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1 Introduction1

It is well-known that time-delay cannot be avoided in practise and it often results in insta-
bility and poor performance. Delays become more and more prevalent in physical, cyber-
physical and biological systems, and hence delay dynamical systems are used in a lot of
models of science and engineering. In many applications, the properties being modelled
will also need to satisfy other constraints, for example in order to describe vibrating masses
attached to an elastic bar, Drive [7] consider a system of neutral type as follows

(1.1) dX(t) + h(X(t), X(t− τ))dX(t− τ) = f(X(t), X(t− τ)),

where τ is a positive constant. Eq. (1.1) involves derivative with delay, and is called neutral
delay equation. Taking stochastic perturbations into account, a neutral stochastic functional
differential equation has the following form

(1.2) d[X(t) +D(Xt)] = f(Xt, t)dt+ g(Xt)dW (t),

Here X(t) denotes the value of the stochastic process X at the time t, while Xt = (X(t+θ) :2

−τ ≤ θ ≤ 0) which is called the segment process ofX during the delay interval [t−τ, t], D(Xt)3

is called the neutral term. This system includes derivative with delay and is driven by a4

standard Brownian motion W (t). However such a model does not take into account the rates5

of changes of the systems or different rates of interactions of subsystems and components.6

To describe such scenarios a singularly perturbed system is often used. Generally speaking,7

a singularly perturbed system exhibits multi-scale behavior, which is reflected by a slow8

subsystem and a fast subsystem. Due to the multi-scale property, it is frequently difficult9

to deal with such systems using a direct approach, and the averaging principle method10

pioneered by Khasminskii [18] is used in many papers, for example: [13, 22, 23, 27, 4, 5, 12,11

19, 10, 14, 20, 21], and reference therein. In particular, the averaging principle method has12

been studied for stochastic functional differential equations in [1], our aim is to extend results13

in [1] to neutral stochastic functional differential equations with two-time-scales. Because14

of the neutral term, we can see that the techniques in the present paper are much more15

complicated and different from those of [1].16

In this paper, we shall bring delay, neutral, multi-scale and noise together, and investigate17

the strong convergence of neutral stochastic functional differential equations (NSFDEs) with18

two time-scales. The rest of the paper is organized as follows. Section 2 presents the setup19

of the problems and the main results we wish to study. The proof of the ergodicity of a20

frozen equation with memory is obtained in Section 3. In Section 4 after we constructs some21

auxiliary neutral functional stochastic systems with two time-scales and provides a number22

of lemmas, the main result is then proved.23

2 Problem Formulation and Main Results24

Throughout the paper, let Rn be an n-dimensional Euclidean space, and Rn×m denote the25

collection of all n × m matrices with real entries. For an A ∈ Rn×m, ‖A‖ stands for its26
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Hilbert-Schimidt norm. For a fixed τ > 0, let C = C([−τ, 0];Rn) denote the family of1

all continuous functions from [−τ, 0] 7→ Rn, endowed with the uniform norm ‖ · ‖∞. For2

h(·) ∈ C([−τ,∞);Rn) and t ≥ 0, define the segment ht ∈ C by ht(θ) = h(t+ θ), θ ∈ [−τ, 0].3

Generic constants will be denoted by c, we use the shorthand notation a . b to mean a ≤ cb,4

we use a .T b to emphasize the constant c depends on T.5

Let ε ∈ (0, 1), we consider a class of NSFDEs with two time-scales

(2.1) d[Xε(t)−D1(X
ε
t )] = b1(X

ε
t , Y

ε
t )dt+ σ1(X

ε
t )dW1(t), t > 0, Xε

0 = ξ ∈ C ,

and

d[Y ε(t)−D2(Y
ε(t− τ))] =

1

ε
b2(X

ε
t , Y

ε(t), Y ε(t− τ))dt

+
1√
ε
σ2(X

ε
t , Y

ε(t), Y ε(t− τ))dW2(t), t > 0
(2.2)

with the initial value Y ε
0 = η ∈ C , where b1 : C × C → Rn, b2 : C × Rn × Rn → Rn,6

σ1 : C → Rn×m, σ2 : C × Rn × Rn → Rn×m are Gâteaux differentiable, D1 : C → Rn,7

D2 : Rn → Rn are measurable, locally bounded and continuous, (W1(t))t≥0 and (W2(t))t≥08

are two mutually independent m-dimensional Brownian motions defined on a probability9

space (Ω,F ,P), equipped with a reference family (Ft)t≥0 satisfying the usual conditions10

(i.e., for each t ≥ 0, Ft = Ft+ :=
⋂
s>t Fs, and F0 contains all P-null sets). Xε(t) is called11

the slow component, while Y ε(t) is called the fast component.12

Throughout the paper, for any χ, φ, χ, φ ∈ C and x, x′, y, y′ ∈ Rn, we assume that13

(A1) |∇(χ,φ)b1(χ, φ)| ≤ L1(1 + ‖χ‖∞ + ‖φ‖∞) for some L1 > 0, and there exists an L > 0
such that

|b1(χ, φ)| ≤ L(1 + ‖χ‖∞) and ‖σ1(φ)− σ1(χ)‖ ≤ L‖φ− χ‖∞.

(A2) There exists L2 > 0 such that |∇(φ,x′,y′)b2(χ, x, y)| ≤ L2(1 + ‖φ‖∞ + |x′| + |y′|) and14

‖∇(φ,x′,y′)σ2(χ, x, y)‖ ≤ L2(1 + ‖φ‖∞ + |x′|+ |y′|).15

(A3) There exist λ1 > λ2 > 0, independent of χ, such that

2〈x− x′ − (D2(y)−D2(y
′)), b2(χ, x, y)− b2(χ, x′, y′)〉+ ‖σ2(χ, x, y)− σ2(χ, x′, y′)‖2

≤ −λ1|x− x′|2 + λ2|y − y′|2.

(A4) D1(0) = 0, D2(0) = 0, and there exist κ1, κ2 ∈ (0, 1) such that

|D1(φ)−D1(χ)|2 ≤ κ1‖φ− χ‖2∞ and |D2(y)−D2(y
′)|2 ≤ κ2|y − y′|2.

(A5) For the initial value Xε
0 = ξ ∈ C of (2.1), there exists λ3 > 0 such that

|ξ(t)− ξ(s)| ≤ λ3|t− s|, s, t ∈ [−τ, 0].
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Remark 2.1. From (A1) and (A2), the gradient operators ∇b1, ∇b2, and ∇σ2 are bounded,1

respectively, these imply that b1, b2, and σ2 are Lipschitz, so under (A1), (A2) and (A4),2

both (2.1) and (2.2) are well posed (see, e.g., [24, Theorem 2.2, P.204]). Here (A3) is imposed3

to analyze the ergodic property of the frozen equation (see Theorem 2.1 below), guarantee4

the Lipschitz property of b1 (see Corollary 2.2 below), defined in (2.5), and provide a uniform5

bound of the segment process (Y ε
t )t∈[0,T ] (see Lemma 4.3 below). Next, (A5) ensures that6

the displacement of the segment process (Xε
t )t∈[0,T ] is continuous in the mean Lp-norm sense7

(see Lemma 4.1 below).8

Consider a neutral stochastic differential delay equation (NSDDE) associated with the
fast motion while with the frozen slow component in the form

d[Y (t)−D2(Y (t− τ))] = b2(ζ, Y (t), Y (t− τ))dt

+ σ2(ζ, Y (t), Y (t− τ))dW2(t), t > 0, Y0 = η ∈ C .
(2.3)

Under (A2) and (A4), Eq. (2.3) has a unique strong solution (Y (t))t≥−τ (see, e.g., [24,9

Theorem 2.2, P.204]). To highlight the initial value η ∈ C and the frozen segment ζ ∈ C , we10

write the corresponding solution process (Y ζ(t, η))t≥−τ and the segment process (Y ζ
t (η))t≥011

instead of (Y (t))t≥−τ and (Yt)t≥0, respectively.12

The first main result in this paper is stated as below which is concerned with ergodicity13

of the frozen Eq. (2.3) .14

Theorem 2.1. Under (A1)-(A4), Y ζ
t (η) has a unique invariant measure µζ , and there exists

λ > 0 such that

(2.4) |Eb1(ζ, Y ζ
t (η))− b1(ζ)| . e−λt(1 + ‖η‖∞ + ‖ζ‖∞), t ≥ 0, η ∈ C ,

where

(2.5) b1(ζ) :=

∫
C

b1(ζ, ϕ)µζ(dϕ), ζ ∈ C .

