement X;; and strains/electric field Z;;

 Substitute the averaged values into Equation (2.3.8) to obtain the corre-
sponding material parameter

« Repeat applying different displacements until all the necessary material
parameters are obtained

Since the periodic boundary conditions relate the deformations on opposite sides,
the expected deformation averaged volume values will be very small, except
for the displacement-electrical field applied as part of the characterization test.
Also, the stresses and electrical displacements on opposite faces will be equal
in value but different in sign, and therefore their average values will be close to
zero, except the one which depends directly on the strain-electric field applied.
Hence each electroelastic material parameter is calculated as the ratio between
the stress-electrical displacement considered and the strain-electrical field applied,
neglecting the rest of the parameters because of their low influence. In total,
nine displacement configurations are applied in order to generate nine different
configurations where the main strains are: €, €4y, €., €yzy €22y Eayy Lay By
and F,. Each of these configurations generates 9 equations, derived from the
nine elements of the strain-electric field vector. But, since the periodic boundary
conditions ensure that there is no overall deformation except the one applied,
only the unknowns present in the row corresponding to the non-zero averaged
strain can be calculated from the corresponding configuration. Hence the material
parameters can be obtained from the relation

2
Enm = Z_ forn,m S [1, 9}

m
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where the subindex m corresponds to the strain-electric field applied and the n
the corresponds to the stress-electrical displacement response.

2.4 Results and Comparison

The results obtained by the analytical and numerical models are shown in Figure 2.5
and Figure 2.6. Figure 2.5 shows the five mechanical coefficients necessary to
define a transverse isotropic material. In our case, the analytical theories are used
in an extreme case since we perform electromechanical homogenization between two
very different phases (air-PZT). Nevertheless the results show a good agreement
between the analytical and numerical results. The Mori-Tanaka approach is one
of the most advanced and reliable methods for analytical homogenization, and our
porous case shows a good agreement with the numerical results. This agreement
holds for the whole range of inclusion percentage. For the mechanical coefficients,
the self-consistent scheme also shows good agreement with the Mori-Tanaka and
the numerical results, which is expected due to the similar assumptions (Mean
field homogenization theory and Hill-Mandel condition). As we commented in
Section 2.2.6, the Hashin-Shtrikman method is a modification of the Mori-Tanaka
approach to calculate an upper bound and a lower bound. Hence, the lower
bound should be equal to the Mori-Tanaka results, as Figure 2.5 shows. The
upper bound cannot be calculated, as explained in Section 2.2.6. The Halpin-Tsai
approach gives, without doubt, the most divergent results, showing in almost
all cases important differences with respect to the other methods, especially for
the coefficient C'13. As stated before, the Halpin-Tsai method is a geometrical
rule similar to the common mixture rule, and therefore the underlying basis of
the method is different from the other methods. It is interesting to notice that
the coefficient which presents the most difference between all the methods is Cyy
which is related to shear. Most of the methods agree in the results for the
mechanical coefficients which validates the proposed methodology. Nevertheless,
it should be noticed that the proposed methods are all based on “Mean-field
homogenization” which is an assumption for the averaging process. Hence, similar
results are expected for all methods.

Figure 2.6 shows the piezoelectric and dielectric parameter results. There are
larger differences between the analytical models and the numerical results. This
is due to the nature of the model which has been extended from the mechanical
part to the electric field [17]. This leads to considerable differences between the
different methods and an important variation of the results with respect to the
numerical methods. The Mori-Tanaka method shows the best agreement with
the numerical results for the piezoelectric coefficient, specially for e3; which is the
most important for energy harvesting applications. The self-consistent method
has a more marked decrease in its values after 15% of inclusions with respect
to the other methods. For lower percentages the results are similar to the other
methods. After 20% inclusions, the results diverge greatly becoming positive at
around 25%. Positive values of the piezoelectric coefficients makes no sense from
the homogenization point of view, since the piezoelectric coefficient e3; for the
matrix are negative and for the air is zero. Hence a composite material should
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Figure 2.5: The estimated mechanical coefficients of porous piezoelectric
material obtained with different homogenization methods.

have negative values. The coefficient becoming positive is an indicator of the
non-validity of the method for high percentages of inclusions. The Halpin-Tsai
method shows the same tendency as the mechanical coefficient results. Due to its

Germéan Martinez Ayuso



40

2.4. RESULTS AND COMPARISON

Piezoelectric Coeff. e3; (C/m?)

Piezoelectric Coeff. e33 (C/m?)

2l
n
...... '
ol P e
_Ae
L AE
1 Ea _A
P2 PR
2r /4/ l a-t -
: & &
e L
3+ &
/A’
s A
P
55 A ,A’
o I I I I I I I I I I I I A
0.1 0.2 0.3 0.4 05 0.6 0.1 0.2 0.3 04 0.5 0.6
Porosity Porosity

12

Piezoelectric Coeff. e5 (C/m?)

101 b‘.\&
8 8, .
6 L
4l
2t | |
0.1 0.2 0.3 0.4 0.5 0.6
Porosity

1200

800

600

400 ¢

Relative Permittivity Coeff. k33

0.1 0.2

Porosity

1600

1400

1200

1000

800

600

400

Relative Permittivity Coeff. ki;

L L L A

0.4

0.3
Porosity

0.1 0.2

—&— Mori-Tanaka
—#— Self-Consistent
Hashin-Shtrikman
- -/ - Halpin-Tsai
--~¢---- Numerical Results

Figure 2.6: The estimated piezoelectric and dielectric coefficients of
porous piezoelectric material obtained with different homogenization
methods.

geometric basis, this method shows smooth and similar results for all coefficients.
In the case of the Hashin-Shtrikman bounds the results are in between the self-
consistent method and the numerical results, and are best for the capacitative
coefficient which is plotted as relative permittivity kss.
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In contrast, the dielectric coefficients presented in Figure 2.6 show a better
agreement between all theories and the numerical results. This should be consid-
ered carefully because of the nature of the terms. The electroelastic matrix has
numbers with very different orders, for example 102 for the mechanical coefficients
and 1072 for the dielectric coefficients. In addition to the difference between
the phase properties, the mechanical properties for the piezoelectric material are
around 10 GPa and for the air are around 100 Pa. For the dielectric coefficients
this difference is smaller, 1600 for the PZT-5A and 1 for the air inclusions. We
assume this difference in the phase parameters can lead to variations that are
much smaller for the dielectric coefficients than for the other parameters. Hence,
the results for the dielectric coefficients might show less differences between all of
the methods compared, with the Mori-Tanaka method again showing the best
agreement with the numerical results.

It is interesting to notice the linearity of the numerical results with respect to
the percentage of inclusions. In the case of the mechanical coefficients, this linearity
is not so clear. This linearity arises from the small impact of the electromechanical
coupling with respect to the impact of the inclusion percentage, as this percentage
is the main driver for the change in these parameters. The same logic can be
applied to the dielectric coefficients, which again show the dominance of the
percentage of inclusions over any other coupling.

2.5 Comparison with experiments

In the previous section the results of the homogenization schemes were presented.
In this section these results are compared with experimental measurements on
porous piezoelectric samples.

Table 2.1: Material properties and dimensions of the tested patches
made of barium titanate (BaTiOgz) [68, 92, 125].

Sample Porosity Thickness Diameter Coeff. dg1 Coeff. dsgz Rel. Permittivity

number (%) (mm) (mm)  (pC/N)  (pC/N) ¢gs/ko
1 66 2.07 11.137 -1 59 290
2 55 2.00 11.240 -6 69.5 445
3 50 1.86 11.273 -12 85 526
4 32 1.50 11.247 -19 95 808
5 20 1.27 11.260 -25 99.5 1199

In order to validate the finite element model, a set of experiments are designed.
Several piezoelectric patches with different percentages of porosity were prepared
at the University of Bath. The porosity of the test disk range between 20% and
66% with different values of thickness and radius, as shown in table 2.1. The
fabrication methods used is the BURPS detailed in Section 1.2.3. After the
manufacture of the porous disks, the material coefficients are measured at room
temperature. The d3; was measured using a Berlincourt Piezometer (PM25, Take
Control, UK) and the relative permittivity using an impedance analyser (Solartron
1260, Hampshire, UK).
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Figure 2.7: The estimated piezoelectric and dielectric coefficients of
porous piezoelectric material obtained with different homogenization
methods.

The results obtained from the homogenization process for the piezoelectric
coefficients d3; and ds3 and the relative dielectric coefficient €g;/kq are presented
in Figure 2.7 and compared with the values measured on the patches right
after its fabrication. As we can see in Figure 2.7, the results given by the
homogenization theories are not good enough, specially for the coefficient ds3
where the homogenization theories predict a constant value (or almost constant)
for the whole range porosity. Interestingly, this coefficient is never predicted as
decreasing with the porosity, which is what it is observed in the experiments. The
experiments seems to show an almost flat coefficient for ranges between 20% and
50% porosity, which it is similar to the predicted flat behaviour. However, the
data is very scattered, which suggest a not fully robust manufacturing process
or technique. More experimental data is necessary in order to validate the
right behaviour of the coefficient ds3 . The results for d3; are not good either,
presenting an overestimation of the values for almost all theories. In this case,
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the self-consistent is the theory which best represent the behaviour given in
the experiments. However, the trend predicted, almost linear decrease with
the porosity, is in agreement with the experiments. Surprisingly, the dielectric
coefficient eg, is very well approximated by all the theories, at the given percentage.
Again the numerical method approximates very well the Mori-Tanaka results. As
we can see from these results, some important physics is not currently represented
by the analytical models, nor by the numerical model.

One possible cause for the difference in the coefficients between the experiments
and numerical simulations is the presence of un-poled material in the samples. In
the simulations, the piezoelectric material was assumed to befully poled, which is
very difficult to achieve in practice, especially for materials with inclusions such as
porous piezoelectric materials. The presence of inclusions changes the distribution
of the electrical field during the polarization stage leading to concentration of the
electrical field around the inclusions and lower electric field in other parts [92]. In
these parts, if the electric field is lower than the coercive electric field required
to polarise the material grains, then these parts do not exhibit the piezoelectric
effect.

Also it has been observed that not all the inclusions are spherical as it was
assumed. In the case of the disk manufactured using the free-casting method,
the shape of the inclusions tends to be more cylindrical than spherical. The
cylindrical inclusions reduce in-plane properties whilst maintaining the benefits of
the through thickness properties and this causes differences between the values of
the material coefficients in different directions. Using the assumption of spherical
inclusions could overestimate some parameters. As stated in [126], the in-plane
properties of the porous piezoceramic (ds; ) with spherical inclusions are larger
than their corresponding values for the ones with cylindrical inclusion shapes.
This might be a reason for the difference between experimental measurements
and predicted values.

Further examinations of the disk samples reveal some cracks which potentially
could decrease the piezoelectric values. The porous materials are prone to cracking,
especially at high volume of inclusions. The fabrication method also introduces
some cracks due to the pressure applied during the manufacturing process. These
cracks were already discussed in reference [67], mentioning their origin and their
orientation perpendicular to the axial pressure applied during the manufacturing
process. In our case, the axial pressure direction coincides with the polarization
direction.
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2.6 Conclusions

In this chapter, different methods for homogenization of composite material have
been presented and compared. Using different analytical methods developed in

[18],

a comparison between these results and their corresponding finite element

estimates is performed. From the comparison of both approaches the following
conclusions can be drawn:

|

IT

III

1Y

The analytical models are well-developed for the elastic homogenization of
the composite material, with only small differences to the numerical methods,
independent of the nature of the constituents of the composite.

The same methods give good estimates of the piezoelectric properties for
small percentages of inclusions. Especially for the piezoelectric coefficient, esq,
the Mori-Tanaka method gives good estimates of the composite coefficients,
making this analytical approach suitable for energy harvester design.

Although the analytical and numerical methods show reasonable agreement
in the dielectric parameters, these parameters show some errors due to their
order which is much smaller than the other values in the electroelastic material
matrix.

When compared to experimental results, the analytical models does not
reflect the real material behaviour. This might be due to the presence of
cracks or to the polarization which is not included in the models.

In the next chapter, we will introduce the polarization as one of the key

aspects for the correct agreement between experimental and numerical data.
Also, a method is proposed to model simple cracks in piezoelectric material and
determine their impact on the piezoelectric coefficients.
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Chapter 3

Polarization of Porous
Piezoelectric Composites

3.1 Introduction

In the previous chapter, the homogenization of porous piezoelectric materials is
discussed under different theories, from analytical to numerical schemes. In this
chapter, the homogenization goes a step further by including a very fundamental
part of the manufacturing process, the polarization. During polarization a poling
electric field aligns the ferroelectric domains in a similar direction in order to create
a transversely isotropic material able to generate electric fields or deformations.
This electric field is distorted by the presence of inclusions, and in thecase of
aporous material these are air pores. The porosity (P) is defined as the volume
of the pores with respect to the total volume of inclusions and matrix material.
Porosity in piezoelectric materials has already been highlighted as a beneficial
characteristic for different applications such as hydrophone sensors [127, 128],
energy harvesting [71, 92, 129] or microelectronic devices due to their good tunable
characteristics [130, 131]. In reference [71], a theoretical energy harvester with a
porous piezoelectric patch is modelled using the approach presented in [15]. In
that paper, the impact of the porosity on the natural frequency of the harvester
was studied. Different configurations of porosity were compared. One of the
conclusions is that the porosity allows a better redistribution of the piezoelectric
material concentrating the piezoelectric material where more strain is present and
introducing air inclusions where there are low or no strains. This allows us to
optimize the mass of the harvester, which can be beneficial for certain applications
where the weight is restricted such as aerospace applications.

Porosity in piezoelectric materials has already been highlighted as a beneficial
characteristic for different applications such as hydrophone sensors [127, 128],
energy harvesting [68, 71, 92, 125, 129] or microelectronic devices due to their
good tunable characteristics [130, 131]. In reference [92], porous piezoelectric
barium titanate (BaTiOs) is sandwiched with non-porous barium titanate in order
to improve the overall behaviour of the composite. Each of the materials, porous
and non porous, addresses one purpose. A porous layer is used to increase the
acoustic sensitivity by decreasing the permittivity of the composite material, and
dense layers are used to sandwich this porous layer and increase the flexural
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strength. It is found that the figures of merit (FOMs) of this composite increase
when the relative thickness of the porous layer is increased which might also
increase the energy harvested. Additionally, experimental evidence is supplied
from samples manufactured in the laboratory. In that paper, the impact of
the manufacturing and poling processes on the complex distribution of the poled
material is highlighted as a key parameter in order to understand the behaviour and
possible applicability of porous materials for energy harvesting. Roscow et al. [68]
studied the figure of merit for energy harvesting. These figures are relationships
between material parameters with the purpose of evaluating the performance of
a given material for energy harvesting or sensing. These relationships are: the
material coupling coefficient (k2 = d3s/ (€35 s53)), the hydrostatic strain coefficient
dp (dn, = ds3 + 2 - d3;1), and the hydrostatic voltage coefficient g, (gn = dn/€3;)
[67, 132]. These relationships are applied to porous materials, explaining how
they are affected by the porosity and presenting experimental values for these
relationships. Appropriate tailoring of the spatial material distribution can lead
to an improvement of the overall performance of the energy harvester.

In porous piezoelectric materials, there is a decrease in all the material coef-
ficients but at different rates due to the porosity [70]. These differences in the
ratios might generate beneficial increases in the porous FOM. The porosity has
an interesting effect on the ds3 piezoelectric coefficient which is the material
coefficient which relates the electric field generated and strain when both are ap-
plied in the poling direction. This parameter remains almost constant for volume
fractions of inclusions between 15% and 40% where there is a relatively large
decrease in permittivity, and therefore the porous materials present advantageous
characteristics for sensors or energy harvesting applications which require high
coupling coefficients. This has been interpreted by some authors [92] as an effect
of the incomplete polarization of the material. This cannot always be counteracted
by increasing the poling electric field because of the electrical breakdown risk.
Therefore studying the distribution of the poling electric field is important in
order to optimise the porous ceramic material coefficients.

The application of these composite materials requires the ability to model
its complex behaviour and this is driven by the interaction between the different
phases of the composite. In the case of porous piezoelectric material, the two
phases are air and piezoelectric material, commonly barium titanate or lead
zirconate titanate (PZT). These phases are very different and hence we need to
ensure that our model respects the behaviour presented experimentally by the
composite. Homogenization techniques are frequently employed to predict the
composite material properties from the material properties of the phases. One
of the first approaches to piezoelectric composites is in reference [79] where the
connectivity and the symmetry patterns are presented and studied. In Dunn
and Taya [17, 81] the previous work of analytical homogenization based micro-
mechanics theories of Eshelby [82] is extended to piezoelectric composites. The
homogenization is based on the Mean-field homogenization theory. It uses the
Eshelby tensor, which is a relationship between the strain generated by the
inclusion and the strain in the composite, to obtain the homogenized material
properties of the composite. This work is the theoretical base for applying some
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of the most successful homogenization theories for elastic composite materials
to piezoelectric media, such as the Mori-Tanaka or Self-consistent theories. For
example, in [133] the Mori-Tanaka theory is applied to 1-3 composites where the
matrix is a porous piezopolymer. The results show that the porosity in the matrix
enhances the performance of the composite expressed in terms of coupling. In
Kar-Gupta and Venkatesh [93], the authors employ an analytical scheme based
on equilibrium of deformations to homogenize piezoelectric fibres embedded in a
polymer matrix. The piezoelectric materials have been studied in depth since then
using these micro-mechanical approaches, and some examples are in references

[134, 135, 136, 137, 138, 139, 140]

A comprehensive review of homogenization methods used in porous materials
is presented in Chapter 2 and [18]. Different homogenization methods, analytical
and numerical, are described and compared, such as the Mori-Tanaka and self-
consistent schemes, and the finite element method. The effect of porosity on
the electromechanical material parameters was studied using different analytical
methods, such as Mori-Tanaka, Self-Consistent and two boundary methods, namely
the Hashin-Shtrikman and Halpin-Tsai bounds. The results are compared with a
numerical model based on the finite element approach; only a single inclusion is
considered and the material is assumed to be fully polarized. Good agreement
between the finite element approach and Mori-Tanaka theory is attained. However,
as stated in reference [78], the assumption of a fully polarized model might lead
to an overestimate of the piezoelectric coefficients.

Other homogenization methods based on the finite element method have
become very popular due to the flexibility of the tool and its ability to represent the
discrete nature of the piezoelectric domains and its manufacturing process. In Kar-
Gupta and Venkatesh [141] the study of the homogenization of porous composite
materials using the finite element method to characterize the electromechanical
parameters is pioneered. In that paper, the material properties of cylindrical pores
embedded in piezoelectric matrix are studied. The porosity is presented as the main
parameter to control parameters such as acoustic resonance, electromechanical
coupling or permittivity. The manufacturing process is neglected and only one
cylindrical inclusion is modelled using a 2D model and the plane strain assumption.
In Challagulla and Venkatesh [132] a finite element numerical model is used to
study porous piezoelectric foams. Using different types of micro-structures with
different connectivities, the piezoelectric equivalent properties are obtained. These
results are compared with analytical results, finding good agreement between
them. In Bosse et al. [142], the effect of the foam shape and its aspect ratio on
the equivalent electromechanical properties are studied for piezoelectric foams
using a 3-D finite element model. It is found that the FOM are increased up to
175% for the dj, coefficient and 1000% for the g; coefficient. In that paper, the
representative volume element and the foam pore are cuboidal, neglecting any
pore shape. In Tyer and Venkatesh [143] a finite element model was used to study
how the pore connectivity affects the FOM. Spherical and cylindrical shapes for
the pores were considered, the former being more appropriate for hydrophone
applications due to its enhanced hydrostatic FOM (dpgs). More finite element
homogenization schemes can be found in references [123, 139, 144, 145, 146, 147].
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In order to predict accurately the material properties of these composite
materials, all possible factors should be considered carefully and included in the
modelling process, for example the manufacturing process. One of the most
important processes in the manufacturing is the poling. This consists of applying
an electric field to a ferroelectric material in order to align the domains in the
same direction. Microscopically, all of the ferroelectric domains are poled, but
the random orientation of these domains induce the cancellation or reduction of
the piezoelectric effect at the macroscopic level. The applied poling electric field
aligns the domains where the electric field reaches a specific value known as the
coercive field. Although the coercive field is an intrinsic property of each material,
the polarization is affected also by the porous composite structure, since the
distribution of composite phases alters how the applied electric field distributes
inside the composite [148]. The polarization mechanism is discussed more detailed
in references [149, 150, 151, 152]. In the case of composite materials made with
inclusions with low permittivity such as air, the electric field tends to concentrate
inside of these inclusions due to the lower values of permittivity [153]. Highly
porous materials are therefore more difficult to polarize than dense ceramics due
to the complex electric field distribution generated by the presence of inclusions
[154]. In Galassi [155] the manufacturing of porous piezoelectric materials is
reviewed for different manufacturingtechniques which are divided into two groups,
dry and wet techniques. The former methods involve the treatment of compacted
powder, whereas the later ones require the preparation of solutions or suspensions
of the piezoelectric powder. However the polarization process is always done on
the already manufactured and dry piezoelectric material. Among the dry methods,
the BUrn Out Polymer Spheres (BURPS) method is the main method , whereas
free-casting is the main wet method. The BURPS method is one of the most
used for fabrication of porous piezoelectric ceramics because it gives good control
of the final porosity percentage and its scalability. The pore morphology can
be changed by using different pore forming agent [156]. In this method, the
piezoelectric material powder (PZT or BaTiOs3) is mixed in different proportions
by weight and are uniaxially pressed at 300 MPa to form disks. Later, the pore
forming agent is burnt off by increasing the temperature up to 400 °C for 2 h.
Finally, in an air atmosphere at 1300 °C, the ceramic discs are sintered without
pressure for 2h. More information about this fabrication method can be found
in reference [70, 73]. Experimentally it is shown that the pore size distribution
and the micro-structural differences cause the changes in the physical properties
such as acoustic and piezoelectric response of the PZT materials. In Zhang
et al. [156] the impact of different pore forming agents in the microstructure and
electrical properties of the porous PZT is studied. In Khachaturyan et al. [154] the
polarization-switch mechanism is studied. The electric field distribution is studied
during the polarization, accounting for the porous shape and its orientation with
respect to the porosity volume. The influence of isometric and anisometric pores is
also studied. In both cases, the pore size is irrelevant for the polarization switching
mechanism. Stanculescu et al. [157] studied how the porosity affects the dielectric
loss (tangential or imaginary part of the dielectric permittivity) in addition to
the real part of the permittivity. The dielectric loss is shown experimentally
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to depend on the the electric field, the frequency and the temperature. The
study is performed on (Ba, Sr)TiO3 composites with connectivity 0-3 and 2-2.
In Shieh et al. [158] the polarization surfaces of different piezoelectric materials
are compared against existing micro-mechanical and phenomenological models
of ferroelectric switching. A phenomenological model is “a scientific model that
describes the empirical relationship of phenomena to each other, in a way which
is consistent with fundamental theory, but is not directly derived from theory”
[159].1t is stated that the micromechanical models are more suitable to represent
the behaviour of the switching mechanism than the phenomenological models
which might suppose a simplification of the underlying physics.

