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Abstract

Long-period waves pose a threat to coastal communities as they propagate from deep ocean to shallow coastal waters. At the coastline,
such waves have a greater height and longer period in comparison with local storm waves, and can cause severe inundation and damage. In
this study, we considered linear long waves in a two-dimensional (vertical-horizontal) domain propagating towards a shoreline over a
shallowing shelf. New solutions to the linear shallow water equations were found, through the separation of variables, for two forms of
transition shelf morphology: deep water and shallow coastal water horizontal shelves connected by linear and parabolic transition,
respectively. Expressions for the transmission and reflection coefficients are presented for each case. The analytical solutions were used to
test the results from a novel computational scheme, which was then applied to extending the existing results relating to the reflected and
transmitted components of an incident wave. The solutions and computational package provide new tools for coastal managers to formulate
improved defence and risk-mitigation strategies.

Keywords: Shallow water equation; Long-period wave; Shoaling; Analytical solution; Numerical solution; Reflection coefficient;
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1. Introduction

Deep water waves can undergo dramatic changes as they propagate towards a shoreline over an irregular seabed.
The processes of refraction, shoaling, diffraction, and breaking can significantly alter wave heights and directions near
the shore, and must be adequately accounted for in developing beach protection and flood defence. The wave period is
also an important parameter in the design of coastal structures, particularly in relation to the process of shoaling. Long-
period waves, such as tsunamis, storm surges, and swells, have greater wave lengths than local storm waves, and are
therefore more susceptible to the effects of shoaling. Shoaling in particular can lead to reductions in wave length and
speed, as well as amplification of wave height. As long waves propagate into the coastal zone over a shelving seabed,
some of the wave energy will be reflected and some will be transmitted shoreward. The focus of this paper is on wave
shoaling, as well as the transmission and reflection coefficients.

This topic has been the subject of extensive research through experiments, analytical methods, and numerical
modeling. Approaches can be categorized broadly into the following three categories: two horizontal dimensions (2DH);
vertical slices (2DV); and resolving the vertical and horizontal structures of the wave field (3D). Early analytical
treatments, such as those of Carrier (1966) and Synolakis (1987), were 2DV and focused on predicting the run-up level
of long waves. These have been supplemented by other analytical solutions accounting for refraction and friction
(Nielson 1983, 1984) and cnoidal wave theories such as those in Sadeghian and Peyman (2012). A wide range of 2DV
computational models have been developed and are based predominantly on the Boussinesq equations, the shallow water
equations, or Reynolds-averaged Navier-Stokes (RANS) formulations. RANS modeling is the most computationally
expensive of these equations and for that reason is limited to describing waves in a small domain such as the surf zone
(e.g., Lin and Liu, 1998). There are comparatively fewer computational requirements for solving the Boussinesq
equations. As a consequence, various forms of Boussinesq equations have been developed for both 2DV and 2DH
applications. Early attempts were able to capture some nonlinear effects but encountered difficulties with accurate
representation of linear dispersion properties at all water depths (e.g., Nwogu, 1993). More recent developments have
allowed this deficiency to be addressed, at the cost of additional complexity (e.g., Madsen et al., 2002).
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Early 2DH wave models were based on a form of the elliptic mild slope equation proposed by Berkhoff (1972),
which account for refraction and diffraction and provide the variation of wave amplitude over a 2DH spatial domain. A
more general time-dependent form was subsequently proposed by Smith and Sprinks (1975). The computational
challenges of solving an elliptical wave equation led to the development of various parabolic approximations, such as
those in Radder (1979), Kirby (1986), Ebersole (1985), and Panchang et al. (1988), as well as methods for solving the
transient problem via a hyperbolic formulation (Copeland, 1985). An efficient means of solving the elliptic mild slope
equation was proposed by Li and Anastasiou (1992), and extended by Li et al. (1993) to treat irregular wave propagation.
Further developments of this theme have seen the inclusion of nonlinear effects by Beji and Nadoaka (1997); description
of the wave field through an angular spectrum by Dalrymple et al. (1989), Suh et al. (1990), and Reeve (1992); and
alternative derivations by Kim et al. (2009).