The next proposition, which plays a crucial role in discussing strong convergence for the15

averaging principle, states that b1 enjoys a Lipschitz property.16

Proposition 2.2. Under (A1)-(A4), b1 : C 7→ Rn, defined in (2.5), is Lipschitz.17

Our main aim is to discuss the strong deviation between the slow component Xε(t) and
the averaged component X(t), which satisfies the following NSFDE

(2.6) d[X(t)−D1(X t)] = b1(X t)dt+ σ1(X t)dW1(t), X0 = ξ ∈ C ,

Theorem 2.3. Under (A1)-(A5), one has

lim
ε→0

E
(

sup
0≤t≤T

|Xε(t)−X(t)|p
)

= 0, p > 0.
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3 Proofs of Theorem 2.1 and Proposition 2.21

Firstly, we give a proof for Theorem 2.1.2

3

Proof of Theorem 2.1. The proof is rather technical so we divide it into six steps.4

Step 1. We claim that there exists a positive number λ′ such that

(3.1) E|Y ζ(t, η)|2 . e−λ
′t‖η‖2∞ + 1 + ‖ζ‖2∞, t > 0.

By (A2), there exists α > 0 such that

(3.2) ‖σ2(χ, x, y)− σ2(χ, x′, y′)‖ ≤ α(|x− x′|+ |y − y′|),
and

(3.3) |b2(χ, 0, 0)|+ ‖σ2(χ, 0, 0)‖ ≤ α(1 + ‖χ‖∞),

for any χ ∈ C and x, x′, y, y′ ∈ Rn. Accordingly, (3.2) and (3.3), together with (A3), yield
that there exist λ′1 > λ′2 > 0, independent of χ, such that

(3.4) 2〈x−D2(y), b2(χ, x, y)〉+ ‖σ2(χ, x, y)‖2 ≤ −λ′1|x|2 + λ′2|y|2 + c(1 + ‖χ‖2∞)

for any χ ∈ C and x, y ∈ Rn. For a sufficiently small λ′ > 0, applying Itô’s formula, we infer5

from (3.4) that6

eλ
′tE|Y ζ(t, η)−D2(Y

ζ(t− τ, η))|2

= E|η(0)−D2(η(−τ))|2 + λ′
∫ t

0

eλ
′sE|Y ζ(s, η)−D2(Y

ζ(s− τ, η))|2ds

+

∫ t

0

eλ
′sE
[
2〈Y ζ(s, η)−D2(Y

ζ(s− τ, η)), b2(ζ, Y
ζ(s, η), Y ζ(s− τ, η))〉

+ ‖σ2(ζ, Y ζ(s, η), Y ζ(s− τ, η))‖2
]
ds

≤ E|η(0)−D2(η)|2 + λ′
∫ t

0

eλ
′sE|Y ζ(s, η)−D2(Y

ζ(s− τ, η))|2ds

+

∫ t

0

eλ
′sE
[
− λ′1|Y ζ(s, η)|2 + λ′2|Y ζ(s− τ, η)|2 + c(1 + ‖ζ‖2∞)

]
ds.

(3.5)

By the elementary inequality:

(3.6) (a+ b)2 ≤ (1 + ε)a2 +
1 + ε

ε
b2, a, b ∈ R, ε > 0,

it follows from (A4 ) that

λ′
∫ t

0

eλ
′sE|Y ζ(s, η)−D2(Y

ζ(s− τ, η))|2ds

≤ λ′(1 + κ2)

∫ t

0

eλ
′sE|Y ζ(s, η)|2ds+ λ′(1 + κ2)e

λ′τ

∫ t

−τ
eλ
′sE|Y ζ(s, η)|2ds

≤ λ′(1 + κ2)
eλ
′τ

λ′
‖η‖2∞ + λ′(1 + κ2)(1 + eλ

′τ )

∫ t

0

eλ
′sE|Y ζ(s, η)|2ds.
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Substituting this into (3.5), along with (A4), it gives that

eλ
′tE|Y ζ(t, η)−D2(Y

ζ(t− τ, η))|2

. ‖η‖2∞ + eλ
′t(1 + ‖ζ‖2∞)

−
(
λ′1 − λ′(1 + κ2)− (λ′2 + λ′(1 + κ2)e

λ′τ
)∫ t

0

eλ
′sE|Y ζ(s, η)|2ds.

(3.7)

On the other hand, using the inequality (3.6) again and taking (A4) into consideration, for
any ε > 0, we have

eλ
′tE|Y ζ(t, η)|2 ≤ (1 + ε)eλ

′tE|Y ζ(t, η)−D2(Y
ζ(t− τ, η))|2 +

(1 + ε)κ2
ε

eλ
′tE|Y ζ(t− τ, η)|2.

Therefore,

sup
t≥−τ

(eλ
′tE|Y ζ(t, η)|2) ≤ sup

0≥t≥−τ
(eλ

′tE|Y ζ(t, η)|2) + sup
t≥0

(eλ
′tE|Y ζ(t, η)|2)

≤ ‖η‖2∞ + (1 + ε) sup
t≥0

(eλ
′tE|Y ζ(t, η)−D2(Y

ζ(t− τ, η))|2)

+
(1 + ε)κ2

ε
eλ
′τ sup
t≥−τ

(eλ
′tE|Y ζ(t, η)|2).

Due to λ′1 > λ′2 > 0, we can find some λ′ ∈ (0, 1) sufficiently small and ε > 0 sufficiently

large such that (1+ε)κ2
ε

eλ
′τ < 1 and λ′1−λ′(1 +κ2)− (λ′2 +λ′(1 +κ2))e

λ′τ > 0. Thus, if follows
from (3.7) that for t ≥ −τ ,

sup
t≥0

(eλ
′tE|Y ζ(t, η)−D2(Y

ζ(t− τ, η))|2) . ‖η‖2∞ + eλ
′t(1 + ‖ζ‖2∞).

These imply for t ≥ −τ(
1− (1 + ε)κ2

ε
eλ
′τ
)

sup
t≥−τ

(eλ
′tE|Y ζ(t, η)|2) . ‖η‖2∞ + eλ

′t(1 + ‖ζ‖2∞).

In consequence, one arrives at

(3.8) E|Y ζ(t, η)|2 . e−λ
′t‖η‖2∞ + 1 + ‖ζ‖2∞, t > 0.

Step 2. We now give an estimate for the segment process, i.e. we shall show there exists
a positive number λ′ such that

(3.9) E‖Y ζ
t (η)‖2∞ . e−λ

′t‖η‖2∞ + 1 + ‖ζ‖2∞.
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According to the Itô formula and (3.4), for t ≥ τ,−τ ≤ θ ≤ 0, we have

|Y ζ(t+ θ, η)−D2(Y
ζ(t− τ + θ, η))|2

= |Y ζ(t− τ, η)−D2(Y
ζ(t− 2τ, η))|2

+

∫ t+θ

t−τ

[
2〈Y ζ(s, η)−D2(Y

ζ(s− τ, η)), b2(ζ, Y
ζ(s, η), Y ζ(s− τ, η))〉

+ ‖σ2(ζ, Y ζ(s, η), Y ζ(s− τ, η))‖2
]
ds+M(t, θ)

≤ |Y ζ(t+ θ, η)−D2(Y
ζ(t− τ + θ, η))|2 +M(t, θ)

+

∫ t+θ

t−τ

[
− λ′1|Y ζ(s, η)|2 + λ′2|Y ζ(s− τ, η)|2 + c(1 + ‖ζ‖2∞)

]
ds,

(3.10)

where

M(t, θ) =

∫ t+θ

t−τ
2〈Y ζ(s, η)−D2(Y

ζ(s− τ, η)), σ2(ζ, Y
ζ(s, η), Y ζ(s− τ, η))dW2(s)〉.

