

Cronfa - Swansea University Open Access Repository

This item is brought to you by Swansea University. Any person downloading material is agreeing to abide by the terms of the repository licence. Copies of full text items may be used or reproduced in any format or medium, without prior permission for personal research or study, educational or non-commercial purposes only. The copyright for any work remains with the original author unless otherwise specified. The full-text must not be sold in any format or medium without the formal permission of the copyright holder.

Permission for multiple reproductions should be obtained from the original author.

Authors are personally responsible for adhering to copyright and publisher restrictions when uploading content to the repository.

http://www.swansea.ac.uk/library/researchsupport/ris-support/

Journal Pre-proof

Improved open-circuit voltage via Cs_2CO_3 -Doped TiO_2 for high-performance and stable perovskite solar cells

Hao Zong, Yan-Hui Lou, Meng Li, Kai-Li Wang, Sagar M. Jain, Zhao-Kui Wang

PII: S1566-1199(19)30522-1

DOI: https://doi.org/10.1016/j.orgel.2019.105495

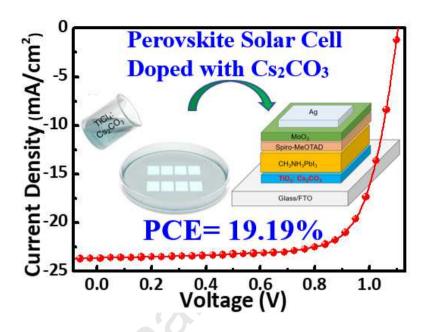
Reference: ORGELE 105495

To appear in: Organic Electronics

Received Date: 16 August 2019

Revised Date: 20 September 2019

Accepted Date: 8 October 2019


Please cite this article as: H. Zong, Y.-H. Lou, M. Li, K.-L. Wang, S.M. Jain, Z.-K. Wang, Improved open-circuit voltage via Cs₂CO₃-Doped TiO₂ for high-performance and stable perovskite solar cells, *Organic Electronics* (2019), doi: https://doi.org/10.1016/j.orgel.2019.105495.

This is a PDF file of an article that has undergone enhancements after acceptance, such as the addition of a cover page and metadata, and formatting for readability, but it is not yet the definitive version of record. This version will undergo additional copyediting, typesetting and review before it is published in its final form, but we are providing this version to give early visibility of the article. Please note that, during the production process, errors may be discovered which could affect the content, and all legal disclaimers that apply to the journal pertain.

© 2019 Published by Elsevier B.V.

Graphic Abstract

Hao Zong^a, Yan-Hui Lou^{b,*}, Meng Li^a, Kai-Li Wang^a, Sagar M. Jain^{c,*}, and Zhao-Kui Wang^{a,*}

^a Institute of Functional Nano & Soft Materials (FUNSOM), Jiangsu Key Laboratory for Carbon-Based Functional Materials & Devices, Soochow University, Suzhou, Jiangsu 215123, China.

^b College of Physics, Optoelectronics and Energy & Collaborative Innovation Center of Suzhou Nano Science and Technology, Soochow University, Suzhou 215006, China.

^c SPECIFIC, College of Engineering, Swansea University Bay Campus, Fabian Way, SA1 8EN Swansea, UK

*Corresponding Authors:

Organic-inorganic metal halide perovskites have drawn the interest of scientific community

due to their suitable optoelectronic properties and high solar cell efficiency. In this report, we

demonstrated, for the first time, the application of Cs₂CO₃ - doped TiO₂ as an efficient

electron-transporting layer (ETL) in PSCs. Remarkably, the optimized Cs₂CO₃-doped TiO₂

films exhibited improved wetting properties which assisted the deposition of perovskite films

and improved the TiO₂ / perovskite interface by lowering the work function. With X-ray

diffraction studies, better crystalline of the perovskite films could be found in the doped

devices. Solar cells prepared with the Cs₂CO₃-doped TiO₂ as ETL resulted in a 19%

efficiency performance and improved stability.

KEYWORDS: Perovskite solar cells; Cs₂CO₃; TiO₂; Electron-transporting; Stability.

