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Abstract

Granular materials are prevalent in this world while their non-trivial behaviour, which may
resemble solid, liquid and/or gas under different circumstances, is still poorly understood.
The challenging mechanics and dynamics of granular materials combined with their ubiquity
have made this topic especially interesting to study. The discrete element method (DEM) is a
reliable and effective numerical technique to model many scientific and engineering problems
involving granular materials but it is still not a fully mature method. Considering the unique
properties of granular materials and the inadequate features of the DEM, this thesis improves
the current DEM from three different aspects and scales.

On the micro scale at the particle level, a novel contact model is developed by introducing
the statistical Greenwood Williamson (GW) model which can consider the stochastic surface
roughness of particles. Two non-dimensional forms of the original formulations are derived
which can reduce the computational costs significantly. A Newton-Raphson based numerical
solution is proposed which can solve the inter-dependence problem involved. A theoretical
inconsistency of the classic GW model is deduced which leads to the development of the
extended elastic GW (E-GW) model. An empirical normal contact law is obtained by the
curve-fitting method and can be incorporated into the DEM code to conduct the one and three
dimension compression tests. An extended elastic-plastic GW (EP-GW) model is developed
to allow the plastic deformation at the asperities. Furthermore, the tangential contact model
and thermal conductivity model are proposed.

On the meso scale at the sample level, a new packing characterisation method is proposed
based on the digitalised image matrix of a packing and the subsequent application of the
principal component analysis (PCA) with which the configuration of the particle assemblies
can be evaluated quantitatively. The procedures of the packing digitalisation and formation
of packing image are established for both 2D and 3D cases. The obtained PCA results of
the packing image matrix can be revealed by the proposed principal variance function (PVF)
and dissimilarity coefficient (DC). The values of PVF and DC can indicate the magnitude of
effects on a packing caused by the configuration randomness, the particle distribution, the
packing density and the particle size distribution. The uniformity and isotropy of a packing
can also be investigated by this PCA based approach.

On the macro scale at the level of real industrial applications, the existing coarse graining
methods are carefully analysed by the exact scaling law and the effective thermal properties of
particulate phase change materials are derived by the homogenisation method. An enthalpy
based discrete thermal modelling framework for particulate systems with phase change
materials is developed which can consider both the heat conduction process and the phase
change transition. This proposed methodology is assessed by solving a particle version of the
classic one-phase Stefan melting problem. Additional numerical simulations are also conducted
to illustrate the effectiveness of this modelling framework.
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Chapter 1

Introduction

1.1 Motivation

1.1.1 Granular material

This is a granular world, as it has always been. Granular materials are prevalent in the
world from micro scale to macro scale, from daily life to industry. In the past millennia, we
have used granular materials to measure time, to feed ourself and to build houses. While
the non-trivial behavior of granular materials, which may resemble solid, liquid or gas under
different circumstances, is still poorly understood. The challenging mechanics and dynamics
of granular materials combined with their ubiquity have made this topic especially interesting
to study. Granular materials have been extensively studied by both the scientific and engi-
neering communities, such as applied mathematics, condensed matter physics, geomechanics,

agriculture, chemical engineering and civil engineering [1].

For a long time, granular materials are studied on the macroscopic level by continuum solid
mechanics. There are three independent assumptions in classical continuum mechanics, i.e.
continuity, homogeneity and isotropy [2]. Granular materials consist of grains and surrounding
voids thus their behaviour is inherently discontinuous and heterogeneous, and generally
anisotropic. It is difficult to determine a constitutive model for granular materials based on
continuum mechanical analyses. A constitutive model based on continuum approaches usually
includes many material constants (or model parameters), which sometimes have no clear
physical meaning [3]. The classical Mohr-Coulomb theory [4, 5] and continuous constitutive
models of critical state [6, 7] or elastic-plasticity [8] are proposed to describe granular materials.
These models are believed to describe stresses well in static granular materials but fail to
predict their flow profiles. Furthermore, granular materials exhibit many interesting collective
phenomena, such as pressure dip [9], density relaxation [10, 11], jamming [12], and force
chains [13] which cannot be explained by the continuum theory. The shortcomings of the
continuous approach may origin in the implicit expression of the geometry of a packed assembly

of particles. Therefore, one can expect to analyse granular materials in a more realistic way by
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Figure 1.1: Examples of granular materials.

the discontinuous approach in which the particle arrangement is modelled explicitly. These two
approaches are distinguished by Feda [14] as the phenomenological approach (structure-less
continuum approach) and the structural (sometimes called micromechanical) approach. The

structural approach can probe into the physical basis.

In discussing the analysis of granular materials at the micro scale, the classical n-body
problem has attracted the attraction of physicists for hundreds of years which is similar
to the interaction of a large system of particles [15]. The n-body problem is proposed to
understand dynamics of the solar system which can be considered as the evolution of a
system of n bodies subject to Newtonian gravitational forces. There is no general closed-
form solution to this problem for systems with more than 3 bodies. In recent years, there
has been a rapidly growing interest in studying the granular materials on the microscopic
level mainly through the laboratory experiments and the numerical simulations. In terms
of the laboratory experiments, measurement methods have been improved by developing
novel equipments by which more internal structure informations of the granular materials
can be observed comprehensively and exactly. It can provide detailed particle position and
contact point maps. The most commonly used techniques include the photoelastic test [16-18],
the scanning electron microscope [19], the X-ray computed microtomography and digital
image correlation [20-23]. With the rapid development of the computer technology, it is

possible to simulate granular materials at the discrete particle level. Several particle based



discontinuous numerical methods are proposed which allow the inspection of every single body.
Typical representatives of particle scale methods are SPH (Smooth Particle Hydrodynamics,
for calculations of astrophysical phenomena or fluids [24, 25]), Monte Carlo method, LBM
(Lattice Boltzmann Method, for calculations of fluids [26-29]), MD (Molecular Dynamics, for
calculations of molecules and nanoparticles [30]) and DEM (Discrete Element Method).

In the Monte Carlo method [31], each particle is subject to a number of trial moves at each
iteration. The change in energy generated by each of these moves is calculated and the
movement leading to the lowest energy is selected for progressing to the next configuration.
This approach is applicable only to the study of systems in static equilibrium, i.e. it cannot
be applied to consider flow of granular materials. The molecular dynamics [32] simulates the
interactions between individual molecules or atoms to relate the bulk properties of a material
(liquid, solid or gas) to fundamental atomistic interactions. The point-like particles interact via
pair or multi-particle interaction potentials. The time scale of interest in molecular dynamics
are of the order of 1us, and the trajectory lengths are between 10 and 100 Angstroms [31].
Smooth particle hydrodynamics is another meshless method with the basic idea that the
particles are used as interpolation points where the material displacement is tracked, and

material is continuous between these points [33].

1.1.2 Discrete element method
Development of DEM

Since it was originated in the 1970s by the pioneer work of Cundall and Strack [34], the discrete
element method (DEM) has emerged as a reliable and effective numerical technique to model
many scientific and engineering problems involving granular materials. The development
history of DEM can be found in the work of Jing and Stephansson [35]. Following the start of
the original disk and sphere codes BALL and Trubal, several important improvements can
be seen as the key milestones in the development of DEM including the hysteretic contact
model [36], the non-spherical particles of ellipses and ellipsoids [37], the coupling of DEM
with fluid [38], the development of bonded particulate modelling [39], and the implementation

of DEM in a high-performance or parallel computing software environment [40-42].

The basic procedure of the DEM involves: (1) to represent particles as rigid geometric entities
in various packing configurations; (2) to conduct contact detection to evaluate interaction
forces between particles based on some appropriate physically based interaction laws; and
(3) to assemble all the forces acting on each particle and to numerically solve the resulting
dynamic equations of particles in the system to update their accelerations, velocities and
positions at discrete time instants. This computational framework makes the DEM time

consuming which limits the time and particle number of a simulation.

With advances in computing power and numerical algorithms for nearest neighbour sorting, it

has become possible to numerically simulate millions of particles on a single processor. Today



DEM has been widely accepted as an effective method of addressing engineering problems
in granular and discontinuous materials. It has been applied in a wide range of industries,
including agriculture and food handling [43], chemical industry [44], civil engineering [45-51],
mining [52], pharmaceutical [53, 54] and so on. There are a series of software based on DEM
which promotes its applications in different fields. The open-source and non-commercial
software packages include YADE [55], LIGGGHTS [42] and EsysParticles [56]. Most popular
commercial software are PFC [57], EDEM [58] and ELFEN [59].

Challenges of DEM

Despite the rapid developments and wide applications of DEM in recent years, it is still not
a fully mature method which requires further analysis from different aspects. Simpson and

Tatsuoka [60] and Yu [61] suggest that the future developments of DEM include the following;:

1. Further parametric studies to consider the influence of the model parameters on the

observed response.
2. More realistic contact models and particle morphologies.
3. An increase in the number of particles considered in simulations.
4. The development of more robust models and more efficient computer codes.

5. Improved micro-scale quantification of inter-particle forces and particle fluid interaction

forces to inform future model development.
6. Improved theories to relate the macro- and micro-scales.

7. Further developments in relation to coupling particles and fluid, including simulation of

multi-phase fluids.

1.2 Scope of the current research

Considering the unique properties of granular materials and some inadequate features of DEM,

the current research improves the DEM from three different aspects and scales.

1.2.1 Surface roughness and contact model

Understanding the intrinsically random processes in nature is a fundamental question that
has attracted the interest of multiple thinkers, ranging from philosophers and mathematicians
to physicists or neuroscientists [62]. Uncertainties are encountered in engineering systems
involving the aspects of the assessment of loading, material and geometric properties. Such
as in most civil engineering applications, the intrinsic randomness of materials (soil, rock,

concrete, ...) or loads (wind, earthquake, tide, ...) is a dominant factor to be considered.



Thus data and models encountered in engineering problems should also be characterised
by uncertainty. While the classical physics and mechanics are deterministic theories which
implicitly assume that the results obtained from a deterministic analysis are representative of
all possible scenarios of system. This is not true in most cases. Classical deterministic methods
can provide only crude approximations for the response and evolution of the damage state
of the system. In the last few decades, stochastic or probabilistic mechanics has developed
fast which can account for randomness and spatial variability of the mechanical properties of

materials [63].

Granular materials have been studied extensively because of their tremendous importance from
different perspectives while very few attempts have been reported to investigate the stochastic
properties of granular materials which may play a fundamental role on the performance of

particulate systems.

Therefore, the first aim of this research is to investigate the influence of randomness of the
particle surfaces. Surface roughness of particles has been considered by developing a novel
contact model in DEM based on the classical Greenwood and Williamson (GW) model [64].

This part can be viewed as the improvement of DEM on the micro scale at the particle level.

1.2.2 Packing features and characterisation methods

The particle packing plays an important role in leading the physical behaviour of a particle
system. Therefore the spatial-statistical analysis of the geometrical structure of the system is
of great scientific and engineering interests. As the topology of the system is highly complex,
it is difficult to observe the way particles packed around each other by experiments. Currently,
the techniques applied to investigate the features of particle packings focus on the packing
density, orientations of the particle contacts, and internal (topological) structures of packings.

The conventional analyses have limits in some ways.

Considering the lack of more general, comprehensive and quantitative approaches which can
reveal some fundamental features of packing, the second aim of this research is to develop
a novel principal component analysis (PCA) based approach that can characterise particle
packings by using their principal components or variances in both two dimension and three
dimension.This part improves the understanding of results of DEM simulations on the meso

scale at the sample level.

1.2.3 Largescale problem and multiscale modelling

Real industrial applications require billions of particles compared with the calculating capability
of several million particles on a single personal computer. The simulation of a large number of
particles requires unacceptable computational time that is the most critical problem existing
in the industrial application of the DEM. Therefore, multiscale modelling techniques are

required to tackle such large scale problems.
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The third aim of the current research is to treat issues related to the large scale problem
from two perspectives of the coarse graining technique and the combined discontinuum and
continuum method. Existing coarse graining techniques have been carefully analysed by the
exact scaling law which can provide the theory basis for the upscaling method. Furthermore,
by using the homogenisation method, the effective thermal properties of the phase change
granular material can be derived by the DEM simulations. This part is devoted to solving the

problems that occur in DEM simulations on the macro scale at the level of real applications.

1.3 Layout of the thesis

‘ Multi-level Discrete Element Modelling of Granular Materials ‘

Micro-scale Meso-scale Macro-scale
(Particle level) (Packing level) (Largescale problem)
* Section 2.2 * Section 2.6 e Section 2.7
Different particle shapes Conventional packing evaluation Coarse graining methods
* Section 2.4 methods * Section 2.7
Different contact models Combined FEM-DEM method
Challenges Challenges Challenges
* Real geometry and surface * Considerations of random * Theoretical basis of coarse
roughness of particles spatial distribution of voids graining method

* Homogenisation method

* Chapter 3 * Chapter 5-6 e Chapter 7

Contact model of rough particles Principal component analysis Incorporate coarse graining
based on classic GW model based packing characterisation methods with exact scaling laws
*  Chapter 4 method (2D/3D) e Chapter 8

Contact models of rough Effective thermal properties of
particles based on extended GW phase change materials

model

Figure 1.2: Layout of the thesis

This thesis contains five parts including nine chapters and is structured as follows. The main

part of this thesis is shown in Figure 1.2.

Part I describes the background of the current research. Following the introduction in
Chapter 1, Chapter 2 is devoted to providing the theoretical basis of the discrete element

method and the literature review of the three problems involved in the current research.

Part II improves the DEM on the micro scale at the particle level by considering the surface
roughness of particles. In Chapter 3, a novel normal contact model for rough particles is
developed based on the classical Greenwood Williamson (GW) model. In Chapter 4, this
developed normal contact model has been improved further based on the extended GW model.
Simple extensions of this contact model to the tangential direction and thermal conduction

have also been presented.



Part III is devoted to making a better understanding of DEM simulation results on the meso
scale at the packing level. A novel approach that can characterise particle packings by using
their principal variances obtained from the principal component analysis is developed in

Chapter 5 and its extension to three dimensional situation is presented in Chapter 6.

Part TV attempts to solve the problems that occur in DEM simulations on the macro scale
at the level of real applications. In Chapter 7, the exact scaling laws are applied to analyse
the existing coarse graining methods. In Chapter 8, an enthalpy based discrete thermal
element method is developed based on which the equivalent thermal properties of bulk particle

materials with phase change is derived.

Part V (Chapter 9) summarises the main work and innovations of this thesis and points out

suggestions for the future work.



Chapter 2

Discrete element method

2.1 Introduction

The discrete element method is a numerical approach suitable to simulate granular materials.
The most unique feature of DEM is that individual particles and interactions can be considered
explicitly which makes it possible to capture the mechanical response associated with granular
materials. However, in the traditional continuum method, the granular material is assumed
as a continuous material without considering the relative movements and rotations between
particles. Then sophisticated constitutive models are needed to capture complexity of the

material behaviour that arises owing to the particulate nature of the material.