By the Burkhold-Davis-Gundy (B-D-G for abbreviation) inequality, we derive from (A2)
that there exists some positive constant c such that

E
(

sup
−τ≤θ≤0

M(t, θ)
)

≤ cE
(

sup
−τ≤θ≤0

|Y ζ(s+ θ, η)−D2(Y
ζ(s− τ + θ, η))|2

∫ t

t−τ
‖σ2(ζ, Y ζ(s, η), Y ζ(s− τ, η))‖2ds

) 1
2

≤ 1

2
E
(

sup
−τ≤θ≤0

|Y ζ(s+ θ, η)−D2(Y
ζ(s− τ + θ, η))|2

)
+ c

∫ t

t−τ
E‖σ2(ζ, Y ζ(s, η), Y ζ(s− τ, η))‖2ds

≤ 1

2
E
(

sup
−τ≤θ≤0

|Y ζ(s+ θ, η)−D2(Y
ζ(s− τ + θ, η))|2

)
+ c‖ζ‖2∞ + c

∫ t

t−2τ
E|Y ζ(s, η)|2ds.

Substituting this into (3.10), combining with (3.1) and (A4) , it gives that for t ≥ τ

E
(

sup
−τ≤θ≤0

|Y ζ(t+ θ, η)−D2(Y
ζ(t− τ + θ, η))|2

)
≤ 2E|Y ζ(t− τ, η)−D2(Y

ζ(t− 2τ, η))|2 + c(1 + ‖ζ‖2∞) + c

∫ t

t−2τ
|Y ζ(s, η)|2ds

≤ 4E|Y ζ(t− τ, η)|2 + 4κ2E|Y ζ(t− 2τ, η)|2 + c(1 + ‖ζ‖2∞) + c

∫ t

t−2τ
E|Y ζ(s, η)|2ds

. e−λ
′t‖η‖2∞ + 1 + ‖ζ‖2∞.

(3.11)
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On the other hand, following an argument to achieve (3.11), one has for t ∈ [0, τ ]

E
(

sup
−τ≤θ≤0

|Y ζ(t+ θ, η)−D2(Y
ζ(t− τ + θ, η))|2

)
≤ c(1 + ‖ζ‖2∞ + ‖η‖2∞) + c

∫ t

0

E|Y ζ(s, η)|2ds

. 1 + ‖ζ‖2∞ + e−λ
′t‖η‖2∞.

(3.12)

By using the inequality (3.6) and (A4), for any ε > 0, we have

E‖Y ζ
t (η)‖2∞ = E

(
sup

t−τ≤s≤t
|Y ζ(s, η)|2

)
≤ 1

1−√κ2
E
(

sup
t−τ≤s≤t

|Y ζ(s, η)−D2(Y
ζ(s− τ, η))|2

)
+
√
κ2 E

(
sup

t−τ≤s≤t
|Y ζ(s− τ, η)|2

)
.

(3.13)

Hence, combining (3.11) with (3.12) and (3.13), we derive the desired assertion.1

Step 3. For any t2 > t1 > τ and the frozen segment ζ ∈ C , consider the following

d[Y (t)−D2(Y (t− τ))] = b2(ζ, Y (t), Y (t− τ))dt

+ σ2(ζ, Y (t), Y (t− τ))dW2(t), t ∈ [t2 − t1, t2]
(3.14)

with the initial value Y t2−t1 = η. The solution process and the segment process associated2

with (3.14) are denoted by (Y
ζ
(t, η)) and (Y

ζ

t (η)), respectively.3

Let Γ ζ(t, η) := Y ζ(t, η)− Y ζ
(t, η), t ∈ [t2 − t1, t2], we claim that

(3.15) ‖Γ ζ
t2(η)‖ . e−λt1(1 + ‖η‖2∞ + ‖ζ‖2∞), t ≥ 0.

Observe that the laws of Y ζ
t2(η) and Y

ζ

t2
(η) are P ζ,η

t2 and P ζ,η
t1 , respectively. Again, owing

to λ1 > λ2 > 0, we find some λ̃ ∈ (0, 1) sufficiently small such that λ1 − λ̃(1 + κ2) − (λ2 +

λ̃(1 + κ2))e
λ̃τ > 0. Taking λ = λ′ ∧ λ̃, by the Itô formula and the inequality (3.6), it follows

8



from (A3) and (A4) that

eλtE|Γ ζ(t, η)− (D2(Y
ζ(t− τ, η))−D2(Y

ζ
(t− τ, η)))|2

≤ eλ(t2−t1)E|Γ ζ(t2 − t1, η)− (D2(Y
ζ(t2 − t1 − τ, η))−D2(Y

ζ
(t2 − t1 − τ, η)))|2

+

∫ t

t2−t1
λeλsE|Γ ζ(s, η)− (D2(Y

ζ(s− τ, η))−D2(Y
ζ
(s− τ, η)))|2ds

+

∫ t

t2−t1
eλsE{−λ1|Γ ζ(s, η)|2 + λ2|Γ ζ(s− τ, η)|2}ds

≤ eλ(t2−t1)(1 + κ2)(E|Γ ζ(t2 − t1, η)|2 + E|Γ ζ(t2 − t1 − τ, η)|2)

−
(
λ1 − λ(1 + κ2)− (λ2 + λ(1 + κ2))e

λτ
)∫ t

t2−t1
eλsE|Γ ζ(s, η)|2ds

+ eλτ [λ(1 + κ2) + λ2]

∫ t2−t1

t2−t1−τ
eλsE|Γ ζ(s, η)|2ds

. eλ(t2−t1)‖η‖2∞ + eλ(t2−t1)E‖Y ζ
t2−t1(η)‖2∞.

By carrying out a similar argument to obtain (3.11), we have

E
(

sup
−τθ≤0

‖Γ ζ(t+ θ, η)− (D2(Y
ζ(t− τ + θ, η))−D2(Y

ζ
(t− τ + θ, η)))‖2

)
. e−λ(t+t1−t2)(1 + ‖η‖2∞ + ‖ζ‖2∞), t ≥ 0.

(3.16)

In the same way as (3.12) and (3.13), we arrive at

E‖Γ ζ
t2(η)‖2∞ . e−λt1(1 + ‖η‖2∞ + ‖ζ‖2∞), t ≥ 0,

as required.1

Step 4. Let η, η′ ∈ C , we prove that

(3.17) E‖Y ζ
t (η)− Y ζ

t (η′)‖2∞ . e−λt‖η − η′‖2∞.

Consider the difference of the solution process of (2.3) starting from differential initial
value. It follows that

Y ζ(t, η)− Y ζ(t, η′)− [D2(Y
ζ(t− τ, η))−D2(Y

ζ(t− τ, η′))]
= η(0)− η′(0)− [D2(η(−τ))−D2(η

′(−τ))]

+

∫ t

0

(
b2(ζ, Y

ζ(s, η), Y ζ(s− τ, η))− b2(ζ, Y ζ(s, η′), Y ζ(s− τ, η′))
)

ds

+

∫ t

0

(
σ2(ζ, Y

ζ(s, η), Y ζ(s− τ, η))− σ2(ζ, Y ζ(s, η′), Y ζ(s− τ, η′))
)

dW2(t).
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By the Itô formula and the fundamental inequality (3.6), it follows from (A3) and (A4) that

eλtE
∣∣Y ζ(t, η)− Y ζ(t, η′)− [D2(Y

ζ(t− τ, η))−D2(Y
ζ(t− τ, η′))]

∣∣2
≤ E

∣∣η(0)− η′(0)− [D2(η(−τ))−D2(η
′(−τ))]

∣∣2
+ λ

∫ t

0

eλsE
∣∣Y ζ(s, η)− Y ζ(s, η′)− [D2(Y

ζ(s− τ, η))−D2(Y
ζ(s− τ, η′))]

∣∣2ds
+

∫ t

0

eλsE
[
− λ1|Y ζ(s, η)− Y ζ(s, η′)|2 + λ2[Y

ζ(s− τ, η)− Y ζ(s− τ, η′)|2
]
ds

≤ E
∣∣η(0)− η′(0)− [D2(η(−τ))−D2(η

′(−τ))]
∣∣2

−
(
λ1 − λ(1 + κ2)− (λ2 + λ(1 + κ2))e

λτ
)∫ t

0

eλsE|Y ζ(s, η)− Y ζ(s, η′)|2ds

+ eλτ [λ(1 + κ2) + λ2]

∫ 0

−τ
eλsE|Y ζ(s, η)− Y ζ(s, η′)|2ds

. ‖η − η′‖2∞.