Here, we considered long waves occurring on a shelving foreshore and used the shallow water equations (SWEs) in
a 2DV domain. Bautista et al. (2011) derived an analytical solution for long wave propagation over a linear transition
shelf using a singular perturbation analysis based on the Wentzel-Kramers-Brillouin (WKB) technique. In this study, we
derived analytical solutions to the linear SWEs based on the variable separation method and also developed a staggered
finite volume method for their numerical solution.

This paper is organized as follows: Section 2 contains a brief description of the SWEs for waves propagating over
linear and parabolic transition topography, and analytical solutions for the wave reflection and transmission coefficients
are derived using the variable separation method, leading to solutions in terms of Bessel functions and polynomials; a
staggered finite volume method for solving the SWEs over arbitrary topography is presented in Section 3; and in Section
4, we describe the implementation of our scheme to simulate wave propagation over linear and parabolic transition
shelves. Moreover, to validate the numerical model, the computational solutions are compared with the analytical
solutions and other results from previous studies. The validated numerical model is then applied to a topographic transect
of the coast of Aceh, Indonesia. Conclusions are presented in the final section.

2. Shallow water model

2.1. Background

In this study, we considered a layer of ideal fluid, bounded above by a free surface and below by an impermeable
bottom topography z =—h(x), where x, z, and ¢ are independent variables denoting the horizontal direction, vertical
direction, and time, respectively. The following shallow water model for long waves in a relatively shallow region was
adopted, following Kowalik (1993):
{77[ +(hu) =0 O

u +gn. =0

where u is the horizontal velocity, 77 is the free surface elevation measured from the still water level, g is the
gravitational acceleration, and / is the water depth. Eq. (1) represents the conservation of mass and momentum balance.
The physical domain considered is shown in Fig. 1.
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Fig. 1. Definition of model domain
The physical domain is divided into three different regions: £2, £2, and (2, with prescribed depths defined by the
following relationships:
(1) Linear transition shelf:




h(x)= hz—hz_hjx x, <x<x, )

=X
h, X X,
where x, and x, are the locations of the left and right borders of the second domain, respectively; and 4, and A, are the
depths in the first and third domains, respectively. For the linear transition shelf, we assumed that x, =0 and x, =L,
where L is the horizontal extent of the sloping bottom.
(2) Parabolic transition shelf:

h, x<x,
h(x)=4ax’ x, <x<x, 3)
h, X 2x,

where h, =ax], h, =ax;, and a is an arbitrary parameter.

In the following two subsections, we derive the reflection and transmission coefficients of the free surface over the
linear and parabolic transition shelves, respectively. When waves propagate over a shelf, they undergo a scattering
process, with some of the wave energy being transmitted shoreward and some reflected back towards the deep sea.
Analytical solutions of the SWEs can be derived based on multiple-scale asymptotic expansion (Mei et al., 2005;
Noviantri and Pudjaprasetya, 2010) and the well-known WKB perturbation techniques (Bender and Orszag, 1978;
Bautista et al., 2011). Here, solutions of the linear SWEs are derived using the variable separation method.

2.2. Reflected and transmitted waves for linear transition shelf

In domain (2 the seabed is flat and the governing equations are as follows:
+hu =0
{nl 2% x ( 4)
u +gn, =0
Using the variable separation method, the general solutions of 77(x,¢) and u(x,z) in domain £2 are written for a
monochromatic wave with unknown spatial dependence, F(x) and G(x), and arbitrary frequency w:
n(x,t)=F(x)e™
u(x,t)=G(x)e™
Substituting Eq. (5) into Eq. (4) yields the following:

0)2

FYX + T F = 0
8gn, (6)
g
G(x)==F.
() iw *
With the solution of F(x), and by differentiating F'(x) with respect to x and substituting the result into Eq. (6), the
solutions to Eq. (6) are obtained:

)

F(x)=a e +a, e™"
gk, ikox —ikyx ™
G = X oY __ 0
(x) p (a1 e —a e )

where a; is the amplitude of the incoming wave, and a, is the amplitude of the reflected wave. The wave number, £, , in
domain (2 obeys the following dispersion relation:

a)z

— (®)

gh,

Next, substituting Eq. (7) into Eq. (5) yields the following expressions for the free surface and velocity:
n(x,t)=ae

K =

i(kox—ar) —i(kogx+ar)

+a.e

©)

T

u (x, [) = h£ |:ai ei(kux_ml)_ a
2

e—i(k0x+zut) :|

In domain (2 the governing equations for the linear transition region become




——hz_h3x u| =
"’{(hﬁ L ” ‘ (10)

u,+gn. =0
As in domain £2, a general solution in the form given in Eq. (5) is sought. Substituting Eq. (5) into Eq. (10) yields
h, —h h, — ?
(/5 -~ )F —ZTI%Fx +¥ F=0
g (11)

g
G(X)ZZFX

Eq. (11) is the Bessel equation and its general solution can be written as F(x)=C,J, (2\/ a)zL}/) + 7Y, (2\/ a)zL;/) ,

(L - x) h, + xh,
g ( hy =y )
respectively; and C, and C, are constants yet to be determined. Substituting F(x) into Eq. (5) yields the solutions for

with y= , where J;, and Y, are the zero-order Bessel functions of the first and second kinds,

the free surface and velocity in this region:

e el
u(x,t)== ﬂ[q]l (zm},)e-imczx(zmy)e_m}

_EVg(}%_hs)

where J, and Y] are the first-order Bessel functions of the first and second kinds, respectively.

(12)

Considering an incoming wave from the deep-water area with depth %, propagating shoreward, the wave is
partially reflected and partially transmitted while passing through the linear transition shelf. In the nearshore region £2,
where the water depth is shallow, there is only a transmitted wave (propagating to the right, as shown in Fig. 1), with an
amplitude «,, and the solution is given by

n(x.t)=a, oilk (x-1)-ar]

| 13
u(x,t)= ﬁa‘ olhi(x-t)-ar] 13
h3

where &, obeys the following dispersion relation:
kf = ﬂz
gh,

In general, accounting for the transmitted and reflected parts of the incident wave train, the free surface 7(x,) and

(14

horizontal velocity u(x,7) throughout the domain can be formulated as follows:

a, ei(kox—wt}_"_ a, e—i(kﬂ,\'+wt) x<0
n(x,t)= CIJO(Z\/a)zL}/)e‘i‘”’+ CZYO(Z\/a)zLy)e‘““‘ 0<x<L (15)
a, ei[k,(x—l_)—a)t] ¥ >

g |:av ei(kax—wt)_a e—i(ko,v+wr):| ¥<0
h2 1 T

2
u(xt)={E_S¥= M[C]L (2\/afLy)e-*“’+ CZK(Z\/a)zLy)e‘i“"] 0<x<L  (16)
i yg(h,—h)
£ 4 lhltie] x>L
h3

At the points x =0 and x = L, where the three regions connect, matching conditions must be used to conserve the
free surface and horizontal momentum across the whole domain. There are, therefore, four equations with four unknown
variables in the matrix form, which may be written as Ax = b, where




0 JO(Z\/(oZL;/l) YO(Z\/a)ZL}/l) 0]
. 1 IJI(Z\/sz;/l) ,BIYI(Z\/a)zL;/I) 0
0 Jo(lesz;/z) YO(Zx/a)ZL}/Z) -1
0 ,BJl(2\/a)2L;/2) ﬂzYl(Z\/afL;/z) -1
a, a,
| & p=|" (17)
Tl 0
a, 0
with
_ |k 1 -
A sy T
_ |tk 1 -
P\ ) s