Many authors have studied how the electric field distribution affects the
equivalent dielectric permittivity, but few have accounted for the piezoelectric
coefficients in their studies. In Lewis et al. [91], the authors show that the
distribution of the poled and un-poled material inside the piezoelectric matrix
considerably affects the equivalent piezoelectric coefficients. A random distribution
of poled and un-poled materials is studied, and the detailed inclusion geometry
was not considered, focusing more on the macro behaviour. Roscow et al. [92]
also studied the piezoelectric coefficient ds; , since they intended to improve the
performance of the composite for energy harvesting purposes. In reference [78],
it is experimentally shown that the polarization has an important effect on the
final piezoelectric coefficients of the manufactured porous material. The authors
stated that polarization should be considered at the modelling stage in order to
achieve a good match between predictions and experiments. The idea of elongated
inclusions from manufacturing imperfections and the presence of cracks in the
porous material as a source of the mismatch between the piezoelectric coefficients
in the numerical predictions and experiments is also introduced. Stanculescu
et al. [157] mentioned that the anisotropy of pores increases with the porosity
percentage, therefore, it is expected that the pore shape will deform at high
porosity levels. This anisotropy in the pore shapes leads to decreases in the elastic,
piezoelectric and dielectric constants [160]. Some cracks can also appear in the
porous piezoelectric materials as reference [67] shows. These cracks are commonly
observed for high porosity materials (more than 50% porosity) and they appear
in the perpendicular direction to the die pressing direction. In reference [64] the
presence of cracks perpendicular to the die pressing direction is also reported. It
is also mentioned they have an important effect for high porosity, contributing
to the decrease in the dielectric coefficient. These cracks might also decrease the
piezoelectric coefficients by decreasing the connectivity inside the matrix. The
characterisation of this decrease provoked by cracks or pore anisotropy remains
a challenge which should be addressed in order to obtain accurate models to
predict the material properties. In addition, accurate models of the electric field
distribution might help to decide the value of the polarization field in porous
piezoelectric materials. For dense materials, the applied electric field should be
high enough to polarize the maximum amount of the material, but lower than the
electric breakdown strength field. However, in porous piezoelectric materials this
value is severely affected by the porosity, being reduced up to 70% in some cases
[161]. With this uncertainty in the upper limit of the applied electric field and

German Martinez Ayuso



50 3.2. FINITE ELEMENT MODELLING

the uncertain distribution of porosity inside the material, the correct application
of the electric field is a key factor in the manufacturing of porous material.

In this chapter, a study of the sensitivity of the main piezoelectric and dielectric
coefficients to the polarization process is performed for porous piezoelectric mate-
rials. A finite element cell model for polarization of porous materials is presented.
The electric field distribution around spherical inclusions inside the piezoelectric
matrix is considered in this model. Appropriate boundary conditions are enforced
in order to simulate the cell being embedded in a periodic matrix of cells using
periodic boundary conditions. This model presents a good agreement with experi-
mental results presented in the literature. These experimental results are obtained
from measurements of the material coefficients of samples manufactured in the
laboratory which data has been published in references [70, 73]. The model is
extended later to account for two possible cases discussed in the literature, which
are: the presence of anisotropy in the pore shapes and the presence of cracks. The
first case considers the presence of anisotropy in the pores for high percentages
of porosity as mentioned in reference [157]. This anisotropy is studied using
ellipsoidal inclusions with different geometries, but always aligned perpendicular
to the poling electric field, which is the most common orientation [66]. For the
second case, the presence of cracks is considered. Cracks might appear at high
porosity ranges as stated in references [67, 70]. Representing cracks is difficult
since cracks depend on a high number of variables, some of them with an uncertain
nature such as porous distributions, imperfections, presence of contaminants, etc.
Therefore, in this thesis, only simple crack geometries are considered which follows
the crack models described in reference [67]. These models are compared with the
same experimental data in order to discuss the possible presence of anisotropy
in the pore shapes or cracks. The samples presented in references [70, 73], and
used in this thesis, have a low degree of pore anisotropy as shown in scanning
electron microscopy (SEM) pictures from the references, but it will be shown that
considering low anisotropy in the pore shapes improves the agreement with respect
to the experimental data. In addition, in these samples, the presence of cracks
has not been reported by inspecting the lower percentages (0-30% percentages
of porosity per volume) using SEM [70], and it will be shown that simple crack
geometries cannot improve the match between the experimental data and finite
element model.

The chapter is organised as follows. First, in Section 3.1 an introduction into
the state of the art about homogenization and modelling of polarization is pre-
sented. Then, the finite element modelling of the polarization process is presented
in Section 3.2. In this section, the different geometries and homogenizations
are explained, as well as the modelling of the polarization and homogenization
processes. Finally, the results and discussion are presented in Section 3.3 and
Section 3.4 respectively.

3.2 Finite Element Modelling

In this section, it is not intended to explain the complete basis of the computational
homogenization, but rather outline the main steps and considerations in this
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process. The setup of the finite element model is the same as described in
Section 2.3, in terms of the element formulation, boundary conditions (Figure 3.1),
etc. The differences are the modelling of the polarization and the different
variations in the pore shape. For further details about the finite element model,
the reader is referred to Section 2.3 and reference [18], where the most common
homogenization techniques are applied to porous piezoelectric materials. After
applying boundary conditions to the RVE, the equivalent material parameters are
calculated as explained in Section 3.2.5.

3.2.1 Representative volume modelling

From the available homogenization techniques, the finite element (FE) method
is the most appropriate technique to model the polarization process, due to its
flexibility and capability to model discrete piezoelectric domains. In reference
[157] the finite element method simulation is presented as an accurate method to
model the permittivity of the porous materials at high porosity levels. As stated
in Section 3.1, many authors [132, 141, 142, 143] have used FE techniques due to
its flexibility and accuracy for modelling piezoelectric porous material behaviour
as well as its manufacturing process. In this section, it is not intended to explain
the complete basis of the computational homogenization, but rather outline the
main steps and considerations in this process. For further details, the reader is
referred to Chapter 2 and reference [18], where the most common homogenization
techniques are applied to porous piezoelectric materials.

To model composite materials in an efficient way, in statistical terms a represen-
tative volume of the composite structure has to be identified. This Representative
Volume Element (RVE) has to be sufficiently small to be solvable and large enough
to be representative of the structure of the composite as a whole. The choice of
these RVEs depends on the geometry of the composite and the problem to address.
The RVEs are composed of matrix and inclusions, and their shapes are discussed
in the next sections. These RVEs are modelled using the ANSYS® Finite Element
package [162].

To ensure the representativeness of the RVE with respect to the material at the
macro scale, appropriate boundary conditions have to be applied. In the numerical
homogenization literature, multiple boundary conditions are proposed, but the
most widely used for homogenization are four. The Dirichlet conditions apply
a static uniform displacement at the boundaries of the RVE [98], the Neumann
conditions propose instead a static force [98], and the mixed boundary conditions
mix displacements and stresses to represent experimental conditions [120]. The
fourth is periodic boundary conditions, which simulate the RVE embedded in an
infinite matrix of RVEs [19] as Figure 3.1 shows. Periodic boundary conditions
imply that the opposite edges have relative deformation, and opposite stress
direction [122]. References [18, 19] show that these periodic boundary conditions
give a good approximation of our micro-scale representative volume with respect
to the macro-behaviour of the material.

After applying boundary conditions to the RVE, the equivalent material
parameters are calculated as explained later in Section 3.2.5.
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Figure 3.1: Periodic boundary conditions: a) Matriz with periodicity
of RVEs. b) Boundary conditions around the RVE in a generalised 2D
RVE. Figures obtained with permission from [18]

3.2.2 Inclusion modelling

An initial model (Model A) which assumes perfectly spherical inclusions represent-
ing the pores is developed. This shape assumption is justified due to nature of the
BURPS manufacturing process where spherical particles of pore-forming agent
are burnt out when a high temperature is applied. Pore-forming agents such as
polymer additives, for example, Poly-ethylene oxide (PEO) [70] or poly(methyl
methacrylate) (PMMA) [156] do not present high anisotropy in the pore mor-
phology. Since in the samples used here, the additive is also a polymer, the
anisotropy due to pore forming agent is neglected in this analysis. The polymer
additives are common in the manufacturing of piezoelectric ceramics and more
information about the different additives and their impact on the micro-structure
of the ceramics are given in reference [163].

To represent the geometry of this composite, a three dimensional finite element
model is developed. This model contains a spherical inclusion (a pore) at the
centre and one eighth of another sphere inclusion at each of the RVE corners, as
Figure 3.2 shows. The radii of these two perfect spheres are equal and they change
according to the porosity percentage, ranging from 1% to 50% of air volume respect
the total volume of the RVE. This model is able to represent how the electric
field distributes around the inclusions during the poling process, as Figure 3.2
shows, and how this electric field affects the polarization of the material elements
and its distribution. These un-polarized elements (dark elements) align with
the inclusions in the direction of the applied electric field. The low permittivity
inclusions act as a shield avoiding the polarization of the elements, below and
behind them. In our case five volumes are generated, one per inclusion. These
volumes are responsible for the decrease in the material coefficients, as shown later
in Section 3.3. For comparison purposes, another model (model 0) with the same
geometry as model A is developed. This model has all its ferroelectric domains
poled and aligned in the same direction. This model represents the theoretical
maximum of the piezoelectric values.

Modelling of Porous Piezoelectric Material and Potential Applications to Vibration Energy
Harvesting



CHAPTER 3. POLARIZATION OF POROUS PIEZOELECTRIC COMPOSITES 93

(b)

Figure 3.2: Polarization of the model A: spherical inclusion model.
The pore inclusions are shown in yellow and the poled ferroelectric
elements in dark blue. The un-poled elements are shown in white to
make clear the clustering of the poled piezoelectric domains around the
low permittivity inclusions in the poling electrical field direction (grey
arrows). a) Air inclusions in the RVE. b) BaTiO3z material elements.
¢) Distribution of un-poled elements following the poling direction.

3.2.3 Imperfections in the inclusion shape

During the manufacturing process, many factors might affect and lead to imperfec-
tions in the final shape of the inclusions, from excessive load during manufacturing
[67], to an inappropriate selection of pore forming agent [156]. These factors might
lead to anisotropy in the pore shape or even cracks, which affect the equivalent
material parameters [67, 155, 160]. In reference [156] it is stated that the pore
shape is affected by the pore forming agent. Different pore-forming agents generate
different pore shapes.

Excessive pressure during the manufacturing might occur due to the difficulty
in assessing the appropriate required stress to compress the samples. Low stresses
during the manufacturing compaction might lead to an incomplete or defective
bonding between the piezoelectric domains, thereby generating fragile micro-
structures. Excessive stress might generate micro-cracks or deformed pores,
which might alter the material properties. This pressure has to be calibrated
experimentally based on inspecting the material using scanning electron microscopy
(SEM) images. In the case of excessive pressure during the die-casting process, Li
et al. [66] suggest that the pores are compressed in the direction perpendicular
to the applied load, which in most of the cases is the same direction as the
applied electrical field. Then, it seems reasonable to assume that, since disk
shaped samples are subjected to axial load in the direction of the thickness, all the
imperfections are perpendicular to the load direction or poling direction. Following
this approach, the pore anisotropy can be regarded as the result of the deformation
of the spherical inclusions in the direction of the applied load to generate oblate
ellipsoids. To study this anisotropy, an ellipsoidal oblatemodel is proposed (model
B). This model contains ellipsoidal inclusions with their shorter axis aligned with
the polling electric field. The other two axes remain equal and perpendicular
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(b)

Figure 3.3: Geometry of the model B: Ellipsoidal model. The central
inclusion is an ellipsoid with the minor axis aligned through the Z
azis which is parallel to the polarization direction. The other two azes
remains equal. Percentage of inclusions for the presented model is
equal to 14%. a) Oblique view of model. T = 0.35. b) Side view of
model. T = 0.35. ¢) Side view of model. T = 0.75.

to the applied electrical field. The geometry is presented in Figure 3.3 and it is
composed of one ellipsoid at the centre of the RVE and one eighth of a second
ellipsoidal inclusion at each corner of the RVE. Let us define the ratio between
the shorter axis and any of the other two equally long axes as “aspect ratio” (7).
This parameter is used to define the ellipsoid using the following equation:

V =4n(abc)/3 = 4n(ra®)/3 (3.2.1)

where a,b and ¢ are the semi-axis of the ellipsoid in the x, y and z directions.
These parameters have to fulfil @ = b # ¢ and ¢ = 7 a. The influence of the aspect
ratio is studied in this chapter through a parametric study of the aspect ratio
parameter. In Figure 3.3, the model geometry is presented for two different aspect
ratio values, 0.75 and 0.35, to illustrate the model concept. No changes in the
orientation of the ellipsoid are considered in this study.

When the uniaxial compression in a die is not appropriately applied or the
sample is under high loads during its service life, small cracks can appear and
propagate along the sample. To approximate such a defect, a crack model is
developed. It should be recalled that the porosity is a key parameter in order
to obtain an accurate dielectric parameter. Hence a flat crack model should be
avoided. In order to meet all the requirements (flat crack with high porosity values),
a modification of model A is proposed, adding a flat crack around the inclusion as
Figure 3.4 shows. This model presents some resemblance with the cracks described
in references (64, 67], where optical micrographs of porous piezoelectric materials
with a high percentage of inclusions (higher than 40%) shows the presence of
cracks perpendicular to the poling direction and to the applied pressure during
the manufacturing process. Of course, a real crack will differ considerably from
the proposed crack model. However, this model should give some insight into the
possible effects of cracks in piezoelectric media. In this section, the equivalent
material properties are obtained for piezoelectric porous material after polarization
and the deformations or cracks which might appear during the service life are
not considered. This can be extended to assume that there is no propagation of
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Figure 3.4: Geometry of the model C: Crack model. The central
inclusion is an sphere with an area projected in the Z axis equivalent
to the ellipsoidal central inclusion of the ellipsoidal model. Percentage
of inclusions for the presented model equal to 15%. a) Oblique view of
model. T = 0.35. b) Side view of model. T = 0.35. ¢) Side view of
model. T = 0.75.

cracks (static behaviour of the cracks). This might not be fully accurate when
the material is under significant dynamic loads, for example vibrations for energy
harvesting, however the static assumption should agree with the measurements
obtained in the lab.Since the ceramics are high stiffness materials, some cracks
might also form when the material expands after releasing the applied stress
during the manufacturing process (uniaxial pressing).

The model is intended to approximate in a simple manner the geometry of a
crack keeping some key parameters equal to the previous models such as the cross
sectional area and volume, so they can be compared between all models. Starting
with the geometry of model B, the central inclusion is replaced by a sphere with
the same volume as the corresponding ellipsoid and a flat crack occupies the
same area as the removed ellipsoid with a thickness equal to 5% of the radius
of the sphere. A study on the thickness of this crack was performed for 5% and
1% showing there is almost no impact of this value in the equivalent material
parameters for the aspect ratios considered (0.35 and 0.75). This value has an
important effect on the concentration of electric field at the crack tip but, since
this effect is highly localized, it does not affect the equivalent material parameters.
Thus a further study or consideration of the crack thickness is not considered in
this thesis. Hence, the volume of this model is equal to the ellipsoidal volume,
but with a different distribution of the air volume. The objective is to show
the impact of the crack through the cross sectional area of the crack. This area
is perpendicular to the direction of the polarization electric field and its size is
defined by the aspect ratio. The ellipsoids at the corners are replaced by spheres
with the same volume as these ellipsoids. The geometry of this model is presented
in Figure 3.4.

It is shown later that cracks and ellipsoidal inclusions have similar effects on
the equivalent material parameters, reducing their values.
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Figure 3.5: Piezoelectric polarization. The applied electric field E and
the polarization P are related through a hysteresis loop, similar to the
magnetic polarization. From Dahiya and Valle [164]

3.2.4 Polarization Modelling

In the polarization process, termed “poling”, each of the ferroelectric domains
are subjected to an electric field which aligns them in the same direction as the
applied electric field. The polarization of each of the domains depends on its
material properties and the direction of the electric field present on these elements.
The electric field at each domain is affected by the geometry and permittivity
values of the composite. In this thesis it is assumed that the polarization occurs
instantaneously after the domain reaches the coercive field, although in reality
the final polarization depends on the value of the applied electric field. A higher
applied electric field generates a higher degree of polarization and hence higher final
piezoelectric coefficients. The relation between polarization and applied electric
field is similar to magnetic polarization (see Figure 3.5) However, approximating
the polarization through a binary state is suggested in reference [91] and hence
it is also used here. =~ The material chosen for the matrix is barium titanate
(BaTiO3) and air for the inclusions. The air is modelled as a material, with
very low elastic modulus (sfi,, 1 100 Pa), in order to represent accurately the
dielectric constant of air (e°/kg ~ 1). Also, in order to obtain the electrical
distribution inside the inclusion, the inclusion should be meshed.

The polarization state of the barium titanate has to be considered, being
poled or un-poled. When the material is poled, the piezoelectric domains are
aligned in the same direction. Then, the piezoelectric effect and transverse
isotropic behaviour are exhibited. Its poled material properties are defined in
Table 3.1. These material properties are taken from [165] for dense BaTiOs,
but the permittivity values have been changed since measurements have been
undertaken of manufactured materials. In contrast, when the material is un-poled
there is no piezoelectric effect (d,, = 0) and the material is isotropic. The isotropic
material properties are defined by two parameters s1; and v45. They are obtained
following the approach presented in reference [166]using the equations:

E D E E
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where s and s” are the compliance matrix measured at constant applied
electric field and at constant applied electrical displacement respectively. The sub-
indexes refer to the material direction considered from the compliance matrix.The
permittivity values are obtained throughout averaging the poled values. The
resistance of the un-poled material to be polarized is given by the coercive electric
field parameter (E.) and it is equal to 0.5 MV /m [91].

The finite element model has been designed to be as representative as possible
of the real fabrication process. The procedure is similar to the approach presented
in reference [91] and starts by representing the geometry with all of the material
in the un-poled state. An electric field is applied to the model by constraining
the voltage at the top and bottom surfaces of the RVE to a value equal to the
applied electric field (E,,,) times the thickness of the RVE. The influence of the
polarization field is studied through a sweep of the applied electric field (E,,;,)
between 90% and 110% of the coercive electric field (E,.,). After solving the
model and obtaining the electric field in each of the elements, a loop through each
one of the elements is performed to check if the electric field in that element is
higher or lower than the coercive electric field.

The electric field in the element (E.,,) is the negative gradient of the electric
scalar potential and it is calculated in the FE model by interpolating the negative
gradient of the voltage at the nodes of the element. The orientation of that electric
field is also obtained since the material element orientation of the poled material
has to be aligned parallel to the electric field at the element centre. If the electric
field in the element is higher than the coercive electric field, the element becomes
polarized and the material properties of that element are replaced by the poled
material properties oriented in the direction the electric field at the element. In
any other case, the material of the element remains un-poled, which means it
remains as an isotropic material with zero piezoelectric coefficients. Since the
polarization electric field is applied slowly, we neglect the dynamic effects in the
charge application.

After the alignment of all elements, the model is solved again for the same
applied poling field and its elements reoriented according to the conditions de-
scribed above. This process is repeated until convergence is achieved based on the
number of elements polarized at the n' iteration (Npoiarizea) With respect to the
total number of piezoelectric elements (Nypparerem ). The convergence level assumed
here is 0.5%. or,

n

Npolarized
Convergence : ———== < 0.5% (3.2.3)

total elem

Table 3.1: Material properties of the poled and un-poled Barium Ti-
tanate (BaTiO3). ko = 8.854 - 10712 Farad. Modified material proper-
ties based on Morgan Advanced Ceramic: Material Ceramic B. [165]

Un-poled ‘ 8.45 8.45 845 -1.27 -1.27  9.72 9.72 9.72 0 0 0 0 1566 1566 1566
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Figure 3.6: Convergence of the polariza-
tion procedure for the crack model rep-
resented by the increment in percentage
of the polarized elements for different ap-
plied electric fields (Eqpp) and different
values of porosity (P). The applied elec-
tric field 90%, 100% and 110% of the
coercive field correspond to the blue, red
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Figure 3.7: Convergence of the homog-
enization procedure for the crack model
for different sizes of mesh. In blue and
red, the values of the constant C11 and es;
respectively. Solid lines (—) and dashed
(---) for 7.5% and 17% of porosity respec-
tively. Applied electric field is equal to
110% of the coercive electric field.

and colours. Solid lines (—) and
dashed (---) for 7.5% and 17% of porosity
respectively.

The convergence ratio of the poling process is presented in Figure 3.6, where a
relatively low number of iterations are required to achieve the required convergence.
In Figure 3.7, the influence of the element size is analysed, and shows that the
convergence of the material properties is achieved for a low number of elements.
This is due to the linearity of the homogenization procedure and the lack of
concentrations of stress or electrical displacements in the model since there are
no sharp edges or very small inclusions. It should be noted that, although the
homogenization procedure applied after poling the material is linear, the complete
poling process is a highly non-linear problem.

Once the material polarization has reached convergence, the characterization
procedure starts. This procedure has been explained in the previous chapter.

3.2.5 Material Characterization

Once the RVE material has reached polarization convergence, the characterization
of the RVE starts. This process is explained in detail in Chapter 2 and Martinez-
Ayuso et al. [18] and is briefly summarized here. Characterization is the name
given to the procedure to obtain the equivalent electromechanical properties of
a composite material knowing its individual material properties of each phase
and using some assumptions. The equivalent electromechanical parameters are
obtained using the Hill Mandel condition which can be summarized as the equiva-
lent parameters, such as stresses or electric field, are approximately the averaged
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element parameters for the total volume of the RVE, given by

_ 1 _ 1
U:V;o—ev@ , e:vgv:aeve (3.2.4)
_ 1 _ 1

D:VZV:DeV; , E:VZV:EEV; (3.2.5)

where the bold parameters are tensors and V represents volume. The line over
the parameter means the parameter is averaged for the total volume and the
sub-index e means the parameter is referred to a single element.