Following the steps of (3.1), we obtain

E|Y ζ(t, η)− Y ζ(t, η′)|2 . e−λt‖η − η′‖2∞, t ≥ 0.

Also, by the Itô formula and the B-D-G inequality, one gives

E( sup
−τ≤θ≤0

|Y ζ(t+ θ, η)− Y ζ(t+ θ, η′)− (D2(Y
ζ(t− τ + θ, η))−D2(Y

ζ(t− τ + θ, η′)))|2)

. e−λt‖η − η′‖2∞, t ≥ 0.

(3.18)

In the same way as (3.12) and (3.13), we derive for any t ≥ 0,

E‖Y ζ
t (η)− Y ζ

t (η′)‖2∞ . e−λt‖η − η′‖2∞.

Sept 5. We shall show the existence and uniqueness of invariant measure of Y ζ
t .1

Let P(C ) be the set of all probability measures on C . d2 denotes the L2-Wasserstein
distance on P(C ) induced by the bounded distance ρ(ξ, η) := 1 ∧ ‖ξ − η‖∞, i.e.,

d2(µ1, µ2) = inf
π∈C (µ1,µ2)

(
π(ρ2)

) 1
2 , µ1, µ2 ∈P(C ),

where C (µ1, µ2) is the set of all coupling probability measures with marginals µ1 and µ2.2

It is well known that P(C ) is a complete metric space w.r.t. the distance d2 (see, e.g., [6,3

Lemma 5.3, P.174] and [6, Theorem 5.4, P.175]), and the convergence in d2 is equivalent4

to the weak convergence (see, e.g., [6, Theorem 5.6, P.179]). Let P ζ,η
t be the law of the5

segment process Y ζ
t (η). According to the Krylov-Bogoliubov existence theorem (see, e.g., [9,6

Theorem 3.1.1, P.21]), if P ζ,η
t converges weakly to a probability measure µζη, then µζη is an7

invariant measure.8
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By (3.15), we have

d2(P
ζ,η
t1 , P

ζ,η
t2 ) ≤ E{1 ∧ ‖Y ζ

t1(η)− Y ζ

t2
(η)‖2∞}1/2

. E{1 + ‖Y ζ
t1(η)− Y ζ

t2
(η)‖2∞}

. e−(p1∧1)λt1(1 + ‖η‖2∞ + ‖ζ‖2∞),

which goes to zero as t1 (hence t2) tends to ∞. Therefore, {P ζ,η
t }t≥0 is a Cauchy sequence

w.r.t. the distance d2. By the completeness of P(C ) w.r.t. the distance d2, there is
µζη ∈P(C ) such that

(3.19) lim
t→∞

d2(P
ζ,η
t , µζη) = 0.

Moreover, for fixed ζ ∈ C and arbitrary η, η ∈ C , observing that

(3.20) d2(µ
ζ
η, µ

ζ
η′) ≤ d2(P

ζ,η
t , µζη) + d2(P

ζ,η′

t , µζη′) + d2(P
ζ,η
t , P ζ,η′

t ),

and using (3.17), we obtain for any η, η′ ∈ C and frozen ζ ∈ C

(3.21) d2(µ
ζ
η, µ

ζ
η′) = 0.

The existence and uniqueness of invariant measure of Y ζ
t follows by (3.19) and (3.21).1

Step 6. We are now going to prove (2.4).2

By virtue of (3.9) and the invariance of µζ , it then follows that∫
C

‖ψ‖2∞µζ(dψ) ≤ c
{

1 + ‖ζ‖2∞ + e−λt
∫

C

‖ψ‖2∞µζ(dψ)
}
.

Thus, choosing t > 0 sufficiently large such that δ := ce−λt < 1, one finds that

(3.22)

∫
C

‖ψ‖2∞µζ(dψ) . 1 + ‖ζ‖2∞.

Next, with the aid of the invariance of µζ , (3.17), and (3.22), we deduce from (A1) that

|Eb1(ζ, Y ζ
t (η))− b1(ζ)| .

∫
C

E‖Y ζ
t (η)− Y ζ

t (ψ)‖∞µζ(dψ) . e−
(p1∧1)λt

2

∫
C

‖η − ψ‖∞µζ(dψ)

. e−
(p1∧1)λt

2 (1 + ‖η‖∞ + ‖ζ‖∞).

As a result, (2.4) follows. �3

We now complete4

Proof of Proposition 2.2. For arbitrary φ, ζ ∈ C , let

∇φb1(ζ) =
d

dε
b1(ζ + εφ)

∣∣∣
ε=0

11



be the direction derivative of b1 at ζ along the direction φ. By Theorem 2.1, we have

∇φb1(ζ) = lim
ε→0

b1(ζ + εφ)− b1(ζ)

ε

= lim
t→∞

lim
ε→0

E{b1(ζ + εφ, Y ζ
t )− b1(ζ, Y ζ

t )}
ε

= lim
t→∞

E∇φb1(ζ, Y
ζ
t (η))

= lim
t→∞

E
{

(∇(1)
φ b1)(ζ, Y

ζ
t (η)) +

(
∇(2)

∇φY ζt (η)
b1

)
(ζ, Y ζ

t (η))
}
, φ, ζ, η ∈ C .

According to (A1), to verify that b1 : C 7→ Rn is Lipschitz, it remains to verify

(3.23) sup
t≥0

E‖∇φY
ζ
t (η)‖2∞ <∞.

Observe that ∇φY
ζ(t, η) satisfies the following NSDDE

d(∇φ(Y ζ(t, η)−D2(Y
ζ(t− τ, η))))

=
{

(∇(1)
φ b2)(ζ, Y

ζ(t, η), Y ζ(t− τ, η))

+
(
∇(2)

∇φY ζ(t,η)
b2

)
(ζ, Y ζ(t, η), Y ζ(t− τ, η))

+
(
∇(3)

∇φY ζ(t−τ,η)
b2

)
(ζ, Y ζ(t, η), Y ζ(t− τ, η))

}
dt

+
{

(∇(1)
φ σ2)(ζ, Y

ζ(t, η), Y ζ(t− τ, η))

+
(
∇(2)

∇φY ζ(t,η)
σ2

)
(ζ, Y ζ(t, η), Y ζ(t− τ, η))

+
(
∇(3)

∇φY ζ(t−τ,η)
σ2

)
(ζ, Y ζ(t, η), Y ζ(t− τ, η))

}
dW2(t), t > 0

with the initial datum ∇φY
ζ
0 (η) = 0. In the sequel, let χ ∈ C and x, x′, y, y′ ∈ Rn. For any

ε > 0, it is trivial to see from (A3) that

2ε〈x−D2(y), b2(χ, x
′ + εx, y′ + εy)− b2(χ, x′, y′)〉+ ‖σ2(χ, x′ + εx, y′ + εy)− σ2(χ, x′, y′)‖2

≤ −λ1ε2|x|2 + λ2ε
2|y|2.