The solution of the equations above is x = A4™'b . This leads to the wave reflection and transmission coefficients that

are respectively defined as

€, = e 2 NaM,+ N, as)
a, N, M, +N,M,

4__ 2 (19)

a N M +N,M,

i

where N, N,,, N,,, N,,, M,,and M, are defined as follows:

11> 122 21> 22

Nllzjo(zx/aTyl)+,/31 ](2\/7;/,)
N, =Y, (2Ve'Ly, )+ g, (VerLy,)
JO(Z a)zLy]) BJ (2@7/1)
N, =1, (ne'Ly)- g, (e'Ly)

C; =

o v,(NerLy )+ By, (NorLy,)
1 [ (2\/79/2)1/(\/ﬁyz)ul(zm%)n(myzﬂ
y Jo(Ne'Ly)+ g (Ne'Ly,)

C a2 (e ) gy (e L ) (VarL

Explicit expressions for the coefficients C, and C, are given in the matrix x in Eq. (17).
2.3. Reflected and transmitted waves for parabolic transition shelf

Approaches similar to those explained in Subsection 2.1 are used to find the wave reflection and transmission
coefficients for a parabolic transition shelf. The free surface elevation and horizontal velocity in domains £2 and (2 are
expressed as follows:

i ei[ku(x—x,)—wt]_’_ a, e—i[k(,(x—xl)Jr!Ut] x< X,
n (x, t) = i[ /o (x—x,)-co | (20)
a, ethte X2x,
h£ (ai ei[kn(x—xl)—mt]_ a, e—i[ko(x_xl)“‘”] ) x < X,
u(ery=1 V% @1)

i(lt ei[kl(.x—xz )—(ul] x> x,
h3




In domain 2, the governing equations for the shelf with parabolic transition topography h(x)zax2 read as

follows:
+(ax’u) =0
7, (av u)x 22)
u, +gn, =0

These equations may be solved within domain £2 in exactly the same manner as before. Seeking solutions of 77(x,?)
and u(x,z) of the form given in Eq. (5) and substituting the results into Eq. (22) yield
ax’gF_ +2agxF. + @' F =0

(23)
G(x)=LF,
10
The solution of F(x) in Eq. (23) is
1,k 18
F(x):Clx 22+Cx 22 (24)

where b=/l -4@’/(ga), and the constant cocfficients C, and C, remain to be determined. Substituting 7 (x) into Eq.
(23) yields

1.6
n(x,t)= Clx_2+2 e+ Cyx

N N (25)
u(x,t)zi L Cx22e— 1,2 Cyx 2 2e™
1w 2 2 2 2

1b
T2 ot

(&

The matching conditions are also used to conserve the free surface 7(x,7) and the horizontal momentum
h(x)u(x,t) along the discontinuity points, x=x, and x=x,, which give us four equations with four unknown
C

., and C,. By determining a, and a, and the coefficients C;, and C,, we obtain the following

variables, a,, a

t o
reflection and transmission coefficients for wave propagation over a parabolic transition shelf:
b b

,uE —(\/ﬁ—b)y_E

G =% = b b (26)
“ b{(\/bz —1)u +(—p -1 +b),u_2}

c, == 2 - 27)
a.

(Vb))

where (=x,/x, .

For the linear transition case, Fig. 2(a) and (b) show the variations of C, with L and 4, /h, , respectively, and Fig.
2(c) and (d) show the variations of C, with L and &, /h, , respectively. C, and C, are virtually independent of L for
the range 1 m < L < 10 m. C, rises as &, /h, increases to about 3.5, and then decreases slightly as #,/h, increases
further. In contrast, C. rises monotonically with 4, /A, .