A set of electromechanical deformations (strains, shears and voltage) are
applied for each case using one possible deformation in each of the possible
directions (z, y and 2), namely Uy, Uyy, Uszy Ugy, Uys, Usz, By, By, and E, giving
a total of 9 cases. The model is solved for each of the cases to obtain stresses,
strains, electrical displacements and electric fields in each element. After averaging
the equivalent parameters following eq. (3.2.5), the values of the electromechanical
constitutive matrix are obtained using

& 511 51 5_13 St S5 Sig | dun diz dig 01
€ 32El Sg2  Sa3 Saq Sas Sag dy dy dys 02
€3 s51 5% Sm Sy Sk Sk ds1 dsy dss 03
€ shosh o shosh sk sk dy di di o1
& | =| B s& sE sh sE sh|da dn ds |- |05 | (32:6)
& sb sb sb st B b | da de des | | O
Dy diy dip diz dy dis dig | € €, €y Ey
D, dy dyy dys day das dog | €5 €5, €5 E,
D; ds1 dgy dsz dsy dss dsg | €5, €5, €% Es

where the sub-indexes 1, 2, 3, 4, 5 and 6 represents the sub-indexes 11, 22,
33, 23, 13 and 12 following the Voigt notation. Therefore, the corresponding
equivalent elastic parameters 35. are obtained by dividing the corresponding strain
(€;) by the equivalent stress (o). The piezoelectric material parameters d;;

are obtained dividing the electric displacement (D;) by the equivalent stresses
(), and the dielectric equivalent parameters e_;‘j by dividing the corresponding

electric displacement (D;) by the corresponding electric field (E;) [18]. The
periodic boundary conditions ensure that, for a very small element size, the
summation of all the strains and electric fields in the RVE in any direction is
approximately zero, except for the displacement/voltage applied in the specific
case direction. This allows us to directly divide stresses/electric displacement
between the strains/electric fields to obtain the equivalent material coefficients §,
d and €°.
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3.3.

RESULTS AND DISCUSSION

(a) Fully polarized model:
Cross section parallel to
the applied electric field.
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(d) Fully polarized model:
General view of the piezo-
electric matrix.

(b) Model A: Cross section
parallel to the applied elec-
tric field.
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(e) Model A: Ezxpansion of
the pore due to applied elec-
tric field.

(¢) Model A: Electric field
distribution in the poled

material.  The wun-poled
material 1s not shown
(Gap).

(f) Model A: Electric field
distribution in the central
inclusion.
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Figure 3.8: Normalized total electric field distribution with respect to
the coercive field (100%) inside a fully polarized piezoelectric matriz
material (a and d) and a partially polarized matriz (b ¢ e and f). The
applied electric field is represented by grey arrows and it is equal to the
coercive field. The porosity percentage is 20%.

3.3 Results and Discussion

3.3.1 Electric field distribution around a single inclusion

In this section, the effect of the polarization and the pore shape on the piezoelectric
and dielectric coefficients are studied. Firstly, the electric field around a spherical
inclusion inside a fully polarized material is studied. The presence of inclusions
alters the electrical field distribution as Figure 3.8 shows. In addition, when an
electric field is applied to a non-conductive (dielectric) material, it generates a
separation of electric charges and hence an electric field. This electric field is
called the polarization electric field and is different inside the inclusion and outside
the inclusion. Inside the inclusion this electric field is parallel and it has the
same direction as the applied external electric field. Outside the inclusion, the
polarization field opposes the applied electric field (Figure 3.9a). This polarization
electric field decreases the magnitude of the applied electric field in the vicinity of
the inclusion. In addition, the interface between inclusion and matrix provokes
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Figure 8.9: Polarization electric field and electric field distortion due
to the inter-phase change. (a) Polarization electric field concept. In
red the positive charges and in blue the negative charges distribution
around the pore. (b) Electric field vector in the piezoelectric matrix.
(¢) Electric field vector in the air inclusion.

a change in the direction of the electric field, similar to optical refraction. This
change of direction depends on the relative permittivity of the materials and the
angle of incidence to the surface of the inclusion. The change in direction follows
Snell’s rule with velocity replaced with permittivity [167].
sinf; €3

where 6, is the angle of the incident electric field and 6, is the refracted electric
field angle. The subindex 1 and 2 refer to the matrix and the inclusion respectively.
From this equation, the electric field distortion can be obtained, as shown in
Figures 3.9b and 3.9c. The distortion in the electric field direction is crucial,
because it concentrates the electric field in specific places and decreases it in others.
In Figure 3.8a, the normalized electric field in the matrix is clustered around the
top and bottom hemispheres (C and D), which are aligned perpendicular to the
polarization electric field direction. In these zones, the electric field is up to 6
times higher than at the right and left hemispheres (poles A and B), where a
weakened electric field is present. It should be noted that, although weakened,
the electric field at the poles A and B has the same sign as at the poles C and
D. Therefore, after increasing the electric field far enough, the poles A and B
will bepolarized. The effect of the electric field distribution in the 3D matrix can
be observed in Figure 3.8d where the zones with lower electric field are located
between the inclusions and aligned in the polarization electric field direction
(darker zones). These zones remain un-poled after the polarization process due
to insufficient electric field to align the ferroelectric domains. Since these zones
are not poled, they do not contribute to the effective material coefficients, which
therefore become lower. Comparing Figures 3.8a and 3.8b, we can see the changes
between the fully polarized model and the polarization model A with applied
electric field equal to 100% the coercive field. It can be seen there is an increase
of the electric field magnitude around the corners due to the presence of the
poles C and D of the inclusions located at those corners. The clustering of the
electric field in the poles C and D and its corresponding weakening in the poles
A and B leads to an accumulation of poled domains as layers perpendicular to
the electric field, as Figure 3.8c shows. This layering of the material should
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not affect the dielectric coefficients, since the dielectric coefficient is similar for
poled and un-poled material. But in the case of the elastic behaviour, it might
potentially favour crack propagation, since the un-poled layers have slightly lower
stiffness than the poled ones and there are clearly defined material inter-phase
surfaces which might weaken the material. It has been stated already that in
porous piezoceramics, the crack propagation can greatly affect the final material
coefficients.

The clustering of the poled material around the spheres also produces an
expansion of the pore. This expansion is more important in the direction per-
pendicular to the applied electric field where, since the poles C and D become
polarized and they are subjected to an electric field, the domains in these poles
experience a constriction because of the piezoelectric coefficient (ds;). However
this effect is small as can be seen in Figure 3.8e where the increase in radius is
around 1.5 %o for the presented case. In this figure, the displacements are scaled
up by 10 : 1 and no electric field is displayed. Therefore, it can be concluded
that, due the small magnitude of this deformation, the deformation of the pore
due to the applied electric field can be neglected.

Finally the normalized electric field distribution inside the inclusions is pre-
sented in Figure 3.8f. In this figure, there are two high electric field clusters at
the poles aligned with the electric field (poles E and F inside the ellipsoid). This
might be due to the change in phase, the different permittivity and the curvature
of the inclusion which deviate the incident electric field to the mentioned poles,
following Snell’s law. This can be seen clearly in Figure 3.9c where the electric
field penetrates the inclusion perpendicular to the surface in the left hemisphere
concentrating at the pole E. A similar concentration happens at the pole F because
of the inclusion curvature. These poles pair with the poles A and B in the matrix
however the matrix counterpart has lower electric field magnitude.

3.3.2 Spherical model discussion

First, the analysis of model A is presented in Figure 3.10. The model results are
compared with the experimental data and the fully polarized model, in order to
validate the approach. The experimental results correspond to samples which were
manufactured using the BurPS method and the data is published in references
[70, 73]. The pores on these samples are randomly distributed, therefore the poling
behaviour of each sample might be different despite of being poled in the same
way. In addition, the cracks present uncertainty which increases the scattering of
the samples. Different coefficients show different trends, but all of them decrease
when the porosity increases. The piezoelectric coefficient dz; shows an important
decrease in magnitude, especially for porosity percentages up to 20% as Figure 3.10
shows. For higher percentages, the reduction is still present but at a lower rate.
In contrast, the ds3 coefficient shows an important reduction for percentages lower
than 15% but then remains almost constant for the rest of the measured range.
Overall, the reduction in the coefficient dss3 is lower than for ds;. The dielectric
coefficient €§; shows an almost linear dependency with respect to the porosity.
The model 0 is also included in this comparison. The equivalent coefficients of this
model show a decreasing trend as the experimental values, but these results are far
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Figure 3.10: Results of the spherical model (Model A) for different values of
applied electric field, aspect ratio and percentages of inclusions. The applied
electrical field corresponds to 90% (—e—), 95% (——), 100% (=), 105% ()
and 110% (—6—) of the coercive field. The experimental values (°) from reference
[70, 73]and the results of the fully polarized model (—— ) are also represented.

from the experimental results, since it does not account for the polarization. An
exception is the dielectric coefficient €§; which presents an excellent match with
the experimental results, showing a very strong correlation with the percentage
of inclusions. Since all the domains exhibit the piezoelectric effect, and they are
aligned in the same direction, the values of this model represent the theoretical
maximum for the selected material parameters. Note that the fully polarized
model represents an ideal model and, in practice, it is difficult to manufacture
in the laboratory due to the disturbance in the electric field due to the presence
of inclusions, among other factors such us imperfections, contamination of the
mixture, etc. Increasing the polarization field helps the experimental results to
approach the theoretical maximum, but the risk of electrical breakdown increases
too.

The results for model A are presented in Figure 3.10. In this figure, the applied
electric field is given by different dashed coloured lines and ranges from 90% to
110% of the coercive field. As expected, when a larger electric field is applied,
more elements are polarized and therefore the equivalent material parameters
tend to approximate the fully polarized model. It can be seen also that after 105%
increasing the applied electric field does not lead to a significant increment in the
number of polarized elements. This is due to the saturation of the poles formed
around the inclusions. With increasing applied electric field, the poles C and D
keep increasing their electric field, but the elements at those poles are already
polarized, and hence only the domains located at poles A and B can be polarized.
The model predicts that about 98.5% of all piezoelectric domains become polarized
when the applied electric field is double the coercive field, reaching approximately
(99%) the fully polarized model values for the piezoelectric coefficient dz3 and
€35. When applying two times the coercive field, the applied electric field in some
parts of the RVE almost reaches the electric field breakdown (Epg). The electrical
breakdown or dielectric breakdown happens when the electric field applied to a
dielectric material (insulator) is so high that the material becomes electrically
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conductive. This value waspredicted by Neusel and Schneider [168] and is around
10* — 10> MV /m for BaTiO3 depending on the thickness and permittivity of the
sample. Electrical breakdown happens in two different ways, but both happen
when a high electric field (E > Eyq) is applied. The first breakdown occurs when
the ceramic is destroyed by the large current generated. This destruction occurs
by the melting of the material, evaporation, or mechanical failure breakdown the
generation of micro discharge channels that can grow as macro cracks [169, 170].
In the second breakdown, the insulator material experiences a large increase in its
conductivity for small increments of voltage when a high electric field is applied
[170]. The failure mode of the piezoelectric ceramics happens when the material
melts under high electric field. More information about the electric breakdown
of piezoelectric materials is given in reference [171]. The dielectric breakdown
strength measures the resistance of the materials to electrical breakdown. In the
case of the porous piezoelectric materials, the electrical breakdown strength is
severely affected by the porosity, decreasing its magnitude to 70% of the non
porous equivalent for 10% porosity [161]. Therefore, in practice, it is not possible to
reach fully polarized model values by increasing the applied electric field, because
of the risk of electrical breakdown. To avoid this breakdown, it is imperative
to know the applied electric field as well as its distribution. It should be noted
that the dielectric breakdown strength depends on the thickness of the pellet
[161, 168, 172], in addition on the porosity, and so the quoted value might not be
the most appropriate in our case. In our model, the dielectric breakdown is not
calculated since it is a material property.

The change in the piezoelectric coefficient ds3 in model A is predicted correctly,
obtaining similar trends with respect to the experimental values. Between 10%
and 50% of porosity, the values of d33 remain relatively constant, as the experiment
and model show. The experimental values are close to the values given by the
results for 105% of the coercive field. All the experimental measurements are in
between the 100% and 110% of the applied electric field. The evolution of the
coefficient d33 might be the result of the balancing of two factors, first the porosity
which decreases the piezoelectric coefficients, and second, the concentration of
electric field, which increases them. When the piezoelectric material is removed
due to porosity, the electric field concentrates into the remaining ceramic material
in order to flow through the material. For high porosity samples the amount of
piezoelectric material is severely reduced, and thus all of the electric field clusters
at very small volumes, which become polarized, increasing the piezoelectric
coefficients. The author believes, that at around 10% porosity, the polarization
due to the electric field concentration reaches a significant value with respect to
the porosity, being able to change the rate of the decrease in the piezoelectric
coefficients. A different trend is shown for the piezoelectric coefficient dz;which
does not represent accurately the material behaviour for porosity percentages
higher than 10%. The model shows a slow but constant decrease of the coefficient
for the given range of porosities. However, experimental results show a more
stepped change. This decrease is likely to be due to the sphere inclusion which
bends the electric field making it parallel to the inclusion surface. This parallel
orientation is replicated by the polarized elements, giving a symmetry of the
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Figure 8.11: Impact of the aspect ratio in a fully polarized model. The applied
electric field is considered infinite. The different aspect ratio values are expressed
with colours and shapes: 0.35 (—e—), 0.75 (—=—), 1 (%) and 1.2 (——).

electric field with respect to a virtual axis parallel to the applied electric field as
Figure 3.9a shows. This global symmetry in the RVE generates opposite electric
fields in the perpendicular direction to the applied electric field which is related
to the piezoelectric coefficient d3;. Given the infinite periodicity of the material
properties (periodic boundary conditions), these electric fields cancel each other
and hence the corresponding piezoelectric coefficient d3; decreases. The dielectric
coefficient shows minor changes with respect to the applied electric field. This
is a logical conclusion, since the dielectric properties do not change that much
between polarized and un-polarized material (1500-1600 €°/ky in the polarized
material vs 1556 €°/kq for the un-poled material). Later, in the discussion of the
model B, it is shown that the aspect ratio has little effect on the values of the
dielectric coefficient. Model A presents a good approximation for some important
material coefficients such as the piezoelectric coefficient ds3 and the dielectric
coefficient €g,, but it does not predict accurately the evolution of the coefficient
dsy for increasing porosity after 10%.

3.3.3 Ellipsoidal model discussion

Prior to presenting the results for the polarization of model B, the impact of the
aspect ratio is studied using a fully polarized model. Figure 3.11 shows the results
for different aspect ratio values (0.35, 0.75, 1 and 1.2) without considering the
polarization effect. The impact of the aspect ratio is limited in this case. The
values of the piezoelectric coefficients vary very little and the dielectric coefficient
is almost the same for any given aspect ratio value. As stated earlier, given the
similar material properties of the poled and unpoled material, the effect of the
polarization on the dielectric coefficient €3, is almost negligible . Together with
the discussion from the previous model, it can be assumed that the dielectric
coefficient is not affected by the aspect ratio nor the polarization effect for the
considered composite structure (spherical inclusions with connectivity 3-0), being
only dependent on the porosity percentage in the composite. This is supported
by reference [173] which suggests that the inclusion shape is not relevant for
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Figure 8.12: Comparison of poled regions and their electric field values
for the sphere model (upper figures) against high aspect ratio model
(lower figures). Two different electrical configurations are displayed:
applied electric field equal to coercive field (left) and fully polarized and
aligned model (right). In the figures at the left, the unpoled domains
are not plotted (gaps).

the homogenized electrical properties, being only important for the electric field
distribution, and hence for the equivalent elastic and piezoelectric parameters.

First, the distribution of the electric field is studied in Figure 3.12 where
the electric field of the sphere and the ellipsoidal models are compared, for two
possible configurations. The applied electric field is equal to the coercive field
or for the fully aligned and polarized model. For high aspect ratio models, the
electric field concentrates at the poles C and D. This is an effect of the repulsion
between electrical charges, which concentrates electrons (and electric field) on high
curvature areas and the electric field refraction. It is also true that the amount of
volume affected by these poles is reduced as Figure 3.12 shows. In contrast, the
poles A and B, which are unpoled, increase the amount of influenced volume. In
the case of the fully polarized examples, it can be seen that the gradient of the
electric field is much higher inside the inclusion. The electric field concentrates
into the inclusion where it reaches electric fields around 180% of the coercive field,
and up to 10 times the electric field in the matrix. When the applied electric field
is equal to the coercive field, it can be seen that due to the concentration of electric
field in the inclusion, important amounts of ferroelectric domains remain unpoled,
forming a clear sandwich structure composed of poled and unpoled material. It can
be concluded then that the aspect ratio increases the charge density at the poles C
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Figure 3.13: Results of the ellipsoidal model (Model B) for different values
of applied electric field, aspect ratio and percentages of inclusions (azis X).
The applied electrical field is represented with shapes: O, O and { for applied
electrical field equal to 90%, 100% and 110% of the coercive field respectively.
The aspect ratio is represented with colours: blue, green, and brown for
values equal to 0.35, 0.5, 0.75 and 1 (spherical ) respectively.

and D, and reduces its affected volume. The electric field is concentrated at those
poles, reducing its presence in the rest of the RVE. These high concentrations of
electric field are prone to electrical breakdown. Under the same applied electric
field the ellipsoid models give a lower number of polarized elements, and thus,
lower piezoelectric coefficients. The results of model B are presented in Figure 3.13
for different values of aspect ratio, applied electric field and porosity. The aspect
ratio values are 1, 0.75, 0.50 and 0.35 and they present a progressive change
between spherical inclusion shape (aspect ratio equal to 1) and the extreme case
of a flat crack (aspect ratio equal to 0). They aim to study the pore anisotropy
presented in the Introduction section of Chapter 3. For comparison purposes,
the sphere model is included too. To avoid geometry overlapping the maximum
percentage of inclusions is limited to 35% for aspect ratio equal to 0.35, and to
50% for the rest of the cases. This model shows an important decrease in the
piezoelectric coefficients when the porosity and aspect ratio increase. High aspect
ratio models are related to very low piezoelectric values, for example, at 30%
porosity the model with applied electrical field equal to 110% of the coercive field
and aspect ratio equal to 0.35 obtains similar results to the models with 90% of
the coercive field applied. This can be regarded as an increment of the unpoled
material which is related to the electrical field distribution as shown in Figures 3.8
and 3.12. However, under a low applied electrical field (90%), higher aspect ratio
yields higher piezoelectric coefficients due to the higher electrical field at the
poles C and D. This trend is reversed for medium-high applied electrical field.
The ellipsoidal model presents a general decrease in all the material coefficients
for increasing aspect ratio at medium-high applied electric fields. The dielectric
coefficient seems to be not much affected by the applied polarization field, as
has been stated before. The aspect ratio impact on this coefficient is moderate,
supposing a decrease about 30% of the coefficient value with respect to the sphere
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model for the model with aspect ratio equal to 0.35 and porosity equal to 30%.
The piezoelectric coefficient d33 gives similar behaviour to the sphere model, with
a more important decrease of the parameter at low porosity percentages and
high aspect ratio. For an applied electric field equal to the coercive field, the
aspect ratio is not a dominant parameter, and shows little effect for aspect ratios
between to 0.35 or 0.75. For low applied electric field, the aspect ratio produces an
increment of the piezoelectric coefficient, specially for high porosity percentages.
A similar trend can be shown in the piezoelectric coefficient ds;, where aspect
ratio gives a more rapid reduction of the parameter compared to the sphere model.
At low applied electric fields, the aspect ratio is shadowed by the lack of polarized
material hence has a negligible effect. Aspect ratio values lower than 0.35 might
decrease the dielectric coefficient even more which already shows a good agreement
between the experimental results and model A. Therefore, there is little benefit in
modelling lower aspect ratio model than the current ones.

3.3.4 Crack model discussion

The electric field distribution of model C is detailed in Figure 3.14. In this figure,
the normalized electric field with respect to the coercive field is presented for the
poled material and for two aspect ratio values: 0.35 and 0.75. The applied electric
field is equal to the coercive field. In the matrix, it can be seen that the electric
field concentrates around the crack, reaching values up to 320% of the coercive
field. Inside the inclusion and the crack, the electric field reaches values up to
430% and 1800% of the coercive field for the 0.75 and 0.35 aspect ratio models
respectively. The electric field decays rapidly with distance from the crack. As
with the ellipsoidal model, the inclusions and crack absorb an important part of
the electric field which leaves low electric field regions.

The model results are presented in Figure 3.15, for ellipsoidal ratios equal
to 0.35, 0.5 and 0.75 respectively. In addition and for comparison purposes,
the sphere model is included too. The results show almost identical trends
with respect to the sphere model and the ellipsoidal model, but with higher
piezoelectric values compared to the ellipsoids. The crack model gives similar
dielectric coefficients to the sphere model, as expected, since the porosity is the
same for both. For the piezoelectric values, the crack model gives lower magnitudes
than the sphere model, but higher than the ellipsoidal model. The coefficient d3;
shows a continuously decrease in its magnitude, as shown by the experimental
values presented previously in Figure 3.10. However, the crack model for high
aspect ratio values lack the constant behaviour exhibited by the piezoelectric
coefficient ds3 for porosities between 10-50% shown by the experimental data and
the sphere model.

This model gives a higher impact at high porosities, which is when the cracks
take more relevance. Also, the importance of the cross sectional area of the
inclusions is demonstrated. The models with high aspect ratio have more air
material in its cross section, and this is reflected as a drop in the piezoelectric
coefficients.
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Figure 3.14: Comparison of poled regions and their electric field values
for model C for two different aspect ratio values: 0.35 (left) and 0.75
(right). The applied electric field is equal to the coercive field. The
un-poled domains are not plotted (gaps).
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Figure 3.15: Results of the crack model (Model C) for different values of applied
electric field, aspect ratio and percentage of inclusions (axis X). The applied
electric field is represented with shapes: O, U and ¢ for applied electric field
equal to 90%, 100% and 110% of the coercive field respectively. The aspect ratio
is represented with colours: blue, green, orange and brown for aspect ratio equal
to 0.35, 0.5, 0.75 and 1 respectively.

3.3.5 Validation of the polarization approach

In this section, the validation of the models are done against experimental data,
and they are shown in Figure 3.16. Hence, from the conclusions of the models, the
most accurate results are obtained with an applied electric field equal to 105% of
the coercive field. It can be seen that the best match is obtained for the ellipsoidal
model with an aspect ratio equal to 0.75 and 0.85. Figure 3.17 shows an SEM
image of a sample of BaTiO3z with 60% porosity with some pores highlighted,
where the pores vary in shape and size. Measures at these pore shapes shows
that the average aspect ratio is 0.836 and its standard deviation is 0.106, where
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Figure 3.16: Comparison against the experiments (o) from reference [70, 13]of
the three models: sphere —e—, ellipsoidal (aspect ratio: 0.75 - ——, aspect ratio:
0.85 - ) and crack (aspect ratio: 0.75 - ). The applied electric field is
equal to 105% of the coercive field.

the anisotropy may be due to high compression loads during uniaxial pressing.
Different samples might have different aspect ratio ratios, and therefore, this
example only intends to demonstrate that the anisotropy of the pore exists and it
might be around aspect ratios equal to 0.83. The measured aspect ratio is very
close to the ellipsoidal model with aspect ratio equal to 0.85 which already gives
a good approximation of the main values and trends of the material parameters.