Compared to the continuous method or the experiment method, two obvious advantages can be
addressed in DEM in simulating the discontinuous material. Firstly, particle scale mechanisms
that underlie the complex overall material response can be monitored and analysed. It
is easy to measure the particle motion and contact evolution in DEM which are difficult
to be accessed in the physical laboratory test. Secondly, DEM allows the analysis of the
large-displacement problem which is very hard to be modelled using the continuum approach.
Therefore, DEM simulations present us a valuable tool to understand the failure mechanisms

and other problems involving the large displacement.

The numerical techniques involved in DEM can be divided into two categories [65, 66]: soft
sphere model and hard sphere model. The major difference between the two models is
whether penetration is allowed or not. The hard sphere model also called event driven (ED)
model excludes the interpenetration during particles impact. The collision is assumed to be
instantaneous. The momentum exchange is considered in the governing equation and the
particle contact force is not considered explicitly. This hard sphere model is suitable to solve
the problem involving rapid granular flow, e.g. avalanches, or rapid flow through conduits in
manufacturing process. In the soft sphere model, overlap is allowed between contact particles.
The governing equations are the linear and angular dynamic equilibrium of the contacting
particles. It is worth noting that the DEM in the current work falls within the soft sphere

category.
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Define system geometry
(Particle shape + Packing configuration)

Identify contacting particles
(Contact detection algorithm)

l

Calculate contact forces Move forward
(Contact interaction models) one time step

l

Dynamic solutions
» Calculate particle accelerations
* Calculate displacements and rotations [
(Dynamic equilibrium equations;
Central difference time integration)

Figure 2.1: Schematic diagram of DEM simulation

The calculations sequence and corresponding theories involved in DEM simulation are shown
in Figure 2.1. The first step is to define the system geometry, boundary condition, material
property. Then with setting the loading schedule, the simulation progresses as a transient or
dynamic analysis for a specified number of time increments. At each time step, the contacting
particles are identified. Then the contact forces at the contact points are calculated based
on the contact models which are used to determine the resultant force and moment acting
on each particle. Knowing the particle mass and inertia, the translational and rotational
accelerations of the particle can be calculated by solving the dynamic equilibrium equations.
The displacement and rotation of the particle over the current time step is then found through
the central difference type integration through time. Then the particle position and orientation
will be updated according to these incremental displacement and rotation. This series of

calculation will repeat at the next time step.

In this chapter, the basic knowledge of DEM and the theories related to the current work are

introduced.

2.2 Particle shapes

The particle shape in DEM simulation is analytically defined which simplify the physical reality
which is also the requirement to make the calculation involving large amount of particles
efficiently. When using DEM, it is worth being aware of the extent of the simplifications and
the associated implications. Furthermore, the particles are assumed as rigid bodies so only

the translation of the particle centroids and the rigid body rotation need to be considered
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in the governing equilibrium equations. Therefore, for each particle, there are three degrees
of freedom in 2D and six degrees of freedom in 3D excluding the consideration of particle
deformations. Instead of considering the particle deformation directly, overlap is allowed when
two particles contact. The contact forces are sensitive to the calculated overlap, the simple
particle shapes facilitate the accurate determination of the contact geometry. Hogue [67]
and Houlsby [68] discuss the issues related to the choice of particle geometry in DEM. It
is better to achieve a balance between the benefits of improvement against the geometrical
and numerical challenges associated with adding complexity and computational cost when

choosing the particle shape.

2.2.1 Disk and sphere

Disks and spheres are the simplest and most common type of particles used in DEM. They
are popular because it is easy to identify whether they are contacting and to determine the
overlap or separation accurately. Thus the contact detection and resolution which is the most
computationally expensive part of the DEM will become efficient to achieve a realistic number

of particles in the simulations.

The contact overlap between two particles a and b is given by

Op = Rg + Rp — \/(l'a - l‘b)z + (ya - yb)2 (2D)
O = Ra + Ry — /(= 20)2 + (g0 — 90)? + (20 — )2 (3D)

(2.1)

where R, and R} are the particle radii, and the centroid coordinates are given by (24, Ya, 2q)
and (xp, ys, 2p). The contact overlap is taken to be positive in compression, otherwise the
contact is considered inactive (unless it can transmit tension). The contact location x§ is

assumed to be at the midpoint of the contact overlap

1)
zi =} + (Rq — ?n)nz (2.2)
where x¢ is the contact coordinates, x® is the particle coordinates, and n is the contact normal

which is defined by considering the position of b relative to a

b_ ga
ng = i (2.3)
|27 — f]

The calculations of masses and moments of inertia are also simple and straightforward.
However, the ideal symmetrical and convex nature of disks or spheres leads to limitations in
modelling the real material which includes the differences in shear strength, dilative response

during shear and distributions of void space [69].
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2.2.2 Ellipse and ellipsoid

One obvious drawback associated with using disk or sphere particles is the excessive rotations
caused by the disappearance of moments due to the normal component of the contact force.
When two disks contact, the branch vector (the vector connecting their centroids) and the
contact normal are collinear so the normal contact force passes through the centroid of the
disk without imparting any moment to the disk. This shortcoming can be overcame by using
ellipse or ellipsoid particles of which the branch vector and the contact normal are no longer
collinear. Elliptical particles for two-dimensional analyses were firstly proposed by Rothenburg
and Bathurst [70] and Ting [71](1993) and then promoted by Dobry and Ng [72, 73].

2.2.3 Superquatratic and superquadric

Disk, sphere, ellipse and ellipsoid are all belong to a general type of functions called superqua-

tratics (2D) or superquadrics (3D). Their general forms are defined as

()" + ()" =1 (2D)
Yoayoah s (24)
G+ (EF =1 ep)

where the principal axis lengths are given by 2r,, 2r,, and 2r.. The particle squareness is

controlled by the exponents m and n as shown in Figure 2.2.

- DD <D
- - X

m=0.5 m=1.0 m=1.5

Figure 2.2: Superquadric geometries

If the surfaces of two particles P; and P» are defined by functions fP1 and fp27 the contact
between them can be calculated using Lagrange multipliers. The point on P; that is closet to

P27 (‘II;pL2 ) ypl’2 )
differential calculus with an iterative Newton-Raphson method [68]. If f, (25 ,,¥p ,»2p, ,) <

ZP1,2) is determined by minimising the sum fp2 +Af Py which can be achieved by

0 then the two particles contact with a positive overlap to calculate the contact force. In
Hogue’s work [67], another approach is adopted in which the surface of one particle is
discretised and then each of these points is tested against the surface function of the adjacent

particle. As the geometrical non-linearity increases, the computational cost grows significantly.
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2.2.4 Polygonal and polyhedral

The geometry of polygonal is defined by the vertex coordinates, the edges and the particle
orientation. The volume of data required to describe a particle is approximately proportional
to the number of vertices [67]. The coordinates of the particle centroid and orientation will

be updated by the dynamic equilibrium equation during the calculation process.

Different contact types can be detected when using polygonal or polyhedral particles in DEM.
Six potential types of contact for three dimensional polyhedral are identified by Cundall [74]
including: corner-corner, corner-edge, corner-face, edge-edge, edge-face and face-face. A

common plane approach is proposed for contact identification.

2.2.5 Agglomerate

The calculations of contact detection and resolution will be complex when using the shapes
mentioned above other than disk or sphere. If disks or spheres are bonded together to simulate
realistic geometries, the solution of a non-linear equation involved in the contact resolution
will be avoided. Two types of agglomerate have been developed in DEM which are the rigid

agglomerate and the crushable agglomerate.

Rigid agglomerate Disk or spherical particles can be glued together to create rigid clusters
with non-smooth, non-convex and non-spherical geometries. The particles may either touch
or overlap while the overlapping particles can model geometries with more complicated
shape [75, 76]. With the advances in optical microscopy and micro-computed tomography,
the 3D morphological characterisation of particle geometry is accessible. Some algorithms
have been developed to create agglomerate particles directly from the digital image of real

particles which increases the level of sophistication of the particles shape significantly [77, 78].

As the agglomerate is regarded as a rigid body, no contact force is calculated between the
particles making up this cluster even overlaps exist. The resultant force on the agglomerate
is the sum of the contact forces on its constituent disks or spheres.The resultant moment is
calculated by considering the cross product of each contact force and the vector directed from

the contact point to the cluster centroid.

Crushable agglomerate If tensile or cohesive bonds are introduced between the particles
in the cluster, then the agglomerate will become breakable which can model the phenomena
of particle damage and crushing. When the forces between the base particles exceed the
bond strength, the agglomerate will disintegrate into two or more smaller agglomerates. The
contact forces acting on each of these base particles include contribution from contacts with
spheres in adjacent agglomerates as well as contacts between the other particles in its own

parent agglomerate.



14

2.3 Contact detection

Referring to the computational procedure shown in Figure 2.1, the first step in calculating
the contact forces is to identify the particles that are contacting in the current time step and
develop the list of contacts in the system. The contact detection method is to determine the
neighbours of each particle which are contacting or likely to contact with this target in a
given time increment. Then each of these pairs of neighbouring particles will be considered in
turn in the contact force calculation loop. Several notable features can be seen in the contact
detection including [79]: a large number of discrete objects can be involved (e.g. ~ 10% or
more); a wide variety of object shapes are presented; a large number of time instants are
performed which make the contact detection computationally expensive and will take up to
80 ~ 90% of the total simulation time.

The most intuitive and naive approach to perform the contact detection process is to check
each particle against all other particles in the system at each time increment based on their
exact geometries. This method is prohibitively computationally expensive as the cost of the
contact detection is proportional to Ng, where N, is the number of particles in the system,
and thus the simulation time will increase significantly as the number of particles increases.
What is more, for the particles of irregular shapes, it is also time consuming to determine
the contacting neighbouring particles. Munjiza [80] stated that it is important to develop
a contact detection algorithm with minimal CPU and memory requirements. A variety of
researchers have devoted to the implementation of contact detection algorithms refer to Feng
and Owen [81], Han et al. [82], Poschel and Schwager [83] and Bobet et al. [84].

The contact detection is performed by two main steps as the global contact search and the

local resolution check.

2.3.1 The global contact search

In this step, all the possible contacts in the whole domain are located by assigning a bounding
box to each particle according to its specific shape. The global contact search is to determine
the bounding boxes in contact with the selected target bounding box. It is more efficient
to assess whether either two bounding boxes (shown in Figure 2.3) intersect at the contact

detection stage, rather than resolving the contact geometry in detail.
Many algorithms are available to obtain the possible contacts [79]:

Brutal search
Check each object with every other object for contact. The memory requirement is O(N,)
and the operations is O(N}).

Tree based search
There are also several tree based algorithms such as the point representation schemes, the tree
data structures and the augmented spatial digital tree of which the details can be referred

to Feng and Owen [81], Han et al. [82]. The memory requirement is O(N,) and the average
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Figure 2.3: Bounding box representation enlarged with a buffer zone [79]

performance is O(Np log(N,)).
Cell/Grid based search

The most efficient algorithms are the grid based approaches which are relatively easy to
implement and are commonly used which have the linear complexity with O(N,) of CPU and

memory requirement.

Static: The domain is going to be divided into cells and each object is mapped to a cell
based on the position of its corner or central point. The cell size must be no smaller than
the maximum size of objects. Then loop over all cells in the search stage by checking the
overlap between the objects within each cell and with those objects in the neighbouring cells.
This method is simple and effective for small compact problems. The computer costs are
proportional to the number of cells. While it is very computationally expensive for large

simulations where the spatial distribution of objects is sparse and irregular.

No binary search (NBS): The mapping stage is the same to the previous static method. The
following step is to create linked lists of particles that are in the same row of cells. For every
linked list, check overlapping in its row and also the adjacent row. It avoids to loop over all
cells in this approach and it dynamic processes two rows of cells at a time. It is very effective
for large simulations and not sensitive to the spatial distribution of objects. The performance

degrades, however, for objects with a wide range of size distribution.

Dynamic cell (D-cell): The domain is divided into rows. Each particle is assigned to a cell
from the current row and they start to be processed from the left. An object is migrated to
the following row if the upper y coordinate is greater than its lower y coordinate of the next
row. These elements can also be migrated to the following cell if their upper x coordinates
are larger than their lower x coordinate. This approach has a variety of features including
no loop over cells, dynamic processing of cells with one row at a time, very effective for
large simulations and not sensitive to the spatial distribution of objects and no performance

degradation for objects with a wide range of size distribution.
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2.3.2 Local resolution check

It needs to be determined whether two particles are in contact according to the real shape
when their bounding boxes overlap. Local contact resolution establishes if two discrete objects
are in contact based on their actual geometric shapes. If the pair is in contact, the normal
and tangential contact directions, the contact point and the characteristics of the overlap,

such as the penetration, contact width and contact area may also need to be determined.

2.4 Contact models

To determine the contact force between contacting particles in DEM, two steps need to be done
in series including contact detection and contact resolution [67]. For contact detection, efficient
algorithms need to be developed to form the neighbour-list consisted of all the particles in
contact. Contact resolution involves the accurate calculation of the contact geometry and
kinematics. The overlap and tangential motion between particles are calculated first and
then a contact constitutive model is applied to obtain the contact forces. The calculations
involved in determining the contact forces is the most time consuming aspect in DEM as
stated by Sutmann [31] that these calculations typically account for 70 ~ 80% of the total
DEM simulation time. To make it possible to simulate the granular system with a large
number of particles, a simple and straightforward expression to calculate the contact force is
needed in DEM.

To facilitate the analytical description of the geometry, particles in DEM simulations are
assumed to have smooth surfaces and the contacts occur at a single point with a specific
overlap without considering the stress distribution and deformation at the contact area
explicitly. As a result, the contact force is the equivalent substitution of the integral of
the real stresses or tractions acting on a physical contact. Then, the stress-deformation
response at the contact is represented using two orthogonal rheological models in the normal
and tangential directions respectively which comprise a combination of springs, sliders and
dashpots and are termed as contact constitutive models in DEM. With this simple contact
modelling approach, the interactions between very large numbers of particles can be calculated
with good computational efficiency which is the key fundamental aspect of DEM. The level of
realism of the contact models can be advanced by specifying non-linear force-displacement
relationships for the contact springs, or combining systems of springs and dashpots in various

ways.