2

population has resulted in high energy demands. Among all renewable energy sources, photovoltaic energy stands out and is most widely investigated. Recently, the perovskite solar cells (PSCs) have come into limelight due to their ease of fabrication and rapid improvement in performance (which is currently comparable to those of polycrystalline silicon solar cells). Interestingly, PSCs unlike silicon solar cells, can be transparent, laminated and even be fabricated on flexible substrates.[1-3] Since the first fabrication of PSCs by Kojima et al. yielded a power conversion efficiency (PCE) of 3.81% in 2009,[4] researchers have made steady improvements in the PCE, which has now exceeded 25%.[5, 6] PSCs efficiency is improved by varieties of methods such as employing new perovskite absorber materials, fine-tuning the chemical composition, controlling the morphology of the film,[7] and modifying the interface. [8-16] Titanium dioxide (TiO₂) emerged as most conventional electron transport layer in perovskite solar cells. However, there exists still possibilities to improve its charge mobility and defect properties (oxygen vacancies). [17] Unfortunately, very few studies reported in this direction. Cesium carbonate (Cs₂CO₃) which could be solution-processed due to its excellent solubility in polar solvents has been extensively used as a surface modification material in organic light emitting diodes (OLEDs) and solar cells (OSCs) to improve electron-injection from the metal cathode and as dopant in an electron transport layer.[18-21]

fossil fuels and environmental sustainability issues. Moreover, the ever-increasing human

Here, we demonstrated for the first time, the use of Cs_2CO_3 as a dopant in TiO_2 layer. Cs_2CO_3 which is reported to be a surface modification material with a work function lower than that of TiO_2 have the ability to reduce the work function of electron transporting layer (ETL).[19] Cs_2CO_3 when used as a modification material can fine-tune the mesoporous

obtained from PSCs fabricated with conventional mesoporous TiO_2 electron transport layers. It is observed from X-ray diffraction and UV-absorbance measurements that the perovskite films deposited on Cs_2CO_3 -doped TiO_2 resulted into good quality perovskite films which is a result of improved wetting properties of Cs_2CO_3 -doped TiO_2 .

2. Experimental Details

2.1 Material and Solution Preparation

The Solar cells are fabricated on fluorine-doped tin oxide (FTO) covered glass substrates (Pilkington, Nippon Sheet Glass). Titanium tetrachloride (TiCl₄), 4-tert-butyl pyridine (tBP) and Lithium bis (trifluoromethanesulfonyl) imide (Li-TFSI) were obtained from Sigma-Aldrich. Spiro-OMeTAD were obtained from 1-Material Ltd. Lead iodide (PbI₂, 99.99%), methylammonium iodide (MAI), dimethyl sulfoxide (DMSO), cesium carbonate (Cs₂CO₃), chlorobenzene (CB) and γ -butyrolactone (GBL) were obtained from Alfa Aesar Ltd. Perovskite precursor solution was prepared by mixing 190 mg CH₃NH₃I and 512 mg (PbI₂) powder in 1 mL γ -butyrolactone and dimethylsulfoxide (7:3, v/v). Spiro-OMeTAD solution was prepared by mixing 36 μ L 4-tert-butylpyridine and 22.5 μ L Li-TFSI solution (520 mg Li-TFSI in 1 mL acetonitrile) in 1 mL chlorobenzene solution with 90 mg Spiro-OMeTAD.

2.2 Device Fabrication

Deionized water, acetone and ethanol were used to clean the FTO glass substrates thoroughly. The cleaned FTO glass substrates were treated under ultraviolet (UV) irradiation at an elevated temperature for 30 min. TiO_2 compact layer was deposited on the substrates using a 200 mL $TiCl_4$ solution doped with Cs_2CO_3 at 70 °C for 1 hour. The doped TiO_2 layer was

dropped onto the substrate, 20 sec into the second step. The substrates were annealed at $100 \,\Box$ for $10 \,$ min and allowed to cool to room temperature. The perovskite layers were then coated with spiro-OMeTAD solution at $5000 \,$ rpm for 40s. Finally, MoO_3 and Ag were thermally and sequentially evaporated onto the devices under a pressure of 4×10^{-6} Torr through a shadow mask with an active area of $0.09 \,$ cm².