The piezoelectric coefficient d3; shows the best match with the ellipsoidal
model with an aspect ratio equal to 0.75. This model gives a very good prediction
of the coefficient ds3 , although it underestimates its magnitude for porosities
higher than 30%. The coefficient d33 shows a better match with the ellipsoidal
model for an aspect ratio equal to 0.85. However, it should be noted that these
coefficient results are relatively scattered, showing important differences in the
results for the same porosity. For example, at 28% the ds3 ranges between 105
and 83.5 pC/N. This variability might be due to the incorrect polarization due to
a non-homogeneous distribution of the pores, or insufficient applied electric field.
However, all models show similar trends and results for the dielectric coefficient
€3, since this coefficient depends mainly on the porosity percentage.

The values obtained in this chapter for the Barium Titanate with aspect ratio
equal to 0.85 and applied electric field equal to 105% of the coercive field are
summarized in Appendix A along with a short discussion on the piezoelectric
coefficients e,,;.
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Figure 3.17: SEM photograph of a porous piezoelectric sample
(BaTiO3) with high porosity (60%). The pores are highlighted in
yellow and its aspect ratio computed. The results shows that the aspect
ratio is around 0.836

3.4 Conclusions

A detailed study has been performed on how the polarization electric field and
the geometry of the inclusions affect the piezoelectric and dielectric coefficients of
porous piezoelectric ceramics. Common inclusion shapes have been studied, namely
spherical, ellipsoidal and ellipsoidal with a crack. Different aspect ratios and
applied electric fields have been considered. The main conclusions are summarized

as:

|
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High values of the applied polarization field lead to high values of the equiva-
lent parameters. However, there is a limit in the applied electric field due to
electric breakdown because of electric field concentration at the poles.

The presence of inclusions means that important regions of the material are
not polarized because of their effect on the electric field, distorting and/or
absorbing it.

The electric field is concentrated around the poles of the inclusions due to
refraction of the electric field. In the case of high aspect ratio models, the
concentration of the electric field can reach values up to 200% of the coercive
field at the high curvature poles. In the crack model, the maximum electric
field concentration is found at the crack tip.

The symmetry in the electric field distribution with respect to the polarization
axis is responsible for the important decrease in the piezoelectric coefficient
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ds1. Increasing the porosity, increases the amount of electric field distortion
in the opposite directions and hence, decreases the equivalent parameters.

The quasi-constant values of the coefficient ds3 might be due to the progressive
polarization of the domains located at the poles aligned with the polarization
field (poles A and B). Increasing the porosity, also reduces the amount of
volume where the electric field can flow, and hence the polarization of the
piezoelectric domains increases. Thus because of the counter balance between
polarization and porosity, d33 remains relatively constant.

The model predicts that the dielectric coefficient is not affected by the aspect
ratio or the applied polarization field for the geometries evaluated here. This
parameter presents an almost linear correlation with the porosity percentage.

When the inclusion shape is accounted for during the modelling of the
polarization process, the predicted piezoelectric coefficients are able to closely
match the experimental values.

Future work should aim to model higher number of inclusions in order to
account for effects such as distribution of porosity or clustering [91, 92]. In
addition, there is an interest to extend this approach to model material
manufactured using other processes such as freeze-casting where the pore
shape is closer to cylindrical or conical [75, 76].

In the next chapter, the application of the porous piezoelectric materials for

energy harvesting is studied.
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Chapter 4

Linear Energy Harvesting

4.1 Introduction

Energy harvesting is the process where energy is extracted from the surrounding
environment to power small devices. Piezoelectric materials are used for this
purpose, since they can extract electrical energy from vibrations directly. From a
general point of view, the energy harvester performance depends on the material
properties, the geometry of the harvester and the external energy source. The
material properties must be studied carefully in order to maximize the energy
converted. In this thesis, the capability of the porous piezoelectric materials for
energy harvesting is assessed. The most common way to study a piezoelectric
material for energy harvesting applications is through its figures of merit (FOM;;).
These are parameters obtained from the material coefficients which assess its
performance without any account of the geometry of the harvester or external
excitations. The two most common figures of merit

d2

FOM3z =—2 (4.1.1)
€%33
d2

FOMsy =—2% (4.1.2)
€%33

Many FOMs are available in the literature. For energy harvesting applications,
the most important are dy, g, and k7.

dh :d33 + 2- d31 (413)
d
gn =— (4.1.4)
€33
d2
k2, =—33 4.1.5
33 €633 8:% ( )

Depending on the material direction considered, two possible FOM are used for
energy harvesting assessment, FOM3; and FOM;3. The coefficient d;, expresses
the total amount of charge generated per unit of stress without accounting for
losses due to the capacitance of the material. The coefficient g;, does account
for the capacitance by including the permittivity coefficient. The kfj is similar
to FOM;; butalso accounts for the elasticity of the material. Other FOMs can

7



78 4.1. INTRODUCTION

give useful insight into the material performance on specific applications, such as
strain sensors, hydrophones, etc. However these applications are not studied in
this thesis.

The energy harvesting FOMs for porous piezoelectric materials have been
studied by several authors. In reference [68], a review of the manufacturing
processes for porous piezoelectric materials is presented. This study is focused
on piezoelectric and pyroelectric coefficients. In both cases, the porosity leads
to an improvement in the performance of the material. This improvement is
due to the decrease of the permittivity coefficient because of the reduced dielec-
tric coefficient of the resultant composite porous material. This decrease is more
important than the correspondent decrease in the piezoelectric coefficients. In
reference [67], different porous piezoelectric materials are studied through its
figure of merit. It is shown that the coefficient g, and the product g,d} increase
when the porosity increases, which means a higher coupling. In that study, the
poly(methyl methacrylate) (PMMA) presents the highest piezoelectric values. The
manufacturing process used is the burn out polymer spheres (BURPS) , already
introduced in Section 1.2.3. In reference [92], a sandwich layer piezoelectric energy
harvester is presented. Using porous material as the core of the layered structure
and non-porous on top and bottom, this structure obtains anincrease in the energy
harvesting figure of merit FOMS33. It is also highlighted the importance of a
correct polarization of the materialto achieve the maximum piezoelectric values.
In reference [174], the freeze casting method is presented as a higher quality
method to manufacture porous piezoelectric material than, for example, BURPS.

In Figures 4.1, the FOMs are calculated using the results obtained in the
previous chapter. These results correspond to the ellipsoidal inclusions with aspect
ratio 0.85 and applied electric field equal to 105% of the coercive field. These are
the closest values to the experiments and hence the results are expected to be close
to those present in real applications. In this figure, the coefficients d;, and g; give
an insight into the material coupling. These coefficients increase with the porosity.
The coefficient dj, increases its value due to the rapid decrease in the coefficient ds3;
and the steady value of ds3 . The g, is related to the dj;, hence it follows the same
trend. The FOM35, and FOMS33 are the main energy harvesting FOM and they
can give us a true insight into the real energy harvesting capabilities. In the case
of FOMS31, the values shows an important decrease for low porosity, and remains
stable for high porosities. This is a reflection of the behaviour of the coefficient
d3; which presents an important decrease of its value along the whole range of
porosity studied. The values of d3; and d33 are already discussed in chapter 3.
The flat behaviour after 15% is due to the decrease in the dielectric coefficient
which counterbalances the decreasing ds; . More promising is the coefficient
FOM33 which presents a similar behaviour for low porosity, but later increases
its value after 20% to reach an overall improvement of 30% with respect to the
dense porous material. Again, this figure of merit reflects the behaviour of the
coefficient dz3 which decreases for low porosities and keeps stable for porosities
higher than 15%. For porosities higher than 15%, the still decreasing dielectric
coefficient (eg;) provides the improvement on this figure.

These FOMs allow us to discuss the material performance in advance of the
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Figure 4.1: Figures of merit obtained from the polarization models
presented in Chapter 8 for BaTiOs. Aspect ratio of pores 0.85, applied
electric field equal 1.05 the coercive field.

design of the energy harvester. As shown in Figure 4.1, the porous piezoelectric
materials should provide an improvement on the energy harvesting capabilities
when the coefficient ds3 is used. This coefficient is related to the voltage generated
in the direction of the polarization with the strain in the same direction. The
most common devices that operate in this mode are stack vibrators. Because
the material is compressed axially, these devices are very stiff. Hence their
operating frequency is very high, around orders of 1 kHz-10 kHz. The high natural
frequencies make them not very suitable for energy harvesting applications. To
reduce their natural frequency, big masses are attached to these devices. One
example is presented in Figure 4.3. This figure represents the model studied in
reference [175]. In that paper, the authors propose to use large piezoelectric film,
polarized through the thickness, in a stack energy harvester. Since the piezoelectric
layers are quite thin, the natural frequency is not very high, between 800-1000
Hz. However, an inertial mass has been added in order to decrease even more the
natural frequency. The model uses the coefficient ds3 to generate energy from
the axial deformations. In reference [44], another stack harvester in presented.
This harvester is designed to work when the excitation is stochastic, namely white
Gaussian noise. The modelling of this white noise is made using stochastic theories.
In reference [176], another stack energy harvester is presented and modelled using
finite elements techniques. In this case the piezoelectric material is located in a
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Figure 4.2: Strain configurations applied to an energy harvester. From https:
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Figure 4.3: Piezoelectric energy harvester in stack configuration made
of a single piezoelectric film working in dss . From [175]

metallic frame which amplifies the strain and hence the voltage. It is claimed that
the device provides high power output, enough to power small devices.

For porous piezoelectric material, the use of the FOMj3; seems to present
no benefit, due to the lower values of coupling. This FOM is related to the
piezoelectric coefficient d3; . When d3; is used, the harvester mode is classified
as bending mode. The bending mode harvester is very common in the literature
due to its much lower resonance frequency compared with the stack mode. Some
examples are given in reference [15] where the authors use a bimorph cantilever
beam which has frequencies around 180 Hz. In reference [177] a cantilever impact
energy harvester is excited with impact in order to excite high modes which
provide more power. More examples of bending mode energy harvesters can be
found in the references [34, 36] where extensive reviews of the piezoelectric energy
harvesting state of art are detailed.

Each mode has its advantages for modelling an energy harvester. The stack
mode presents higher voltage and power output since it uses a higher material
coefficient. However, due to its higher natural frequency, its applicability is very
limited. In the case of the bending mode, the natural frequency is generally
much lower than the stack mode. However, its piezoelectric coefficient dsz; is
around 50% of the ds3 , therefore its power output, in ideal conditions (both
at resonance frequency), is much lower. Several attempts have been made in
order to make the harvester work in bending mode and use the ds3. Macro Fiber
Composites (MFC) are composite piezoelectric patches which use small strips
of piezoelectric material which are orientated following thedss direction. These
compositesallowhigher voltage output than conventional d3; harvesters, keeping
the natural frequency much lower than the ds3 harvesters. Until now, the most of
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the research works have used the bending mode. Therefore, for completeness, the
simulations presented in this chapter account for both modes, bending and stack.

In the previous chapters, a complete framework for composite homogenization
was presented. This framework allows us to predict the material properties of
porous piezoelectric materials given the piezoelectric matrix properties and the
percentage of air inside it. Furthermore, if the polarization electric field is provided,
the scheme can predict with a high degree of accuracy the effective piezoelectric
coefficients. This framework has been validated with experimental results from
the laboratory. In this chapter the basis of the linear energy harvesting modelling
are presented. The three approaches to the modelling of the energy harvesters
are discussed. Firstly, single degree of freedom (SDOF) models are introduced. A
short review of the literature available is done to apply this simple model to the
porous piezoelectric materials. Later, multi-degree of freedoms analytical models
are introduced. These models present higher complexity than the SDOF models.
The method is also applied to the porous piezoelectric materials and the results
are discussed.

4.2 Linear SDOF Energy Harvester

From a general point of view, the performance of an energy harvester is defined by
two parameters, the piezoelectric coupling and the capacitance. They depend on
the material coefficients and the geometry. The coupling measures the amount of
mechanical energy that the material can convert to electrical energy or vice-versa.
The capacitance measures the energy lost in generating a self-induced parasitic
electrical field. This electrical field remains confined in the material and depends
on the permittivity of the material. Clearly it is desirable to have high coupling
and low capacitance, in order to maximize the energy conversion rate.

The effect of these parameters can be studied in a very simplified and efficient
way using a single degree of freedom approximation. These models solve the
dynamic equations of the system assuming the mass, damping and stiffness
matrices are scalars. This condensation can be done during the formulation of
the problem or using the modal shapes in a modal analysis. SDOF models have
been frequently used to study materials performance, for example the FOM are
based on SDOF assumptions [178, 179] or compare different harvester models
or technologies. In reference [178], the FOM are presented and related with
energy equations which assume one degree of freedom. In reference [179] SDOF
models are used to compare the performance of electromagnetic, piezoelectric,
magnetostrictive, and electrostatic transducer technologies. Their “effectiveness”
valuesare compared, concluding that the piezoelectric effect is one of the most
suitable for high voltage and low current harvesters. SDOF models of energy
harvesters are frequently used in pre-assessments or as simplifications of each
parts of more complex harvesters. In reference [180] a SDOF is used to model
a shear-mode piezoelectric energy harvester. In that paper an enhancement is
obtained due to the higher strain in the piezoelectric layer due to the shear stress.
However, it is considered that the material is polarized along the direction of the
electrodes which might pose a difficulty in its manufacturing. In reference [181] a
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practical application of SDOF is presented to harvest energy from a passing train.
In that paper, the authors highlight that the applicability of the model is limited
to excitation frequencies around 1% different compared to the design frequency.
This is one of the problems of single degree of freedom models. Some attempts
to decrease the sensitivity of the energy harvester power with respect to the
natural frequency have used coupled technologies and/or non-linear behaviours.
For example in reference [182], a piezoelectric and electromagnetic harvester
is modelled and tested experimentally. In these models, there are interactions
between mechanical, piezoelectric and electromagnetic physics and for each one
of them an single degree of freedom approximation is used. This makes the
model not very appropriate for high level of excitations. In reference [44] random
excitations are studied using a stochastic approach on an SDOF model. Using
Gaussian white noise as input, the importance of a low mechanical damping
and high electromechanical coupling is shown in order to obtain the maximum
power. The applications of SDOF models are limited to frequencies close to the
resonance frequency. If the excitation frequency is close to the natural frequency, a
single degree of freedom model can represent accurately the behaviour of complex
devices.

Looking at the impact on these coefficients, the coupling is proportional
to the piezoelectric coefficients and the stiffness [15]. On the other side, the
capacitance depends on the permittivity of the material as well as other non-
material parameters like area covered by the electrodes, thickness, etc. These
coefficients are calculated according to the geometry of the harvester. However, in
this chapter it is intended to compare the dense energy harvester with the porous
harvesters, therefore only the material contributions are considered. The geometry
of the model is the same for porous and non-porous unless it is stated in a different
way. The two possible configurations of porous energy harvester are axial mode
and bending mode. Each of the modes requires different geometry configuration in
order to activate the required coefficient however it is assumed in this section that
both geometries are equivalent. The use of the coefficient ez3 in bending mode can
be achieved through composites such as Macro Fiber Composites (MFC). These
composites are made of small strip of piezoelectric material polarized along the
longitudinal direction. Hence the coefficient es3 is oriented parallel to the beam
and is excited during bending. The type of composites have a higher voltage
output than the common e3; harvesters due to the higher coupling.

4.2.1 Modelling of SDOF Energy Harvesters

In this section, a single degree of freedom model of a base excited cantilever
energy harvester is presented. The model represents a cantilever beam with
two piezoelectric patches, one on the top and one on the bottom surface. The
piezoelectric patches cover both surfaces of the beam completely. This harvester
is simplified to a mass-spring-damper system as Figure 4.4 shows. The dynamic
behaviour of the system is modelled using the coupled electro-mechanical equations
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Figure 4.4: Proposed SDOF energy harvester model based on mass-
spring-damper system.

[183] as follows:

mubeam + Cubeam + kubeam - kp Qb = FpE (421)
Cpg'b + % + kp Upeam = 0 (422)

where the dot represents the derivative with respect to time. The displacements
and voltage are represented by u and ¢ respectively. The beam mass is m, the beam
damping is ¢ and the beam stiffness is k. The parameter k, is the piezoelectric
coupling between the electrical and mechanical fields. The effect can be also seen
as added damping to the system. The mass, stiffness and coupling coefficient
depend on the porosity of the material. The term fgg corresponds to the force
that arises from the base excitation and it is assumed to be harmonic.

Before defining the parameters of the equations, let us define the bending
stiffness and natural frequency of the system:

) = v e (e ) Bz
wn(P) :% % (4.2.4)

where w, h and L are width, thickness and length of the piezoelectric ((e),) and
elastic ((e).) layers respectively. Parameters such as elastic modulus, piezoelectric
coefficient and dielectric coefficient depend on the porosity (P) of the material.
The stiffness, mass and damping values of Equations (4.2.1) and (4.2.2) can be
obtained as:

m(P) = wehepe + 2wyh,p,(P) (4.2.5)
k(P) = 31257)) (4.2.6)

o(P) = 267/k(P) m(P) (4.2.7)

where the term IY represents the stiffness as a product of the inertia of the beam
I, accounting for the different materials in the section, and the elastic modulus
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Y for the stiffer material. The damping is expressed as £ and is obtained from
experiments and is assumed to be20% of the critical damping C,. This value is
not critical, since the objective is a comparison between the performance of the
different piezoelectric coefficients in similar situations. The piezoelectric coupling
(kp) is given as:

k'p = U)pegxhp (428)

where esx is the corresponding piezoelectric coefficient. As has been stated
previously , in order to compare the performance of the piezoelectric coefficients,
the geometry has to be equivalent when using either es; or ds3 . The equations
stated in this section are for a cantilever beam which is a typical application of
e31, however these equations are proposed here just as an example.

The parameters C}, and R represent the total capacitance of the piezoelectric
patches and the resistance of the external circuit respectively. It should be noticed
that the electrical variables such as capacitance, voltage and resistance are scalar
as well as the stiffness, mass and damping. The capacitance is given by the
following equation:

- €g3(P) prp (429)

= oo (4.2.10)

Equation (4.2.10) represents the optimal resistance for a linear energy harvester
[46] and it is used in this thesis as a first approximation to the optimal resistance
for any porosity value. Later, the variation on the resistance is shown. These
differential equations are solved assuming harmonic base excitation:

Fgrp = fBEejwezct = —mAngcej“Jemt (4211)

where A is the amplitude, we,. is the frequency of the excitation, j is the imaginary
unit (v/—1) and ¢ is time. Here the amplitude of the displacement of the base
excitation is assumed equal to the unit. The harmonic external excitations
assumption allows us to assume that the response of the system is harmonic too.

U = uy et (4.2.12)

¢ = Paelt? (4.2.13)

where the subindex A means that the value refers to the amplitude of the harmonic
signal. When these equations are introduced in Equations (4.2.1) and (4.2.2),
the parameter which depends on the time can be cancelled, remaining the steady
state solution. This is explained more in detail in Section 4.3.1.

4.2.2 Results for base excited SDOF models

In this section the results of the presented model are shown for the energy harvester
given in Appendix B. The objective of this section is to study how the porosity
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Figure 4.6: Voltage at the tip of the energy harvester for different porosity
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Figure 4.9: Power FRF at the tip of the energy harvester for different porosity
values (P). The cross is the value obtained with the predicted linear equation 4.2.10.
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affects the voltage, power, displacements and natural frequency of the SDOF
harvesters. Both piezoelectric coefficients, e3; and es3, are studied in order to
compare them, since its behaviour is different with the porosity. It should be
noticed that, although the porosity changes the stiffness and mass of the system,
the loadresistance used at each porosity percentage has been optimized using the
presented linear Equation (4.2.10). In addition, it should be noticed that the
values presented in this section are obtained only for comparison purposes. The
values for a real energy harvester might differ from the provided here.

Four different results are presented for each coefficient, namely displacement
at the tip (Figure 4.5), voltage at the resistor (Figure 4.6), power generated at the
resistor (Figure 4.7) and power frequency response function (FRF) (Figure 4.8)
which is given as the ratio between the output power and the acceleration input
at each frequency.

Power FRF = L@u)? (4.2.14)
R(w)fBEw2

In Figure 4.5, the displacement of the harvester is displayed. Since it is
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assumed to represent a beam, the displacement shown corresponds to the tip
displacement. It can be seen that the magnitudes are similar for all frequencies
and independent of the coefficient activated. This is a logical conclusion since the
natural frequency does not dependon the piezoelectric coefficients, only on the
mass and stiffness.

In Figure 4.6, the voltage generated by the harvester at the resistor is shown.
Here the influence of the piezoelectric value can be clearly seen. For the lower
piezoelectric coefficient es;, the voltage with 50% porosity is 5% of the voltage
with no porosity. In case of the piezoelectric coefficient ess, the presence of 50%
porosity reduces the voltage to 35%. This is reasonable, since the piezoelectric
coefficient is reduced.

In Figures 4.7 and 4.8, the power output and power FRF are presented for the
two considered coefficients. It can be shown that the porosity not only reduces
the natural frequency but also reduces the harvested power dramatically in the
case of the eg;. The values relative to es3 are much higher compared to the ez
coefficient.

It has been assumed that the optimal natural resistance of the harvester is
equal to the linear case given by Equation (4.2.10). In Figure 4.9 it is proven
that the impact of the porosity on the optimal resistance can be easily predicted
using the linear equation accounting for the changes in capacitance given by the
porosity. However, it should be noticed that the values of optimal resistance does
not change much with the porosity.

4.3 Linear Beam Energy Harvester

In this section, a typical cantilever beam is presented and studied using analytical
solutions based on Rayleigh-Ritz superposition and Euler-Bernoulli assumptions.
In this section, the procedure follows the A. Ertuk and D. Inman book “ Piezoelec-
tric Energy Harvesting” [15].