29277 0.04 1.05746 1.8
e Wi 1.05744 1
2 2926 5 0.02 S) S 14
& 1.05742 F
0.01 12
2.925 L ] 0 I I ;- 1.05740 L L ] 1.0 L I ]
1 4 10 3 4 4 7 10 1 4 7 10
L(m) hz/h3 L(m) hz/h3

(@) Crvs. L(hy/ h3=1.25)

(b) Cr Vs. hy/ b3 (L=10 m)

(©) Crvs. L(hy/ hy=1.25)

(d) Crvs. hy/ hy(L=10 m)

Fig. 2. C, and C, as functions of /,/h, and L, respectively, for linear transition shelf with @=1.1922 s’

Corresponding results for C, and C, , as functions of @’ / (ga), for the parabolic transition case are shown in Fig.

3(a) and (b). The trend is that C, increases with @’ / ( ga) , L, or h,/h,, meaning that more wave energy propagates
towards the coast with the increases of @’ / (ga), u,and h,/h,. Fig. 4 shows that C,, as a function of A, /h,, exhibits
similar variations for both the parabolic and linear transition cases, which is also in close agreement with the analytical
result of Kajiura (1961).
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Fig. 4. C, as function of &, /h, for linear and parabolic transition cases, respectively, when L=10 m and @=1.1922 !
3. Computational model

In this section, the numerical solution of Eq. (1), using a staggered conservative scheme, is presented. The scheme
was described in detail in Pudjaprasetya and Magdalena (2014) and Magdalena et al. (2015). For the sake of concision,
the scheme is described briefly here. We consider a computational domain (2, consisting of a spatial domain
0 =[L,,L] and a time domain £2, =[0,T]. The spatial domain £2 is partitioned in a staggered way into several cells
with a spatial step Ax. The time domain £2. is discretized into finite time steps with a constant interval A¢ . Momentum
and mass conservation equations (Eq. (1)) are discretized with cells centred at x, and x,,,,, respectively. Furthermore,

the water surface, 77, and velocity, u, are defined at full- and half-grid points, respectively, as given in Fig. 5.
Momentum

Mass

Uiz T Uiryp Ty Uivsp
Xip=Ly X1 = Xio12 Xp X172 Xi+1 X432 e Xy XN+12=0
Fig. 5. Discretization of staggered conservative scheme

The scheme leads to the numerical solutions of Eq. (1):

n n At *n n *n n

1; Y= 77; _E(hm/zum/z - hi—l/Zui—]/Z ) (28)
n n At n n

uitys =ufiys + g (M5 =" (29)

where superscripts and subscripts denote the time step and spatial grid point, respectively. As seen from Eq. (28), the
water depth, /", is required at half-grid points and is unknown. The value of 4" is approximated using a first-order
upwind scheme and is chosen depending on the flow velocity as follows:

h u', =0
* i i+1/2
hi+l/2 = " (30)
h1+1 ui+]/2< 0

For positive flow, Eq. (28) becomes

n+ n At T ! .
77, ' = 771‘ _E(hi ui+l/2 - hi—lui—l/z) (3 1)

Note that on the right-hand side of the momentum equation (Eq. (1)), 77 is calculated at ¢ ,,, instead of at ¢ , as this
choice is required to maintain the stability of the scheme. Using Von Neumann stability analysis, the system is stable if
|ﬂ| <1, where A is the eigenvalue. The detailed derivation of the stability criteria for the numerical scheme can be found

in Appendix A. Both the wave elevation and velocity are set to zero initially. As time passes, the wave is incident from




the left, propagates over the sloping topography, and radiates through the right boundary. The initial and boundary

conditions, respectively, are as follows:
n(x,0)=0 u(x,0)=0 (32)

n(Lyt)=Asin(@t)  u(L,t)=n(L.t+Ar) /% (33)
where A4 is the wave amplitude.
4. Results and discussion