2.4.1 Rheological model

The approach of rheological or phenomenological models is firstly applied in continuum
mechanics where the relations between stresses and strains are described by constitutive
models. While in the context of DEM, these models are used to relate a contact displacement

0 to a contact force F'. In this approach, constitutive models are consisted of several base
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models. The graphical representations and load-deformation responses of these base models

are illustrated in Figure 2.4.
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Figure 2.4: Graphical representation and load-deformation response of basic rheological models

As shown in Figure 2.4, a linear spring is used to represent the linear elastic model in which
the load-deformation response is a straight line. For the non-linear elastic model, the response
is a non-linear function. Both models are elastic and will not dissipate energy or capture
plasticity in the response leading to the loading and unloading paths coincide. For the viscous
response related to the deformation velocity, the representative model is a dashpot with
damping 1. The rigid perfectly plastic response is represented by a slider which activates at
the yield point, i.e. when the force is smaller than the yield point Y, no deformation will
occurs, and after this point, deformation continues at a constant load. More complex response

can be captured by combining these basic rheological models.

2.4.2 Normal contact models

Linear elastic contact model The linear elastic contact model is the simplest normal

contact model used in DEM. Then the contact force F;, is calculated as
F, = K,0, (2.5)

where K, is the contact stiffness in the normal direction with the units force/length and 4,
is the overlap at the contact point. The orientation of this force is along the line joining
the centre of the two contacting particles. The spring used in this model is conceptually
considered as a penalty spring of which the spring constants cannot be derived from the
material properties of the solid particles. The value of the spring constant can be determined
by adjusting the value used in the simulation to obtain the overall response of an assembly to

be the same as the one from the laboratory experiment.

Hertzian contact model The Hertzian contact model can overcome the non-physical

nature of the linear spring stiffness. The normal contact force with non-linear contact stiffness
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is calculated as

n:(ﬂwﬁwé (2.6)

3(1—-v)

where G is the elastic shear modulus, v is the Poisson’s ratio, and R is the sphere radius.

Walton-Braun linear model To consider the energy dissipation during particle collision,
Walton and Braun [36] proposed a hysteretic linear contact model in which the loading and

unloading paths are different. The normal force during first loading is given by
F, = K10, (2.7)
while the normal force during unloading or reloading is given by
Fp, = Ko n(0n — 0np) (2.8)

where 0, is the plastic deformation, which is depends on the maximum historical normal
force, F, max, i-€. Onp = Fy max/K2pn. The stiffness during unloading is greater than during
loading. Compared to the purely elastic model, one more parameter Fj, nax or o, needs to

be specified.

Spring-dashpot model In the spring-dashpot model [85], the energy dissipation at the con-
tact point is considered by a dissipative viscous dashpot. The force-displacement relationship
is given by

F = Kp0, + Cpp (2.9)

where (), is the dissipative term which in Cleary [85]’s work can be calculated by

Cp =2yvVmkK,, (2.10)

where the parameter 7y is a function of the coefficient of restitution e as

In(e)

72 +1n(e)? (2.11)

V=

2.4.3 Tangential contact models

Though it is assumed that the surfaces of spherical particles are completely smooth which
means no frictional resistance should exist at the contact point, a sliding friction parameter is
included in the DEM simulation to consider the frictional resistance arose from the interlocking

of asperities on the rough surfaces of the particles.

The tangential contact can describe the behaviour of contacting particles before and after
sliding. The Coulomb friction model is used to define the initiation of the sliding. When
|Fy| < wF), the contact sticks, but when |F}| = uF), the sliding occurs, where p is the coefficient
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of friction. As long as the contact remains stuck, the contact force is the product of the
cumulative displacement in the tangential direction and the tangential spring stiffness. The
cumulative displacement is the sum of the incremental relative displacement of the two
particles at the contact point that occurs over each time increment from the time the contact
is formed. For a cohesionless contact, the tangential force is given as

Ot

B (2.12)

Ft = —min (’,U,Fn‘, Ft(5t, (St))
where Fy(dy, 5t) is the pre-sliding shear force calculated using the contact constitutive model,
&; is the cumulative relative deformation, d; is the relative velocity which is a result of both

relative translation of the particle centroids and rotation of the particles.

Linear tangential model Like the linear contact model for normal contact force, the
basic contact model in the tangential direction also assumes a linear relationship between
the tangential force and the cumulative tangential displacement. For the linear spring with

stiffness K, the pre-sliding shear force at time is given as
. t,
Fy(6,,8,) = K / St (2.13)
td

where tY is the time at which the two particles initially contact. This integral is approximated
by a summation in DEM as ftt{) Spdt ~ Eio St At.

Mindlin-Deresiewicz tangential model Mindlin and Deresiewicz [86] indicated that the
tangential stiffness should depend on the current normal load, the current tangential load, the
load history and whether the tangential load is increasing. This path-dependent nature of the
tangential force has been considered by implementing an analogous but simpler constitutive

model into DEM simulations in the previous works [87, 88].

2.4.4 Rolling resistance models

One obvious shortcoming of DEM simulation of spherical or circular particles with smooth
surface is the absence of consideration of rolling resistance between contacting particles which
will have an significant influence on the bulk behaviour of the particulate packing [89]. Two
types of rotation occur between two contacting particles, one is a relative angular motion about
an axis parallel to their common tangent plane, the other rotates about an axis orthogonal to
the contact plane and along the contact normal. Not the same as the moments provided by
the parallel bonds that cause the cement between the particles, the rolling resistance arises

from geometrical aspects of the granular material.
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Iwashita-Oda model Iwashita and Oda [90] firstly proposed a 2D rolling resistance model
in which an additional rotational spring-dashpot-slider system is added in parallel with the
normal contact spring. The moment transfered by this model when the particles rotate relative

to each other is given as
do,

dt

where K, is the stiffness of the rotational spring, C, is the rotational viscous damping and

M, = —-K.0, — C, (2.14)

0, is the relative rotation of which the incremental relative rotation is the combination of
the incremental particle rotations and the change in orientation of the contact normal over
the current time increment. The limiting value of M, is given by nF,,, where 7 is the rolling

friction.

The rolling resistance calculated by this model needs to be added to the moment transmitted
by the tangential contact force. Then the rotational dynamic equilibrium equation for particle

p becomes
th Ncm

dw)
I, = —F= C:ZIFpr + ; M (2.15)

The three dimensional form of this model is proposed by Belheine [91] and implemented in
the DEM code YADE.

Jiang model Jiang et al. [92, 93] extended the above model to consider the rotational

resistance depending on the contact area and the surface roughness.

In Jiang’s original work, both the normal force and the moment depend on the rotation at the
contact point, and an asymmetrical distribution of the contact normal traction is modelled.

The normal force F;, is given by

B/2 S

F, = / , V(B +02) & w6+ 2)] = (2.16)
~-B/2

where the contact overlap J, is at the centre of the contact (z = 0), 6 is the rotation and

vy, is the viscous damping. Then contact overlap is taken to be positive in compression and

counterclockwise rotation is positive. The value of B depends on the grain shape.
The moment at the contact is caused by the contact normal traction given as

B/2 ..
M, = — / [k (6 + 02) + (8 + 62)] 2d2 (2.17)
—B/2

In Jiang’g model, the width of the contact can be considered explicitly which represents the
real physical situation better. Then Jiang et al. [93] improved this model by introducing a
second parameter N which gave the number of asperities distributed homogeneously across
the contact area. Each asperity will itself form a separate contact and the total normal force

and moment are the sum of all the asperities’ contributions.
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2.4.5 Bond models

A bond can be introduced in DEM to model the tensile force caused by the cement between
particles by specifying a tensile strength in the normal direction and a shear strength in the

tangential direction.

Linear bond model In a simple linear tensile model, the bond strength is specified as
F™a% in units of force. The tensile-capable contact model is active when §,, < —d5™ax and
glmax — prtmax /g Tf the normal tensile strength is exceeded, then the contact is removed.

This linear tensile model can be found in the previous works [94-96].

Parallel bond model Considering that the cement at the particle contacts always covers
a finite area in reality, it is reasonable to develop the parallel bond model [39] in which the
strength of the bond depends on the volume of the cement. Furthermore, a moment can be
transmitted with this cemented bond with finite area which is another improvement compared
to the linear bond model. In the parallel bond model, a pair of parallel linear springs are set
at each cemented contact. The parallel bond has a finite area with the radius Rpond = @ 'min,
where « is the parallel bond radius multiplier and 7, is the smaller radius of the two
contacting particles. The bond area Ay, is given by A, = TRpong in 2D and A, = WR%OHd in
3D. Unlike the linear bond model, the stiffness is specified in units of stress/displacement and

the maximum strength is specified in units of stress.

The forces carried by the parallel bond in the normal and tangential directions are given by

137 =K z?bApb‘sn

(2.18)
F]ib - Klt)bApbA(st

where K ;b is the bond normal stiffness, Kf)b is the bond shear stiffness.

The moments transmitted by the parallel bond are the spin moment M;};in and the bending
moment M;b. Then the spin moment only exists in the 3D case as it relates to a moment
caused by relative rotation about the contact normal. The increments of these two moments

are calculated by the incremental rotation of the particles as

AMP™ = Ky Ly Aby,

AMP = KT, A0 (2.19)
pb — DpbtpbRUs

where I, is the moment of inertia of the parallel bond, A6, is the incremental rotation about
the contact normal, and A# is the incremental rotation orthogonal to the contact normal.
The contact forces will add additional contributions to the moment given by the cross product

of the resultant contact force.

Then the tensile stress ¢ and shear stress 7 caused by the forces and moments can be derived
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by considering the beam bending theory

I nlck Mb’
pb | pb
g = + Ryond
App Ty 2.20
Fs MSpin ( . )
| Fp] | M|
T = A ) Ryona + T Ryona
D D

where Jp;, is the polar moment of inertia of the parallel bond in 3D.

The bond normal strength is ¢;'** and the bond shear strength is 7™#*. The bond will be
removed once the normal stress or shear stress exceeds the corresponding strengths. Related

studies can be found in [97-100].

2.5 Dynamic solutions

The particles in granular materials are analogous to the degrees of freedom in a matrix
structural analysis (the end points of the structural elements) or the nodes in a finite element
mesh. Therefore, the overall governing equation for the granular system can be expressed
as the standard governing equation for a dynamic analysis in structures or continuum finite
element given by

Mi+Cu+Ku=F (2.21)

where M is the mass matrix, C is the damping matrix, u is the incremental displacement
vector and F is the incremental force vector. The terms in Equation 2.21 have the following
meaning: M is the inertia force, Cu is the damping force, Ku is the internal force and F is
the external force. The global stiffness matrix K depends on the system geometry, i.e. which

particles are contacting.

Both implicit and explicit approaches can be used to solve the dynamic equilibrium equation
for a multi-nodal system. In the implicit approach, the vector u and F are constructed for all
the particles. The global mass M, stiffness K and damping C matrices are combined as for
the finite element method [101] Then a large system of simultaneous equation is generated
when solving the dynamic equilibrium equation involving the assembly of a stiffness matrix.
The solution will involve inversion of a highly sparse stiffness matrix and the sequence of
calculations will be very computationally expensive both in terms of the number of operations

required to solve the system and in terms of memory requirements.

Therefore, an explicit approach is used in DEM simulation in which the solution of the global
system is avoided by considering the dynamic equilibrium of the individual particles rather

than solving the entire system simultaneously.
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2.5.1 Governing equations

The equation governing the translational dynamic equilibrium of particle p is given by

Nc,p N’nc,p
myty, = Y Fet 4+ > Fpveot 4 F) + FS + FoPP (2.22)
c=1 j=1

L . N,
where 1, is the acceleration vector, > °f F;?" are the contact forces due to contact ¢

when there are N, contacts between particle p and either other particles or boundaries,
Z;V:"f”’ F7 7" are non-contact forces between particle p and Ny, other particles or bound-
aries, F; is the fluid interaction force, F§ is the gravitational force and FPP is a specified

applied force.
The dynamic rotational equilibrium is given by

Nmon]
P > My, (2.23)
=1

where w,, is the angular velocity vector and M,,; is the moment applied by the jth moment
transmitting contact forces involving particle p and there are a total of Npom moment

transmitting contacts.

Then the particle translational and rotational accelerations 1, and w, can be calculated from
the above two govern equations. These acceleration values can be used to obtain incremental

displacements and hence update the particle positions.

2.5.2 Time integration

In numerical analysis, the techniques used to update parameters given their first and second
derivatives with respect to time are called time integration methods. Then the central-

difference method with a time increment At is used in DEM simulation.

The velocity at time ¢t + At/2 is calculated as

VERALZ = A2 4 Al A (2.24)
where vi 22 and V;+At/ ? are the velocity vectors at ¢ — At/2 and t 4+ At/2 and al, = 1, is

the acceleration vector at time t.

The velocity at time ¢ + At/2 is taken to equal the average velocity over the increment from ¢

to t + At. Then the particle position is updated as

xbFAT = x! 4 vEFATZ A (2.25)
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2.5.3 Accuracy and stability

This explicit central-difference time integration scheme in DEM is computationally efficient
but with the limitation that this scheme is only conditionally stable. The incremental changes
in the particle positions and contact forces in a time step must be small to capture the inherent
non-linearity of the problem (changing in contact structure and non-linear contact response).
Cundall and Strack [34] stated that a fundamental idea of DEM is that the time step is
chosen to be sufficiently small that in a single step disturbances cannot propagate from a disk
further than its neighbours. It means that the motion of a particle over a given time step

only influences its immediate neighbouring particle.

In the context of modelling the physical system, it is important to consider the accuracy,
stability and robustness of the numerical method and fully understand the limitations and
approximations involved. The system of differential equations is an idealisation of the real
particle assembly, limiting accurate prediction. The approximation errors are introduced
when the equation is solved numerically. The round-off error is introduced by the calculations
using computers. The second error is the truncation error introduced as a consequence
of the approximations when calculating the incremental displacements from the calculated
accelerations. The truncation error exists in any numerical model at each time step that
simulates the response of a transient or dynamic system. The truncation error can be
understood by reference to the Taylor series expansion. The term O(At"1) is the truncation
error and is proportional to t"*1. The central difference algorithm used in DEM is a second
order scheme, i.e. the accuracy of the calculated displacement depends on the square of the

time increment, At2.

There are several ways to explain the stability of the numerical modelling. If there is a linear
growth relationship between the global error and the local error, then the algorithm is typically
stable. Otherwise, the total energy including the strain energy stored in the contact springs
and the particles’ kinetic energy of the system is monitored in mechanics applications analysts.

When the numerical integration is stable there will be no drift in the energy of the system.

The stability of DEM can be considered in context of the free vibration of a particle of mass,
m, suspended on a simple, elastic spring with stiffness k. For this single degree of freedom
system, the dynamic equilibrium equation is given by a = —kx, where a = &. If the central
difference approach is used to this system, the maximum time increment can be used is
At =T /7, where T is the period for free oscillation of system. This period is calculated as
T = 27\/m/k. The restriction of the time increment for this simple, single degree of freedom

system also applies to the multi degrees of freedom simulations in DEM [102].

2.6 Packing evaluation method

The particle packing plays an important role in leading the physical behaviour of the granular

system. As the topology of the system is highly complex, it is difficult to observe the way
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particles packed around each other by experiments. With the development of DEM, more

detailed information on the internal structure of particulate systems can be accessed.