The energy harvester geometry is represented in Figure 4.11 and defined as
cantilever bimorph beam. The cantilever beam topology is chosen because of its
lower natural frequencies compared to plates or clamped-clamped beams. This
allows easier resonance between the energy harvester natural frequencies and
the vibrations in the surrounding environment which are low frequency in many
cases. Also, it allows higher strains at the clamped side which is beneficial for
energy harvesting. However, the rest of the beam remains at very low strain,
which generates little energy. Some authors have studied the optimal length of the
piezoelectric patch in order to harvest the most energy keeping the piezoelectric
patch as small as possible [184]. In that paper, the authors show that, in a
cantilever energy harvester, the capacitance and piezoelectric coupling change
with the length. Higher lengths increase the capacitance and hence the energy
losses, whereas shorter patch lengths decrease the piezoelectrical coupling. This
coupling has its maximum value where the higher strain is, which is normally at
the clamped side [184]. Using Finite Element Analysis (FEA), it is proven that
there is an optimal length of the patch for a given patch shape. This approach also
proves that not only the coupling must be optimised, but also the capacitance.
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Figure 4.10: Deformation of a section of an FEuler-Bernoulli beam
where the sections remains plane to neutral axis.

4.3.1 Analytical Modelling of a beam energy harvester

A beam can be modelled either as a Timoshenko beam or as an Euler-Bernoulli
beam. The selection between both options depends on its geometry (ratio length-
thickness) and/or the degree of accuracy required which leads to neglect the shear
or not. If the ratio of length-thickness of the beam is very high (h/L >> 10), the
shear can be neglected, and then the Euler-Bernoulli beam assumptions give a
good grade of accuracy. In the case that the beam is quite thick (h/L << 10), the
shear can affect considerably the dynamic behaviour of the beam, and therefore it
must be considered. In such case, Timoshenko beam assumptions offer a good
set of approximations to model the energy harvester. Most energy harvesters are
very slender in order to reduce the natural frequency. In this case, our energy
harvester is also modelled as an Euler-Bernoulli beam. This beam type assumes
that its cross section does not deform and it remains plane and normal to the axis
of the beam all the time as Figure 4.10 shows. Therefore, for small deformations,
the deformed centre of the beam follows an arc shape, which means the rotation
of the section and its deformation are related by:

a2u}1ﬂel
e=—2—5 (4.3.1)
where w is the displacement of the beam expressed as:
W = Wyel + Whase (432)

where the w,.; is the displacement of the beam relative to the clamped point and
Wpase 18 the displacement of the base of the beam. In our case, we consider our
section symmetric with respect to the axis Y and Z and constant along axis X. The
consequence of all these assumptions is that only stresses in the direction of the
axis of the beam (Axis X in Figure 4.11) are considered. Two piezoelectric patches
are attached to the superior and inferior surfaces of the beam as Figure 4.11
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details, in order to capture the maximum strain at the root of the beam. In
addition, we consider that the thickness of the patch is small enough to assume a
constant voltage across the thickness which allows us to relate the voltage with
the electric field by [15]:

Bs(t) = ———= (4.3.3)

As the piezoelectric materials are polarized in one direction (material axis 3),
they only develop electric field in that direction. This can be achieved, for the
type of piezoelectric material considered (Cyy, see Section 1.2.1), using one of
the three possible strains configuration which correspond to the axial, bending
and shear work modes. The strains configurations are detailed in Figure 4.2. The
axial mode is related to the piezoelectric coefficient es3 and it normally requires
high frequencies to be excited. Whereas the bending mode is related with e3; and
the shear mode with e;5. The shear mode is not considered in this thesis.

Constitutive equations

We proceed now to present the mathematical treatment which allows us to obtain
an analytical solution for a cantilever beam energy harvester under harmonic base
excitations. Starting from the basic beam equations and constitutive laws of the
piezoelectric material, we obtain a set of equations which allows us to obtain the
displacement and voltage on a resistor. These equations will be used to study
the impact on the energy harvester of different parameters such as resistance,
frequency, length of the energy harvester, amplitude, etc.  As it is stated in
Section 1.2.1, the constitutive equations for linear piezoelectricity can be derived
from an electric enthalpy function H. Resuming from Equation (1.2.5), we have:
1

1
H = icijkleijekl — ekijEkeij — 5€%E¢Ej (434)

which gives us

035 = Cz‘jkzﬁkl - ekijEk
D; = eineij + €5, L (4.3.5)

The current ¢ is related with the voltage ¢, and charge () through the next
equalities:

i(t) = %}ft) = % (4.3.6)

which combined with the charge equation for infinite parallel plate capacitor:

Q:/AD.ndA (4.3.7)

%_%</AD.MA> (4.3.8)

German Martinez Ayuso

one can obtain:




90 4.3. LINEAR BEAM ENERGY HARVESTER

Since the electric field generated is always (for non-shear strains) in the direction
of the polarization (material direction 3) and the Euler-Bernoulli beam allows only
strains in the axial direction (material direction 1), the piezoelectric coefficient
used is eg;. Equation (4.3.7) can be simplified since from now on, the only electric
field (and hence electrical displacement) is in the material axis 3. This direction is
perpendicular to the area over we are integrating the electrical displacement, and
hence we can reduce the vector product of Equation (4.3.8) to a scalar product.

o _ 4 ( /A D, dA> (1.3.9)

The electric displacement can be replaced by the second constitutive equation of
the piezoelectric materials (Equation (4.3.5)):

o(t) d ¢
? = % B (63153333 -+ €33Ez) dA (4310)
83w 1 €s Adgb(t)
= —e31h,eb " Ay — =33 4.3.11
e | w2t ™ T 2h, dt (4:3.11)

where b is the width of the beam, h,, is the thickness of the piezoelectric layer, h.
is the thickness of the elastic or support layer and h,,. is the distance between the
centre of the beam and the centre of the piezoelectric layer (hy. = (he +h,)/2). It
should be noticed that the integration of the capacitance should be done over both
piezoelectric layers which for series connections means a that both thicknesses
must be included, hence the number two in the denominator of the capacitance
term.

Dynamic analysis using modal shapes

To solve the above equation and assuming linearity, one can follow the Ritz method.
In this method, the displacement is a superposition of products between known
functions independent of time known as shape functions 1, (z), and functions
which depends on time known as time functions 7, (t).

e, t) = S by () me(0) (4.3.12)

where 1,.(x) are the mass normalized eigenfunctions which depends on the bound-
ary conditions and 7,(t) are the modal coordinate which depends only on time.
In order to simplify the system, we assume proportional damping which means
we can model the damping as proportional to the vibrations of the non-damped
system. Hence, the modal shapes 1,.(z) are the modal shapes of the undamped
free vibration system.

These modal shapes can be calculated using Equation (4.3.12) and the appro-
priate boundary conditions to solve the Euler-Bernoulli beam equation:

0w (z,t) 0*w(x,t)

Py =5 i +mP)—5p

—0 (4.3.13)
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where 1Y is the equivalent bending stiffness of the beam section and m is the
mass per unit lenght of the beam. The term IY is calculated integrating the
stiffness of each of the layers respect to the neutral axis, which for a bimorph

symmetric beam gives:
he\® B
hy+—=1] — = 4.3.14
(104 %) 8]) (43,14

2b h3

IY =—|Y.—= 4,
3 ( 8 o

The complete mathematical development is detailed in Appendix C. From that

appendix, we recall the final form of the equations:

anr(t) 82777“(25) n

w2n, (t) + 26w, g + T +00(t) = Fpp (4.3.15)
€50Ldo(t) 6~ dne(t)
oh @ TR +;m o =0 (4.3.16)

where w, is the natural frequency, &, is the modal damping ratio, 0 is the backward
coupling coefficient, x, is the modal coupling and F' is the modal forcing. The
subindex r refers to the rth mode. Then the capacitance for a harvester whose
piezoelectric layers are connected in series is defined as:

€540L

G = 2h,

(4.3.17)
Equations (4.3.15) and (4.3.16) are second order ordinary differential equations
(ODE) whose solutions depend on the forcing applied which has to be known.
The unknown parameters are the time term and the voltage. Solving the previous
equations using all the possibles modes is computationally expensive, since there
are an infinite number of modes. Therefore only the first five modes are used to
compute the response. This reduction in the number of modes implies a reduction
in the degrees of freedom of the system, passing from an infinite number of degrees
of freedom (continuous approach) to only five. The system is then classified as a
multi-degree of freedom system (MDOF).

Electrical connection

In case of multiple patches, they can be connected in two different ways [15]: series
and parallel. In series connection, the piezoelectric patches are connected in such
way that their voltage add up to each other, whereas in parallel connection, the
current of each patch sums each other. In this thesis, only the series connection
is considered for simplicity.

To connect the piezoelectric patches in series, we should connect the positive
pole of one patch to the negative pole of the other. Since the section is symmetric,
the stresses have the same value but different sign (or direction) in the top and
bottom surfaces of the beam. Here we should notice that, since the piezoelectric
material is anisotropic, its coordinate system has to be defined. The piezoelectric
material coordinates are 1, 2, and 3 and correspond with the axis X, Y and Z
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Z

Superior Layer PZT Polarization
Base Excitation

Inferior Layer PZT Polarization

Figure 4.11: Schematic view of the cantilever beam energy harvester
and the circuit configuration.

respectively, being the material polarized along the axis 3 or Z in global coordinates.
The polarization of the piezoelectric patches is opposite to each other of as shown
in Figure 4.11 which means the electric field has opposite directions in both
patches for positive strain. However, the strain in the bottom layer is equal in
magnitude (due to symmetric section) and opposite in sign with respect to the
upper layer. Thus the electrical field of both layers have the same direction in
both patches. Then the direct connection between the bottom of the superior
layer and the top of the bottom layer is possible as Figure 4.11 shows.

Energy harvester under harmonic base excitation

One of the most commo ns ways to excite a linear energy harvester is using
harmonic base excitation. Harmonic excitation can be expressed in two forms,
i.e. as trigonometric form F = Asin(wt + ®) or as exponent form F = Ae/*'*®,
where w is the frequency of the forcing or excitation, “j” is the imaginary unit
(j = v/—1) and @ is the phase angle. In this case, is reasonable to assume
that, since the excitation is harmonic, the response of the system is harmonic
too. Then both the excitation and the response of the system can be expressed in

exponential form.

F(t) = Fyel! (4.3.18)
e (t) = Hare™! (4.3.19)
P(t) = Vyel! (4.3.20)

In this equation, the subscript A refers to amplitude of the parameter. Notice
that 7,.(t) and ¢(t) represent the time response term, from the Equation (4.3.12),
and the voltage response respectively. The terms H4 and V4 are the amplitudes
of the time and voltage responses respectively.

Using these assumptions the terms depending on time vanish when substituted
back in theEquation (4.3.15) and Equation (4.3.16). This makes sense, because
in a harmonic excitation the response is periodic with respect to time, since we
neglect transient effects. Therefore the complete response can be represented by
the response of once period or cycle. This response is called the steady-state
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respoise.
(wr + 26w, — w?) Hae — GV = F et (4.3.21)
: Vi . > .
C,Vawie? + EAW + 3 ke Hajwe " =0 (4.3.22)
r=1

From Equations (4.3.21) and (4.3.22) we can now obtain the values of V4 and H4
since they are uncoupled, and from them the values of the n,(t) and ¢(t) using .

Va= ! ; (4.3.23)
e Jwh
= C
BTIYOT L T et
F -6V,
Ha= 55—
w2 — w? + j28,ww
& Jwk,F
~ ,; w2 — w? + j2Lww 1
—|F-9¢ S e s (4.3.24)
1 L wC 4 i Jwk,0 wp — w? + j26w,w
— + jw
T =1 w2 — w? + j2&ww

Equations (4.3.23) and (4.3.24) are the same as the one expressed in Ertuk
and Inman book [15, Chapter 3] From these equations we can obtain also the
displacement recalling Equation (4.3.12) since now the time terms are known as
well as the mode shapes.

Wret (1) = f: {(F v §VA> Ur(w)er (4.3.25)

— w? — w? + j2&wpw

These equations are used the next sections to calculate the voltage output generated
by a porous energy harvester and the impact of the resistance on the energy
harvester performance.

From the previous equations, the optimal resistance can be obtained for the
voltage and power by differentiating the equations with respect to the resistance
and equating them to zero. But first, it is a common assumption to neglect the
influence of the piezoelectric coupling because these terms are normally very close
to zero (k, - 0 = 0), hence:

& —jwk F
;1 w? — w? + j26w,w
V=" (4.3.26)
E + ijp
1 & —jwk, F
= =+ j5wC 4.3.27
(R+‘7w p) wa—uﬂ—i—j%rwrw ( )

r=1
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Differentiating the previous equation the following can be obtained:

& —jwk,. F
dVa _ _; wy —w? + 25 ww —1 (4.3.28)
AR 1 2 R? o
(7 5c3)

Thus the derivative of the voltage with respect to the resistance depends on the
inverse squared of the resistance, which is never zero. In addition, the derivative
of the voltage tends to zero when the resistance tends to infinity, which means
that the voltage is maximum or minimum when the resistance is infinity. In fact,
it will be shown from the results given later that the voltage increases and is
always maximum at the maximum resistance. In the case of the power:

V 2
pP= % (4.3.29)
It is well known that:
la +bj|* = a® + b (4.3.30)

Assuming only one mode is excited (i.e. w, ~ w) then the contribution of the
other modes can be neglected. Hence:

Val?
P=—— 4.3.31
R ( )
1 /1 9 9 - W?KZF?
- }_% (RQ t+w OP ) (w2 _ w2)2 + 4E20202 (4'3'32>

1 - W?KZF?
- (_ +Rw2Cp2> 2 2)2 2002002
R (W2 — w?)” 4+ 42w2w

To obtain the optimal resistance, the previous equation is differentiated with
respect to the resistance:

(4.3.33)

apP - WzFG?Fz d 1 22

dR Z (@2 —w?)? + 4202 dR (E G ) (4.3.34)
- wW2K2F? -1,
- 2_; (W2 — w?)? 4 4€2w2w? (ﬁ +wiCp ) (4.3.35)
The previous equation is zero when:
—1 2 2

e =0 (4.3.36)
RuwCp =1 (4.3.37)

This result agrees with the literature [46, 185] and it is applicable to porous
piezoelectric energy harvesters.
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Figure 4.12: Voltage of the energy harvester for different porosity values (P)
for esz1 and ez3. —, —, —, —, , and — stand for 0%, 10%, 20%,
30%, 40% and 50% porosity.
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Figure 4.13: Power of the energy harvester for different porosity values (P)
for e31 and ez3. ——, ——, ——, ——, , and = stand for 0%, 10%, 20%,
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30%, 40% and 50% porosity.
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Figure 4.14: FRF of the power for different porosity values (P) for e3; and ess.
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Figure 4.15: Mazximum voltage of the energy harvester for different porosity
values (P) and resistances (R) for the coefficients e31 and e3s3.
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Figure 4.16: Maximum power of the energy harvester for different porosity
values (P) and resistances (R) for the coefficients e31 and ess3.
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Figure 4.17: Mazimum power FRF of the energy harvester for different porosity
values (P) and resistances (R) for the coefficients e31 and e3s3.
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4.3.2 Results for MDOF Energy Harvester

The presented analytical model is applied to the porous piezoelectric material.
The material and geometry properties are the same as the ones used in the SDOF
models, Section 4.2, and detailed in Appendix B.

The results of the analytical MDOF model presented are organised in two
main groups: frequency dependent results and resistance dependent, for both
piezoelectric coefficients e3; and es3 in the porosity range 0-50%. The outputs are
focused on the energy production, namely voltage amplitude, power and power
FRF.

In Figures 4.12 to 4.14, the dynamics of the model over a wide range of
frequencies is presented. This range, from 0 to 2500 Hz covers the first two modes
of the harvester, around 200 Hz and 1900 Hz, depending on the porosity. In these
results, the resistance is optimised following Equation (4.2.10). As the results show,
the natural frequency is significantly affected by the porosity, especially the second
mode. The porosity reduces this frequency which means the stiffness decreases at
a higher rate than the mass. The voltage output is compared in Figure 4.12. The
voltage output is much higher in case of the piezoelectric coefficient es3 than the
coefficient eg; as it was anticipated in the previous sections. The voltage output
in case of the e3; and e33 coefficients decrease with the porosity Also, it seems
there is a change in the behaviour for high porosities when the coefficient used
is e31. The voltage for 50% porosity is higher than for 40% porosity and almost
equal to 30%. This change is due to the more favourable relationship between the
piezoelectric coefficients, the stiffness and the dielectric coefficient.

The power and power FRF results shown in Figures 4.13 and 4.14 present
decreasing power for high porosity in case of the piezoelectric coefficient e3;. In
case of ez3, the values are similar between different porosities. The power is
calculated for the optimal resistance which ranges between 10 k€2 to 50 k€2. The
power shows similar values between both modes for a given coefficient. As it is
stated before, the maximum power given by the second mode shows almost no
dependency with respect to the porosity. The power FRF is a measure of the
efficiency of the harvester, expressed as a ratio between the voltage output and
the acceleration input. Although the power amplitude is higher in the first mode
for the piezoelectric e3; with respect the second mode, the FRF shows an opposite
trend due to the higher frequency of the second mode. It can be concluded that
work in second mode is less efficient than the work at the first resonance frequency.
In general, these results agreed with the results presented in Section 4.2 in the
range of frequencies studied. In this case the range of frequencies is from 0 Hz to
2500 Hz.

The second set of results includes a study on the sensitivity of the energy
harvester to the resistance and porosity. The results are plotted as surfaces, where
the z value is the maximum value obtained for the given parameter, namely,
voltage, power or power FRF. This maximum value is obtained for different
combinations of resistance and porosity in the given range of frequencies, from OHz
to 2500Hz. The results are shown in Figures 4.15 to 4.16. In case of the voltage,
it increases significantly with respect to the resistance around 100 k€2. Normally
this change in the voltage indicates that the optimal resistances are around those
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values. The es3 coefficient again performs better than the e3; coefficient due to its
higher value of the material coefficient. In the case of the power, higher powers are
located around the optimal resistance. The power shows an important decrease
for lower percentages for e3; . The power obtained from ez is higher than for es;
but still shows similar trend with an important decrease at the lower percentages
of porosity. Again in terms of power and efficiency, the piezoelectric coefficient ess
presents a higher performance compared to the coefficient e3;. However, neither
of them perform better than the dense material.

4.4 Conclusions

In this chapter, a complete study on the capabilities of the porous piezoelectric
materials has been undertaken. Two different approaches have been used to study
the material: using a single degree of freedom approximation (SDOF) and a
multiple degree of freedom approximation (MDOF)

A single degree of freedom model of an energy harvester has been presented
and studied. Using a spring-mass-damper system, a cantilever energy harvester
has been modelled, driven by two different coefficients: e3; and ez3. A multi-
degree of freedom model based on Euler-Bernoulli assumptions has been also
developed to model an energy harvester made of porous piezoelectric materials.
Different percentages of porosity as well as different resistance values have been
tested against the model. Different parameters have been used to compare the
performance of the piezoelectric coefficients, such as voltage output, power output
and efficiency (power FRF).

The results presented show no benefit from the addition of pores to the
piezoelectric materials. Initially, given the positive results of the FFOMj, it was
expected to increase the power output when using porous material in the ds3
configuration. However, the results showed the opposite trend. This might be
due to the monotonic decrease of the piezoelectric coefficients e (C'/m?) with
the porosity (See Appendix A). Although both coefficients, e and d , represent
the same material behaviour, each one represents that material behaviour under
different conditions. The e expresses the capability of the material to convert
stress to charge, and the d the capability of convert strain to charge. For energy
harvesting approaches, it is preferred to have material with a rate of conversion
of stress to electric field, which means high e coefficients. It can be concluded
that the decrease in the piezoelectric coefficients is not counterbalanced by the
decrease in the capacitance which was the hypothesis that motivated this thesis.
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Chapter 5

Non-linear Energy Harvesting

In the previous chapters, the homogenized material properties of porous piezo-
electric materials have been obtained using different methods (analytical and
numerical) and accounting for the main features of the manufacturing process
such as polarization of the material. Later the material has been studied for energy
harvesting purposes. Using simple single degree of freedom models, the material
has shown some interesting figure of merit changes which might be beneficial
for energy harvesting. However, the analytical MDOF model showed no benefit
from the porosity, either for e3; nor ess . It is concluded that, for linear energy
harvesters, the decrease in capacitance does not counterbalance the decrease in
piezoelectric coefficient. Hence the amount of energy is lower than for the dense
materials.

In this chapter, another approach to the porous energy harvester is investigated
using non-linear impact. It is known that impacts excite higher frequencies of the
harvesters which in general provides more energy. The reduction in capacitance
might be beneficial when several modes are highly excited. This chapter starts with
a short review on the impact modelling and its applications to energy harvesting.
Later a finite element beam formulation is presented. This formulation includes
the modelling of the contact and electric elements. The FE model is validated
through a hammer test and sinusoidal excitation test on a linear energy harvester
(no impacts). Later this model is used to simulate the impact energy harvester.
As a first stage, in order to prove the benefits of impacts for energy harvesting, the
test harvester is not made of porous material, but rather a Macro Fiber Composite
(MFC) piezoelectric patch. Prior to studying the non-linear impacts on porous
piezoelectric materials, it seems logical to first study its effect on non-porous
materials, which are better known and easier to manufacture. Since the objective
is also to validate the impact model through experimental tests, it is desirable to
perform the test on materials less sensitive to manufacturing defects or cracks than
the porous piezoelectric materials. Later, if the approach is proven successful, it
can be applied to porous materials.The FE results are compared with experiments
results and conclusions are presented. These validation tests are performed on
the linear harvester (no impacts).
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5.1 Impact energy harvesters: State of Art

In Chapter 4 there is an emphasis in the material modelling for energy harvesting
purposes. The excitation used in that chapter is the common harmonic base
excitation. In this chapter, the emphasis is moved toward the excitation energy
source. Linear energy harvesters are based on tuning the natural frequency of
the harvester to match the excitation frequency [44], so that the amplitude of the
vibration, and hence the power output, is maximum. The excitation frequency is
then a constraint in the design of the energy harvester. Normally, natural sources
of vibration, such as wind or waves, or machinery are used to excite the energy
harvester. These sources of vibration are normally low in frequency (<100 Hz)
and therefore, the first vibration mode of the harvester is designed to match the
excitation frequency. However, higher modal frequencies might generate more
energy than lower ones.