To validate the numerical scheme, the numerical results were compared with the analytical solutions and the
solution of Bautista et al. (2011). To study the influence of the sloping topography on the transmission and reflection of
waves, the following parameter values were chosen. The constant depth %, was set as 4, =10 m, the gravitational
acceleration as g = 9.81 m's?, the length of the sloping bottom as L = 10 m, the time step as A = 0.001 s, and the
spatial step length as Ax = 0.025 m. For the calculation, we used a monochromatic wave with a single crest. To calculate
the amplitude of the reflected wave, the wave elevation at a certain point before the sloping bottom was observed, and
then the maximum amplitude of the wave moving leftward, which was the reflected wave, was recorded. Comparisons of
the transmission and reflection coefficients of those solutions are given in Figs. 6 and 7, respectively. Fig. 6 shows that
the analytical and numerical solutions of C; are in agreement. The solutions of C. obtained in this study converge to
that of Bautista et al. (2011) as £ —1, where &=/, /h, . It can also be seen in Fig. 7 that the solutions of C, obtained
in this study show the same trend, converging to that of Bautista et al. (2011) as £ — 1. This is as expected as the WKB
solution being valid for £ — 1. The analytical and numerical solutions obtained in this study are in agreement with each
other and extend the solution of Bautista et al. (2011) to the regime in which & is not close to 1.

201
1
1.5F
G 1.0 [ = i

—=— Bautista et al. (2001)

0.5F —+— Analytical
—»— Numerical

]

0 1 1 1 1 I 1 I I
01 02 03 04 05 06 07 08 09 1.0
&

Fig. 6. C; vs. €
0.6 -
—=— Bautista et al. (2001)
—+— Analytical
0.4 - —»— Numerical
)
02
e »
1 ]

0 1 1 1) ¥
01 02 03 04 05 06 07 08 09 1.0
&

Fig. 7. Cy vs. €
The differences between solutions, obtained by the analytical and numerical methods, for different values of ¢ are
compared in Table 1, where E, and E, are the absolute errors of the numerical results of the transmission and
and E, =|Cy, —Cy
C,, and C,, are the transmission coefficients obtained by the numerical and analytical methods, respectively; and C,,

reflection coefficients, compared with their analytical results, respectively, with E, = |CTn -C, .
and C,, are the reflection coefficients obtained by the numerical and analytical methods, respectively.

Table 1
Differences between analytical and numerical solutions of transmission and reflection coefficients

£ E, E, £ E, E,

0.100 0.02743 0.01772 0.600  0.00008 0.00614
0.200 0.01001 0.01019 0700 0.00096  0.00668
0.300 0.00513 0.00116 0.800  0.00103  0.00587
0.400 0.00165 0.00138 0900  0.00071  0.00430




0.500 0.00254 0.00395 || 0.999 0.00015 . 0.00017

It can be clearly seen from the table that the errors are very small. To investigate the accuracy of the numerical
scheme proposed in this study, repeated simulations were conducted, with a fixed value of Ax = 0.025 m and At
rangmg from 0.000131 to 0.001831 s, to calculate the error E;, corresponding to Az, and the rate of convergence
7, —lg () / /lg N/At . The results are shown in Table 2. The value of |z'l/.| is in the range of 0 to 1,

1ndlcat1ng that the order of accuracy in the time domain is one.
Table 2
Errors of numerical scheme and convergence rates for different time steps

J At (5) £y ‘Tq‘ J At (s) Ey z,

1 0.00013 0.00118 0.0589 5 0.00031 0.00120 0.3171
2 0.00015 0.00119 0.0459 6 0.00046 0.00136 0.9175
3 0.00018 0.00120 0.0000 7 0.00092 0.00072 0.5896
4 0.00023 0.00120 0.0000 8 0.00183 0.00048

Next, to examine the accuracy of the numerical scheme in the spatial domain, repeated simulations were conducted,
with Az=0.001s and Ax varying between 0.010 m and 1.000 m, to calculate E; corresponding to Ax; and the rate of
is in

convergence 7, = lg( (+1) / / lg(Ax,,, / Ax, ) The results are shown in Table 3. The calculated value of

x/
the range of 1.8 to 2.4, 1ndicat1ng that the order of accuracy in the spatial domain is two. We therefore concluded that the
numerical scheme has an accuracy of O(At, sz) (Pudjaprasetya and Magdalena, 2014; Magdalena et al., 2015).