Currently, the techniques applied to investigate the features of particle packings focus on the
packing density, orientations of the particle contacts, and internal (topological) structures of
packings. The classical characteristics such as particle size distribution and packing density
cannot consider the spatial distribution of a packing. Besides, the method involves the use of
a radial function is less effective [103]. When a packing is subject to external loading and
generates contacts between particles, more features can be checked such as the coordination
number, contact force distribution and contact orientation distribution [104]. These techniques
may be classified into different categories from different perspectives. From the perspective of
problem scale, they are macroscopic based (stress, strain and critical void ratio [105]) and
microscopic based (coordination number, stress tensor and fabric tensor [45]). While from the
perspective of the specific information to be extracted from the particle system, the methods
can be classified into two categories: one is focus on the void ratio [32, 106] of the packing

and the other pays attention on the contact network [107].

2.6.1 Packing density

The most commonly used characterisation of a packing is its dense condition which is described

by different parameters.
The void ratio e is given by

e=— (2.26)
where V,, is the volume of voids and Vj is the volume of solid particles.

The specific volumev is the total volume occupied by the material per unit solid volume given
as
v=— (2.27)

Vi
—— 2.28
n=1t (2:28)
and the solid volume fraction is defined as
Vs
E—— 2.29
v=1 (2:29)

It should be noted that the range of void ratio values differs for 2D and 3D systems. For
example, the densest packing configuration for uniform disks (hexagonal packing) has a density
of 0.906 in the 2D case while for uniform spheres in 3D with hexagonal close packing (HCP)
or face centred cubic packing, the largest density that can be obtained is 0.740. On the

other hand, as the density parameters are only scalar measurements, it cannot illustrate the



26

inhomogeneity of the density distribution in the packing. One feature highlighted by Marketos
and Bolton [108] is that the packing density is influenced by the boundary condition and a

local decrease can be observed close to the boundary.

Another observation [109] is that additional heterogeneity will be introduced when a shear
band forms. Furthermore, the measured density of the granular material will be influenced by
the size of the representative volume element (RVE) [80]. Therefore, care must be taken to
use a RVE which is sufficient large to the proper density which can representative the granular
material statistically. DEM simulations also provide a feasibility to define alternative density
parameters. Kuhn [110] proposed an effective void ratio including only those particles that

participate in stress transmission when calculating the volume of solids.

2.6.2 Radial distribution function

The radial distribution function g(r), also called the pair correlation function, is the classical
summary characteristic of spatial variability for statistically homogeneous systems of sphere
centres. Consider a system of IV particles in a volume V. If a given particle is taken to be
at the origin O, and if p, = N/V is the average number density of particles, then the local

time-averaged density at a distance r from O is p,g(r).

The radial distribution function is a measure of the probability of finding a particle at a
distance of r away from a given reference particle. It needs to determine how many particles

are within a distance of r and r + dr away from a particle.

2.6.3 Coordination number

It is obvious that the density parameters can not consider the particulate structure of the
particle packing. The coordination number can measure the intensity at the particle scale

with the definition of the number of contacts per particle

N,
Z=2—"* 2.
N, (2.30)
where N, is the total number of contacts and NV, is the number of particles. The multiplier is

used because each contact is shared between two particles.

Further work has been done to improve or refine the definition of the coordination number.

Thornton [111] defined a mechanical coordination number Z,, as

N, — N}
Ny = (Np + Np)

Ty = 2 (2.31)

where N;z? and N]} is the numbers of particles with zero contact or only one contact which

cannot participate in transmitting stress and are termed as floaters.

Another effective coordination number Z,, was proposed by Kuhn [110] with a higher level
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of discrimination in selecting particles which only considered the particles participate in the

load-bearing framework.

Some complementary concepts have been developed to futher understand the coordination
number. The granular material can be analysed from the perspective of network analysis of
which the particle is regarded as a node and the contact is a connection. Then the degree
of a particle [112] is the number of the contacts related to it. The degree distribution P, (k)
defines the probability that a given particle will have k contacts. The average degree equals

the coordination number, i.e.

7 = i kP, (k) (2.32)
k=1

Some useful conclusions can be obtained based on this concept such as smaller particles are
less likely to be participating in the strong force chains in comparison with larger particles.
The heterogeneity of the packing can be assessed by the standard deviation of the coordination
numbers [113].

Another concept is the caged particle [114] of which the movement is curtailed by neighbouring
particles. The caging number is defined as the minimum average number of contacts required

to immobilize a particle.

Alternative contact indices have also been proposed to quantify the contact intensity [115].

For example, the contact index parameter C'I [116] is defined as

1 on 1
Cl=2 5 2.5 (2.33)

P j=1"Pi j=1

where N, is the total number of particles considered, S, is the surface area of particle i, S,

is the surface area of contact j and IV ; is the number of contacts involving particle <.

Redundancy The concept of redundancy in civil engineering can also be applied to granular
mechanics. Then the stability of the granular system is related to the coordination number [117].
For the frictionless system, the static equilibrium can be achieved when Z > 4, while for the
frictional system where shear contact forces can impart moments, the requirement for the
stability is Z > 3.

In the 2D case, the redundancy factor R of the system is defined by the ratio of the number

of degrees of freedom at the contact points divided by the number of the governing equations

2N 4+ NE

m=30v, o)

(2.34)

where N¢! is the number of elastic contacts (where the shear force does not exceed the shear

resistance given by the Coulomb friction), N/T is the number of frictional contacts.
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2.6.4 Contact force distribution

The coordination number considers the contacts in the granular packing, while it still cannot
illustrate the magnitudes of the contact force. To overcome this shortcoming, the analysis
method based on the probability distribution of the magnitude of the contacts has been
proposed. The probability of a contact transmitting a given force is plotted against the value
of the force. The probability distribution function can be obtained by fitting these data. The
observation that the simulation results can be well fitted by an exponential function for forces
that extended the average force can be found in many studies [118-120]. For the tangential
component of the contact forces, conclusions have been drawn that particle sliding tends to
occur outside the strong force chains and the proportion of sliding contacts remains essentially

constant after an initial increase during the shear process.

2.6.5 Fabric

The density and coordination number are scalar measures of a packing which can not describe
the anisotropy of the granular material. The term fabric or structure refers to the arrangement
of particles, particle group and pore spaces in the granular material. Both experiment and
simulation results show that the anisotropy has a great influence on the bulk behaviour of the
granular material. The anisotropy can be classified into inherent, induced and initial [121] of
which the inherent anisotropy is caused by the depositional process [122], the induced anisotropy
is related to strain and stress, and the initial anisotropy is both related to deposition and the
geological stress history. Different axes are chosen to quantify the anisotropy, including the
orientations of the particles, the orientations of the vectors linking the centroids of contacting
particles, or the orientations of the contact normals. Proper methods have been developed to
interpret the orientation data to provide a meaningful measure of any preferred orientation of
the vectors. The two commonly used approaches are the fitting of curves to rose diagrams
or the fabric tensor approach. The anisotropy quantified will be a measure of the frequency
of particles being oriented in the most preferential orientation relative to the frequency of

particles having the least preferential orientation [102].

Histograms and curve fitting The polar histogram or rose diagram is created to show
the number of contacts oriented with the predefined angular interval. The analysis of them is
achieved by applying an analytical function to fit the histogram and using the parameters of
the function to quantify the intensity of the anisotropy and the preferred orientation. The
basic idea is that the orientations can be described using a probability density function (PDF)
E(n) (also called fabric ellipsoid by Oda et al. [113])which indicates the likelihood that a
contact will have the orientation of unit vector n. The integral of this function over the

domain should be 1.

/ E(n)dQ = 1 (2.35)
Q
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where df) is the differential solid angle in a spherical coordinate system. This fabric ellipsoid
will have a spherical shape for the isotropic material. Otherwise, the ellipsoid long-axis
orientation gives the preferential orientation of the contact normals. It is also stated that
the fabric ellipsoid is the second most important index describing the structure of a granular

material after the void ratio [113].

To analyse the 2D data obtained from 2D systems or axisymmetric systems in 3D, the fitting

function can be expressed as
2

B0 =1 (2.36)

where 6 is the inclination to the reference axis. This function can be expanded by different
Fourier series [123]. Rothenburg and Bathurst [124] used a Fourier series expansion with two
terms given as

B(0) = %[1 +acos2(0 — 0,)] (2.37)

where a is a parameter defining the magnitude of fabric anisotropy and 6, defines the direction
of the principal fabric. Furthermore, a quantitative link has been established between the

fabric parameters and the macro-scale stress-strain response.

Fabric tensor The fabric tensor which can be obtained from the data of orientation vectors
is another measure to determine the preferred orientation and the magnitude of the anisotropy.
The most commonly used definition of the fabric tensor is the second-order fabric tensor given
as [125, 126]

nf“‘n? (2.38)

where n} is the unit vector describing the contact normal orientation.

The fabric tensor is an abstract concept and can be analysed in the way analogous to the
interpretation of the stress tensor considering their similarities of being second-order and
symmetric. Therefore, the preferred orientations and the magnitude of the anisotropy can be
calculated when the fabric tensor is known. The magnitude of the major fabric is given by
@1, the minor fabric is given by ®3, and the intermediate fabric is ®9 in three dimensions.
The principal fabric parameters can be determined by the eigenvalue decomposition of the
fabric tensor. The extent of the bias in the most preferential direction of fabric orientation
is given by the largest eigenvalue and the corresponding eigenvector gives the direction of
the principal fabric component [102]. The principal fabric components can also be obtained
from the expressions similar to the one used in continuum mechanics [127] when calculating

principal stresses.

For a 2D or axisymmetric system, the principal fabric components are given as

o\ 1 1
(@3) = 5(Paz + @yy) + 5\/(<I>m —Dy,)2 + B2, (2.39)
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Then the intensity of anisotropy of the system can be quantified by using the fabric components

either by considering the difference ®; — ®3 [111] or the ratio ®; /P53 [128].

For the 3D case, Barreto et al. [129] proposed quantification of three-dimensional deviator

fabric using the following invariant (analogous to the shear stress in the octahedral plane)

Py = \}i\/(qh = 02)2 + (P2 — 3) + (B3 — P1)? (2.40)

In Woodcock’s work [130], two parameters §; and (2 are considered

)
Br = 1n<$;> ) o)
By = 1n<3;>/1n<5§>

The value of 81 indicates the extent of the concentration of vectors in the preferred orientation,

and the 9 value determines whether the distribution of orientations is a cluster or a girdle.

Some previous works are devoted to understanding the relationship between the fabric tensor
with the macro-scale material behaviour. The best correlation can be found between the
macro-scale response (the principal stress ratio o1/03) and the ratio of the major to minor
fabric for the contact normal orientations [131, 132]. This phenomena can be easily explained
that the expression for the fabric tensor (®;; = N% Zlk\f:cl nfnf ) is very similar to the expression
for the stress tensor (o;; = % Eévgl fflf). The evolution of the principal fabric orientation is
tied in with the development of strong force chains whose alignment develops during loading

so that they can transmit the applied stresses [113].

2.7 Multiscale modelling

The high computational cost of DEM models restricts its analysis with granular materials
realistically in term of the actual particle numbers and geometries. The simulation of a large
number of particles requires unacceptable computational time that is the most critical problem
existing in the industrial application of DEM. The real industrial applications require billions
of particles (macro-scale problem) compared with the calculating capability of several million
particles (micro-scale problem) on a single personal computer. Tackling this problem is a
key ongoing challenge involved in DEM analysis. Though with the rapid development of the
computer hardware that DEM codes can run in a parallel or high performance computing
environment [133, 134], methodological developments and improvements of DEM are still
needed to handle the practical large scale problem in research and industry. Therefore,
multiscale modelling of granular materials has received an increasing attention in recent
years [135] as these approaches allow to naturally embed a refined description of the complexity
of the material into a full structural engineering problem. These multiscale strategies can be

classified into two categories: coarse graining and combined finite-discrete element method
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(FEM-DEM).

It is worth noting that considering materials on multiple scales is a relative concept for the
terms of macro-scale, meso-scale and micro-scale. Based on the above description, in granular
materials, the micro scale is taken to be a scale where individual particle responses are
measurable, i.e. the contact forces and particle displacements can be distinguished. However,
if particle damage is considered, the relevant micro-scale is the sub-particle scale where the

particles are regarded as a continuum to consider the stress and strain distributions.

2.7.1 Coarse graining

The coarse graining technique is a possible approach to tackle the macro scale problem. To
put it simply, when using coarse graining in DEM the particles are artificially enlarged in
the model which significantly reduces the number of particles in the system therefore the
calculation time is acceptable. It is obvious that when use large-sized particles in DEM
simulation the performance such as the energy dissipation of the coarse-graining system is not
same with the original system. Therefore, when the DEM simulation is performed by using
such large-sized particles, some theoretical issues need to be addressed to explain the difference
between the original system and the coarse graining system. Moreover, a systemic framework
needs to be proposed to develop a reliable coarse graining system which can represent the

original system well.

Such a concept based on an intuitive thought that a group of small particles could be
represented by a large particle was first suggested by Kazari [136]. The approach based on
this concept has been the most commonly used method for the coarse graining problem. The
later improved models are called the similarity model [137], the imaginary sphere model [138],
the similar particle assembly model [139] and the coarse grain model respectively [140]. These
models are proposed to target some specific applications with several assumptions valid only
in the corresponding situations. Mokhtar [141] proposed the similar particle assembly (SPA)
model for the fluidization of Geldart’s group A and D particles. Sakai developed the coarse
grain model in 2009 which then had been applied to the simulation of a three-dimensional
plug flow in horizontal pipeline [140], a two-dimensional bubbling fluidized bed [142], and a
fluidized bed with fine particles where the coarse grain model was improved by considering the
cohesive force. Baran [143] conducted the simulations for efficient packed-bed and industrial
size fluidized bed with such coarse grain model. Hilton [144] investigated the effectiveness of
the coarse grain approach for gas flow through particle beds using resolved and coarse grain
models with the same effective particle numbers. Some analogous research can be found in
the work of Lu [145], Chu [146] and Elghannay [147].

2.7.2 Combined FEM-DEM

Generally speaking, the finite element method is suitable to solve the large scale problem

while the application to complex granular materials may be unsatisfactory because of the lack
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of an adequate mechanical constitutive law. One the other hand, the discrete element method
is able to capture the nature of the granular material but with the restriction to be applied
to a full-engineering problem. The combined FDEM method allows to efficiently overcome
the common drawbacks of both finite element method and discrete element method. The
two methods have been coupled in the framework of a multiscale numerical homogenization
approach to exploit the efficiency of FEM at solving boundary value problems at the structural

level and the capability of DEM to capture complex material behaviours.