In this chapter, the primary excitation source is impact at the tip of the
harvester and, at the same time, harmonic base excitation. Impacts have been
proved to be an efficient way to excite higher frequencies using low frequency
excitation. This conversion mechanism allows the conversion of low frequencies
to high frequencies (1kHz - 1MHz) [186] depending mainly on factors such as
the impact stiffness or contact duration. Using this principle, some authors have
developed different models of impact energy harvesters. The use of mechanical
impact as a source of vibrations for energy harvesting has been addressed by some
authors. One of the first contributions to the field of impact energy harvesting was
made by Umeda et al. [187], where the dynamic system was solved analytically
using an equivalent circuit. The importance of the quality coefficient and the
existence of an optimal resistance was presented. The quality coefficient is a
dimensionless measure of the energy dissipation and is defined in that paper as:

Wg
Wimp

where W g is the electrical energy dissipated in the electrical load and W, is the
energy of the impact. Cavallier et al. [186] studied an experimental rotational
impact piezoelectric energy harvester. This harvester uses a silicon cantilever beam
as the vibrating energy storage element and mechanical shocks as the excitation
source. The advantages of shock excitations that produce a higher voltage output
are highlighted. Renaud et al. [185] investigated the performance of a cantilever
beam EH with impact. This harvester was modelled as asingle-degree-of-freedom
system, the dynamic equations are solved again establishing an equivalent electrical
modelwhere the stiffness is represented as a capacitance, the damping as a resistor
and the mass as an inductance element. In this way, the mechanical part can be
represented as a circuit which can be coupled with the electrical circuit through a
transformer. The impact was applied as an instantaneous velocity load at the tip.
This model gives a good insight of the dynamic behaviour of an EH, although, the
equivalent electrical model (mechanical + electrical)does not allow the detailed
modelling of the contact. Jacquelin et al. [177] modelled the impact between
two cantilever beams and a seismic mass using the anti-oscillator approach. The
dynamic equations were solved for a limited number of degrees of freedom using

n = (5.1.1)
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the Rayleigh-Ritz procedure and the Hertzian contact law is included [188]. The
authors concluded that the maximum power obtained is due to the transient
(impact) regime; this power is much higher than the power obtained in the
linear steady state (harmonic excitation) although the steady state power for
the linear case is more constant with time. Gu and Livermore [189] modelled
analytically and tested experimentally a piezoelectric energy harvester impacting
against a small beam. It was highlighted that an impact energy harvester is
more efficient than its linear equivalent . The shift toward higher frequencies is
shown and the importance of an appropriate tailoring of the mechanical damping
is presented in order to improve the power obtained. However, in that paper
the impact of the base excitation frequency and the resistance is not assessed.
Vijayan et al. [183] investigated two piezoelectric cantilever beams impacting
with each other. The contact is modelled using a linear spring with high stiffness.
In this harvester, the power is highly sensitive to the clearance and thickness
ratio. The presence of impacts generates more peaks in the frequency response at
different frequencies which means more modes are excited and more power can be
harvested. A first attempt to use tailored material properties in order to favour the
impact was reported by Martinez-Ayuso et al. [190]. In that paper, a composite
porous piezoelectric material is used in order to improve the performance of the
energy harvester. The low importance of the resistance is noticed as well as the
good behaviour of the energy harvester in off-resonance frequencies. Most of
the presented studies involves numerical simulations, and, in many cases, their
boundary conditions might be difficult to reproduce in the laboratory or in real
applications. For example reference [190] assumes a regular impact of a ball and
is modelled as a simple two degree of freedom approximation. Although this
approach might be feasible, its experimental validation will pose some difficulties
given the difficulty to predict the exact moment of the impact between the ball
and the beam. One solution might be to enclose the bll in a cage which restricts
its movement to only one direction. However this produces extra impacts between
the ball and the cage walls. These impacts are not perpendicular hence friction
might play an important role in the harvester dynamics. Therefore, in order to
obtain a reasonable approximation in the laboratory the approach presented in
this chapter diverges from that the presented in reference [190]. The presented
impact energy harvester is attached rigidly to a base which is excited sinusoidally.
The deformation of the harvester due to this excitation will be determined by
the contact between the beam and the rigid stopper. It should be noticed that
the rigid stopper is also attached to the excited base, hence the relative distance
between beam clamp and the stopper is always constant.
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5.2 Finite Element Formulation

5.2.1 Principle of Virtual Work for piezoelectric materials

The finite element formulation is established in terms of a weak form of the
differential equations of the problem. This form involves the virtual work equation:

SW =f u (5.2.1)

where W is work, f is force and u is displacement. The principle of virtual work
can be stated as follows: “If a continuous body is in equilibrium, the virtual work
of all forces moving through a virtual displacement is zero” [191]. Which can be
summarized in the next equation:

SW =0 (5.2.2)

The energy of a body can be classified as internal energy or external energy.
Internal energy is energy stored into the body because of its deformation, electrical
field, etc. External energy is the energy acquired by the body because of the
loads applied on it. The principle of virtual work states that, if the body is in
equilibrium, the increment of energy due to internal and external energy is zero
which is expressed mathematically as follows :

oW = 5Wint6rnal - 6Wexte7‘nal =0 (523)

This principle represents the general behaviour of the material and it is applicable
to any elastic or non elastic material under any linear or non linear load. In this
formulation, the damping is not included in the energy equations. In this thesis
proportional damping is assumed, which allows the damping to be added at the
end of the finite element formulation. The proportional damping can be modelled
in two different ways. First, Rayleigh damping is obtained by multiplying the mass
and stiffness matrices by o and S coefficients which are obtained from experiments.
Second using individual modal damping ratios that are obtained from experiments.
This method is explained later in this chapter. The energy in the principle of
virtual work can be particularized for a deformable body with mechanical and
electric physics as:

Mechanical
(5Wu,mtemal:/QpiidudV—i—/Q(r(Sst (5.2.4)
5Wu7memal—/ﬂpmf 5udV—|—/ ToudA (5.2.5)
Electrical 0
ST imternal = /Q D 0EdV (5.2.6)
Wosrtrn = [ 6004, (5.2.7)
¢
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where I' and €2 are the surface and volume domains where the mechanical
surface loads T or charge surface loads T, and the volume forces p,,, are applied
respectively. The virtual quantities are expressed with the ¢ symbol. The internal
energy 0Winternar is the energy of a body because of its deformation or electrical
field. The first term is related to the kinetic energy of the body. The second and
the third terms are related to the elastic and electric energy stored in the body.
In this thesis, it is assumed there are no external free charges in the piezoelectric
material, other than the one generated by its piezoelectric effect, hence:

oD;
6@» N

0 (5.2.8)

where z; is the spatial coordinate vector.The external energy W, terna is stored
energy in the body as a consequence of external loads acting on it. The first term
is related with the volume forces and the second with the surface forces. In case
of the electrical external forces, since external body charges are not considered,
that term in not included here, showing only the external surface charge term.
Only linear constitutive laws of materials are considered in this thesis for the
materials under study, namely the piezoelectric linear and the elastic materials.
Consequently no material non-linearities are studied in this text. The piezoelectric
material follows the linear piezoelectric constitutive law, defined as:

o=Ce¢—eE
D=ee+€°E (5.2.9)

Any other non piezoelectric material is considered to be elastic and to follow the
elastic constitutive law (Hooke’s law).

o=Ce (5.2.10)

Substituting these equations into the principle of virtual work and accounting
for the two possible type of materials, piezoelectric (sub-index “p”) and elastic
(sub-index “e”), the principle of virtual work can be formulated as:

SW =0 (5.2.11)
oW = 6Winternal - 6Wexte7‘nal (5212)
oW = p Uou.udV, + / 0e.C.e.dV.+

Qe e

—/ pefeéuedVe—/ ToudA+
Qe

Fop

+ / 0, ii,0u,dV, + /
Q Q

P P

—l—/ 5Epep£pdvp—|—/ 0E,e’,E dV,+
QP QP

—/ ppfpéupd%—/

(5spCpepdV;,—/ (5£pengdV;,—l—

Qp

Tp5updAp — / T¢7p5¢dA¢ (5213)

P Cyp
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In this equation, the first two lines refers to the elastic body. The kinetic energy
is the first term, followed by the elastic energy. The second line represents the
energy that the body storesas consequence of the external body forces, volume and
surface respectively. The rest of the lines are the contribution of the piezoelectric
body energy. Equivalently to the elastic body, the first term represents the kinetic
energy, followed by the energy stored as elastic deformation. In this case there
are three extra terms, two of them correspond to the energy derived from the
piezoelectric effect. These two terms have different signs and they are responsible
for the conversion of the mechanical energy into electrical energy and vice versa.
The third term is related to the energy stored as electric field. The last line of
the equation correspondsto the external loads applied to the piezoelectric body:
external mechanical volume forces and external surface forces, mechanical and
electrical.

5.2.2 Kinematics of an Euler-Bernoulli beam

The beam elements are one-dimensional representations of a more complex 2D or
3D physical model. In order to reduce the dimensionality of the problem, a set of
assumptions need to be employed which, while condensing the problem dimension,
keeps the representativeness of the numerical model. The dimension conserved
goes along the neutral axis of the beam in the longitudinal direction. In addition,
considerations have to be made when the model considered is 2D or 3D. In the
case of 2D some displacements must be neglected. The beam model scheme is
presented in Figures 4.11 and 5.1. In Figure 5.1, the 2D beam is presented, where
the displacements u, v and w correspond to the displacements in the direction =,
y and z. The axis z is perpendicular to the other two. The local coordinate of
the beam fibre y is measured with respect to the neutral axis 0-0. The neutral
axis represents the location where the beam fibers are not under tension nor
compression and its obtained through the following equation:

/ CprydA =0 (5.2.14)
A

In this case, the Euler-Bernoulli assumptions are employed to model a 2D
beam element as Figure 5.1. These assumptions are:

1. The cross-section of the beam is infinitely rigid in its own plane.
2. The cross-section remains plane after any deformation.

3. The cross-section of the beam remains normal to the deformed axis of the
beam.

These assumptions are reasonable for slender beams subjected to bending or
extension loads with linear materials. Since the beam cross section is infinitely
rigid, all the deformations are located around its longitudinal axis (x). Then these
assumptions mean that the displacement field of beam element is represented
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Figure 5.1: Deformation of a section of an Euler-Bernoulli beam.
Source from [193]

mathematically as:

u =u, — Oy — Pz
Vo= (5.2.15)

W =u,
where 6 and 1 are the rotationsof the beam defined as:

dy dz

0= s , = I (5.2.16)
It should be noticed that the values of # and v are obtained from assuming
small rotations of the section. Since our model is a 2D model, the terms related
with z must be neglected. Also to simplify the problem and avoid geometrical
non-linearities, small deformations are assumed. In the most of cases this is a
valid assumption when the excitation forces are not too high. Small strains are
expressed mathematically as [192]:

I 2.1
d€i; 5 (89@ + oz, > (5.2.17)

Given the displacement field u , the strain field can be obtained through differen-
tiation of this displacement field. In that case, the assumption of a rigid cross
section has important consequences, since it enforces that the following strains
are equal to zero.

g, =0 e, =0 €y =0 (5.2.18)
Also, supposing that the sections remain plane after deformation enforces that:

€y =0 €., =0 (5.2.19)
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Neutral 2! Qw2

axis  d¢1 Qui qe2 qu2
(. Plewdecticlayer

Integration e
fields 0 ¢ 1

Figure 5.2: Piezoelectric beam element with two nodes and three degrees
of freedom at each none. The local coordenates are also shown.

which means that the only deformation is the onerelated to the longitudinal
direction, hence the strain tensor can be written as:

_du du, d?y
“dr dr  Vda?

E=¢, (5.2.20)
This equation summarizes the kinematics of an 2D Euler-Bernoulli beam, and it
will be applied to the principle of virtual work equation.

5.2.3 Finite Element Discretization

In order to solve the Equation (5.2.13) with the proposed assumptions derived
from the beam kinematics (Equation (5.2.20)) using the finite element approach,
these equations have to be discretized into elements and nodes. It is assumed
that the beam is a straight elastic structure with uniform geometry and material
properties, at least in each of the elements. The structure is made of different
layers as Figure 5.2 shows. The section does not need to be symmetric, as long as
the centre of coordinates is at the neutral axis. In the case of multilayer beams, the
Euler-Bernoulli model leads to a good approximation, as long as the bonding layer
between each of the layers is rigid in shear. Otherwise, the third Euler-Bernoulli
hypothesis (sections always remain always perpendicular to the neutral axis) is
invalidated.

To calculate the continuous displacements of the beam, the displacement field
is approximated by the interpolating functions. The nodal values are the values
of the displacement field at the nodes, and they are written as q [192]. These
functions interpolate the results obtained at the nodes. The nodes define the
elements which conform the representation of the structure. Our general element
has 2 nodes, with three mechanical degrees of freedom and one electrical degree
of freedom at each node, as Figure 5.2 shows. The degrees of freedom are axial
displacements (u), vertical displacements (v) and rotations () for the mechanical
field and voltage (¢) for the electrical field. For each of the fields, mechanical and
electrical, one set of interpolating functions is used. In case of the mechanical
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field, the functions used are the standard cubic Hermite shape functions which
allow us to interpolate the displacement field as:

=NTq,
u= {“ v (5.2.21)
v=N,q,

The shape functions are formulated in the element local coordinate system. The
element has unit length and in our case, the nodes are located at coordinates 0
and 1. Other elements might differ on these coordinates, for example start at -0.5
and end at 0.5. The local coordinate is £ and it corresponds with the lenght of
the element.

£== (5.2.22)

It should be noticed that the shape functions depend only on the local coordinate &,
not on time. Hence the nodal values do not depend on the displacement within the
element. However they do depend on time. The values of these shapes functions
are given by:

_ | 1=9
N, ¢
1 -3¢ 428°
_ | L€-26 48
No= | T30 g (5.2.23)
L(=€*+¢%)

and nodal values are:

Q= { fut ] (5.2.24)
qu2

quv1
q =" (5.2.25)

Gv2
qo2

where the sub-index 1 and 2 refer to the nodes 1 and 2 respectively (See Figure 5.2.
In a vectorial fashion, the displacement field can be expressed as:

u=[N, N, ] { u } (5.2.26)

v

The nodal values are the unknowns in our mechanical problem. The solution at
the nodes is exact (under the given assumptions), and it is later approximated
(interpolated) with the shape functions for the rest of the element.

For the electrical field, the procedure is similar, but some assumptions related
to the connection of the patches need to be introduced. In the element used in this
thesis, the contributions of all piezoelectric layers at a given element are condensed
in two electrical degree of freedom, one per node. Hence the connection between
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Figure 5.3: Series electrical connection between layers. From [192]

these layers needs to be accounted for in order to condensate the appropriate
contribution of each layer. Only the series connection is considered in this thesis.
This type of connection sums the voltage of each of the piezoelectric layers. In
addition, similarly to the mechanical field, in the electrical field some degrees of
freedom need to be fixed in order to avoid underconstraining the problem, or what
is commonly called in the mechanical field, to avoid rigid body motion. One of
the poles of each piezoelectric layer is connected to ground for this purpose as
Figure 5.3 shows, which makes the voltage equal to zero at that interface. Since
the voltage is zero at one of the interfaces of each piezoelectric layer, the voltage
degree of freedom actually represents the voltage difference between the top and
bottom interfaces of the piezoelectric patch. Furthermore, it can be assumed
that the voltage follows a linear distribution across the thickness of the patches
[15, 192]. Then the electrical field is given by:

E 99
_ _ 99 ) T
E=-Vo=—7"= p o _ig@ (5.2.27)
y

as:

E= (5.2.28)

where the electric shape functions are linear and defined as [194]:

(%H?) (1-9)

N, = (% ) n) o (5.2.29)

where 7 is the local coordinate across the thickness. This coordinate can be
integrated numerically in a similar way to the integration of the local coordinate
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€. The integration across the thickness means that the proposed beam element is
not a pure one-dimensional element. However, this integration is required by the
electrical field computation and it should be seen more as a consequence of the
coupling between the different physics. In that sense, the ratio one dimension per
field is still kept in our proposed element.

The electrical nodal displacements are given as:

qe1
— 5.2.30
de { qp2 } ( )

where the sub-index 1 and 2 refers to the electrical degrees of freedom 1 and 2
located in nodes 1 and 2 respectively (See Figure 5.2). It is interesting to notice
that Equation (5.2.29) involves bilinear functions depending on the length of the
element and its thickness.

5.2.4 Equations of Motion

Defined the discretization of the problem, now we proceed to introduce the assump-
tions (Equation (5.2.20)) and the discretizations (Equations (5.2.21) and (5.2.28))
into the principle of virtual work (Equation (5.2.13)). These procedure is summa-
rized here for each of the terms of the piezoelectric body. For the elastic body the
procedure is equivalent, but accounting for the lack of the electric and piezoelectric
terms. For conciseness, the complete integration of the principle of virtual work
equation is omitted. Summarizing in this section the main steps and terms

/ p,u,ou,dV, = dq [ N, N, |p, { E“ } { 3“ } dv, (5.2.31)
N q
) AV, = 6 1| vy, 5.2.32
Q, Gy q/ [Nv}{qv] 8 ( )
ON
. T ax
/Qpaspe E,dV, = 5q/ |e, ON, [as ] dV,  (5.2.33)
dy
Ny ONg N, | [ qu
_ 2.34
[ s / [ BN [N [ ]y,
ON, 7
8N¢ 8N¢ 833'
E e¢° E — o
/Qp5 p€°pEpdV) 5q¢/ﬂ [ or By }ep ONy [qsb}d‘/;?
’ dy |
(5.2.35)
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The term related to external loads can be generalized as:

P

/ T,0u,dA, = 0q
Top

/ p,f,0u,dV, = dq

[ N, N, |p,f,dV,

Qp

[ N, N, ]T,dA,

Qp

(5.2.36)

(5.2.37)

The previous equations give as a result the mass, stiffness, piezoelectric and
dielectric matrices, which are denoted by:

_Mu
M, = 0

ox
_ / [N, N, el ON,
Q, —2

N,
3]

ON,

Koo Ox
K]/ A A

dy
ON,,

[ as | dV,
dy

ON, ON, 1 [N,
Coup = (Ko KM/ B GRS

Qp

[ ON,

ON, 0Ny, 1 . | 0z
K¢>¢>,p:[K¢¢}=/ l—ax 0y ]e vl on, |V

Qp 8y

and the external forces can be summarized as:

fo

Q;

_ [fau]
=l =
_ [fral
=0 -

= [N, N, |T,dV,

[N, N, ]p,fdV,

Qp

[N, N, ]T,dV,

Tp

Qp

(5.2.38)

(5.2.39)

(5.2.40)

(5.2.41)

(5.2.42)

(5.2.43)

(5.2.44)

(5.2.45)
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For the external forces, the units of F and Q are force and charge respectively.
These integrations are made over the volume with actual nodal coordinates
(physical element), however integration techniques can be applied in order to
reduce the numerical cost. For that reason, the physical element is converted
to an isoparametric element called a reference element. This element has unit
length, and in our case, it starts at 0 and ends at 1 as Figure 5.2 shows. Its
integration is fast and the number of evaluations required is also low. In the
physical element, the coordinate system has x and y components, whereas in the
reference element the coordinates are £ and 7. The conversion between reference
element and physical element is made through the Jacobian which is:

oX
I=1% (5.2.46)

where:
X = [ﬂ , £ = m (5.2.47)

The Jacobian for the electric shape functions is already included as 1/L and
1/h, whether in the mechanical shapes functions (Equation (5.2.23)) need to be
added to the shape functions and the differential of volume when the physical
domain is converted to the reference domain. In addition, Gaussian quadrature is
recommended in order to reduce the computation of the shape functions.

The Equations (5.2.31) to (5.2.35) are introduced into Equation (5.2.13)

0qM.q + 0qK q — dqF,  —0qF .,

+0gM,q + 0gK g + dqK , as — 0asK ,,a + dasK,,qs
—oqFg , —dqF, —dqsQp , =0 (5.2.48)
As we can see, there are two virtual quantities, q and q4 which can take any
possible value. Therefore, to fulfil the requirement that the Equation (5.2.48) is
equal to zero, the product which is multiplying each type of virtual displacement

needs to be zero. These means that the terms of the previous equation can be
grouped into two separated equations:

M(Meq +M G +K,q+Kq+ KW%) _
54 (Fo, +Fr +Fo, + Fr) (5.2.49)

37 (K a1 + Ky, 00) = da7 (Qp, ) (5.2.50)

Then the virtual terms can be removed since they are at both sides of each
equation.
Mdg+Maq+Kag+Kag+K, ds=..
"'FQ,E + FF,e + FQ,p + FDp (5251)
—Koupd + Ky pdo = Qr,, (5.2.52)
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Then, if the different matrices are coupled to each other, the following can be
obtained:

M§ + Kq + K, a5 = Fq + Fp (5.2.53)
~K,.a+ K, = Qp (5.2.54)

which, expressed vectorially , gives the very well known dynamic equation:

L S Per] e

In this equation, the unknowns are the nodal values, displacements, velocities
and accelerations, and the rest of the variables are knowns. The formulation of
the external loads is discussed in next sections for two cases: external resistor
loads and impact. The Equation (5.2.55) is integrated numerically using a time
integrator scheme. In our case, the very well known “Newmark method” is used.
The Newmark method is a second-order integration scheme, which allows the
integration of the accelerations (second derivatives of displacements) and velocities
(first derivative of displacements) as functions of the displacements. It is based
on a Taylor series expansion of the displacements and velocities, and it proposes
an averaged acceleration between time ¢, and t,,;. The system , with only nodal
displacements as unknowns, is then solved using a Newton-Raphson iterative
algorithm. These methods are explained detailed in reference [191], which is the
author’s recommendation for further reading about finite element implementation.

5.2.5 Electrical external loads: Resistor

In piezoelectric energy harvesting, the voltage difference generated in the piezoelec-
tric material is used to power small devices. Although many components can be
attached to the energy harvester, their effect can be simplified by electric circuit
laws to only one element of each type, normally to a resistor, and in some cases
inductors and capacitors are included as well. In this section, the implementation
of a resistor element in the finite element method is discussed. Since we only
consider one of each component, all the electrical magnitudes are scalar. However,
the proposed beam element has many electrical degrees of freedom. To condense
the electrical degrees of freedom present in the beam to only one equivalent value,
the capacitance of all elements is summed as:

Kyp = MTK,M (5.2.56)
Kgy = KoM (5.2.57)
Ky = MTKg, (5.2.58)

where M is a mapping vector for the electric degrees of freedom.
The resistor’s behaviour is governed by the equation:

¢ =iR (5.2.59)
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where current ¢ is given as a function of charge (@) as:

dQ

= ——— 5.2.60
The resistance can be then related to voltage and charge as:
dQ
— %R 5.2.61

This equation poses the problem of the coupling between charge and voltage
through its derivative. In order to solve or de-couple those variables, a numerical
integration scheme needs to be used. This approach is similar to the one used to
solve the differential dynamic equations using the Newmark method. The proposed
scheme is the trapezoidal rule, proposed in reference [195]. This implementation
assumes that the increment of the charge through an increment of time At at the
time step t,.1 is averaged by the first derivative of the charge Q at the current time
step ¢, and the next one ¢,,,1. The average is parameterized using a parameter
which is proposed to be 1/2, the same value as the first order integration parameter
(7) in the Newmark method. The integration rule is summarized then as:

QnJrl - Qn
At

Since the dynamic equations are solved at t,,1, the formulation of the integration
rule needs to be as a function of ¢, 11 and @, 1. Recalling Equations (5.2.59)
and (5.2.60), the formulation of the stiffness matrix of the resistor and its load
vector is developed as follows:

= 0Qu11 + (1—60)Q,, (5.2.62)

Qnir = A0Q 11 + (1 - 0)AQ, + Q. (5.2.63)
Substituting the first derivative of the charge by the current:
Qni1 = —At i — (1 —0)Ati, + Qp (5.2.64)
Pt Pn

Qni1 = =A== — (1— )At— + Qn (5.2.65)

The term ),,+1 is arranged in a similar fashion to the dynamic equations:

¢n+1_ (b
AL = —(1 - 9)At

2+ Qn (5.2.66)
Kresis¢n+1 - QRS,n (5267)

where the term (Qrs,, represents the effective external electric load due to the
resistor. Equation (5.2.67) can be summed to the dynamics equations (Equa-
tion (5.2.55)) in a direct manner.