J-V curves of the PSCs were acquired by operating a Keithley 2400 source meter under Air Mass (AM 1.5 G) solar irradiation at 100 mW/cm² (Newport, Class AAA solar simulator, 94023A-U) under 1 sun illumination. The field-emission scanning electron microscope (SEM) images were acquired from a Quanta 200 FEG. AFM images were acquired on a Veeco Multimode V instrument to observe the morphology of TiO₂ films. X-ray diffraction (XRD) patterns were obtained using PANalytical (Empyrean) equipment. The absorbance of the different perovskite films was measured on an UV–vis spectrophotometer (PerkinElmer Lambda 750). The UPS patterns were obtained through the assistance of Jinan University.

3. Results and Discussion

Fig. 1 shows the schematic illustration of the fabrication of devices with and without Cs₂CO₃ doped TiO₂ layer as ETL. For the doped ETL device, Cs₂CO₃ was added into TiCl₄ solution in a chemical bath to yield the Cs₂CO₃ doped TiO₂ layer. Subsequent processes which including perovskite, Spiro-OMeTAD and electrode deposition followed the same methods for both devices. From Fig. S6, pH of the prepared TiCl₄ solutions increased with increasing doping concentration. For example, the pH was 1.73 without Cs₂CO₃, 2.21 with 1 mg/ml Cs₂CO₃ and 2.45 with 2 mg/ml Cs₂CO₃. Crystallization needs to occur in an ideal pH environment as higher or lower pH may be unfavorable.[22] Also, sheet resistances were

with/without Cs_2CO_3 doping. The root-mean-square (RMS) roughness peaked at 5.90 nm at a Cs_2CO_3 doping concentration of 1 mg/ml. Different doping concentrations of Cs_2CO_3 gave variable surface RMS. For doping concentrations lower than 1 mg/ml, the crystallization of Cs_2CO_3 was suppressed. However, higher Cs_2CO_3 concentration ≥ 1 mg/ml yielded higher crystallinity and lower RMS.[23] The devices with doped TiO_2 exhibited better photoelectrical performance.

The perovskite solution spin-coated on 0 mg/ml, 1 mg/ml and 2 mg/ml Cs₂CO₃ doped TiO₂ shows contact angles of 66.1°, 58.4° and 60.5°, respectively (Fig. 3a, b, c). Smaller contact angle yields better contact. This demonstrates that the 1 mg/ml Cs₂CO₃ doped TiO₂ shows the best affinity and wetting capability for perovskite films.[24] Doping Cs₂CO₃ (1 mg/ml) into TiO₂ assists in forming a better contact with the spin-coated perovskite layer, giving rise to improved photoelectrical performance.

SEM images of perovskite films spin-coated on the TiO₂ films are presented in Fig. 3d, e, f. In comparison with the film deposited on pristine TiO₂ film, the crystalline grains of the films on doped TiO₂ are much bigger with the 1 mg/ml Cs₂CO₃ doped TiO₂ showing superior crystallinity. It is evident that optimal doping of Cs₂CO₃ into TiO₂ layer increases the crystalline grain size of the perovskite layer. This can be ascribed to improved crystallinity and morphology of the underlying doped-TiO₂. It demonstrates that Cs₂CO₃ could act as a proper surface modification material if appropriate amounts are doped into TiO₂.[25,26] The crystalline features of the perovskite films were further evaluated by X-ray diffraction (XRD). Fig. 4a and Fig. S2 show the XRD patterns of CH₃NH₃PbI₃ films spin-coated on different Cs₂CO₃:TiO₂ layers. Dominant diffraction peak appearing at 14.1°, 28.4° and 32.0° represent (110), (220) and (310) planes of perovskite crystal respectively. Interestingly, a

can be achieved along the preferential orientation of the perovskite films.