Several multiscale modelling schemes have been proposed. Kaneko et al. [148] employed the
mathematical homogenisation theory for the construction of a multiscale modelling approach.
Miehe et al. [149] proposed an original scheme for quasi-static homogenisation of granular
microstructures and its embedding into a two-scale modeling framework. In these methods,
the DEM is used to derive an equivalent mechanical law for the microstructure behaviour.
Andrade et al. [150] and Avial et al. [151] developed a discrete continuum approach based on
a numerical homogenisation scheme in which friction and dilatation at the microstructure
are transferred to the elasto-plasticity continuum at the macroscale level. Nitka et al. [152],
Nguyen et al. [153], Guo and Zhao [154], and Desrues et al. [155] applied the concept of the
representative volume element (RVE) to build a fully coupled multiscale FEM-DEM approach
based on computational homogenisation. The stress state at the macroscale level is obtained

for each Gauss point from the associated DEM granular assembly (RVE).

The typical coupling steps involved in FEM-DEM can be described as follows. As in the
standard finite element method, the displacement gradient increment is applied at the Gauss
point level to obtain the corresponding stress state. In the FEM-DEM scheme, the displacement
gradient increment acts as an updated boundary condition on the discrete element REV at the
Gauss point level. The subsequent discrete element numerical simulation acts as a material
constitutive relation by returning the new stress state at the macro level. Therefore, the

homogenisation theory is a key point which link the granular and continuum scales.

Representative Volume Element (RVE) The RVE is defined to be a volume than
can statistically represent the material under consideration [156]. Recognising the inherent
inhomogeneity in a granular material because of the particles and contact force orientations and
magnitudes, the scale at which it is considered to be a continuum must be significantly larger

than the particles themselves. An increase in size will not change the measured parameter.

The appropriate diameter Dryg, of the RVE is suggested to be as Dryg > 10%. While in DEM
simulations to date the ratios used are often much smaller than this suggested limit. There
are times when, while the use of an RVE may not be valid, continuum terminology is still
relevant. The use of a RVE is equally applicable when quantifying the packing arrangement

of particles.

Homogenisation The methods to translate particulate mechanics into continuum mechanics

are called homogenisation techniques which are the averaging procedures to calculate the
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representative stresses and strains from the discrete forces and displacements calculated
in DEM. The homogenisation or averaging techniques used in DEM can be classified to
be volume, time-volume, or weighted time-volume methods. The commonly used volume
averaging methods are applicable to quasi-static systems where the inertia effects are ignored.
In general, an average or representative value for the quantity or parameter should first be

assigned to each particle [157]. Then the average value for the parameter @ is given by

1
Q=(Q) =3 Y wivrer (242)
peV
where QP is the representative value of the parameter for particle p, VP is the volume of

particle p, and w! is the weighting assigned to particle p.

2.8 Concluding remarks

In this Chapter, the basic of DEM has been introduced briefly including the governing equation,
the time integration method and the accuracy and stability of this algorithm. The theories
related to the three aspects of this thesis have been presented in detail together with the
corresponding literature reviews. For the contact problem between particles, the common
used particle shapes and some contact models are introduced in Section 2.2 and Section 2.4.
For the packing evaluation strategies, the conventional characterising methods of particulate
system are described in Section 2.6. The two strategies of coarse graining methods and
combined FEM-DEM methods which are used to treat the multiscale problem are introduced

in Section 2.7.
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Contact models for rough particles
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Chapter 3

Surface roughness modelling — 1.
Classical GW model

3.1 Introduction

From the perspective of the geometric representation in the DEM, the most commonly
used primitive geometric entities are disks and spheres, with ellipses and ellipsoids used
to a much lesser extent, but all assumed to have smooth surfaces. However, real particles
contain geometric irregularities or randomness at both microscopic and macroscopic levels.
By recognising the significant influence of particle shapes on the mechanical behaviour of
particle systems, the current discrete element modelling of irregularities of real particles
has mostly been focused on the macroscopic level. In addition to the introduction of non-
spherical entities such as polygons, polyhedra, super-quadrics, cylinders etc. [78, 158], more
complicated geometric shapes are often represented by bonding or clumping together several
basic entities [159-163]. Nevertheless, surface irregularities at the microscopic level, also called
the surface roughness, are more difficult to be accounted for, although they may have strong

influence on the phenomena of contact, friction, wear and lubrication [164].

The contact laws mostly employed in the DEM, such as the linear contact model and the
Hertzian contact model, are intended for contact between smooth particles. It is therefore
necessary to quantitatively improve the classical DEM by taking the surface roughness into

consideration.

Several approaches have been developed to understand the contact mechanism between rough
surfaces. Two key issues need to be addressed: the mathematical description of rough surfaces,
and the modelling of microscopic contact mechanisms. The modelling of rough surfaces can be
classified into two categories: statistical and deterministic. The earliest and most recognized
statistical treatment of rough surfaces is the Greenwood and Williamson (GW) model [64], in
which a rough surface is described as an assembly of asperities whose properties are obtained

from a given statistical height distribution, and then the Hertzian contact solution is applied to
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each asperity to obtain an overall contact pressure distribution. For the contact between two
rough curved bodies instead of two nominally flat surfaces, the first analytical investigation
is conducted by Greenwood and Tripp [165] who employ the GW asperity contact model

together with the bulk surface deformation for circular point contact.

The GW model can be viewed as a single scale method since the statistical parameters
used to represent rough surfaces are scale-dependent. An early attempt of using multi-
scale methods is made by Archard [166] who models the asperities of rough surface as
protuberance upon protuberance. Another statistical approach is introduced by Majumdar
and Bhushan [167], where a fractal curve/surface is adopted to describe a rough surface,
together with a contact mechanism to resolve the contact. This fractal based approach can be
regarded as multiple scaled because of the inherent multi-scale invariant characteristics of the

most fractal curves/surfaces.

On the other hand, the deterministic methods attempt to model rough surfaces in a definitive
manner and the resulting contact problem is typically solved by the finite element method.

Furthermore, the fast Fourier transformation can also be used to represent rough surfaces [168].

Considering the simplicity and popularity of the GW model, a new normal interaction law is

established for spherical particles with random rough surfaces.

3.2 The classic GW model

A rough surface consists of a myriad of asperities or peaks that restrict the real contact
area when two such surfaces are in contact. Due to the complexity of a rough surface, an
appropriate mathematical expression is needed to model a real surface as a profile with a
particular statistical distribution of asperities, for instance, the Gaussian or the exponential
distribution. This statistical approach to mathematically represent rough surfaces is adopted
in the GW model [64]. By further combining with the Hertzian elastic theory, a solution to

the contact problem of rough surfaces is derived.

Several assumptions are made in the classic GW model: 1) The height profile of a rough
surface is assumed to obey a Gaussian distribution; 2) The summits of the asperities are
spherical with constant curvature; 3) Each individual asperity deforms separately; and 4) The

bulk surface deformation below the individual asperity is negligible.

3.2.1 Characteristics of rough surfaces

The characteristics of a rough surface are obtained on the basis of the profile which is the
line of a cross section in a direction perpendicular to the surface as shown in Figure 3.1.
From this profile, surface roughness parameters are determined by scrutinising a set of points
z(x;)(i =1,--- , N) which give the heights from the mean line in the sample length interval L.

The main surface roughness parameters include:
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mean line
I ‘~\

A/

(a) 3D rough surface (b) Profile of the cross sectiaA — A’

Figure 3.1: Topography of a rough surface

N

é(2)
Figure 3.2: Profile heights and probability density of summits

1). Root mean square roughness o: This parameter, also called RMS, is the standard

deviation of the height distribution of a surface from its mean line

1 L
o= ”Z/o 2%(z)dx (3.1)

2). Probability density function ¢: The probability density function, also known as the
amplitude density in statistics, represents the distribution spectrum of a profile height and

can be expressed by plotting the density of the profile height shown in Figure 3.2.

In order to obtain the probability density, the height of a profile is divided into layers with
small increment dz. Comparing the length of the profile laying between z and z + dz with the
total length of the profile gives rise to the probability P(z < Z < z 4+ dz), thus the probability

density can be written as
(3.2)

Pz < Z < z+dz)
= li
#(2) 250 dz
In the GW model, it is assumed that the height distribution obeys the following Gaussian or

normal probability density function

N(0,6%):  ¢(z) = (3.3)
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3.2.2 Contact of two nominally flat rough surfaces

Consider the contact problem of two nominally flat rough surfaces which are assumed to have
RMS roughness values o1 and o9 respectively, and have a separation distance d between their
nominal flat surfaces. The problem can be further reduced to the contact of a rigid smooth
flat surface with a deformable rough flat surface of an equivalent RMS roughness (due to the

Gaussian distributions)

0?=0?+ o5 (3.4)
The height profile of the rough surface is described by the summit height z, the mean summit

line and the probability function ¢(z) as shown in Figure 3.2.

As mentioned above, all the summits are assumed to have the same radius 8 and there are
N summits in the nominal surface area. Since the overlap between the flat surface and an
asperity with height z; greater than the separation d is zs; — d, the contact force f of the

summit of the asperity for a linear elastic contact is defined by the Hertzian theory as
41/ 3/2
f(zs) = gEﬂ (zs — d) (3.5)

where FE is the equivalent Young’s modulus of the two contacting surfaces.

The probability of having a contact at any given asperity of height z, is

oo
prob(zs > d) :/ (2s) dzs (3.6)
d
Then the total contact force experienced by the nominal surface area, in terms of separation

d, is - -
P(d)=N / F2)P(2) dzg = %EN,BW / (25 — d)>2¢(25) dzs (3.7)
d 3 d

3.2.3 Contact of two rough spheres

Figure 3.3: Profile of the contact between a smooth sphere and a rough surface: § <0

The contact between two rough spheres can be mathematically transformed into the contact
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between a deformable smooth sphere and a nominal rigid flat rough surface as shown in
Figure 3.3. The equivalent radius R and the equivalent standard deviation of the asperity
height distribution ¢ can be obtained from the radii and roughness parameters of the two

spheres by the Equation (3.4) and the follow equation

1 1 1
=4 = 3.8
R R1+R2 (3:8)

in which subscripts 1 and 2 indicate the sphere number.

Referring to Figure 3.3, § is the separation or overlap between the non-deformed configuration
of the sphere and the mean line of the flat surface. To make it compatible with the convention
of the DEM, ¢ is assumed to be negative when the two surfaces are in separation, and positive

in overlap.
The profile of the undeformed sphere (black dashed line) can be described by

7”2

z(r) =09 — 3R (3.9)

where r is the distance from the centre to the contact point. Then the separation between the

deformed sphere and the nominal flat surface at r is

7“2

d(r) =w,(r) — 0 + IR (3.10)

where w,, (r) is the bulk deformation of the sphere. The overlap of the asperity of height z, at
r with the deformed sphere is
o(r) = zs — d(r) (3.11)

When o(r) > 0, the contact force between the sphere and the asperity can be computed by
the Hertzian theory A
f(z) = BB [z — d(r)]* (3.12)

in which ( is the radius of the top of the asperity and is assumed to be the same for all
the asperities; and FE is the equivalent Young’s modulus of the original two spheres. Further
assume that the distribution of the asperity heights obeys the following Gaussian probability

density function
1 22

§) = —— — 1
& (2s) Wexp( 202) (3.13)
The probability of having a contact at any given asperity of height z is thus
+o0o
prob(zs > d(r)) = (2s)dzs (3.14)
d(r)

Then the contact pressure distribution between the sphere and the asperities over the entire
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contact area can be expressed as
400 3/2
pe(r)=C . [2s — d(r)]” " P(zs)dzs (3.15)

with the constant

C = gENﬁl/z (3.16)

in which N is the number of summits in the nominal area. The corresponding deformation
w, (r) can be obtained from the solution to the axi-symmetric deformation of an elastic

half-space as follows [169]

4 (et

| rre KR (3.17)

we (r) =

where K (k) is the complete elliptic integral of first kind with elliptic modulus

k:2\/ﬁ

r+t

(3.18)

and a is the radius of the contact area. By integrating the pressure distribution over the
contact area, the total contact force P, between the sphere and the rough surface with overlap

0 can be obtained by )
P.(6,0) = / 2 p, () dr (3.19)
0

3.2.4 A simple extension to positive overlap and theoretical inconsistency

Although the classic GW model has been validated (mainly qualitatively though), extended
and applied to many applications, see for instance [165, 169-171], it is not clear whether the
classic GW model is still valid or not for § > 0, i.e. when there is a positive overlap between
the sphere and the nominal flat surface. In this subsection, the simple extension of the GW
model without any modification is considered and a theoretical inconsistency will be identified

which leads to the proposal of the extended elastic GW model in the next chapter.

For the convenience of later reference, the corresponding Hertzian solutions for the smooth

spheres with § > 0 are given below:

Contact radius:

a, = VRS (3.20)

Pressure distribution p,, (r):

(3.21)
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Deformation distribution:

2 2
wy, (1—T)— T, w, =0; r<a,
0 2a?, 2R 0
w, (r) = (3.22)
H a?{ r2 . ) 72 L
?{7* +( f—z)sm (7)}, r>ay
H H
Total force: A A
P,(0) = 5 Ba,6 = gE\/Rfs?’ﬂ (3.23)

Under the simple extension of the GW model, it is theoretically important that the GW
model can reduce to the Hertzian solution for smooth spheres when the roughness o = 0.
However, this is not apparent. In fact, it is easy to verify that directly setting w,(r) to be
the Hertzian deformation w,, (r) in (3.10) and (3.15) gives rise to a zero pressure distribution
P (r) = 0, which is obviously incorrect when § > 0. The classic GW model does recover the
Hertzian solution, but as the limit when ¢ — 0 if the parameter u is assumed to be fixed, p is

a non-dimensional roughness parameter refer to Equation (3.38).

Assuming that when o is close to zero, both the pressure and deformation distributions of the

sphere are close to the Hertzian solutions for the smooth contact case, and can be expressed as

pe(r) =p,(r) — Ap(r); with Ap(r) < p, (r) (3.24)
and
w,(r) = wy (r) — Aw(r);  with Aw(r) < w, (r) (3.25)
Note that the minus signs on both the right hand sides of the above two expressions are
deliberately assumed and the implication will be highlighted at the end of this subsection.

Note that when o — 0, the zero-centred normal probability distribution function ¢(zs) tends
to the Dirac delta function, denoted here as A(z), so that (3.15) becomes

po(r)=C d:) 2y — d(r)]*?A(z,) dzs = C|6 — wy (r) - 27"; v (3.26)
From (3.10) and (3.11) it follows
Py (r) = Ap(r) = C[Aw(r)]*? (3.27)
thus
Py (r) = ClAw(r)] (3.28)

4 I () R
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and the maximum difference between Aw(r) and w,, (r) appears at r = 0 with

16v/20\%/?
Aw(0) = — .
w(0) ( T 5) wo (3.30)
For a given overlap § > 0 and a fixed p, it follows that
lim Aw(r) =0 (3.31)

o—0

The linear relationship between w(r) and p(r) in (3.17) is also applicable to Aw(r) and Ap(r):

Aw(r) = % Oa - i - Ap(rK () di (3.32)

Although an explicit expression for Ap(r) may not be available, the numerical simulation
shown below indicates that Ap(r) is almost constant except in a very small region at r = a.