The procedure for other types of elements, such as inductors,will follow a
similar procedure, using different integrations schemes in order to account for
different derivatives of the voltage. However, the implementation of capacitors is
straightforward since its equation is:

Codp = Q (5.2.68)

A capacitor C, has the same units (Farad) as the dielectric matrix, hence it can
be added directly to the dynamic equations 5.2.55.
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5.2.6 Mechanical external loads: Contact

The second example of external loads is impact. Impacts are forces or electric
charges applied to a body in a short interval of time. A very well known example
of impact is the contact between bodies. Throughout this thesis, the term contact
and impact are equivalent. In this section, the basic principles of contact are
explained and applied to an impact energy harvester. It is not intended to present
exhaustively these principles,but rather to summarise the proposed case. For
further reading, the authors propose the reference [196] where more details are
given about the contact mechanics problem, its formulation and different methods
of solution.

In a contact, there are no forces acting over the bodies until the moment
that they touch each other, when a force appears to prevent relative penetration.
This sudden change in the boundary conditions of the problem generates a strong
non-linearity. The value of this force depends on the algorithm used to model the
contact. C ontact problems are normally formulated as constrained optimization
problems. There are several methods to solve these optimization contact problems,
but the most important are the penalty method and Lagrange multiplier method.
In the penalty method, a small penetration of the bodies is allowed. Using a
predefined contact stiffness, this penetration generates a contact force which is the
correction or penalty over the penetration. This penetration supposes a relaxation
of the problem, but it is shown in reference [191] that for high enough values of the
contact stiffness, the solution converges to the correct value. However, high values
of the stiffness contact can generate ill-conditioned or close to singular stiffness
matrices which might pose problems during solving. The penalty method does
not add new unknowns to the problem hence the contact stiffness can be summed
to the dynamic equations. In the case of the Lagrange method, the problem is
solved using the Lagrange multipliers approach. These Lagrange multipliers are
unknowns which are used to formulate extra kinematic constraints. The kinematic
constraints refer generally to the penetration between the different parts (nodes
and degrees of freedom) of the colliding bodies. The Lagrange multipliers are
equivalent to the reaction forces and their values are unknown and hence part of
the solution. Because of their nature, relating different degrees of freedoms, these
constraints generate zeros on the diagonal of the stiffness matrix and non-zero
elements off diagonal. These make the matrix singular, so specific numerical
approaches needs to be used in order to solve them . Also because of these extra
constraints, the size of the system to be solved increases, however, this method
is more precise since it does not allow penetration of the bodies. As we can see
both methods have advantages and disadvantages. There are other methods and
algorithms, but most of them are based on one or both of these methods.

In this thesis, the penalty method is used for its simplicity. It is proven in
reference [196] that both methods can lead to the same solution, under specific
conditions.
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Penalty Method

As stated before, the penalty method is one the most well known and applied
methods to solve optimization problems such as contact. In the simplest case,
which is with only one point of contact, the reaction force at the contact point is
given by the equation:

F chmtact g (5269)

contact

where g is the distance between bodies. As the contact force only operates when
the bodies are touching each other, the gap between them must be zero. To
improve the robustness the algorithm, that condition is converted to equal or
less than zero [196], which allows an small penetration between bodies. This
penetration depends on parameters such as time step, velocity of colliding bodies
and contact stiffness. Then Equation (5.2.69) needs to be re-defined as:

K Ifg<0
contact = contact g g B (5270)
0 Ifg>0

In this equation the restoring force is linearly dependent on the penetration or
gap. This is similar to the linear spring equation and hence it has been used in
many applications [177, 183]. In 1881, H.R. Hertz studied analytically the impact
between curved bodies [197]. He arrived to the conclusion that, in a perfect case
(no energy loss, elastic deformation), the restoring force can not depend linearly
on the penetration. He proposed a modification of the previous equation based
on the analytical solution of two perfect spheres [188, 197].

K 32 Ifg<
_ { contact g g — 0 (5271)

contact — 0 If g >0

In this method, the dependency between restoring force and the penetration
is non-linear which increases the computational cost. The Hertz contact law
approximates fairly accurately the restoring forces on contact between non-rough
surfaces [198].

In this thesis, the contact is modelled using a penalty method approach
over the Hertz contact law. In our case, the contact is calculated between a
flexible beam element and a rigid body (stopper). The flexible beam is the beam
element defined in the previous sections. Since the stopper is completely rigid,
its behaviour is not modelled, being the impact on the flexible body represented
by a contact kinematics constraint. Moreover, the contact area is assumed to be
very small, hence it can be represented perfectly by a single point. The chosen
algorithm is classified as a master-slave algorithm where one of the colliding bodies
is classified as “Master” and the other ones as “slave”. The algorithm intends to
avoid penetration of the slave body into the master one. In commercial packages,
this is the most common approach. However, it is also common practice to set the
contact in pairs, in such way that each body is master in one set of contact and
slave in the others [162]. This ensures robustness of the algorithm. In addition,
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we suppose there is no friction between the bodies, therefore, no tangential force
is generated between them.

The algorithm to solve the contact problem is summarized here, for more
details about this procedure, the author proposes reference [191].

e Search of candidate points. At the beginning of each time step, the
closest point to contact needs to be found. For that, the following equation
needs to be solved.

0= (X, —X;,)" &, (5.2.72)

where X, and X, are the coordinates of the nodes of the slave (s) and master
(m) bodies. €, is the normal vector between colliding objects referred to
the master element and it is unknown. €, is obtained as:

— Xs - Xc

o 5.2.73
norm(Xs — X) ( )

where the coordinates X, are the coordinates of the closest point of the
master body to the slave body.

o Calculate the existing gap. Known the best candidate point for contact,
the calculation of the gap needs to be calculated using the equation:

g=(X,—Xp)"-¢&, (5.2.74)

e Check if there is contact. The contact happens when the gap is equal
or less than 0.

(5.2.75)

) <0 There is contact
& > (0 There is no contact.

In the case where there is no contact, the contact procedure can be stopped
here until the next time step.

e Obtain natural coordinates of the contact point In order to check
that the contact happens in the predicted element, the equivalent natural
coordinates for the contact point in the master element are calculated. Given
the master tangent vector (t) and the normalized tangent vector (&r):

t = X1 — X (5.2.76)

t

T norm(t)

—

(5.2.77)

The natural coordinates of the contact point with respect to the element
are:
X, — X)T
g X=X o (5.2.78)
norm(t)
For the contact to happen in the considered master element, the values of &
must be between 0 and 1, or equal to them.
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o Calculate the contact force. When the contact occurs in the considered
element, we can proceed to calculate the reaction force using the Hertz
contact law:

F,=K,g"%&, (5.2.79)

The sub-index n refers to the considered degree of freedom. The parameter
K, is known as the contact penalty and it is assumed to be known from
the beginning, or at least approximated. This value needs to be obtained
experimentally since it depends on the material of the colliding bodies and
their geometry. For initial calculations, the contact penalty can be estimated
as a fraction of the elastic modulus of the material, for example:

_ A “nnan 2.
"TTI0V (5.2.80)

where A and V' are the area and volume respectively of the contact element.
In case of the colliding bodies are made of different materials, it can be
averaged between the possible values.

e Calculate contact stiffness. The stiffness matrix of the contact is pre-
defined as:

K =K,é,8. (5.2.81)

n,contact

+ Solve the system The terms F, and K, ;. are added to the external
forces vector and the stiffness matrix respectively. Then the system is solved
using the proposed iterative procedure (Newton-Rhapson).

The contact algorithms require small time increments in order to achieve
convergence. High contact penalty values are desirable in order to reduce at
maximum the penetration of the bodies, hence in case of penetration the restoring
force generated by this high penalty value might lead to numerical instability.
The way to reduce this restoring force, without reducing the contact stiffness, is
using a very small time step. Thus small time steps need to be used to ensure
the convergence of the algorithm. In our case, the time steps used range between
107% and 1077,

5.3 Validation of the numerical model

The presented formulation was coded in Matlab by the author and validated
against the results shows in the previous sections.

Using the same model as described in Appendix B, the natural frequencies
have been obtained and compared with the solution obtained in Erturk and Inman
[15]. Table 5.1 shows that the agreement is good between both models. In the
case of the “short circuit”, the piezoelectric patches are connected to each other,
and hence the voltage cancels because it has different signs, but same amplitude,
at the top and bottom piezoelectric layers. Hence it can be assumed that the mass
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Figure 5.4: Modes shapes for the cantilever bimorph beam model. In
black, the undeformed shape, and in blue the deformed shape corre-
sponded to each mode at the given frequency.

and stiffness matrices (stiffness includes the dielectric matrix also), responsible of
these natural frequencies, are correct.

In the case of the “open circuit” the piezoelectric patches are not connected to
any external element and hence they store energy from the system by acting as
capacitors. Since both values for the open circuit, namely the analytical and FE
model, are very close to each other, it can be assumed that the formulation of the
piezoelectric matrix is also correct.

Also, in the case of the open circuit, the piezoelectric matrix also affects the
natural frequencies, and is the key difference between the open and short circuits.
Also, the mode shapes have been plotted in Figure 5.4.

Table 5.1: Comparison of natural frequencies between analytical solu-
tion (Erturk and Inman [15]) and the presented FE model.

Short Circuit Open Circuit
Analytical FE Model Analytical FE Model
185.1 185.11 191.1 191.08
1159.7 1160.1 1171.6 1172
3245.3 32484 3254.1 3260
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Figure 5.5: The experiment setup for testing the beam sample. The
beam, shaker and data acquisition are shown.

5.4 Linear Experimental Testing of Energy Har-
vester

In this section, the model presented in the previous sections is calibrated and
compared with experimental linear results from hammer test and sinusoidal base
excitation test. These test are used to calibrate some model parameters such as
contact stiffness and damping. Once the model is calibrated, it will be compared
with the experimental results including non linear impacts.

5.4.1 Energy Harvester Model and Setup

The experimental device is shown in Figure 5.5 and consists of a beam mounted
in a cantilever configuration onto a shaking table to provide base excitation. The
beam is made of steel whose properties and dimensions are detailed in Table 5.2.
A single Macro Fiber Composite (MFC) piezoelectric patch (Smart Material type
M8528-P2) is bonded to the beam close to the root (the spacing between the
support and the patch is approximately 9 mm). The material properties and
dimensions are obtained from the manufacturing website and they detailed in
Table 5.2. The piezoelectric patch is connected to a resistor as Figure 5.6b shows
and then to the data acquisition system.

For the impact test, the contact point is located at the tip, at 10mm for the
free end. Figure 5.6a shows the side view of the beam with the direction of the
base excitation and highlighting the gap between the undeformed beam and the
steel tip at the contact area.
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‘ Beam Support Piezo Patch

Length (mm) 315 85
Width (mm) 30 30
Thickness (mm) 0.98 0.3
E (GPa) 65 30.336
p (kg/m3) 2750 5440
ds1 -170
Cp (nF) 177

Table 5.2: Material properties of the elastic beam and the MFEC patch.

5.4.2 Calibration Of Numerical Model: Hammer Test

In order to characterize the test beam, a hammer test is performed. This test
consists on a series of impacts on the beam tip with a force sensor located in a
hammer . The beam has an accelerometer located at its tip in order to measure
the response. An example of the impact is given in Figure 5.7a where the time
series of a single impact is shown. The signal is similar to a half-sine signal. The
beam response must decay completely between each impact. Measurements on
the physical beam are obtained using impact excitation approximately 15mm
from the root of the beam with the table fixed. These impacts are averaged and
post-processed using the data acquisition software. A rectangle window is applied
to the time series recorded. Since our objective is to excite high frequencies,
the hardest tip (steel) is chosen for the hammer. This tip is very stiff with
the maximum excitation bandwidth around 7 kHz. However, this bandwidth is
reduced severely due to the flexibility of the beam. In Figure 5.7b, the averaged
power spectrum result of the hammer test is shown. This figure represents the
amount of power that goes into each of the frequencies. It is shown that the
impact with steel tip can excite the beam up to 200 Hz. After 300 Hz, the amount
of energy that goes into higher modes is almost negligible. Figure 5.7a is used to
calibrate the contact stiffness. The hammer test is simulated using the developed
FE model and the value of the contact stiffness is adjusted until the force responses
of experimental beam and FE model match. In this case, there is no external
resistance connected. The piezoelectric patch is connected directly to the data
acquisition whose resistance is very high, hence the beam is considered to be in

Piezoelectric
Patch

* Base Excitation

Contact Ct;r)éa;ct
: Side !
Clamped Side Energy Harvester
Ga f

P Resistance |_ Data Personal

Physics Computer

* Base |—
(a) (b)

Figure 5.6: 5.6a Side view of the beam with excitation and contact.
5.6b Schematic of the experiment setup.
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Figure 5.8: Transfer functions results for the acceleration (5.8a) and
the voltage (5.8b). FE model results (—) and experimental values
(— ) are shown.

open-circuit configuration.

The result from the hammer test and the measured frequency response functions
(FRF) for acceleration and voltage, are detailed in Figures 5.8a and 5.8b. These
FRFs are calculated as the ratio between output (acceleration at the tip and/or
voltage) and input (force applied). From the experimental FRF (5.8a), the natural
frequencies can extracted and they correspond to the peaks in the FRF. Once the
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Table 5.3: Natural frequencies and damping ratios of the energy har-
vester in open circuit. Obtained from hammer test for a range of
frequencies from 0 Hz up to 1000 Hz.

Natural Frequencies (Hz)

Percentage difference (%)

Measured Damping Ratios (%)

Numerical Measured
9.0126 9.375 -3.87 0.194
49.713 49.84 -0.26 0.925
133.18 134.1 -0.69 0.864
262.59 272.3 -3.57 0.359
435.28 452.5 -3.81 0.126
648.38 670 -3.23 0.274
910.45 947.5 -3.91 0.160

natural frequencies have been obtained, the damping for each of the modes can
be extracted using the half-power method, which estimates the damping as:

f o Whpl — Whp2
2w,

(5.4.1)

where w,, is the natural frequency of the nth mode and wyy and wyye correspond
to the frequencies where the response is equal to the peak response divided by
the square root of 2. The results are shown in the Table 5.3, and show that there
is a reasonable difference between the predicted and measured natural frequencies.
The damping ratios are also very low, which is common for slender beams. This
method allows us to calculate the modal damping of each of the modes. This can
be used directly in the numerical analysis if using modal reduction, or used to
construct an approximate damping matrix. The damping matrix is approximated
as:

[ 26w, 0 0 0 Jrer]™"
o0 26w 0 : <1>§
C=[d & & o, |” 0 0 2&ws ®3
: - 0 :
0 0 26wn | | On
(5.4.2)

where ®,, is the modal shape of the nth mode and &, is the correspondent damping.
Once the damping matrix is obtained, the hammer test can be modelled as
a time simulation. To correctly represent the input force, the measured force at
the hammer tip in the hammer test is taken as the input of the numerical model
(See Figure 5.7a). This means that differences with respect to the experimental
input can be prevented. Hence, if the model is an accurate representation of
the harvester, its output will be very similar to the experimental response.
The outputs in Figures 5.8a and 5.8b show a very good agreement in terms of
acceleration response. This figure shows the transfer functions of the acceleration
and voltage, where the transfer function is the ratio input-output in the frequency
domain.The results show that the natural frequencies are captured very well by
the FE model. Also, the amplitudes are very similar between the model and
experiments for the first five modes and up to 300 Hz which is the maximum

Modelling of Porous Piezoelectric Material and Potential Applications to Vibration Energy
Harvesting



CHAPTER 5. NON-LINEAR ENERGY HARVESTING 123

frequency excited by the impacts. In the case of the voltage, there are some
differences, for example the presence of resonances in the voltage FRF from the
FE response. This difference in the voltage output might be due to the assumption
of s olid piezoelectric patch which is far from reality in case of MFC patches [199].
Another reason for the difference might be the over-simplification of the external
circuit to only one resistor. Nevertheless the FE model approximates the beam
response with enough accuracy to enable further tests and it will allow future
optimisation studies.

5.4.3 Calibration Of Numerical Model: Sinusoidal Base
Excitation Test

After the hammer test, we proceed to perform a sine test. In this test, the beam
is excited with a sinusoidal base excitation and its acceleration and voltage are
measured. This test is very useful for comparison of time responses between
experiments and numerical tests. In a sinusoidal test, the time response repeats
over time (cycles) and its dependency with respect to the initial conditions can be
neglected. Also, sinusoidal tests allow the solution of the system using harmonic
analysis which is very fast and easy to solve. In addition, the impact tests also
have base excitation loads and so it seems reasonable to evaluate these loads in the
linear regime and check that the model represents the physics of the experiment.

The test is perform by exciting the base of the beam at 13.5 Hz, which is
close to the first natural frequency. The amplitude of the acceleration signal is
around 2.5 N/m?. Different resistors have been attached to the harvester, but
in the results only two extreme values are shown, namely 25K (approximately
short circuit) and 1M (approximately open circuit). The signal is measured
for 30 seconds, which is enough for the transients to decay. The acceleration at
the base excitation is shown in Figures 5.9a and 5.9b, where the results are in
good agreement. The acceleration at the tip in Figures 5.9c and 5.9d are also in
good agreement, matching amplitude and frequency. It is interesting to notice the
noise at the wave crest, and this noise is likely to be high frequency vibrations
corresponding to the higher modes.

The results of the experiment are shown in Figure 5.9. These results are
used to correct the piezoelectric coefficient ds3 in order to match the response of
the numerical model to the experimental results. This value has to be adjusted
because the beam element is formulated assuming dense piezoelectric layers which
is not the case for the MFC patches. Assuming that the MFC patches are dense
might overestimate the mechanical properties of the MFC leading to low strains
in the patch and hence decreased voltage with respect to the engineered patches.
Also the MFC patches are specially designed to maximize the efficiency of the
piezoelectric conversion effect. The efficiency of these MFC patches is much higher
than solid patches. Also the MFC patches are subject to manufacturing tolerances.
Therefore, the coefficient d3; used in the model corresponds to an increase of 70%
with respect to the nominal value.

Once the model is correctly calibrated and their parameters corrected, the
sinusoidal test is performed. The results are compared with the FE model
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Figure 5.9: Sine test: Time signal of base acceleration (a, b), acceleration (c,
d) at the tip and voltage (e, f) for different resistance values, 25 kQ (left) and 1
M) (right). FE model results (=) and experimental values (=) are shown.

predictions in Figure 5.9. In this case the excitation frequency is 13.5 Hz. The
acceleration at the base excitation is shown in Figures 5.9a and 5.9b, where the
results are in good agreement. The acceleration at the tip in Figures 5.9¢ and 5.9d
are also in good agreement, matching amplitude and frequency. It is interesting to
notice the noise at the wave crest, this noise might be high frequency vibrations
corresponding to the higher modes. Finally, the results for the voltage output are
given in Figure 5.9e¢ where the results match with a high degree of accuracy.
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Figure 5.10: Schematic view of the impact setup and the base excitation
direction.
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5.5 Non linear Test of Impact Energy Harvester

Once the FE model is completely validated, we proceed to perform the impact
test. In this test, the test rig is excited with a sinusoidal force and various load
resistors are connected across the piezoelectric patch. At the tip of the beam,
a force sensor is attached to a very stiff bracket and located at 1 mm from the
beam, as shown in Figure 5.10. Two excitation frequencies are tested: 6 Hz and
13.5 Hz. Both frequencies are close to the resonant frequency of the first mode at
9.1 Hz. After the transients had decayed the base acceleration, tip acceleration,
piezoelectric voltage and contact force were measured at a sample rate of 1536
Hz for approximately 85 s. The contact stiffness coefficient is assumed to be
k. = 1000N/m?2. The model is run for 20s, and the last 10s is used for the
analysis after the transients have decayed. The model is solved using the mode
superposition method. Since the base excitation is measured by the accelerometer
located on the base, this acceleration can be converted to an equivalent force
which is applied to the FE model. The measured acceleration at the base suggest
that the equivalent force is around 200 N for the case studied. The average power
harvested between times T} and T5 is estimated as

1 Ts V(t)2
Pave - dt. 5.9.1
T —T) /T1 R ( )

When comparing the results at different frequencies and force amplitudes the
average power needs to be normalised for the different level of energy input. Here
we normalise the estimated average power by the square of the force applied; for
a linear system this metric would not change with the force level applied.

The time results are shown in Figure 5.11, where the contact force (Figure 5.11a)
and the acceleration at the tip (Figure 5.11b) are compared. Clearly, the results
do not match completely. However, the range of results is similar, in terms of
magnitude and frequency. The reasons for these differences are many, i.e. an
incorrect quantification of the high modes damping which is important when
impact occurs. Also, the value of the contact stiffness has been estimated from the
experiments themselves, approximating the values of the contact force between
model and experiments. Defects in the experimental setup are also possible, for
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Figure 5.11: Time results. a Contact force comparison and b) tip
acceleration comparison. FE model results (—) and experimental
values (—) are shown for a base excitation of 13.5 Hz and no resistor
is connected.

example, the contact point is very small, if it is not located appropriately it
might favour torsion modes which are not reflected by the numerical model. A
completely rigid connection has been assumed between the beam and the test rig,
which might not be fully adequate. However, the obtained values are reasonable
and it allows us to model the dynamic behaviourwith certain accuracy degree.

Figure 5.13 shows the estimated power as the excitation frequency varies for
the linear case, and also the case with impact for three excitation levels. The
linear harvester performs best near resonant, as expected. The impact has caused
a hardening response causing the resonant frequency to increase. Jumps in the
estimated power are clearly visible; these results have been obtained by stepping
up in frequency, ensuring a continuous beam response during the frequency change,
to maintain the solution on a particular solution branch for as long as possible.
The frequency is then swept down through the resonant region. Some multiple
solutions are apparent for some excitation frequencies near the jump region.