Ultraviolet photoelectron spectroscopy (UPS) was applied to characterize the energy band features of different TiO₂ and perovskite layers. Fig. 5a and b show that effective work function decreases from 5.5 eV to 4.7 eV when the optimal amount of Cs₂CO₃ (1 mg/ml) is doped into TiO₂ layer, [28] As a result, the work function of CH₃NH₃PbI₃ layer also decreases as shown in Fig. 5b. The fermi level energy difference which was 2.1 eV before doping changed to 3.2 eV after doping which accounts for the observed change in V_{oc} . The increase in Fermi level of TiO₂ and the larger energy difference, increase the chance of electron injection from absorber layer and induce electron density rise in the ETL. [29] Furthermore, the valence band maximum (VBM) of CH₃NH₃PbI₃ increased by 0.7 eV. This may help to decrease the hole extraction barrier and improve device performance.[30] The mobilities of the pristine TiO₂ and doped-TiO₂ thin film were derived from J-V curves of electron-only devices with a structure of FTO/TiO₂(with and w/o Cs₂CO₃)/ CH₃NH₃PbI₃/PCBM/Ag in Fig. 4b by using the Mott-Gurney Equation $(I = 9\varepsilon_r \varepsilon_0 \mu V^2/8d^3)$ where ε_r is the dielectric constant of TiO_2 , ε_0 is the vacuum permittivity, d is the thickness of TiO_2 , V is the applied voltage and μ is the electron mobility. As shown in the Fig. 4b, the the lgI - lgV curves are not linearly. Take the point where the slope is 2 into consideration. And by using more points, the results will be more accurate. After substitution of several points for computation and averaging the values, the final results were got. [31] The electron mobility of the pristine TiO₂ thin film and the optimal doped-TiO₂ thin film were calculated to be $6.56 \times 10^{-4} \text{ cm}^2 \text{ V}^{-1} \text{ s}^{-1}$ and 3.01×10^{-3} cm² V⁻¹ s⁻¹, respectively, indicating that electron transfer efficiency can be improved by doping Cs₂CO₃ into TiO₂ with the proper concentration. And also, we applied the photoluminescence (PL) measurement to determine the charge transport and extraction

(107 ns) than that on the pristine TiO₂ (188 ns). In addition, from Fig. S5, we can find that the thin film on pristine TiO₂ layer has a stronger intensity than that on the doped one in which the carrier extraction is more effective. The results are corresponding to the mobility measurement. To compare the absorption of light in perovskite films deposited on pristine TiO₂ and Cs₂CO₃-doped TiO₂ films, UV-vis absorption spectra (Fig. 4c) between 400 nm and 850 nm were obtained. The perovskite film deposited on doped TiO₂ shows improved absorption. This is because Cs₂CO₃ doping reduces trap states and decreases charge recombination in the TiO₂/perovskite interface, leading to improved performance. The improved performance is also partly due to the superior wetting of perovskite solution on the doped TiO₂ layer and high crystallinity of the perovskite layer. Fig. 4d shows that the transmittances of the pristine and doped TiO₂ film are almost the same, indicating that Cs₂CO₃ doping does not impair the optical properties of the TiO₂ film. However, high concentration Cs₂CO₃ doping is detrimental to the optical properties of the perovskite film as its absorbance decreases.

Finally, to compare the effect of doping Cs₂CO₃ into TiO₂, perovskite solar cells with FTO/TiO₂:Cs₂CO₃/CH₃NH₃PbI₃/Spiro-OMeTAD/ MoO₃/Ag architecture were prepared and the device performance compared. Fig. 5c shows the *J-V* curves of the devices prepared using pristine TiO₂ and Cs₂CO₃-doped TiO₂ layers. The *J-V* curves indicate improvement in the voltage and current for the cells prepared with 1 mg/ml Cs₂CO₃-doped-TiO₂ layer. The measurements were developed under the condition where the temperature is 25 °C, the relative humidity is 20% and the with light intensity of 100 mW/cm². Table 1 summarizes the photovoltaic parameters of perovskite solar cells. The device made using pristine TiO₂ films show PCE of 17.39%, while the optimal device shows improved PCE of 19.19%. Lower and

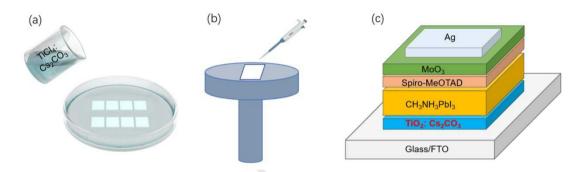
using the optimized Cs₂CO₃ doping shows better performance and reproducibility. Fig. 5d shows the stability measurement of the solar cells based on pristine TiO₂ and doped-TiO₂ kept for more than 200 hours in ambient without encapsulation. The solar cell based on doped TiO₂ shows better stability. This could be attributed to the improved crystalline. Thus, fabricating PSCs with Cs₂CO₃-doped-TiO₂ as ETL simultaneously improves their stability and efficiency.