So it may assume that

Ap(r) ~ Ap(0) (3.33)
While from (3.32), it has
E
Ap(0) = —Aw(0) (3.34)
2a
SO
E
Ap(r) ~ —Aw(0) (3.35)
2a
Thus it is concluded that the classic GW model converges to the Hertzian solution when
o—0:
lim w, () = w,, (r); Jim p, (r) = p,, (7) (3.36)

Nevertheless, as p, and w,, are approaching to p,, and w,, but from the negative side (refer
to (3.24) and (3.25), the following conclusion holds when ¢ is small

P, (8) < P, (5) (3.37)

Clearly this is not physical since the contact force for the two rough spheres cannot be smaller
than the smooth case for the same nominal overlap §, thus revealing that the classic GW

model is not theoretically valid for > 0, at least for small o.

3.3 Non-dimensional forms

There are three parameters in Equation (3.15) that are associated with the surface roughness:
N, 8 and o, but only ¢ and N3Y/2 are independent. o has a clear geometric meaning and can
be reasonably defined for a given pair of surfaces (spheres). However this may not be the case

for NBY2, and in particular, its value range can be very large.
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A non-dimensional parameter, yu, is defined in [165] as
8
= gJN\/QRB (3.38)

Compared to N3'/2, ;i has a much narrower range, as stated in [169], therefore is adopted

here to replace N3'/2 as the second independent parameter. Since

34
NBY2 = _°F 3.39
P 8vV2Ro ( )

the coefficient C' defined by (3.16) can be expressed in terms of o and pu as

c=-L (3.40)
8Ro

Thus in this work, §, o and p are chosen to be the three input parameters.

It may often provide better physical insights and is more computationally efficient if a formula
is made dimensionless. To achieve this for the GW formulations, two non-dimensionalised
forms will be described below. The first one, termed the o-form, is mainly based on the
original version proposed by Greenwood and Tripp [165] where o is involved as the main
scaling factor. The second one, termed the d-form, is similar but uses § as the main scaling

factor.

These two forms are closely associated with the non-dimensional parameter « introduced in

[169] and its reciprocal o’ defined as
(3.41)
These two parameters will appear in the two non-dimensional forms respectively. For an

Table 3.1: The scaling factors in two non-dimensional forms

q* o-form o-form
o* o -
o* - )
w* o 4]
zy o 4]

o (22) 1o 1/
r* V2Ro V2R)
a* V2Ro V2R0
p* E\/c/8R E.\/0/8R
P P, (o) P, (%)

arbitrary physical quantity or function ¢, its non-dimensionalised version ¢* can be determined

by a scaling factor A,:
q=XAq" (3.42)
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Table 3.1 lists the scaling factors for those quantities in the two non-dimensional forms. The
non-dimensional expressions of the functions p,(r),w,(r) and P, for the two forms in terms

of the non-dimensional parameters « (or o) and p are presented below.

o0

[2¥ —w*(r,a’) — r*z]g/qu(z: —a')dzl  (3.43)

s

pa) = |

w* (T*,Oé/)+T*2

2 ot
The o-f : **,:—/ *(t*, K * 44
e o-form: w’, (r*,a’) i P (t*, oYK (k)dt (3.44)
32 ot
P ) = E{/ 2 p*(r*, o )dr* (3.45)
0
SN e ot a) — 2P — 1) del (346
pL(r' o) = o Lo e (28 —w*(r*,a) =] p(zk — 1)dz;  (3.46)
The J-fi *(r*, a) 2 /a* & *(t*, ) K(k)dt* (3.47)
e 6-form:  w’ (r*,a) == a :
ar Tl ol
3V2 [
Pl (a,p) = \8[/0 2rr*p* (r*, a)dr” (3.48)

Note that w?, and P} have the same expression, whilst only p?, is slightly different in the
two forms. Most importantly, the total contact force between two rough spheres can now be
written as

PG (5’ g, :U’) = PH((S)PZ(O%H) = PH(U)PG*(O/’:U’) (349)

i.e. the Hertzian load P, for the smooth contact with the same overlap J, or with the
roughness o as the equivalent overlap, is acting as the scaling factor for the total force P, in
each form. Particularly, the overlap § (or the roughness o) has now been separated from the
other two non-dimensional parameters « (or o’) and p, and therefore the total contact load
P_(6,0/, ) (or P,(o,d/, 1)) as a function of the three variables can now be obtained by simply
evaluating the non-dimensional load P (a, i) (or P%(a/, p)), only involving a (or ') and p,
and then multiplying it by the Hertzian load P, () (or P, (c)). The total computational
costs therefore can be reduced substantially by an order of magnitude in comparison with the
original formulations. In addition, the non-dimensional forms can make the curve fitting of

P (8, a,p) (or P,(o,d/, 1)) more accurate in the next stage.

3.4 Numerical Solutions and Computational Issues

Due to the inter-dependence between the pressure p,(r) and the deformation w,(r), and
the non-integrable part involving the Gaussian distribution, as shown in Equations (3.15)
and (3.17), an explicit expression between the overlap ¢ and the contact force P, cannot be
established. Thus, numerical solutions must be sought to obtain the force P, for a given set
of values for §, o (or a) and p. In what follows, the original formulations of the GW model

are used for discussion, but the proposed procedure and relevant numerical techniques are
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equally applicable to the two non-dimensional forms introduced in Section 3.3.

3.4.1 Numerical solutions of the pressure and deformation distributions
and the contact force

Because Equations (3.15) and (3.17) are coupled to implicitly define the pressure distribution
P (r) in terms of the deformation of the sphere w,, (r) over the contact area, both equations
need to be solved simultaneously to obtain a numerical solution. Although this can be fulfilled
in a different manner, the Newton-Raphson method will be employed in this work due to its

quadratic convergence.

Note that the contact radius @ may not be known in prior because the contact radius for
rough surface contact may not be determined precisely. Although a sufficiently large value of
a can be estimated based on the given overlap § and the roughness o, an appropriate value
should be used to achieve a high numerical accuracy when the contact region is discretised as

described below.

Firstly, the interval of the contact area [0, a] is discretised into m discrete points r,, =
[r1,--+ ,7m]T. In this work these points are taken to be the integration points (or abscissae) of
the chosen numerical integration quadrature for the integral in Equation (3.17) which will be
discussed later, and the corresponding weights are assumed to be s,, = [s1,- -+, 5,,]7. Then

Equation (3.15) can be discretized as
= C’/ — d;)3?P(z) dzs = Cg(wg,) (3.50)

where

g(w,,) = /d (20 — d)¥20(22)dzs; d; = wg, — 6+ 12/(2R)
and Equation (3.17) becomes

4 m
Gi 7E Z 8jQijPg; (3.51)

where the coefficients «;; are

x>

YU K(kiy) ki = ik (3.52)

Qig = . - .
T+ Ty i+ 7

Thus the equation to be satisfied at discrete point 7 is governed by

Fi(pG17 T 7me) =P — Cg(wGi) =0 (3.53)

Since this equation has to be satisfied at all the discrete points, r; (i = 1,--- ,m), it leads to a

nonlinear system of equations in vector format

F(py,) =p; — Cg(w,) =0 (3.54)
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where the four vectors involved are

F=[F

T T
qu"' 7FGm] P = [pG17"' 7me]

YW = [wala"' y Wa,, ;g(W) = [g(wc1)7'” ’g(wcm)]T

To solve the above nonlinear system of equations in terms of p, by the Newton-Raphson
method, the function F is expanded by the Taylor series in the neighbourhood of p,, with an

infinitesimal increment op
F(p, +0p) = F(p,) + Jop + O(6p?) (3.55)

where J is the Jacobian matrix of the vector function F

OF;

J=VF; or J;; = —
Opg;

(3.56)

By ignoring the 2nd and higher order terms in (3.55), the increment dp can be obtained by
op = ~3'F(p,) (3.57)

The final solution p,, is achieved when the iterative process converges starting from a trial
solution that can be chosen to be the Hertzian pressure distribution. Then the total contact
force can be obtained by numerically integrating the converged discrete pressure distribution

p. over the entire contact area

P.(6)=2m Z $iTiPg, (3.58)

=1
3.4.2 Computational issues

There are several computational issues involved in the above numerical procedure that may
have some significant impact on the overall computational efficiency and accuracy so thus

need to be discussed in detail.

Numerical integrations

Three integrals involved in Equations (3.15) ~ (3.17) need to be evaluated numerically.
Although many numerical integration quadratures can be used, such as the trapezium or
Simpson rule with equally spaced integration points, the Gaussian quadrature is adopted in
the current work due to its high algebraic accuracy. As the two integrals in Equations (3.15)
and (3.17) have the same integral domain which is the contact area [0, a], the same Gaussian
points and weights are used. Note that this is also the requirement of the Newton-Raphson

solution procedure outlined in the previous subsection.

The integral in (3.19) has a different integral domain and thus should be evaluated using a

different number of Gaussian points. Although the upper bound of the domain should be
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infinity in theory, a limited value based on the given roughness ¢ can be adopted instead.

Evaluation of the Jacobian matrix

The Jacobian matrix J needs to be evaluated at each Newton-Raphson iteration. However, it
is difficult to obtain the analytical expression. In this work, a finite difference approximation
to J is employed. Let J; be the j-th column of J, and e; = [0,--- ,1,--- ,0]7 be a unit vector
with only the j-component being unity. Then J; is approximated by

1 .
J;= - F(p+e¢ej) —F(p)|, ji=1,...m (3.59)
j

where

€ = emax{pj, €}

in which € is a perturbation parameter. Note that ¢ should be neither too large to sacrifice
the quadratic convergence of the Newton-Raphson method, nor too small to cause numerical
instability. The numerical test, to be presented in the next section, shows that € = 1076 is

sufficient to maintain the quadratic convergence without causing any numerical instability.

Determination of coefficients «;;

The coefficients «;; defined in (3.52) play a crucial role in the current numerical solution
procedure. An efficient approach to determine their values are described below. Introducing a

ratio \j; = r;/7j, a;j can now be expressed in a slightly different form

1 2/ Aij
ij = T~ K(kij); ki = - :

As )\;; is non-dimensional and fixed for a given m of the integration quadrature regardless
of the contact radius a, «;; are also non-dimensional and fixed. Note that k;; = kj;, thus
K(k;j) = K(kj;). Since it is computationally intensive to obtain the value of the elliptic
function K(k), utilising the symmetry of k;; can halve the computational costs in evaluating
a;j. Note that a relatively effective way to compute K(k) is by the arithmetic-geometric mean
described in [172].

However, a singularity problem occurs when evaluating the diagonal terms a;; since \;; =
ki; = 1, while K(1) is infinity. This singularity is avoided in [165] by introducing an auxiliary
function £(&), but its inverse has to be found numerically in order to evaluate w(r). In
[173] or [174], the problem is avoided by assuming that the pressure is constant over each
discretised element or element, and therefore the integral (3.17) over the element can be
explicitly expressed, but at the expense of a reduced solution accuracy. In this work, the
singularity problem is resolved based on the fact that the Hertzian pressure and deformation

distributions are the analytical solutions to (3.17): for an arbitrarily given Hertzian pressure
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Figure 3.4: Distribution of diagonal coefficients a;;
distribution

D (r) = po(1 —12/a?)'/?

over the contact region [0, a], the deformation from (3.17) is given by the Hertzian solution

u(r) = wo(1 — 12 /2a°)

g

where wy = mppa/2E. Thus it is natural to require that «;; be determined in such a manner
so that for the given Hertzian pressure distribution p,, (r), the calculated w,, from (3.51)

should be equal to w,, (r;):

_ 4 & _
’IUH(?“Z-) = ﬂ_Ejz::lsjaiij(Tj) (3.61)
which leads to
1 TE _ ke _
Qi = ———— [4wH (ri) — Y. sjousby (rj)} (3.62)
siPu (i) j=Lii

It can be verified that «;;(i = 1,...,m) are independent of the contact radius a and the
material property E as expected. The distribution of «y; in terms of ¢ or the (scaled) position
x;/a in the contact region [0, a] against the number of integration points m in the Gaussian
quadrature is illustrated in Figure 3.4, indicating that the lower terms converge when m

increases.

In summary, all the coefficients «;; are solely determined by the number of integration points
m (and their positions) for any chosen integration quadrature and thus can be pre-calculated
when m is given and used for any overlap and surface roughness. This feature, together
with the property K(k;;) = K(k;;), significantly increases the computational efficiency of the
preceding numerical solution procedure. The specific approach to determining the diagonal
terms ay; not only eliminates the singularity problem, but also maintains a high numerical

accuracy of the integration quadrature.
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Table 3.2: The pressure errors in the Newton-Raphson iterations for different o (1 = 4)

Iteration a=0.01 a=0.1 a=1.0
1 7.26e-2 1.77e-1 2.36e-1
2 3.81e-2 5.00e-2 1.27e-2
3 7.53e-3 4.38e-3 8.28e-5
4 4.68e-4 2.81e-5 2.11e-11
5 1.80e-6 8.58e-10 1.14e-17
6 2.42e-11 2.77e-16
7 1.40e-15

3.5 Numerical Results and Validation

This section presents and validates some numerical results obtained following the numerical
procedures proposed in the previous sections to ensure that the computed contact forces
P (0,0, ) are sufficiently accurate to be curve-fitted in the next section. The validation of
some results will be conducted against the known results presented in the literature. There are
several parameters involved in the numerical procedure proposed in the preceding section that
need to be selected appropriately to ensure a high solution accuracy and overall computational

efficiency. Selections of their values will also be discussed.

3.5.1 Convergence of the Newton-Raphson procedure

The Newton-Raphson method should exhibit a quadratic convergence when properly imple-
mented. This property may be affected if the chosen value of the perturbation parameter € in

(3.59) is too large. The residual error at iteration 7 is defined as

¢i = |lopg,|I/lIpe. |l (3.63)

where dp; is the pressure increment at the iteration and p., is the updated pressure after
the iteration. The Hertzian pressure distribution p,, (r) is taken as the initial guess for p (7).
The perturbation parameter € is set to be 1076, For a fixed x = 4 and m = 100, the history
of the residual errors during the iterations for different « is recorded in Table 3.2. It is clear
that a quadratic convergence is achieved for all the a values, indicating that ¢ = 1076 is an
appropriate value. It is also evident that faster convergent speeds are achieved for larger «,
and the typical number of iterations needed to reach an accuracy of around 10~° is about 4

or b.