Multiplying ε−2 on both sides, followed by taking ε ↓ 0, gives that

2〈x−D2(y), (∇(2)
x b2)(χ, x

′, y′) + (∇(3)
y b2)(χ, x

′, y′)〉
+ ‖(∇(2)

x σ2)(χ, x
′, y′) + (∇(3)

y σ2)(χ, x
′, y′)‖2

≤ −λ1|x|2 + λ2|y|2.
(3.24)

On the other hand, by virtue of (3.2), for any ε > 0, one has

‖σ2(χ, x′ + εx, y′ + εy)− σ2(χ, x′, y′)‖2 ≤ αε2(|x|2 + |y|2),
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which further yields that

(3.25) ‖(∇(2)
x σ2)(χ, x

′, y′) + (∇(3)
y σ2)(χ, x

′, y′)‖2 ≤ α(|x|2 + |y|2).

Also, for any ε > 0, we have from (A4) that

|D2(y
′ + εy)−D2(y

′)|2 ≤ κ2ε
2|y|2,

which further yields that

(3.26) |(∇yD2)(y
′)|2 ≤ κ2|y|2.

Thus, with (3.24) , (3.25) and (3.26) in hand, (3.23) holds by repeating an argument to1

derive (3.9). �2

4 Proof of Theorem 2.33

In order to prove our main result, we need to construct some auxiliary two time-scales4

stochastic systems with memory and provide a number of lemmas.5

Let T > 0 be fixed and set δ := τ
N
∈ (0, 1) for a sufficiently large positive integer N . For

any t ∈ [0, T ], consider the following auxiliary two-time-scale systems of NSFDEs

(4.1) d[X̃ε(t)−D1(X
ε
tδ

)] = b1(X
ε
tδ
, Ỹ ε

t )dt+ σ1(X
ε
tδ

)dW1(t), Xε
0 = ξ ∈ C ,

and
(4.2){

d[Ỹ ε(t)−D2(Ỹ
ε(t− τ)))] = 1

ε
b2(X

ε
tδ
, Ỹ ε(t), Ỹ ε(t− τ))dt+ 1√

ε
σ2(X

ε
tδ
, Ỹ ε(t), Ỹ ε(t− τ))dW2(t),

Ỹ ε(tδ) = Y ε(tδ)

with the initial value Ỹ ε
0 = Y ε

0 = η ∈ C , where tδ := bt/δcδ, the nearest breakpoint preceding6

t, with bt/δc being the integer part of t/δ.7

To proceed, we present several preliminary lemmas. The first lemma concerns the conti-8

nuity in the mean Lp-norm sense for the displacement of the segment process (Xε
t )t∈[0,T ].9

Lemma 4.1. Under (A1) and (A4),

sup
t∈[0,T ]

E‖Xε
t −Xε

tδ
‖p∞ .T δ

p−2
2 , p > 2.

Proof. Using (A1) and noting [24, Theorem 4.5, P.213], we have

(4.3) E
(

sup
0≤t≤T

‖Xε
t ‖p∞

)
.T 1 + ‖ξ‖p∞.
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Observe that

E
(

sup
−τ≤θ≤0

|Xε(t+ θ)−D1(X
ε
t+θ)−Xε(tδ + θ) +D1(X

ε
tδ+θ

)|p
)

≤
N−1∑
m=0

E
(

sup
−(m+1)δ≤θ≤−mδ

|Xε(t+ θ)−D1(X
ε
t+θ)−Xε(tδ + θ) +D1(X

ε
tδ+θ

)|p
)

=:
N−1∑
m=0

Jp(t,m, δ),

where N = τ/δ by the definition of δ. For any t ∈ [0, T ], take k ≥ 0 such that t ∈ [kδ, (k+1)δ).
Thus, for any θ ∈ [−(m+ 1)δ,−mδ], one has

t+ θ ∈ [(k −m− 1)δ, (k + 1−m)δ] and tδ + θ ∈ [(k −m− 1)δ, (k −m)δ].

In what follows, we separate the following three cases to show

(4.4) Jp(t,m, δ) .T δ
p
2 .

Case 1: m ≤ k − 1. Invoking Hölder’s inequality and B-D-G’s inequality, we obtain from
(A1) and (4.3) that

Jp(t,m, δ) . δp−1
∫ t−mδ

(k−m−1)δ
E|b1(Xε

s , Y
ε
s )|pds+ E

(
sup

−(m+1)δ≤θ≤−mδ

∣∣∣ ∫ t+θ

kδ+θ

σ1(X
ε
s )dW1(s)

∣∣∣p)
. δp−1

∫ t−mδ

(k−m−1)δ
E|b1(Xε

s , Y
ε
s )|pds+ E

(∣∣∣ ∫ t−(m+1)δ

(k−m−1)δ
σ1(X

ε
s )dW1(s)

∣∣∣p)
+ E

(
sup

−(m+1)δ≤θ≤−mδ

∣∣∣ ∫ t+θ

t−(m+1)δ

σ1(X
ε
s )dW1(s)

∣∣∣p)
+ E

(
sup

−(m+1)δ≤θ≤−mδ

∣∣∣ ∫ kδ+θ

(k−m−1)δ
σ1(X

ε
s )dW1(s)

∣∣∣p)
. δp−1

∫ t−mδ

(k−m−1)δ
E|b1(Xε

s , Y
ε
s )|pds+ δ

p−2
2 E
(∫ t−(m+1)δ

(k−m−1)δ
‖σ1(Xε

s )‖pds
)

+ E
(∫ t−mδ

t−(m+1)δ

‖σ1(Xε
s )‖2ds

)p/2
+ E

(∫ (k−m)δ

(k−m−1)δ
‖σ1(Xε

s )‖2ds
)p/2

.T δ
p
2 .

(4.5)

Case 2: m ≥ k + 1. In view of (A4) and (A5), it follows that

Jp(t,m, δ) . |ξ(t+ θ)− ξ(tδ + θ)|p + |D1(ξt+θ)−D1(ξtδ+θ)|p

. |ξ(t+ θ)− ξ(tδ + θ)|p + sup
−τ≤θ′≤0

|ξ(t+ θ + θ′)− ξ(tδ + θ + θ′)|p

. δp.
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Case 3: m = k. Also, by Hölder’s inequality and B-D-G’s inequality, we deduce from (A1),
and (4.3) that

Jp(t,m, δ) =E
(

sup
−(k+1)δ≤θ≤−kδ

|Xε(t+ θ)−D1(X
ε
t+θ)−Xε(kδ + θ) +D1(X

ε
kδ+θ)|p

)
. δp + E

(
sup

−(k+1)δ≤θ≤−kδ
(|Xε(t+ θ)−Xε(0)|p1{t+θ>0})

)
. δp + E

(
sup

−t≤θ≤−kδ

∣∣∣ ∫ t+θ

0

b1(X
ε
s , Y

ε
s )ds

∣∣∣p)
+ E

(
sup

−t≤θ≤−kδ

∣∣∣ ∫ t+θ

0

σ1(X
ε
s )dW1(s)

∣∣∣p)
. δp + δp−1

∫ t−kδ

0

E|b1(Xε
s , Y

ε
s )|pds+ δ

p−2
2

∫ t−kδ

0

E‖σ1(Xε
s )‖pds

.T δ
p
2 ,

(4.6)

On the other hand, using the inequality:

(4.7) (a+ b)p ≤
[
1 + ε̂

1
p−1

]p−1(
ap +

bp

ε̂

)
, a, b > 0, ε̂ > 0, p > 1,

we have

E‖Xε
t −Xε

tδ
‖p∞ = E

(
sup
−τ≤θ≤0

|Xε(t+ θ)−Xε(tδ + θ)|p∞
)

≤
[
1 + ε̂

1
p−1

]p−1(1

ε̂
E
(

sup
−τ≤θ≤0

|D1(X
ε
t+θ)−D1(X

ε
tδ+θ

)|p
)

+ E
(

sup
−τ≤θ≤0

|Xε(t+ θ)−D1(X
ε
t+θ)−Xε(tδ + θ) +D1(X

ε
tδ+θ

)|p
))
.