4. Conclusions

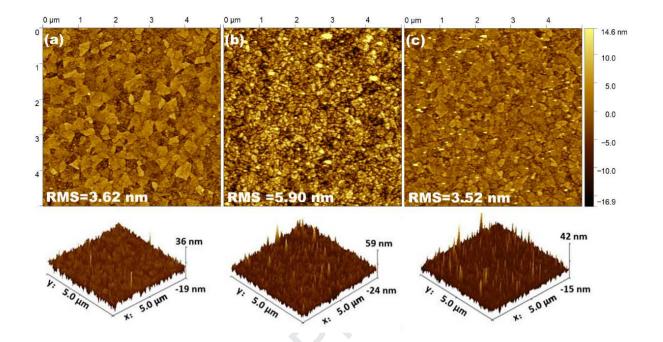
In summary, we demonstrated a strategy to modify conventional TiO_2 ETL with Cs_2CO_3 doping. Solar cells fabricated using optimal doping concentration of 1 mg/ml resulted in a highest power conversion efficiency of 19.19% and improved stability over 200 hours. The improvement in performance is ascribed to better perovskite film quality formed due to the suitable wetting properties and lower work function of the Cs_2CO_3 -doped TiO_2 films. This approach can efficiently modify conventional TiO_2 ETL and improve the stability and performance of PSCs.

Acknowledgements

The authors acknowledge financial support from the National Key R&D Program of China (No. 2016YFA0202402), the Natural Science Foundation of China (Nos. 91733301, 61674109), and the Natural Science Foundation of Jiangsu Province (No. BK20170059). This project is also funded by the Collaborative Innovation Center of Suzhou Nano Science and Technology, the Priority Academic Program Development of Jiangsu Higher Education Institutions (PAPD), and by the "111" Project of The State Administration of Foreign Experts


illiovation programme under the Marie Skiodowska-Curie grant agreement no 003830.

REFERENCES


- [1] C. Roldán-Carmona, O. Malinkiewicz, A. Soriano, G. Mínguez Espallargas, A. Garcia, P. Reinecke, T. Kroyer, M.I. Dar, M.K. Nazeeruddin, H.J. Bolink, Energy Environ. Sci. 7 (2014) 994-997.
- [2] G.E. Eperon, V.M. Burlakov, A. Goriely, H.J. Snaith, ACS Nano 8 (2014) 591-598.
- [3] H.J. Snaith, J. Phys. Chem. Lett. 4 (2013) 3623-3630.
- [4] A. Kojima, K. Teshima, Y. Shirai, T. Miyasaka, J. Am. Chem. Soc. 131 (2009) 6050-6051.
- [5] D. Zhao, C. Wang, Z. Song, Y. Yu, C. Chen, X. Zhao, K. Zhu, Y. Yan, ACS Energy Lett 3 (2018) 305-306.
- [6] NREL Best Research Cell Efficiencies, https://www.nrel.gov/pv/cell-efficiency.html, (accessed September, 2019).
- [7] J. M. Wang, Z. K. Wang, M. Li, K. H. Hu, Y. G. Yang, Y. Hu, X. Y. Gao, L. S. Liao, ACS Appl. Mater. Interfaces. 9 (2017) 13240-13246.
- [8] L.-M. Chen, Z. Xu, Z. Hong, Y. Yang, J. Mater. Chem. 20 (2010) 2575-2598.
- [9] M. He, F. Qiu, Z. Lin, J. Mater. Chem. 21 (2011) 17039-17048.
- [10] M. He, F. Qiu, Z. Lin, J. Phys. Chem. Lett. 4 (2013) 1788-1796.
- [11] H.D. Pham, T.T. Do, J. Kim, C. Charbonneau, S. Manzhos, K. Feron, W.C. Tsoi, J.R. Durrant, S.M. Jain, P. Sonar, Adv. Energy Mater. 8 (2018) 1703007.
- [12] H.D. Pham, K. Hayasake, J. Kim, T.T. Do, H. Matsui, S. Manzhos, K. Feron, S. Tokito, T. Watson, W.C. Tsoi, N. Motta, J.R. Durrant, S.M. Jain, P. Sonar, J. Mater. Chem. C 6 (2018) 3699-3708.
- [13] Z. K. Wang, L. S. Liao, Adv. Optical Mater. 6 (2018) 1800276.
- [14] Z. Liu, K. Liu, H. Wang, S.M. Jain, J. Duan, T. He, R. Fan, J. Yang, H. Liu, F. Zhang, Sol. Energy 176 (2018) 1-9.
- [15] D. Phuyal, S.M. Jain, B. Philippe, M.B. Johansson, M. Pazoki, J. Kullgren, K.O. Kvashnina, M. Klintenberg, E.M.J. Johansson, S.M. Butorin, O. Karis, H. Rensmo, J. Mater. Chem. A 6 (2018) 9498-9505.