For the cases with impact, higher modes can be excited. The power generated
for an excitation of 13Hz and 200N is relatively large; Fig. 5.12 shows the voltage
output for the last 1s of the simulation and clearly shows that the second mode is
excited at approximately four times the excitation frequency.

Figures 5.14a and 5.14b show effect of the load resistance for two different
excitation cases, above and below the first natural frequency of the linear system.
Here the power is normalised by the average base acceleration squared. The
experimental results show the same trends as the simulated results, namely that
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Figure 5.13: The average power generated by impact.

close to the linear resonant the linear harvester performs better and above the
linear frequency, close to the nonlinear resonant frequency, the impact harvester
performs better. The optimum load resistance is also slightly lower for the impact
harvester.

The simulated results show that the nonlinear resonance had a jump in the
frequency response with multiple solutions. Figure 5.15a shows the experimental
voltage response at 13.5 Hz with the 100 k) load resistor, and shows the beam
jumping between two different solutions. This may be highlighted by calculating
the FF'T of the voltage for different periods of time covering different solutions, as
shown in Figures 5.15b and 5.15¢c. Clearly it is shown the excitation frequency and
its harmonics, which highlights that an essentially periodic response is dominant.
The component at four times the excitation frequency (i.e. 54 Hz) is the second
highest component because this is close to the second beam natural frequency
(49.84 Hz). However for the response shown on the right, there are also significant
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Figure 5.14: a The effect of load resistance on average power generated,
with and without impact, for the experiment an excitation of 6 Hz.
b The effect of load resistance on average power generated, with and
without impact, for the experiment an excitation of 13.5 Hz.

responses at half the excitation frequency and its harmonics. There is limited
excitation of the beam resonance although for the response shown on the left
there are noisy peaks around 12 Hz and 50 Hz. The average power generated in
the time intervals shown in Figures 5.15b and 5.15c are 31.1 pW and 48.1 yW
respectively. In Figure 5.15¢,the response does have higher amplitudes at the
higher frequencies.
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Hz and 200 N. b, ¢ The FFT of the voltage response at different times,
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5.6 Conclusions

This chapter has investigated a vibration energy harvester consisting of a base
excited beam with piezoelectric patch impacting on a stiff support near the tip of
the beam, in order to assess the benefit of impacts for energy harvesting. The
literature suggests that the impacts would excite the higher modes of the beam,
leading to the generation of higher levels of energy from the piezoelectric transducer.
This has been seen in the discussed model, where the excitation frequency must
be reasonably close to the first resonance frequency, otherwise the response of
the beam would be insufficient for impact to occur. The excitation frequency
and the low damping typical of beam structures (and required for efficient energy
harvesting) means that impacts cannot be considered as isolated, where the beam
response decays between impacts. Thus the typical beam response is periodic,
often at the excitation frequency although subharmonics can be present. This
means that the transient response at higher modes is generally not present, and
hence the higher modes are often not excited. However, if a harmonic of the
excitation frequency matches one of the higher modes, then the response at this
harmonic will be increased. But overall the effectiveness of this type of impact
harvester to excite the higher modes is very limited.

The main effect of the impact is to stiffen the system and hence increase
the resonance frequency. However the level of power generated at the resonance
frequency is similar to the linear case. The stiffening level and hence resonance
frequency increases with the amplitude of the excitation, because the time in
contact increases. A similar effect would occur with changing the gap between the
undeformed beam and the contact, and this could possibly be used as a semi-active
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system to tune the resonance frequency to the excitation frequency, although the
range of variation of the resonance frequency may be too limited.

Modelling of Porous Piezoelectric Material and Potential Applications to Vibration Energy
Harvesting



CHAPTER 5. NON-LINEAR ENERGY HARVESTING 131

German Martinez Ayuso



132 5.6. CONCLUSIONS

Modelling of Porous Piezoelectric Material and Potential Applications to Vibration Energy
Harvesting



Part 1V

Conclusions

133






Chapter 6

Conclusions

In this thesis, the main objective is to study porous piezoelectric materials for
energy harvesting applications. This main objective has been divided into two
research lines, one about the modelling of porous piezoelectric materials and
another about the energy harvester modelling. Therefore, this thesis is divided in
two main parts.

The first part estimates the equivalent material properties of the composite,
given the material properties of each of its components as well as its percentage
with respect to the total. Two different analytical methods are studied, namely
the Mori-Tanaka and Self-consistent methods, as well as two method to estimate
bounds on the properties, the Halpin-Tsai and Hashin-Sthrikman approaches.
Those results are compared with those from a finite element homogenization tech-
nique, showing good agreement, especially for the Mori-Tanaka method. The effect
of these homogenization schemes on the elastic, piezoelectric and the dielectric
coefficients is studied. The elastic and dielectric parameters present all very good
agreement between the different methods. The impact on the figures of merit of
the porous material is also studied, showing favourable values with respect tothe
dense piezoelectric materials. It is predicted that porous piezoelectric materials
might present important advantages for energy harvesting compared to dense
piezoelectric materials as a consequence of the beneficial ratio between the piezo-
electric coefficients and the permittivity when the porosity is increased. However,
these models do not accurate represent the values shown by experimental samples.
Hence, the polarization is seen as the main cause of this difference. Polarization
is a crucial factor to consider when fabricating piezoelectric porous materials and
predicting their final equivalent material properties. Polarization is the process
in which a strong electrical field is applied to un-poled piezoelectric materials in
order to align the ferroelectric domains. This process is modelled by replicating
conditions close to the manufacturing process using the finite element method for
different pore geometries such as spherical and ellipsoidal. The impact of cracks
in the material is also studied from a static point of view, to assess the impact of
the crack surface on the piezoelectric coefficient. The results are compared with
experimental values measured on samples manufactured in the laboratory, showing
a good agreement with the proposed ellipsoidal model. The importance of the pore
shape is highlighted since different shapes affect the electrical field distribution in
different ways, affecting also the amount of piezoelectric material not polarized,
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and decreasing hence the piezoelectric coefficients. The equivalent pore shape of a
real sample is predicted with the numerical model, showing good agreement by
comparison with high resolution scans of the material. It is concluded that the
presented model accurately represents the material behaviour and can be used to
predict the material properties of the porous piezoelectric material.

In the second part, the capability of porous piezoelectric materials for energy
harvesting is studied. Two different regimes are considered, linear and non-
linear. For linear energy harvesting, the analytical equations for single degree
of freedom (SDOF) and multiple degree of freedom (MDOF) cantilever beam
harvesters are presented and developed. The MDOF model is based on Euler-
Bernoulli assumptions and the Rayleigh-Ritz method. The external load studied
is harmonic base excitation. The effect of the porosity on the power harvested
is investigated, as well as the changes induced in the optimal resistance and
natural frequencies for both models. The results shows that the porosity decreases
the piezoelectric coupling and hence decreases the amount of power harvested.
The reduction in capacitance and stiffness provided by the porosity does not
counterbalance the decrease in the piezoelectric coefficient. Hence it is concluded
that the material is not appropriate for linear energy harvesting.

A non-linear approach is followed in order to complete the energy harvesting
study. The source of non-linearity chosen is impact. The impact is between the
energy harvester tip and a rigid body. The results shows that the model can
approximate the impact beam with a good degree of accuracy. However, for these
configurations the benefit of impact is very limited due to the necessity to match
one of the frequencies of the higher mode harmonics. Otherwise, the excitation is
not sufficient to excite those higher modes, and the performance of the harvester
is severely decreased. It is concluded that the impact shows no benefit for energy
harvesting in the current configuration.

The main contributions of this thesis can be summarized as:

e The analytical homogenization methods are accurate for predicting elastic
and dielectric properties in composite porous piezoelectric materials. But
for the piezoelectric coefficients, another approach must be used.

o Employing appropriate numerical homogenization techniques based on finite
elements, the piezoelectric properties of the composite can be accurately
predicted. These FE models must include the polarization effect through
simulating conditions close to those during manufacture.

o Analytical methods can be used to predict the dynamic behaviour of the
energy harvesters.

o The porous piezoelectric material does not show advantages for energy
harvesting with respect to the dense materials. This is mainly due to the
constant decrease in the piezoelectric coefficients which is not counterbal-
anced by the decrease in capacitance.

o Impact can excite higher modes which is beneficial for energy harvesting.
However, its applicability is very limited because the frequency of impacts
must match one of the higher mode subharmonics which might be difficult.
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Chapter 7

Future research

In the author’s opinion, some topics discussed in this thesis present promising
possibilities for future research. The following topics are proposed for future
research:

o Approximation to macro-scale. In order to ensure the representative-
ness of the proposed homogenization models, it is recommended to model
higher number of inclusions. Effects such as the distribution of porosity or
clustering might be important in the final homogenized properties.

« Extension to other fabrication processes. There is an interest to
extend the homogenization technique to model material manufactured using
other processes. These processes might generate other pore shapes or have
different manufacturing method. An example is the freeze-casting method
which is every day more used and it generates pore shapes closer to cylindrical
or conical.

« Extension to other materials. The developed framework is quite general
and representative. Hence it might be applied to any type of piezoelectric
material . Modelling the manufacturing process can also be included since
the changes necessary to model other manufacturing processes can be easily
implemented.

e Other impact approaches for energy harvesting. The proposed im-
pact approach, based on a beam impacting a rigid body, does not show
advantages. However, another type of impact which does not constrain the
displacement might be still beneficial in term of energy output.
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Appendix A

Material properties of Barium
Titanate

In this appendix, the material properties of the porous piezoelectric material
Barium Titanate (BaTiO3) are detailed. These properties are obtained in Chap-
ter 3 for an applied electric field equal to 105% of the coercive field and aspect
ratio equal to 0.85. These properties are used in Chapter 4 for energy harvesting
purposes.

Table A.1: Material properties of Barium Titanate (BaT'iO3) obtained
from finite element homogenization scheme which include polarization
effect. Applied electrical field 105% of the coercive field and aspect
ratio (aspect ratio) equal to 0.85.

Porosity (P) 01111 €31 €33 €§3
(%) (GPa) C/m*> C/m* € /ko
0 158.336 -3.135 14.512 1214.660
05 132.694 -1.819 11.129 1198.229
10 116.033 -1.144 9.160 1139.589
15 103.272 -0.739 7.866 1062.903
20 92.4454 -0.478 6.846  981.541
25 82.8147 -0.300 5.994  901.438
30 74.0960 -0.156 5.225  822.970
35 66.6353 -0.045 4.617  745.336
40 58.9215 0.039 4.086  670.217
45 50.2929 0.090  3.545  598.803
20 41.2693 0.100 2.952  531.264

It is interesting to notice the change in sign in the e3; for very high percentages
of porosities (P > 40%). This change can be explained using the models presented
in Chapter 3. In that chapter, a strong electric field is applied to porous piezo-
electric materials with spherical pores. The electrical field flows around the pores
interfaces following its tangent, which in some part of the pores is perpendicular
to the polarization field direction. The piezoelectric grains align parallel to the
electric field, hence tangent to the interface. Therefore, an important part of
the piezoelectric grains align perpendicular to the polarization field. If the pores
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Figure A.1: Material properties of the ceramic Barium Titanate
BaTiO3 with respect to porosity between 0% and 50%. Obtained from
homogenization scheme using finite element and including polarization
effect. Applied electrical field 105% of the coercive field and aspect

ratio (aspect ratio) equal to 0.85.

0.5

have high aspect ratio, or they are very large or numerous (high porosity), the
amount of polarized grains perpendicular to the polarization field increases. These
piezoelectric grains have the material axis 33 coincident with the RVE axis 11 or
22, which means the piezoelectric coefficient es3 contributes to the piezoelectric
e31. Since the ess is positive, the e3; becomes also positive.
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Appendix B

Energy harvester properties

In this appendix, the geometrical properties of the energy harvester discussed in
Chapter 4 are presented.

Geometry Elastic Material Properties
Beam Length (mm) 30 Elastic Modulus (GPa) 70
Piezoelectric Thickness (mm)  0.15 Poisson’s ratio 0.3

Elastic Layer Thickness (mm)  0.05
Analysis Parameters
Modal Damping Ratios 0.2, 0.2, 0.20, 0.2, 0.2

Table B.1: Geometrical properties of the beam, material properties of
the elastic support material and analysis parameters.

Superior Layer PZT Polarization
Base Excitation

Inferior Layer PZT Polarization

Figure B.1: Schematic view of the 2D cantilever beam energy harvester
and the circuit configuration.
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Appendix C

Euler-Bernoulli beam

The boundary conditions corresponding to a cantilever beam are:

wyer(0,1) =0 No displacements at the clamped side. ~ (C.0.1)

a re Y t . .
% =0 No rotations at the clamped side. (C.0.2)
z =0
62 Te ) t
[ng—lgx) =0 No moments at the free side. (C.0.3)
x =L
83 re ) t
IY% =0 No shear at the free side. (C.0.4)
xr =L

Applying these boundary conditions to the Euler-Bernoulli equation 4.3.13
and solving it with the Ritz method, we obtain the modal shapes as:

Up(7) = L cos ﬁw — cosh ﬁx + sin ), — sinh A, sin )\—x — sinh A—yc
" ~ VmL L L cos A, + cosh A\, L L
(C.0.5)

where L is the length of the beam and A, is the dimensionless frequency parameter
(eigenvalue) of the r th mode obtained from the characteristic equation:

1+ cosAcoshA =0 (C.0.6)

These modal shapes can be normalized using the following orthogonality conditions:

L
| o@ym @ =, (©07)
d*,(x
/ Vo) TY dxi ) dz = u?,, (C.0.8)
where 6, is the Kronecker delta defined as:
1 for r=
(Srs = orr=s (C09)
0 forr#s
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and w, is the undamped natural frequency of the rth vibration mode, calculated

as.
[ IY
wy = A2 — T (C.0.10)

From Equations (4.3.11) and (4.3.12) we can obtain then:

ebLdo(t) & o~ dne(t)
b, di +R+;H’” dt

—0 (C.0.11)

where k, is the modal coupling term in the electrical equation defined as:

dip (x)

- (C.0.12)

Ry = eglhpcb

z=L

It should be addressed here that the coupling term &, represents the piezoelec-
tric effect and it depends from the strain through the mode shapes v,.(x). The
mode shapes represents the natural vibration shape of the beam, hence they can
take different forms where the strain can takes positive or negative as Figure C.1
presents. In cases where the electrode is along the whole patch, the presence of
positive and negative values of strain generate positive and negative values of
current that is in contact with each other cancelling then their effects. Due to
this, from the energy harvesting point of view, the main operating mode of a
cantilever energy harvester with full electrode is the first mode. Following with
Equation (C.0.11),it can be represented as a circuit equation, grouping some
terms:

— .0.1

C, n, (C.0.13)
= dn.(t

== K, ”;Lf ) (C.0.14)
r=1

To obtain:
do(t) o) .
Cp— 7 —ip =0 (C.0.15)

In this equation, the piezoelectric material is modelled as a current source ¢ with
a capacitor C), to represent the energy losses. The external electrical loads are
represented as a resistor. In this equation we have only consider one piezoelectric
patch. To account for the other patch, we can use the Kirchhoft’s law for circuit
to the equivalent electrical circuit represented in Figure C.2. In this figure, two
piezoelectric patches with its correspondent current source and capacitance are
connected in series and to a resistor. Applying Kirchhoft’s law, we can obtain an
equivalent electrical law for the complete system:

o o

- 0.1
Lt i=0 (C.0.16)
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&, -191.083 Hz T ,-1171.941 Hz ¥ ,-3258.792 Hz

100 100 100

0 0.01 0.02 0.03 0 0.01 0.02 0.03 0 0.01 0.02 0.03
& ,-6376.926 Hz ¥ -10534.172 Hz U .- 15731141 Hz

100

0 0.01 0.02 0.03 0 0.01 0.02 0.03 0 0.1 0.02 0.03
W -21968.533 Hz ‘10'9 g~ 24810.131 Hz W o-29247.448 Hz

*

0 0.01 0.02 0.03 0 0.01 0.02 0.03 0 0.01 0.02 0.03

Figure C.1: Modes shapes for a cantilever bimorph beam. In black,
the undeformed shape, and in blue the deformed shape corresponded to
each mode at the given frequency.

The previous can be applied to Equation (C.0.11) and substituting the capacitance
for its equivalent parameter C,,.

S =0 (C.0.17)

Cpdop(t) & <~ dn(t)
_—t + E + ; Ry ‘
In Equation (C.0.17) the unknowns are the voltage function ¢(¢) and the time
terms 7,(t). Since we only have one equation, we need another one in order to
solve for the unknown values. This equation is derived from the Euler-Bernoulli
beam Equation (4.3.13). Since we want to consider damping, we add a strain
depending damping, remaining the equation as:
0*M 0?w(x,t)

92 + m—8t2 +C,1

Pwyer(,t)
0%*0x

—0 (C.0.18)

substituting the total displacement for the Equation (4.3.2), one can obtain:

0*°M Pwpe(z,t)  OPwy(x,t) Pwyer(,t)
[ —————— = 0.1
922 m( oz o >+CS 910r (C0.19)
0?M O*wye(z, 1) Pwyer(z,1) OPwy(x,t)
) L Wrel\:t) 0T \T L)
o T o T O g, KT
(C.0.20)
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i bottom ——

Figure C.2: Schematic view of the equivalent circuit of an energy
harvester with its piezoelectric patches connected in series. The “top”
means top piezoelectric layer and “bottom” means bottom piezoelectric
layer.

The moment can be obtained through integration of the stress along the Z direction.

=
=
=
I
—
Q
N
Q.
I
I
S
—
Q
W
Q.
&

A A
s i b,
=b / opzdz + / 0.2dz + 0p2dz (C.0.21)

In this equation, the stresses can be expressed as function of the strains through
the constitutive law of each material:

O11p = Yi1p €115 — €313 (C.0.22)
Oile = Y11,5€11 ¢ (C.0.23)

The strain can be expressed as a function of the transverse displacements using the
Equation (4.3.1) which relates the second derivative of the displacement (rotation)
with the strain in the section. The stresses can be then expressed as:

011 ZY’U, — €317 (0024)
P P 0x? hy
O Wy (,t
Oll,e 2Yi1,e 8:16(2 ) (C.0.25)

We should remind here, that the material direction 1 coincides with the global axis
X and the material direction 3 coincides with the global axis Z which is parallel to
the piezoelectric patches thickness direction. In addition, we have substitute the
electric field Fj for the equivalent voltage using Equation (4.3.3). Substituting
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the corresponding stress expression back in Equation (C.0.21) we obtain:

he he
-7 Z
O*wyer(,t) 0 O*wyer (T, t)
o 2 rel\4, 2 rel\4,
M(z,t) =0 / —2"Yi1p o2 2’631h—pd2’ + / -2 Y11, o2
be thy ,
a wrel(xa t) ¢
+ —2;2}/117;0 T + zeglh—pdz (0026)

>

le

2

It should be notice, that in the previous equation the sign of the piezoelectric

coefficient e3; of the bottom layer has been changed. As it has been commented

before, the top and bottom piezoelectric layers has opposite orientation due to

the series connection. This opposite orientation is reflected in the piezoelectric

coefficient as a change in sign for the bottom layer. Otherwise, the electric terms

will cancel due to opposite electric voltage. After some integrations, we can express
O*wyer(,t)

Equation (C.0.26) as
2 (he b\ 2 hy\?
0u b(“wg ((7”‘?) -(3) )*3”1@ (%) )]
b€31 he 2 he 2
‘“f’h—p((a) —(;w)) .

The equivalent stiffness 1Y previously introduced in Equation (4.3.14) can be
identified in the previous equation as the content of the square bracket. In
fact, the equivalent stiffness is defined from the beam equation following this
approach. Also, we proceed to substitute all the terms multiplying the voltage for
an equivalent term called backward coupling

o b;_il ((%)2 _ (% . hp>2> (C.0.28)

To avoid the voltage to vanish when differentiate twice respect the x coordinate,
we need to introduce the Heaviside function following Ertuk and Inman approach.
Finally we obtain the bending moment as:

M(zx,t) =

OPwye (1)

M(x,t) = —YI——0

— 9¢(t)(H(z) — H(zx — L)) (C.0.29)

Substituting back in the beam Equation (C.0.20) one can obtain:

OPwye(z,t) Pwye(z,t) Wy (T, 1)
Yi 02 +CI oztot m ot?
O*(H(z)—H(x— L)) D*wy(z, 1)
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As it as been said before, in a linear system we can assume that the solution can
be described as a superposition of mode shapes and time terms.

Wy (2, 1) Zzpr e ( (C.0.31)
Introducing this in our equation leads to
VIS ) a5 IS 0
vopZH@ A=) Pk (©.0.52)

If we multiply the previous equation by the mode shapes 1s(z) and integrating
over lenght we obtain:

— 0 w ) — 0P (2) I (t)
YI/ by (x e (t)da +CI/ by (x 7:1 R L

4 m/ () Z ¢T(x)8 g;Q(t) da...

+0(t /% (z) - gt(f_L))qs(t)dx:... (C.0.33)

O*wy(z, 1)
/ e o da (C.0.34)

Here we should recall the orthogonality conditions. Each mode is orthogonal to
each one and its product is defined by the Equations (C.0.7) and (C.0.8), then
the previous multiplication of the introduced mode shape by the summation of
the mode shapes lead to 1 or 0 depending on t4(x) is equal to ¥,(x) or not.
Substituting equations Equations (C.0.7) and (C.0.8) in Equation (C.0.34) we
obtain:

Gl om(t) | (z) — H(z— L))
2 _
wT‘n’f’ (t)+ ]Y w?‘ at 8t2 + 9 ¢ / 1/}8 1'2 d'r -
0wy (w,t)
/ sz 22 ————dx (C.0.35)
In modal analysis, the strain damping is substituted by:
CsI

In addition the coupling term can be replaced by:

/ () @) H(‘”_L)) (C.0.37)

0Py (x)
ox

=00(t) ———

(C.0.38)

=L
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The force term can by replace by a more general term F':

/ bs(x w”(x Funlz,1) ;, (C.0.39)

Substituting all those terms back in Equation (C.0.35) and together with Equa-
tion (C.0.17) we obtain the system of partial differential equation we need to
solve.

one(t) | 0°n.(t)

2 Py _
e53bL d¢ > dm
§ : = 0.4
h + (C.0.40)

This equation is a second order partial differential equation (PDE) whose
solution depends on the forcing applied which has to be known. The unknown
parameters are the time term and the voltage. Typically, in an energy harvester
the forcing I is the base excitation. In more general cases where the forcing is
not base excitation, we can obtain the time term expression from the Duhamel
integral for damped systems [15].

n-(t) = T)e St sinw, (t — 7)dr (C.0.41)
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