Letting ε̂ =
[ √

κ1
1−√κ1

]p−1
and using (4.4) we see that

E‖Xε
t −Xε

tδ
‖p∞ ≤

√
κ1E

(
sup
−τ≤θ≤0

‖Xε
t+θ −Xε

tδ+θ
‖p∞
)

+
cT δ

p−2
2

(1−√κ1)p−1

≤
√
κ1E

(
‖Xε

t −Xε
tδ
‖p∞
)

+
√
κ1E

(
‖Xε

t−τ −Xε
tδ−τ‖

p
∞

)
+

cT δ
p−2
2

(1−√κ1)p−1

holds for all 0 ≤ t ≤ T . Consequently, for any t ≥ 0, there exists an integer n ≥ 1 such that
t ∈ [(n− 1)τ, nτ)

E‖Xε
t −Xε

tδ
‖p∞ ≤

√
κ1

1−√κ1
E
(
‖Xε

t−τ −Xε
tδ−τ‖

p
∞

)
+

cT δ
p−2
2

(1−√κ1)p

≤
( √

κ1
1−√κ1

)n−1
δp +

cT δ
p−2
2

(1−√κ1)p
{

1 +

√
κ1

1−√κ1
+ · · ·+

( √
κ1

1−√κ1

)n−2}
.T δ

p−2
2 .
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The lemma below provides an error bound of the difference in the strong sense between2

the slow component (Xε(t)) and its approximation (X̃ε(t)).3

Lemma 4.2. Assume that (A1) and (A2) hold and suppose further ε/δ ∈ (0, 1). Then,
there exists β > 0 such that

E
(

sup
0≤s≤T

|Xε(t)− X̃ε(t)|p
)
.T δ

p−2
2 (1 + ε−1e

βδ
ε ), p > 2.

Proof. Note that

E
(

sup
0≤s≤T

|Xε(s)− X̃ε(s)|p
)

≤ 2p−1E
(

sup
0≤s≤T

|D1(X
ε
s )−D1(X

ε
sδ

)|p
)

+ 2p−1E
(

sup
0≤s≤T

|Xε(s)−D1(X
ε
s )− X̃ε(s) +D1(X

ε
sδ

)|p
)
.

In view of Hölder’s inequality, B-D-G’s inequality, it follows from (2.1) and (A4) that

E
(

sup
0≤s≤T

|D1(X
ε
s )−D1(X

ε
sδ

)|p
)

≤ κ
p
2
1 E
(

sup
0≤s≤T

|Xε(s)−Xε(sδ)|p
)

.T δ
p
2 .

By using Lemma 4.1 and (A1), one gives

E
(

sup
0≤s≤t

|Xε(s)−D1(X
ε
s )− X̃ε(s) +D1(X

ε
sδ

)|p
)

.T

∫ t

0

E{‖Xε
s −Xε

sδ
‖p∞ + ‖Y ε

s − Ỹ ε
s ‖p∞}ds

.T δ
p−2
2 +

∫ t

0

E‖Y ε
s − Ỹ ε

s ‖p∞ds, t ∈ (0, T ].

Therefore, to finish the argument of Lemma 4.2, it suffices to show that there exists β > 0
such that

(4.8) sup
t∈[0,T ]

E‖Y ε
t − Ỹ ε

t ‖p∞ .T ε−1δ
p−2
2 e

βδ
ε .

In the sequel, we shall claim (4.8) by an induction argument. For any t ∈ [0, τ), due to

Y ε
0 = Ỹ ε

0 = η, it is readily to check that

E‖Y ε
t − Ỹ ε

t ‖p∞ ≤
bt/δc∑
j=0

E
(

sup
jδ≤s≤((j+1)δ)∧t

|Y ε(s)− Ỹ ε(s)|p
)

=: I(t, δ).
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By means of Itô’s formula and B-D-G’s inequality, together with Ỹ ε(tδ) = Y ε(tδ), we obtain
from (A2) that

E
(

sup
jδ≤s≤((j+1)δ)∧t

|Y ε(s)− Ỹ ε(s)|p
)

= E
(

sup
jδ≤s≤((j+1)δ)∧t

|Y ε(s)−D2(Y
ε(s− τ))− Ỹ ε(s) +D2(Ỹ

ε(s− τ))|p
)

≤ c

ε

∫ ((j+1)δ)∧t

jδ

{E‖Xε
s −Xε

sδ
‖p∞ + E|Y ε(s)− Ỹ ε(s)|p}ds

+
1

2
E
(

sup
jδ≤s≤((j+1)δ)∧t

|Y ε(s)− Ỹ ε(s)|p
)
, t ∈ [0, τ ].

Consequently, we conclude that

I(t, δ) .
1

ε

∫ t

0

E‖Xε
s −Xε

sδ
‖p∞ds+

1

ε

∫ δ

0

bt/δc∑
j=0

E
(

sup
jδ≤r≤((jδ+s))∧t

|Y ε(r)− Ỹ ε(r)|p
)

ds

.
1

ε

∫ t

0

E‖Xε
s −Xε

sδ
‖p∞ds+

1

ε

∫ δ

0

I(t, s)ds.

(4.9)

This, combining Lemma 4.1 with Gronwall’s inequality, gives that

(4.10) E‖Y ε
t − Ỹ ε

t ‖p∞ . ε−1δ
p−2
2 e

cδ
ε , t ∈ [0, τ)

for some c > 0. Next, for any t ∈ [τ, 2τ), thanks to (4.10), it is immediate to note that

E‖Y ε
t − Ỹ ε

t ‖p∞ ≤ E
(
‖Y ε

τ − Ỹ ε
τ ‖p∞

)
+ E

(
sup
τ≤s≤t

|Y ε(s)− Ỹ ε(s)|p
)

≤ c
{
ε−1δ

p−2
2 e

cδ
ε +

b t−τ
δ
c∑

j=0

E
(

sup
(N+j)δ≤s≤((N+j+1)δ)∧t

|Y ε(s)− Ỹ ε(s)|p
)}

=: c{ε−1δ
p−2
2 e

cδ
ε +M(t, τ, δ)}.

By using Itô’s formula and B-D-G’s inequality again, for any t ∈ [τ, 2τ), we deduce from
(4.10) that

E
(

sup
jδ≤s≤((j+1)δ)∧t

|Y ε(s)−D2(Y
ε(s− τ))− Ỹ ε(s) +D2(Ỹ

ε(s− τ))|p
)

≤ c

ε

∫ ((j+1)δ)∧t

jδ

{E‖Xε
s −Xε

sδ
‖p∞ + E|Y ε(s)− Ỹ ε(s)|p + E|Y ε(s− τ)− Ỹ ε(s− τ)|p}ds

+
1

2
E
(

sup
jδ≤s≤((j+1)δ)∧t

|Y ε(s)−D2(Y
ε(s− τ))− Ỹ ε(s) +D2(Ỹ

ε(s− τ))|p
)
,
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and,

M(t, τ, δ) ≤ 2p−1
b t−τ
δ
c∑

j=0

E
(

sup
jδ≤s≤((j+1)δ)∧t

|D2(Y
ε(s− τ))−D2(Ỹ

ε(s− τ))|p
)

+ 2p−1
b t−τ
δ
c∑

j=0

E
(

sup
jδ≤s≤((j+1)δ)∧t

|Y ε(s)−D2(Y
ε(s− τ))− Ỹ ε(s) +D2(Ỹ

ε(s− τ))|p
)

. ε−1δ
p−2
2 e

cδ
ε +

1

ε

∫ t

τ

E‖Xε
s −Xε

sδ
‖p∞ds

+
1

ε

∫ δ

0

b t−τ
δ
c∑

j=0

E
(

sup
(N+j)δ≤r≤((N+j)δ+s)∧t

|Y ε(r)− Ỹ ε(r)|p
)

ds

+
1

ε

∫ δ

0

b t−τ
δ
c∑

j=0

E
(

sup
jδ≤s≤((j+1)δ)∧(t−τ)

|Y ε(s)− Ỹ ε(s)|p
)

ds

.
δ
p−2
2

ε
+
(δ
ε

+ 1
)
· δ

p−2
2

ε
e
cδ
ε +

1

ε

∫ δ

0

M(t, τ, s)ds.