- [17] L.-L. Jiang, Z.-K. Wang, M. Li, C.-H. Li, P.-F. Fang, L.-S. Liao, Sol. RRL 2 (2018) 1800149.
- [18] C.-W. Chen, Y.-J. Lu, C.-C. Wu, E.H.-E. Wu, C.-W. Chu, Y. Yang, Appl. Phys. Lett. 7 (2005) 241121.
- [19] G. Li, C.W. Chu, V. Shrotriya, J. Huang, Y. Yang, Appl. Phys. Lett. 88 (2006) 253503.
- [20] L.-P. Lu, D. Kabra, K. Johnson, R.H. Friend, Adv. Funct. Mater. 22 (2011) 144-150.
- [21] J. Huang, Z. Xu, Y. Yang, Adv. Funct. Mater. 17 (2007) 1966-1973.
- [22] Y. Chen, N. Li, L. Wang, L. Li, Z. Xu, H. Jiao, P. Liu, C. Zhu, H. Zai, M. Sun, W. Zou, S. Zhang, G. Xing, X. Liu, J. Wang, D. Li, B. Huang, Q. Chen, H. Zhou, Nat. Commun. 10 (2019) 1112-1122.
- [23] X. Zeng, T. Zhou, C. Leng, Z. Zang, M. Wang, W. Hu, X. Tang, S. Lu, L. Fang, M. Zhou, J. Mater. Chem. A, 5 (2017) 17499-17505.
- [24] Q.-Q. Ye, Z.-K. Wang, M. Li, C.-C. Zhang, K.-H. Hu, L.-S. Liao, ACS Energy Lett 3 (2018) 875-882.
- [25] C.-C. Zhang, M. Li, Z.-K. Wang, Y.-R. Jiang, H.-R. Liu, Y.-G. Yang, X.-Y. Gao, H. Ma, J. Mater. Chem. A, 5 (2017) 2572-2579.
- [26] Z. Liu, T. He, H. Wang, S.M. Jain, K. Liu, J. Yang, N. Zhang, H. Liu, M. Yuan, J. Power Sources 401 (2018) 303-311.
- [27] M. Li, Z.K. Wang, M.P. Zhuo, Y. Hu, K.H. Hu, Q.Q. Ye, S.M. Jain, Y.G. Yang, X.Y. Gao, L.S. Liao, Adv. Mater. 30 (2018) 1800258.
- [28] M.-F. Xu, Y.-J. Liao, F.-S. Zu, J. Liang, D.-X. Yuan, Z.-K. Wang, L.-S. Liao, J. Mater. Chem. A 2 (2014) 9400-9404.
- [29] J. Qiu, Y. Qiu, K. Yan, M. Zhong, C. Mu, H. Yan, S. Yang, Nanoscale, 5 (2013) 3245-3248.
- [30] P. Schulz, E. Edri, S. Kirmayer, G. Hodes, D. Cahen, A. Kahn, Energy Environ. Sci. 7 (2014) 1377-1381.
- [31] G. Yin, J. Ma, H. Jiang, J. Li, D. Yang, F. Gao, J. Zeng, Z. Liu, S.F. Liu, ACS Appl. Mater. Inter. 9 (2017) 10752-10758.