3.5.2 Selections of numerical parameters

The following parameters need to be specified in the numerical procedure: 1) the contact

radius a; 2) the number of Gaussian integration points m used in the evaluation of the integrals



Table 3.3: The computed P (a, 1) for different numbers of Gaussian points m (u = 4)

m a=0.1 a=1 a=3

5 0.9701255 2.0143635 11.077996
10 0.9770791 2.0139965 11.070676
20 0.9769659 2.0138868 11.071660
50 0.9769516 2.0138709 11.071798
100 0.9769507 2.0138699 11.071806
200 0.9769506 2.0138697 11.071807

50

(3.17) and (3.19); and 3) the number of Gaussian integration points and the upper bound of
the integral domain for the integral (3.15).

The pressure distribution p,, (r) reduces when r increases and further drops to a very small or
zero value. As the contact radius a is unknown in prior, it should be specified sufficiently
large so that the actual contact region is fully covered, but not too large to cause a large
portion of the (nearly) zero-pressure region because the integration or discretisation points

located in the region will be wasted. The follow formula to determine a appears to work well:
a = (1.75 + min{q, |&/|})a (3.64)

where a is the contact radius of a smooth contact case with the same overlap ¢ (for 0 < a < 1)

or the equivalent overlap o (for o/ =1/a < 1).

The number of Gaussian integration points for the integral (3.15) is chosen to be 10. The
upper bound is taken to be 50, as this will statistically cover 99.99994% of possible peak

heights, and thus should not affect the final solution accuracy.

The number of Gaussian points m has a major influence on the computational costs and the
accuracy of the computed total force P, or PG*(a, w). In order to select a proper value, the
following accuracy convergence test has been conducted: different numbers of m are used to
compute P*(a, p) for a number of combinations of « and p values. The results are presented
in Table 3.3, in which the significant digits of the computed force for each m are highlighted
which is obtained by comparing the force value with the one for the next m. It appears that
m = 20 is required to obtain an accuracy of about 1075, but it is remarkable that even m = 5
can achieve an accuracy of 1073. Nevertheless, to ensure that all the results are sufficiently

accurate, m is taken to be 200 in all the subsequent computations.

3.5.3 Comparisons of pressure distributions and effective contact radii

Some selected numerical results obtained in this work are validated by comparing them against
those presented by Johnson in [169], including: 1) the maximum contact pressure p,(0)
normalised by the maximum Hertzian pressure pg for different o and p; and 2) the effective

contact radius a¢* normalised by the Hertzian contact radius a as a function of o and . The
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Figure 3.5: The ratio of the maximum contact pressure p,(0) to the maximum Hertzian

pressure py against a and pu: (a) comparison of the present work with Johnson’s for a < 1
and two y; (b) the present work for wider ranges of o and p

maximum Hertzian pressure pg and contact radius a are obtained from smooth sphere contact
under the same contact load P,. The effective contact radius a* is arbitrarily defined by

Greenwood and Tripp [165] as i
. 3T [g g (r)dr

40 p(r)dr (3:65)

Figure 3.5(a) depicts a comparison of the ratio p.(0)/py for 1072 < a < 1 and two values of
u =4 and 17 between the present work and those presented in Figure 13.12 on page 420 in
[169]. It shows an excellent agreement in the range 0.02 < o < 0.2 for the curve p = 4, and in
a narrower range 0.045 < a < 0.065 for the curve p = 17. However, the difference between
the present work and the referenced work [169] becomes noticeable and increases when «
increases towards o = 1 for 4t = 4 and 17, and when « decreases from 0.045 for y = 17. No
comparison, however, can be made for a > 1 as no corresponding results are available in the

referenced work.

Nevertheless, in order to shed a further insight into the contact behaviour of rough surfaces,
the maximum effective pressure p(0) over the Hertzian pressure py from the current work
is provided in Figure 3.5(b) for a much wider range of a (1073 < o < 10%) and a larger set
of p(=1,4,17 and 50). The figure shows that the ratio p(0)/po increases towards 1 when
« decreases to zero regardless of u, as proved in Section 3.2.4; while a decreases with the
increase of o but asymptotically reaches a non-zero limit value that monotonically increases
with . On the contrary, it may be reasonably deduced from the two curves in the referenced

work that when « increases the ratio decreases towards zero in an accelerated manner.

Figure 3.6(a) shows a comparison of the ratio a*/a for 1072 < a < 1 and two values of y = 4
and 17 between the present work and those presented in Figure 13.13 on page 421 in [169].
Again, it shows a very good agreement in the range 0.02 < « < 0.2 for the curve p = 4, and

in a narrower range 0.06 < a < 0.1 for the curve p = 17. However, the difference between
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the present work and the referenced work becomes larger when « increases towards o = 1
for y =4 and 17, and when « decreases from 0.06 for p = 17. Again, no comparison can be

made for o > 1 as no corresponding results are available in the referenced work.

Similar to the ratio p,(0)/po, the effective contact radius a* over the Hertzian contact radius a
from the current work is provided in Figure 3.6(b) for a much wider range of o (1073 < a < 103)
and a larger set of pu(=1,4,17 and 50). The figure shows a very similar behaviour as in the
ratio p,(0)/po that the ratio a*/a increases towards 1 when a decreases to zero regardless of
1, as expected; while the ratio increases with the increase of o but asymptotically reaches
a limit value that monotonically increases with p. On the contrary, it may also be deduced
from the two curves in the referenced work that when « increases the ratio increases in an

accelerated manner.

In summary, because both maximum pressure p(0) and effective contact radius a* in the
present work agree very well with those in the referenced work for certain ranges of o and pu,
it is with high confidence that the current implementation of the GW model is correct, while
the observed discrepancies might be due to some unknown reasons in the referenced work. It
may also be concluded that the effect of the parameter p for large & may not be secondary as
claimed in [169].

3.5.4 Effects of input parameters on pressure distributions

Effects of the two parameters a and p on the pressure distribution p,(r) over the entire
contact area [0,a] and the effective contact radius a* have been extensively discussed, for

instance, in [64, 169] and elsewhere, so thus will not be discussed in detail here.

Figure 3.7 illustrates the effective pressure distributions for three different o« = 0.1,1 and
10 and four different p = 1,4, 10 and 17, where the Hertzian distribution is for the smooth
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Figure 3.7: Effective pressure distributions for different o and p (the vertical line of each
curve indicates the position of effective radius a*)

contact under the same contact load P,, and the vertical line of each curve indicates the
position of the corresponding effective radius a*. As expected, the increase of a reduces the
maximum pressure p,(0) but spreads the load over a greater contact area a and thereby

leading to a larger effective contact radius a*.

3.6 Concluding remarks

To develop a suitable normal contact law which can consider the surface roughness of particles,
a Newton-Raphson based iterative solution procedure has been proposed to effectively and

accurately obtain the contact pressure and deformations and the total force.

The essential components of this numerical procedure include the use of the Gaussian quadra-
ture to evaluate three integrals, the adoption of a finite-difference approximate to the Jacobian
matrix, and the determination of the coefficient «;; and particularly the diagonal terms a;.
It reveals that the coefficients «;; are solely determined by the number of integration points

m used for the chosen integration quadrature and thus can be pre-calculated. These features
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not only significantly increase the computational efficiency of the proposed numerical solution

procedure, but also maintain the high accuracy of the numerical solutions.

The numerical results are obtained and validated against some existing results in the literature.
Also, as given in Section 3.2.4, the classic GW model is not suitable to treat the situation

with positive overlap between spheres which leads to the extension in the next chapter.



Chapter 4

Surface roughness modelling — 11.
Extended GW models

4.1 Introduction

The above analysis in Section 3.2.4 demonstrates that the GW model cannot handle the
condition when ¢ > 0, which is in accord with the general accepted conclusion that the classic
GW model is better suited for light contacts with large separations [170, 171]. This difficulty
is due to the assumption made in the GW model that the deformation of the interacting rough
surfaces is described by the contacting asperities only, and the bulk deformation under the
surface asperities has been ignored. A positive overlap between particles in DEM simulations
will definitely make contribution to the contact force. Therefore, the classic GW model cannot

be incorporated in the DEM modelling framework without modification.

To develop the normal contact model which can be incorporated in DEM simulation, an
extended elastic GW model is presented in this chapter which can consider the positive
overlap between particles. This model is further improved to allow plastic deformation at the
asperities. Furthermore, under the assumptions of surface roughness described in the classical
GW model, the corresponding tangential contact model and thermal conductivity model are

also developed in this chapter.

4.2 The extended elastic GW model

To take full consideration of the positive overlap, the GW model is extended by evaluating
the contributions of both the asperities and the substrate to the deformation. As the asperity
deforms elastically in the classic GW model, the resulting extended model is termed the
Extended Elastic GW model or the E-GW model.

95
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Figure 4.1: Profile of the contact between a smooth sphere and a rough surface: 6 > 0

4.2.1 Model description

The contact of rough particles in the discrete element modelling can be described by two steps:
(a) the contact of the smooth particles with the overlap ¢; and (b) an additional displacement
due to the surface roughness. Based on this observation, the rough (flat) surface is divided
into two parts: the nominal smooth surface and the associated rough asperities, and both
parts additively contribute to the deformation of the (smooth) sphere and the final contact
force. As shown in Figure 4.1, the profile in green represents the deformed sphere in contact
only with the smooth surface (i.e. the Hertizan part); while the profile in red represents the
final deformed configuration of the sphere in contact with the rough surface. The smooth
surface is taken as the datum (the red central line in Figure 4.1) which is also the mean height

of the asperities.

The contact force due to the smooth part can be obtained from the Hertz law. The pressure
distribution p,, (1), the deformation distribution w,, (r) and the total force P, (§) are given by
(3.21), (3.22) and (3.23) respectively.

The additional contact force caused by the asperities is determined by the classic GW model.
The profile in dashed green line can be regarded as the undeformed sphere without considering

the effect of the asperities which is described by

7‘2

A1) = wy (1) + 35 =0 (1)

Then the separation between the deformed sphere after contacting with asperities and the

deformed sphere after contacting with the smooth surface is
d(r) =wg(r) + 2(r) (4.2)
The overlap between the asperity and the dashed green line is
O (r) = 2s —wg (r) — 2(r) (4.3)

Then the contact pressure distribution p,(r) and deformation distribution w, (1) can be
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expressed as

polr) = C [ 8z (4.4

4 (ot

“E /) mpa(t) K(k)dt (4.5)

W (r) =

The contact pressure is the sum of the Hertz pressure and the GW pressure. Thus the total

pressure distribution p(r) and deformation distribution w(r) of the sphere can be expressed by
p(r) = py (r) + pe(r) (4.6)
w(r) = wy (r) + wg(r) (4.7)

The total contact force P(d,0) is the summation of the Hertz force P, () and the rough GW
contribution P, (d,0) defined by (4.4) as

P(6,0) =P, (0) + P, (0,0) (4.8)

By utilising the fact that the Hertz contribution is zero when ¢ is negative, the above extended
GW model includes the classic case as a special case. For the rough part, p, can be set to be
zero when § < —30 because the probability that a summit z, lies in the range [—30, +30] is
99.9%.

Comparison between the classic and the extended models

—_—GW =i

—GW u=4
GW u=10

257 luven E-GW p=1

E-GW p=10

15
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Figure 4.2: Comparison of non-dimensional total contact forces between the GW and E-GW
models for different degrees of roughness

The classic GW model and the E-GW model are compared in this subsection. Unlike in the
traditional tribology where the interest is mainly focused on the evolution of the separation
and effective contact area under a varied normal load, the attention in the current work is
concentrated on the change of the total contact force with an increasing surface roughness

under the same overlap between particles. Therefore, the non-dimensional total contact
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force, the pressure distribution and the deformation distribution under the same overlap are

compared between the two models.

Figure 4.2 shows the relationship between the surface roughness o and the non-dimensional
total contact force P*(= P/P,,) with a positive overlap § = 0.01. The roughness o increases
from 0 to 0.01 and three different values, 1, 4 and 10, are chosen for the non-dimensional
parameter p. The rough surface is supposed to result in a larger normal contact force than
the smooth surface with the same overlap, which means the non-dimension total contact force
P* should always be greater than 1 and should also increase with the increase of the degree

of roughness o.

However, it is evident from Figure 4.2 that when o is approaching to zero, the non-dimensional
contact forces P* obtained from the GW model are smaller than 1, meaning the contact forces
of rough particles are smaller than those of smooth particles. This is physically incorrect and
is consistent with the theoretical predication presented in Section 3.2.4. On the other hand,
the extended model correctly captures the phenomenon that rougher surfaces produce larger

contact forces than smoother surfaces under the same overlap.
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Figure 4.3: Comparison of pressure distributions over the contact zone
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The pressure and deformation distributions based on the classic GW model and the E-GW
model are also compared and shown in Figure 4.3(a) and Figure 4.4(a) respectively. To make
the comparison more apparent, the differences of these distributions with the corresponding
Hertz solutions are depicted in Figure 4.3(b) and Figure 4.4(b). The results are obtained with
the same positive overlap § = 0.01, the same non-dimensional parameter p = 4 and three

different surface roughness levels ¢ = 107°,107%, and 1073.

The fact that the pressure and the deformation gradually approach to the Hertz solution as o
decreases when the surface becomes smoother can be seen for both models but in different
fashions. The classic GW model achieves this from below the Hertz solution in most of the
contact region which is again conforming to the theoretical analysis in Section 3.2.4. Also the
surface asperities reduce the pressure and deformation in the original contact area between
the sphere and the smooth surface but lead to a significantly larger effective contact area. On
the contrary, the E-GW model approaches to the Hertz solution from above which reflects the
fact that, as the surface becomes rougher, both pressure and deformation increase inside and

outside the original contact area.

In DEM simulations, a positive overlap is defined between two smooth particles (for dry
mechanical contact only), the asperities added on the smooth surface should cause additional
pressure and deformation. Therefore, it can be concluded that the current extended model is

more realistic for the contact situation with a positive overlap.

4.2.2 A normal interaction law based on the E-GW model

The aim of this work is to establish a normal contact law that can be readily used in DEM.
Considering the complicity of the above extended GW model, nondimensional analysis as
defined in Section 3.3 is performed to make the final formulas with a minimum number of

parameters.