Thus, the Gronwall inequality reads

M(t, τ, δ) .
{δ p−2

2

ε
+
(δ
ε

+ 1
)
· δ

p−2
2

ε
e
cδ
ε

}
e
cδ
ε .

δ

ε
· δ

p−2
2

ε
e
cδ
ε .

δ
p−2
2

ε
e
cδ
ε ,

where we have used ε/δ ∈ (0, 1) in the second step . Finally, (4.8) follows by repeating the1

previous procedure. �2

The following consequence explores a uniform estimate w.r.t. the parameter ε for the3

segment process associated with the auxiliary fast motion.4

Lemma 4.3. Assume that (A1) and (A3) hold. Then, there exists CT > 0, independent of
ε, such that

(4.11) sup
t∈[0,T ]

E‖Ỹ ε
t ‖2∞ ≤ CT .

Proof. From (2.2), it follows that

Y ε(t) = η(0)−D2(η) +D2(Y
ε(t− τ)) +

∫ t/ε

0

b2(X
ε
εs, Y

ε(εs), Y ε(εs− τ))dt

+

∫ t/ε

0

σ2(X
ε
εs, Y

ε(εs), Y ε(εs− τ))dW 2(s), t > 0,

(4.12)

where we used the fact that W (t) := 1√
ε
W2(εt) is a Brownian motion. For fixed ε > 0 and

t ≥ 0, let Y
ε
(t+ θ) = Y ε(εt+ θ), θ ∈ [−τ, 0]. So, one has Y

ε

t = Y ε
εt. Observe that (4.12) can
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be rewritten as

Y
ε
(t/ε) = η(0)−D2(η) +D2(Y

ε(t/ε− τ)) +

∫ t/ε

0

b2(X
ε
εs, Y

ε
(s), Y

ε
(s− τ))ds

+

∫ t/ε

0

σ2(X
ε
εs, Y

ε
(s), Y

ε
(s− τ))dW 2(s).

Then, following an argument to deduce (3.9), for any s > 0 we can deduce that

E‖Y ε

s‖2∞ . 1 + ‖η‖2∞e−λs + E
(

sup
0≤r≤εs

‖Xε
r‖2∞

)
.

This, together with Y
ε

t = Y ε
εt, gives that

E‖Y ε
εs‖2∞ . 1 + ‖η‖2∞e−λs + E

(
sup

0≤r≤εs
‖Xε

r‖2∞
)
.

In particular, taking s = t/ε we arrive at

E‖Y ε
t ‖2∞ . 1 + ‖η‖2∞ + E

(
sup
0≤r≤t

‖Xε
r‖2∞

)
.

This, together with (4.3), yields that

sup
t∈[0,T ]

E‖Y ε
t ‖2∞ ≤ CT

for some CT > 0. Observe from (4.8) and Höder’s inequality that

E‖Ỹ ε
t ‖2∞ ≤ 2E‖Y ε

t − Ỹ ε
t ‖2∞ + 2E‖Y ε

t ‖2∞

.T 1 +
(
ε−1δ

p−2
2 e

βδ
ε

)2/p
, p > 4.

Next, taking δ = ε(− ln ε)
1
2 in the estimate above and letting y = (− ln ε)

1
2 , we have

E‖Ỹ ε
t ‖2∞ .T 1 +

(
ey

2

(e−y
2

y)
p−2
2 eβy

)2/p
, p > 4.

Then, the desired assertion follows since the leading term ey
2
(e−y

2
y)

p−2
2 eβy → 0 as y ↑ ∞1

whenever p > 4.2

�3

Equipped with several lemmas above, we are in position to show our main result as below.4

Proof of Theorem 2.3. For any t ∈ [0, T ] and p > 0, set

Λ(t) := E
(

sup
0≤s≤t

|Xε(s)−X(s)|p
)

and Γ (t) := E
(

sup
0≤s≤t

|X̃ε(s)−D1(X
ε
sδ

)−X(s)+D1(Xs)|p
)
.
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By Hölder’s inequality, it is sufficient to verify that

(4.13) lim
ε→0

Λ(T ) = 0, p > 4.

In what follows, let t ∈ [0, T ] be arbitrary and assume p > 4. By using the inequality (4.7),
we have that for any ε̂ > 0

Λ(t) = E
(

sup
0≤s≤t

|Xε(s)− X̃ε(s) + X̃ε(s)−D1(X
ε
sδ

)−X(s) +D1(Xs) +D1(X
ε
sδ

)−D1(Xs)|p
)

≤ [1 + ε̂
1
p−1 ]p−1

(
E
(

sup
0≤s≤t

|Xε(s)− X̃ε(s) + X̃ε(s)−D1(X
ε
sδ

)−X(s) +D1(Xs)|p
)

+
1

ε̂
E
(

sup
0≤s≤t

|D1(X
ε
sδ

)−D1(Xs)|p
))
.

Letting ε̂ = [
√
κ1

1−√κ1 ]p−1, one gives

Λ(t) ≤ 1

(1−√κ1)p−1
E
(

sup
0≤s≤t

|Xε(s)− X̃ε(s) + X̃ε(s)−D1(X
ε
sδ

)−X(s) +D1(Xs)|p
)

+
√
κ1E

(
sup
0≤s≤t

‖Xε
sδ
−Xs‖p∞

)
≤ 2p−1

(1−√κ1)p−1
(
E
(

sup
0≤s≤t

|Xε(s)− X̃ε(s)|p
)

+ Γ (t)
)

+
√
κ1E

(
sup
0≤s≤t

‖Xε
sδ
−Xs‖p∞

)
≤ 2p−1

(1−√κ1)p−1
(
E
(

sup
0≤s≤t

|Xε(s)− X̃ε(s)|p
)

+ Γ (t)
)

+
√
κ1Λ(t)

Therefore, it follows that from Lemma 4.2 that

Λ(t) . E
(

sup
0≤s≤t

|Xε(s)− X̃ε(s)|p
)

+ Γ (t) . δ
p−2
2

(
1 +

1

ε
e
βδ
ε

)
+ Γ (t).(4.14)

Next, if we can show that

(4.15) Γ (t) . δ
p−2
2

(
1 +

1

ε
e
βδ
ε

)
+
(ε
δ

)ν
+

∫ t

0

Λ(s)ds

for some ν ∈ (0, 1), inserting (4.15) back into (4.14) and utilizing Gronwall’s inequality, we
deduce that

Λ(t) . δ
p−2
2

(
1 +

1

ε
e
βδ
ε

)
+
(ε
δ

)ν
.

Thus, the desired assertion (4.13) follows by, in particular, choosing δ = ε(− ln ε)
1
2 . Ineed,

it is easy to see that ε/δ ∈ (0, 1), which is prerequisite in Lemma 4.2, for ε ∈ (0, 1) small

enough, and that δ → 0 as ε ↓ 0. Furthermore, let y = (− ln ε)
1
2 (hence ε = e−y

2
), which

goes into infinity as ε tends to zero. Then, we have

Λ(t) . (e−y
2

y)
p−2
2

(
1 + ey

2+βy
)

+ y−ν ,
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which goes to zero by taking p > 4 and letting y ↑ ∞.1

Next, we intend to claim (4.15). Set

Γp(t, δ, ε) := E
(

sup
0≤s≤t

∣∣∣ ∫ s

0

{b1(Xε
rδ
, Ỹ ε

r )− b1(Xε
rδ

)}dr
∣∣∣p), t ∈ [0, T ].