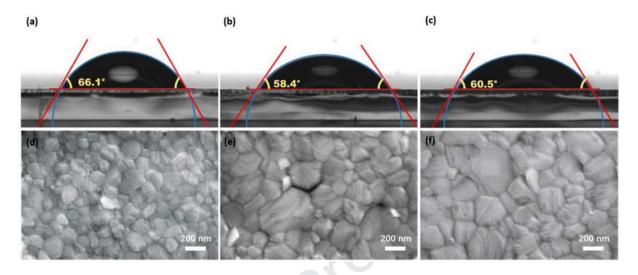

Figures and Tables


Fig. 1. Schematic diagram for the preparation of devices. (a) Deposition: different concentrations of Cs_2CO_3 are doped in this step. (b) Spin coating: other layers are made by spin-coating. (c) device structure.

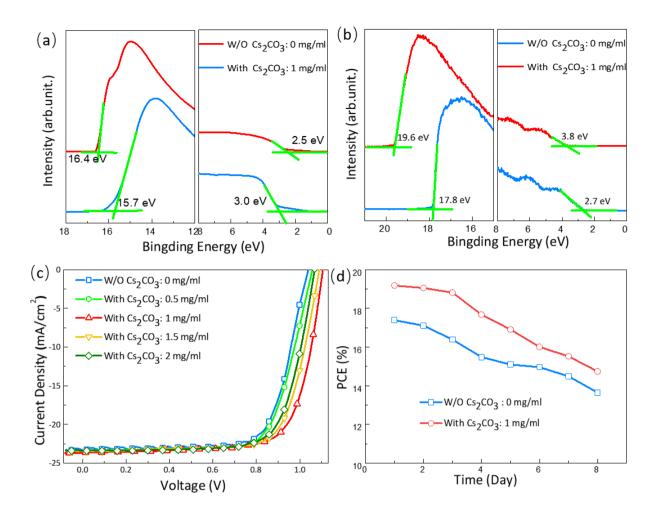

Fig. 2. AFM images of films deposited with different concentrations of Cs₂CO₃ doping. (a) pristine. (b) 1 mg/ml. (c) 2 mg/ml.

Fig. 3. Contact angles of perovskite solution with different TiO_2 layers (a) pristine. (b) 1 mg/ml. (c) 2 mg/ml. SEM images of perovskite films deposited with different concentrations of Cs_2CO_3 . (d)pristine. (e) 1 mg/ml. (f) 2 mg/ml.

Fig. 4. (a) XRD patterns of $CH_3NH_3PbI_3$ perovskite films with different TiO_2 layers. (b) J-V characteristics in electron-only devices with the structure of FTO/TiO_2 (with and $W/O Cs_2CO_3)/CH_3NH_3PbI_3/PCBM/Ag$. (c) UV-vis absorption spectra of the perovskite films without and with Cs_2CO_3 modification. (d) Transmittance spectra of TiO_2 thin film doped with different concentrations of Cs_2CO_3 .

Fig. 5. (a) UPS spectra of TiO_2 layer with or without Cs_2CO_3 modification. (b) UPS spectra of $\text{CH}_3\text{NH}_3\text{PbI}_3$ layer on both TiO_2 layers. (c) J-V curves of the different devices under AM 1.5G illumination of 100 mW cm⁻². (d) The stability of devices based on pristine and doped TiO_2 .

Table 1. Photovoltaic parameters of perovskite solar cells with different concentrations of Cs_2CO_3 doped in the TiO_2 layer.

Cs ₂ CO ₃	V_{oc}	J_{sc}	FF	PCE	
Cs ₂ CO ₃	(V)	(mA/cm^2)	(%)	(%)	
W/O	1.04	23.23	0.72	17.39	
0.5 mg/ml	1.06	23.38	0.72	17.84	
1.0 mg/ml	1.11	23.68	0.73	19.19	
1.5 mg/ml	1.09	23.50	0.73	18.69	
2.0 mg/ml	1.07	23.39	0.73	18.26	

- Cesium carbonate was used as a new dopant to modify the TiO₂ layer.
- The fabrication technique is almost the same as the traditional one.
- The mechanisms of the dopant and optimal conditions were investigated.
- 19% power conversion efficiency of planar perovskite solar cells were achieved with enhanced stability.
- This new low-cost dopant is an ideal approach for the improvement of perovskite solar cells.