Table 3

Errors of numerical scheme and convergence rates for different spatial steps

i Ay B T ]

1 0.010 0.00000 - 4 0.500 0.01150  2.1479
2 0.025 0.00020  2.3414 5 1.000 0.05097
30250 0.04390  1.9326

For a further test, results for a parabolic transition shelf were compared with those of Kajiura (1961). The x-ordinate
ran from 100 m to 0 m with x, = -60 m and x, = 40 m. The parameter @ = 0.00625 m™'. The undisturbed water
depths in deep and shallow areas were described by 4, =ax and h, = ax’ , respectively. The wave propagated from the
left with an amplitude of ;= 0.5 m and a wave frequency of w = 5.9610 s, On the right side of the domain, an
absorbing boundary condition was applied. The numerical result of the wave transmission coefficient was compared with
those obtained by the analytical formula of Eq. (27) and from the literature, as shown in Tables 4 and 5, where C,, is the
wave transmission coefficient calculated from the formula derived by Kajiura (1961) and reproduced by Mei et al.
(2005) using asymptotic expansions. The formula is valid only for x, —x, &, or A, or when the water depth in the
transition region with a sloping bottom strictly decreases in the shoreward direction. For example, in the case for x, =
=50 m in Table 4, where x, —x;, = 10 m is less than s, = 22.5 m and A, = 15.625 m, the value of C, is far from the
analytical and numerical results, demonstrating that Kajiura’s formula is invalid. However, when all the parameters were
chosen for the transition region with decreasing water depth under that condition, we could calculate the shoaling
coefficient by inversion of the wave transmission coefficient given by Kajiura (1961) (Fig. 4).

Table 4
Comparison of wave transmission coefficients for x, = =60 m, a = 0.00625 m™, and incident wave when ¢, = 0.5 mand w=5.9610s"

X, (m) H Cr, C, Cy

=20 3.0 1.7668 1.7318 1.1764

-30 2.0 1.4049 1.4140 1.0329

-40 1.5 1.2294 1.2247 0.8410

-50 1.2 1.0974 1.0952 2.5570

Table 5

Comparison of wave transmission coefficients for = 1.5 and a = 0.00625 m™'
w(sh */(ga) c, c, c,

4.7688 371.2890 1.2322 1.2247  0.8655

3.5766 208.8500 1.2232 1.2247  0.8436

2.3844 92.8223 1.2359 1.2247  0.8286

1.1922 23.2056 1.2252 1.2247  0.8198




For a final test of the numerical scheme, a case in which the seabed transition was neither linear nor parabolic was
chosen. The topography was determined as follows:

h, x<80m
_ ~80
h(x) = }%thcos?(gg 80)+h3;h2 80m<x<l60m  (34)
h, x>160m

Monochromatic waves entered from the left with a wave amplitude of 0.5 m, and water depths were set as &, =
22.5mand A, = 10 m. As time passed, the waves propagated to the shallow area and flowed through the right boundary.
The computation was carried out in the spatial domain ranging from 0 to 250 m, with a spatial grid size of Ax = 0.01 m.
Fig. 8 shows a comparison of the free surface elevation of the numerical solution in this study and the WKB solution
described in Kristina et al. (2013). It is hard to distinguish between the two solutions for the free surface elevation in Fig.

8. The WKB and numerical solutions are in close agreement.
----- WKB solution
— Numerical solution

0.8

-0.8 1 I I 1 |
0 50 100 150 200 250
x (m)

Fig. 8. Free surface elevation of shoaling wave at =50 s when 4, =22.5mand A;=10m

The wave transmission coefficient was calculated for different values of €. Comparison of the calculated results
with those of the WKB solution in Kristina et al. (2013) is shown in Fig. 9.