Applying Hölder’s inequality, B-D-G’s inequality, Lipschitz property of b1 due to Corollary
2.2, and Lemma 4.1, we derive that

Γ (t) . E
(

sup
0≤s≤t

∣∣∣ ∫ t

0

{b1(Xε
sδ
, Ỹ ε

s )− b1(Xs)}ds
∣∣∣p)+

∫ t

0

E‖σ1(Xε
sδ

)− σ1(Xs)‖pds

. Γp(t, δ, ε) +

∫ t

0

E|b1(Xε
sδ

)− b1(Xε
s )|pds+

∫ t

0

E|b1(Xε
s )− b1(X̃ε

s )|pds

+

∫ t

0

E|b1(X̃ε
s )− b1(Xs)|pds+

∫ t

0

E‖σ1(Xε
sδ

)− σ1(Xs)‖pds

. Γp(t, δ, ε) +

∫ t

0

E‖Xε
s − X̃ε

s‖p∞ds+

∫ t

0

E‖Xε
sδ
−Xε

s‖p∞ds

+

∫ t

0

E
(

sup
0≤r≤s

|D1(X
ε
rδ

)−D1(Xr)|p
)

ds+

∫ t

0

Γ (s)ds+

∫ t

0

Λ(s)ds

. δ
p−2
2 +

1

ε
δ
p−2
2 e

cδ
ε + Γp(t, δ, ε) +

∫ t

0

Γ (s)ds+

∫ t

0

Λ(s)ds,

which, together with Gronwall’s inequality, leads to

(4.16) Γ (t) . δ
p−2
2

(
1 +

1

ε
e
βδ
ε

)
+ Γp(t, δ, ε) +

∫ t

0

Λ(s)ds,

where we have utilized the fact that Γp(t, δ, ε) is nondecreasing with respect to t. By a
comparison (4.15) with (4.16), we need only to prove

(4.17) Γp(t, δ, ε) .
(ε
δ

)ν
for some ν ∈ (0, 1).2

Let

Υp(k, δ, ε) = E
(∣∣∣ ∫ ((k+1)δ)∧t

kδ

{b1(Xε
kδ, Ỹ

ε
s )− b1(Xε

kδ)}ds
∣∣∣p) for any p > 0.
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In the sequel, we show that (4.17) holds. By Hölder’s inequality, we obtain that

Γp(t, δ, ε) = E
(

sup
0≤s≤t

∣∣∣ bs/δc∑
k=0

∫ ((k+1)δ)∧t

kδ

{b1(Xε
kδ, Ỹ

ε
r )− b1(Xε

kδ)}dr
∣∣∣p)

≤ E
(

sup
0≤s≤t

(
(bs/δc+ 1)p−1

bs/δc∑
k=0

Υp(k, δ, ε)
))

≤ (bt/δc+ 1)p−1
bt/δc∑
k=0

Υp(k, δ, ε)

≤ (bt/δc+ 1)p max
0≤k≤bt/δc

Υp(k, δ, ε).

(4.18)

For any p′ ∈ (1, 2), by Hölder’s inequality, (A1), and (4.3), observe that

Υp(k, δ, ε) ≤ Υ2(k, δ, ε)
p′
2

(
E
(∣∣∣ ∫ ((k+1)δ)∧t

kδ

{b1(Xε
kδ, Ỹ

ε
s )− b1(Xε

kδ)}ds
∣∣∣ 2(p−p′)2−p′

)) 2−p′
2

≤ Υ2(k, δ, ε)
p′
2

(
δ

2(p−p′)
2−p′ −1E

(∣∣∣ ∫ ((k+1)δ)∧t

kδ

|b1(Xε
kδ, Ỹ

ε
s )− b1(Xε

kδ)|
2(p−p′)
2−p′ ds

∣∣∣)) 2−p′
2

. Υ2(k, δ, ε)
p′
2 δ

2(p−p′)
2−p′ ×

2−p′
2

. Υ2(k, δ, ε)
p′
2 δp−p

′
, p > 4.

Substituting this into (4.18), we arrive at

Γp(t, δ, ε) . Υ2(k, δ, ε)
p′
2 δ−p

′
.

Thus, to complete the argument, it remains to show that

Υ2(k, δ, ε) . εδ.

Also, by virtue of Hölder’s inequality, (A1), and (4.3), we derive that

Υ2(k, δ, ε)

= 2

∫ ((k+1)δ)∧t

kδ

∫ ((k+1)δ)∧t

s

E〈b1(Xε
kδ, Ỹ

ε
s )− b1(Xε

kδ), b1(X
ε
kδ, Ỹ

ε
r )− b1(Xε

kδ)〉drds

.
∫ (k+1)δ

kδ

∫ (k+1)δ

s

(E|E((b1(X
ε
kδ, Ỹ

ε
r )− b1(Xε

kδ))|Fs)|2)1/2drds.

(4.19)
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For any r ∈ [kδ, (k + 1)δ), by the definition of Ỹ ε, defined as in (4.2), it follows that

Ỹ ε(r)−D2(Ỹ
ε(r − τ))

= Ỹ ε(kδ)−D2(Ỹ
ε(kδ − τ)) +

1

ε

∫ r

kδ

b2(X
ε
kδ, Ỹ

ε(u), Ỹ ε(u− τ))du

+
1√
ε

∫ r

kδ

σ2(X
ε
kδ, Ỹ

ε(u), Ỹ ε(u− τ))dW2(u)

= Ỹ ε(kδ)−D2(Ỹ
ε(kδ − τ)) +

∫ r−kδ
ε

0

b2(X
ε
kδ, Ỹ

ε(kδ + εu), Ỹ ε(kδ + εu− τ))du

+

∫ r−kδ
ε

0

σ2(X
ε
kδ, Ỹ

ε(kδ + εu− τ))dW̃2(u),

(4.20)

where W̃2(u) := (W2(εu+kδ)−W (kδ))/
√
ε, which is also a Wiener process. For fixed ε > 0

and u ≥ 0, let

Y
Xε
kδ(u+ θ) = Ỹ ε(kδ + εu+ θ), θ ∈ [−τ, 0].

Then (4.20) can be rewritten as

Y
Xε
kδ

(r − kδ
ε

)
−D2

(
Y
Xε
kδ

(r − kδ
ε
− τ
))

= Ỹ ε(kδ)−D2(Ỹ
ε(kδ − τ)) +

∫ r−kδ
ε

0

b2

(
Xε
kδ, Y

Xε
kδ(u), Y

Xε
kδ(u− τ)

)
du

+

∫ r−kδ
ε

0

σ2

(
Xε
kδ, Y

Xε
kδ(u), Y

Xε
kδ(u− τ)

)
dW̃2(u).

Consequently, by the weak uniqueness of solution, we arrive at

(4.21) L (Ỹ ε
r ) = L

(
Y
Xε
kδ

(r−kδ)/ε(Ỹ
ε
kδ)
)
,

where L (ζ) denotes the law of random variable ζ. Finally, we obtain from (2.4), (4.19),
(4.21), and Lemma 4.3 that

Υ2(k, δ, ε) . (1 + E‖Xε
kδ‖2∞ + E‖Ỹ ε

kδ‖2∞)

∫ (k+1)δ

kδ

∫ (k+1)δ

s

exp
(
− c(r − kδ)

ε

)
drds

. εδ.

The whole proof is therefore complete. �1

Acknowledgments2

This work is supported by the National Natural Science Foundation of China (Nos. 61876192)3

and the Fundamental Research Funds for the Central Universities of South-Central Univer-4

sity for Nationalities (No. CZW15113).5

23



References1

[1] Bao, J., Song, Q., Yin G., Yuan, C., Ergodicity and strong limit results for two-time-scale2

functional stochastic differential equations, arXiv:1508.07288v1, 2015.3

[2] Bao, J., Yin, G., Yuan, C., Ergodicity for functional stochastic differential equations and4

applications, Nonlinear Anal., 98 (2014), 66–82.5

[3] Bao, J., Yin, G., Yuan, C., Stationary Distributions for Retarded Stochastic Differential6

Equations without Dissipativity, arXiv:1308.2018.7

[4] Blömker, D., Hairer, M., Pavliotis, G. A., Multiscale analysis for stochastic partial differential8

equations with quadratic nonlineaities, Nonlinearity, 20 (2007), 1721–1744.9
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