The §-form:

P a) = py (r) +p, (17, )

2a* r*2\1/2 o0 PN L7 T
= — (1 - E) +M/wg(r*,a) [zs —w,(r ,oz)} o(z2)dz; (4.9)
w*(r’, a) = wy, (r) + wi (17, @)
r*2 2 [rat o p*
=(1- — * () K (k)dt* 4.1
( 2a*2)+7r/0 t*—l—?"*pG( ,Oé) ( ) ( 0)
3V2 o
P*(a,p) = P, + Pl(a,pu) =1+ —\f 2 p (r7, a)dr® (4.11)

8 Jo
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The o-form:

p*(r*,a) = p, (r") + p;,(r*, &)

2a” r*2\1/2 * * x ok ] 3/2 * *
-2 (1-5) +u/wg(r*7a,) [ w0 btz (4.12)
w*(r*, o) = wi (r*, o) + w’ (r*, o)
7*2 2 [at o t*
=o/(1- W) + ;/0 e (0 K (R)d* (4.13)
3vV2 [
P*(a/,p) = Pl (a') + Pi(a/,p) = 1 + \8[ ; 21 pl, (r*, o )dr® (4.14)

The total contact force between two rough spheres can be expressed as
P(5,0) = P, (8)P*(a, 1) = P,y (o) P*(a 1) (4.15)
where both non-dimensional coefficients P*(a, 1) and P*(o/, ) will be derived in empirical

form.

Interaction laws commonly used in DEM are an explicit formula in terms of the overlap and
other parameters of contact features which is obviously different from the extended GW model
in Equation(4.15). Due to the complicity and implicit nature of the extended GW model
which cannot be implemented directly into the DEM framework, a curve-fitting procedure is

conducted to obtain a normal interaction law based on numerical results.

m:-3<a'<0 n:0<a' <1

o= -6/3

:0<a<]1

Figure 4.5: The division of the § — ¢ plane into three cases

As P, and P* have been separated in Equation(4.15), only P* needs to be curve-fitted.
Moreover, to avoid numerical difficulties, the range of the input parameters has been divided
into three parts: Case I: 0 < a < 1; Case II: 0 < o/ < 1; and Case III: —3 < o/ < 0, as shown
in Figure 4.5.

Three explicit approximations to P* for the three cases, denoted as P}(a, i), PS(c/,p),

Pr(o/, p), are sought. The corresponding fitting results are acquired respectively with addi-
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tional requirements for the continuity conditions as
PF(1, 1) = Py (1, 2); P (0, 1) = PY(0, ) (4.16)

The curve-fitting procedure is conducted by two steps to obtain the empirical formulas. In the
first step, a limited number of values for u are selected, and for each fixed p, a curve fitting for
P* will be conducted. In the second step, the coefficients of the empirical functions attained

will be further curve-fitted in terms of y by interpolating functions such as cubic splines.

The first variable p is assumed to be in the range of [1,50], and seven values of p =
1,2,4,10,20,35,50 are selected. For each p, 200 equally spaced values of « in [0,1] and

1000 o in [-3,1] are used to generate all the curves.

Empirical formula for Case I

Polynomial fittin
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Figure 4.6: Case I - 0 < a < 1: (a) Computed P* and cubic polynomial fitted curves; (b) The
coefficients of the cubic polynomial

Table 4.1: Case I (0 < a <1): Coefficients of the cubic polynomial for different u

"
coet. 1 2 i 10 20 35 50
bo 1.0 1.0 1.0 1.0 1.0 1.0 1.0
by 0.6187  0.9078  1.2343  1.6938  2.0466  2.3291  2.5069
by | -0.0694  -0.0220  0.0938  0.3399 05777  0.7919  0.9361

b3 0.0513 0.0593 0.0481 0.0085 -0.0344 -0.0745 -0.1018
Fitted formula

bo 1.0

by 0.3484 In (1) + 0.6066°-1642

by 0.3176,0-3782 — 0.4135

bs —0.0745/p — 0.1737u0-2134 4-0.2992

The numerical results of P* for Case I (0 < a < 1) are shown in Figure 4.6(a) as the solid
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lines. A cubic polynomial is chosen as the curve-fitted formula for P*(a, )

P (a, ) = bo(p) + bi(p)a + ba(p)a?® + by(n)a® (4.17)

which is subjected to the continuity condition (4.16).

The extended model reduces to the Hertz model when 0 = a =0 as
Pl*((),,u) =1+ P;l(O,,u) =1 (4.18)

So
bo() = 1 (4.19)

Four points at o = 0,1/3,2/3,1 are selected for the interpolation function P*(c, ). The
fitted curves are plotted for each p in Figure 4.6(a) by dashed lines. A very good fitting result
can be observed.

The relations between four coefficients b;(i = 0, ...,3) and p are depicted in Figure 4.6(b) and
listed in Table 4.1. A nonlinear least-squares procedure is applied to acquire the fitted formula

for each coefficient with p as presented in Table 4.1.

Polynomial fitting
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Figure 4.7: Case II - 0 < o/ < 1: (a) Computed P* and quadratic polynomial fitted curves;
(b) The coefficients of the quadratic polynomial

The numerical results of P; for Case I1 0 < o' < 1 are showed in Figure 4.7(a) as the solid lines.
A quadratic polynomial is chosen as the curve-fitted formula for Py(a/, ). The continuity

condition should also be satisfied in this case.

Py (o', 1) = bo(p) + b1 (p)a’ + ba(p)a? (4.20)

Pf(o/, ) is determined as the interpolation function passing through the three points at
a = 0,1/2,1. Similar to Case I, the fitted results are presented both in Figure 4.7 and
Table 4.2. It is evident that a very good fitting result has been achieved.
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Table 4.2: Case II (0 < o/ < 1): Coefficients of the quadratic polynomial for different u

7
1 2 4 10 20 35 50

bo 0.3011 0.4989 0.7672 1.2141 1.6022 1.9357 2.1544
b1 0.7960 0.9877 1.2044 1.4986 1.7139 1.8810 1.9845
ba 0.5082 0.4630 0.4090 0.3339 0.2781 0.2342 0.2066
Fitted formula

coef.

bo 0.22841n(p) + 0.27869-3913
by 0.2688 In () + 0.7873,0-0451
ba —0.0778 In(p1) + 0.5132;,~0-0008

Polynomial fittin
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Figure 4.8: Case III - —3 < o/ < 0: (a) Computed P* and quartic polynomial fitted curves;
(b) The coefficients of the quartic polynomial

Empirical formula for Case II1

The numerical results of P for Case III —3 < o/ < 0 are showed in Figure 4.8(a) as the solid
lines. A quartic polynomial is chosen as the curve-fitted formula for P;(a/, ). The continuity

condition should also be satisfied in this case.
Py (o', 1) = bo(p) + bi(p)a’ + ba(p)a'® + by(p)a” + ba(p)a (4.21)

Ps*(a’ , i) is determined as the interpolation function passing through the five points at
a=-3,-9/4,—6/4,—-3/4,0. Similar to the previous cases, the fitted results are presented
both in Figure 4.8 and Table 4.3. It is evident that a very good fitting result has been achieved.

In summary, the final explicit form of the normal interaction law based on the extended GW



64

Table 4.3: Case III (—3 < o’ < 0): Coefficients of the quartic polynomial for different u

7
1 2 4 10 20 35 50

bo 0.3011 0.4989 0.7672 1.2141 1.6022 1.9357 2.1544
b1 0.6187 0.6638 0.8981 1.1507 1.2872 1.3770 1.4295
by 0.2431 0.3227 0.3460 0.2440 0.1058 0.0012 -0.0516
b3 0.0604 0.0665 0.0408 -0.0498 -0.1316 -0.1810 -0.1999
b4 0.0057 0.0047 -0.0010 -0.0161 -0.0277 -0.0333 -0.0345
Fitted formula

coef.

bo 0.2284 In (1) + 0.27680-3913

b1 —0.2862/p + 0.191 In(p) + 0.7095

by —0.5037/p — 0.2005 In () + 0.7384

bs —0.2347 /1 — 0.1473 In () + 0.226

by —0.0338/p — 0.02451In(p) + 0.00054 + 0.0387

model can be expressed as

Py (0) P (e, p); §>0

P, 1) = Py (o)P; (e, p); 0<é<o (4.22)
(o) P} (o, ) —30<6<0
0; 0 < =30

4.2.3 Numerical Illustrations of the E-GW model

The new random normal interaction law based on the extended elastic GW model has been
implemented into a DEM code to investigate the effect of surface roughness on the mechanical
behaviour of a particle system. It should be noted that the material parameters used are
artificially chosen, and no real surface roughness parameters are taken. The results obtained

are therefore for illustration.

The material properties of the particles are: Young’s modulus E=1GPa, Poisson’s ratio
v = 0.3, density p = 2000kg/m?> and frictional coefficient f = 0.2. A constant frictional
coefficient is chosen here to exclusively show the influence of the roughness parameters,

although the coefficient itself is entirely determined by these parameters.

Four levels of surface roughness ratios o, = (0,0.001,0.005,0.01) are considered for the
following simulations, where o, = 0 represents the smooth surface. The surface roughness
o of a particle is set to be proportional to its radius r: ¢ = o, r. The second roughness
parameter p is taken to be 10 or 50. The first roughness parameter ¢ can be regarded as
the measurement of surface roughness in the normal direction which represents the height of
the asperity. The second roughness parameter may be viewed as the measurement of surface
roughness in the tangent direction in relation to the number and the radii of curvature of
the asperities. The surface of rough particles (r = 1) with different roughness parameters are

depicted in Figure 4.9.
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£=10 o, =0.001 ©=50 o, =0.001

#=10 o, =0.005 #=50 & =0.005

#=10 o, =0.010 ©=50 o,=0.010

Figure 4.9: Rough surfaces of particles with different roughness parameters

In summary, seven samples with different roughness parameters have been created. The
normal contact laws for a unit particle (r = 1) with different surface roughness parameters
are showed in Figure 4.10(a), with an enlarged view in Figure 4.10(b) for overlap § < 0. It is
obvious that as ¢, and p increase, the value and range of the normal force increase as well.
Unlike the linear or Hertz contact law which defines the relationship between the total force

and the overlap by a power function with a constant exponent of 1 or 1.5.

The current normal contact law considers different contact behaviour of rough particles at
different contact stages. At the initial stage of contact between two rough particles, only
some asperities are in contact which corresponds to the slow growth part (Case III) of the
random normal contact law. As the overlap increases from zero, the contact force between
rough particles is subject to a rapid growth (Cases I and II). The random normal contact law

can reflect the contact behaviour between rough particles more reasonably.

Compressive tests will be simulated below to illustrate the effect of surface roughness on the
macro and micro mechanical characteristics of a particle assembly. The particle assembly is
generated randomly in a cubic box of the side length 60cm. The particle diameters obey the
Gaussian distribution with the average radius of 1em and the relative deviation of 0.25. The

total number of the particles is 14812.

Two compressive loadings are carried out on the sample: one-dimensional compression and
three-dimensional compression. For the one-dimensional compress test, the sample is first
compacted to reach an initial isotropic stress of 0.5MPa. By setting the top and bottom
boundaries as rigid wall, and the periodic boundary to the two lateral directions, the one-

dimensional compression is simulated by moving the top and bottom walls at a constant
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Figure 4.10: The normal force interaction laws for particles with different surface roughness

parameters

(a) One-dimensional compression

(b) Three-dimensional compression

Figure 4.11: Numerical samples

velocity in the vertical direction (Figure 4.11(a)). For the three-dimensional compress test,

the initial isotropic stress is 5MPa. The sample is enclosed with rigid walls in all directions.

Three-dimensional compression is simulated by moving the top and bottom walls at the same

constant velocity and using a servo-control mechanism to maintain the stress on the lateral
walls as 5MPa (Figure 4.11(b)).

One-dimensional compression

The initial porosities of samples with different roughness parameters with an isotropic stress

state of 0.56MPa are displayed in Figure 4.12. It shows that as the surface roughness ratio
o, increases, the porosity almost linearly increases from 0.5670 to 0.5745 (1 = 10) or 0.5790
(1 = 50). A larger roughness parameter p leads to a higher porosity which indicates that
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Figure 4.12: Porosities of the initial packings for samples with different roughness parameters

surface roughness makes the initial packing looser. This phenomenon can be explained by

investigating the normal contacts between particles.

Table 4.4: Percentage of the number of contacts number of initial packings (One-dimensional
compression)

w=10 =50
Case | 0, = 0.001 | 0, = 0.005 | 0,, =0.01 | 0. = 0.001 | o, = 0.005 | o, = 0.01
I 91.07% 38.29% 6.58% 88.63% 26.54% 2.25%
11 3.94% 28.33% 25.93% 4.59% 25.09% 12.42%
111 4.99% 33.38% 67.49% 6.78% 48.37% 85.33%

Figure 4.13 depicts the normal contact links between particles. As mentioned above, the
random normal contact law is divided into three cases: Case I: 0 < d; Case II: 0 < § < o3
Case III: =30 < § < 0. In Figure 4.13, the contact belonging to Case I is in red, Case II
in yellow and Case III in blue. It can be seen that increasing surface roughness parameters

gradually increases the number of contacts in Cases II and III.

Table 4.4 lists the percentage of the number of contacts in each case for six samples with
rough particles. Obviously, all the contacts in the samples of smooth particles belong to Case
I as the random normal contact law reduces to the Hertz contact law. The two roughness
parameters o, and p affect the percentage to different degrees. o, determines the ranges
of the three cases so has a more significant influence. For both u = 10 and p = 50, as o,
increases from 0.001 to 0.01, the percentage of the number of contacts in Case I decreases from
around 90% to less than 10%. The percentage in Case II firstly increases then decreases as o,
increases from 0.001 to 0.05, then to 0.01. Meanwhile, the percentage in Case III generally
increases. For all ¢,=0.001,0.05,0.01, increasing p increases the percentage in Case III while

decreases the percentage in Cases I and II.

Figure 4.14 illustrates the normal contact distribution, average normal contact force and
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(d) p=50 o, =0.001 (e) p="50 o, =0.005 (f) p=50 o, =001

Figure 4.13: Normal contact links for initial packing samples with different roughness parame-
ters

contact force vs the overlap for different samples. The blue solid line represents the normal
contact force vs overlap, the dashed red line represents the average normal force, the dashed
vertical black lines divide the contacts into the three cases, and the blue histogram indicates
the normal contact distribution over the overlap range. As the initial state stress for the six
samples is the same, the average normal force is in the range of 1.5 ~ 1.6 x 10*N. With the
increase of o,., the average normal force decreases because the extension of the contact range
leads to more normal contacts but with small values. The intersection of the average normal
force and the normal contact law (red dashed line and blue solid line) determines the overlap
where most contacts occur. When o, = 0.001, for both g, this intersection is located within
Case I, and most of the contacts occur in Case I as well. When o, = 0.005, for u = 10, the
intersection is near the line dividing Cases II and III; the contacts in Case II (28.33%) and
Case III (33.38%) are almost the same. While for p = 50, the intersection is in Case III,
making the percentage of contacts in Case III (48.37%) two times of it in Case II (25.09%).

When o, = 0.01, the intersection is in Case III and most contacts occur in Case III.

The one-dimensional compression is preformed on each sample reaching the final axial strain
of 0.2. Figure 4.15 shows the compression results for seven samples. It can be seen from
Figure 4.15(b) that the sample with smooth particles has the smallest coo