1.8
L6r —— WKB solution
—— Numerical solution
514
1.2F
1.0 L

01 02 03 04 05 06 07 08 09
4

Fig. 9. Wave transmission coefficients determined by numerical scheme and WKB method for £ in [0.1, 0.9]

Finally, the numerical scheme was applied to simulation of the wave shoaling phenomena over a more complex
bathymetry: a cross-sectional bathymetry of the coast of Aceh, in Sumatra, Indonesia, where the 2014 Boxing Day
tsunami occurred. The cross-section was taken from (95.0278°E, 3.2335°N) to (96.6583°E, 3.6959°N) with Ax = 0.4333
m. The wave propagating over the bathymetry along this cross-section is depicted in Fig. 10. The incident wave with a 1-
m wave height and a wave period of 17 min propagated to the shallow-water area. As the water depth decreased, wave
shoaling phenomena occurred, with the wavelength shortening and the amplitude increasing. For the domain shown, the
water depth was 1047 m in the deep-water region and approximately 30 m in the shallow-water region. The wave height
was 2.44 m in the shallow-water region, corresponding to a numerical solution of the wave transmission coefficient of
2.44. The analytical solution gave a transmission coefficient of 2.43 in this study, showing a reasonable agreement with
the numerical solution.
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Fig. 10. Transient wave propagating over cross-sectional bathymetry of coast of Aceh
5. Conclusions

In this paper, new analytical solutions for transient long waves shoaling over coastal shelves have been presented.
Specifically, expressions for the surface elevation, horizontal velocity, and wave reflection and transmission coefficients
have been derived for linear and parabolic transition shelves. Novel results from a numerical scheme have also been
presented based on a staggered conservative formulation with upwind updating. The analytical and numerical solutions
for several cases show agreement. The solutions obtained in this study have also been compared with previous results
from WKB approximations, showing that this study provides a means of extending solutions beyond the normal WKB
limits. The numerical scheme was applied to the case of tsunami propagation towards the coast of Aceh, Indonesia.
Results obtained from the numerical scheme suggest that waves with a period of 17 min, close to values quoted by
Stosius et. al. (2010) for the Boxing Day tsunami, would experience amplification by a factor of 2.44 when traveling into
the coastal waters where the depth was 30 m. This coincides with the scale of amplification proposed by Kowalik (2012),
suggesting that the relatively simple approach proposed in this paper can provide solutions that are useful in practice, in

either an operational or strategic context.

Appendix A: Stability analysis

n id'i n n _ia’(i+1/2)

Here, we derive the stability criterion for Egs. (28) and (29). Setting 77/ = p"e"" and u},,, =r"e and
substituting 77 and u;,,, into Eqs. (28) and (29) give the following:
: ) 0 o |1 —h B sin(a—j 0
g£2isin(i) 1 L"“}: o ? L} A
Ax 2 0 1
where p=¢"", with @, being the angular frequency of 77; a’=kAx, with k being the wave number; r =¢'** , with

@, being the angular frequency of u; and 4, is the maximum water depth. Eq. (A.1) can be rewritten as

n+l n
|:fn+l :| = B|:fn :' (A2)

where B is

B- (A3)

—g£2isin (a_'j 1-gh,.. (ﬁjz 2sin’ (a_’]
Ax 2 Ax 2
The eigenvalue A of matrix B satisfies the following equation:
(A=1)(A-1+C*)+C* =0 (A4)
where C? =h,, g(At/Ax) 4sin’(d’/2) . If |C|<2 and |4|=1, the stability criterion for Egs. (28) and (29) is

(At/Ax)\/h,. g <1.In this case, the eigenvalue has a norm value equal to one, so the scheme is non-dissipative.
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