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Abstract

A second-order face-centred finite volume method (FCFV) is proposed. Con-

trary to the more popular cell-centred and vertex-centred finite volume (FV)

techniques, the proposed method defines the solution on the faces of the mesh

(edges in two dimensions). The method is based on a mixed formulation and

therefore considers the solution and its gradient as independent unknowns.

They are computed solving an element-by-element problem after the solution

at the faces is determined. The proposed approach avoids the need of recon-

structing the solution gradient, as required by cell-centred and vertex-centred

FV methods. This strategy leads to a method that is insensitive to mesh dis-

tortion and stretching. The current method is second-order and requires the

solution of a global system of equations of identical size and identical num-

ber of non-zero elements when compared to the recently proposed first-order

FCFV. The formulation is presented for Poisson and Stokes problems. Nu-

merical examples are used to illustrate the approximation properties of the

method as well as to demonstrate its potential in three dimensional problems

with complex geometries. The integration of a mesh adaptive procedure in
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the FCFV solution algorithm is also presented.

Keywords: finite volume method, face-centred, second-order convergence,

hybridisable discontinuous Galerkin

1. Introduction

Cell-centred and vertex-centred second-order finite volume (FV) meth-

ods are still the predominant techniques used in commercial and industrial

computational fluid dynamics (CFD) solvers due to their robustness, easy

implementation and relatively low cost [2, 14, 15, 17, 19, 33]. Both, cell-

centred and vertex-centred, FV techniques require a reconstruction of the

gradient of the solution to ensure second-order convergence of the unknown

and first-order convergence of the fluxes [1, 3, 11, 12]. The accuracy of the

scheme is therefore dependent on the accuracy of the reconstruction tech-

nique, which in turns depends on the quality of the mesh. In particular, FV

methods are known to suffer an important loss of accuracy, and sometimes

even a loss of second-order convergence, when unstructured meshes are used

with highly stretched and/or deformed cells [11, 12].

In [28], the authors proposed a novel methodology called face-centred

finite volume (FCFV) method. The technique has many attractive properties

when compared to other FV methods. However, the method only provides

first-order convergence for the solution.

This paper proposes a second-order FCFV with a computational cost al-

most identical to the original, first-order, FCFV. The proposed method is

still a finite volume approach with constant unknowns on the faces (thus the

number of unknowns for the solve have not changed) but features two impor-

tant differences with respect to the original FCFV. First, the second-order

method uses a linear approximation for the primal variable and constant
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approximation for the mixed and hybrid variables, rather than a constant

approximation for all the variables, as done in the first-order FCFV. Second,

the definition of the numerical flux introduces a projection of the primal

variable onto the space of constant functions.

Similar to the original FCFV method, the technique proposed here is

also insensitive to mesh distortion and stretching and provides a first-order

approximation of the gradient of the solution without the need of a recon-

struction. The proposed method can also be seen as a particular case of

the HDG method by Cockburn and co-workers [5–8] and the HDG methods

by [24–26]. Therefore, it inherits the convergence properties of HDG and it

passes the LBB condition in the context of incompressible flows.

It is worth mentioning that to obtain second-order accuracy of the primal

variable using a standard HDG method with equal order of approximation,

polynomial functions of degree one are required to discretise all the variables,

including the hybrid one. Hence, the number of globally-coupled degrees of

freedom, i.e. the unknowns of the hybrid variable, increases and the size of

the global system of equations is substantially larger than in the proposed

method. More precisely, in two dimensions the standard HDG method re-

quires the solution of a system twice as large, whereas in three dimensions

the system is three times larger.

The proposed second-order FCFV requires the solution of a global sys-

tem of equations with identical size and number of non-zero elements as the

first-order FCFV method. Due to the extra accuracy of the second-order

method, compared to the original FCFV [28, 29], this work also proposes a

combination of first and second-order methods to produce an error indicator

that is used to drive an h-adaptivity process.

Following [12], this paper focuses on elliptic problems to asses the po-
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tential of the proposed scheme in the discretisation of viscous fluxes when

solving the full Navier-Stokes equations. For this reason, the numerical stud-

ies include an analysis of the performance of the scheme in highly stretched

meshes, which are responsible for a loss of accuracy in classical FV meth-

ods [11, 12] but do not affect the FCFV approach.

The remaining of the paper is organised as follows. In section 2 the pro-

posed second-order FCFV method is presented for the solution of the Poisson

equation. Its extension to the Stokes problem is presented in section 3. The

ability to combine first-order and second-order FCFV methods to perform an

automatic mesh adaptive process is discussed in section 4. Section 5 presents

a number of numerical experiments to validate the optimal approximation

properties of the method and to compare the accuracy of the first-order

and second-order FCFV methods in terms of the computational cost. The

insensitivity to mesh distortion and stretching is also demonstrated using nu-

merical experiments. Section 6 presents more challenging problems to show

the potential of the proposed second-order FCFV method and its application

in an automatic mesh adaptive process. Finally, section 7 summarises the

conclusions of the work that has been presented.

2. Second-order FCFV for the Poisson equation

2.1. Problem statement

Let us consider an open bounded domain Ω ∈ Rnsd with boundary ∂Ω =

ΓD ∪ΓN , ΓD ∩ΓN = ∅ and nsd the number of spatial dimensions. The strong

form of the Poisson problem is
−∇ ·∇u = s in Ω,

u = uD on ΓD,

n ·∇u = t on ΓN ,

(1)
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where s denotes a source term, n is the outward unit normal vector to the

boundary ∂Ω and uD and t are the Dirichlet and Neumann data.

The domain Ω is assumed to be partitioned in nel disjoint triangular or

tetrahedral cells Ωe in two and three dimensions respectively

Ω =
nel⋃
e=1

Ωe, Ωe ∩ Ωl = ∅ for e 6= l, (2)

with boundaries ∂Ωe, defining an internal interface

Γ :=
[ nel⋃
e=1

∂Ωe

]
\ ∂Ω (3)

The boundary of a cell is also expressed as the union of a set of edges or

faces in two and three dimensions respectively, namely

∂Ωe :=

nefa⋃
j=1

Γe,j, (4)

where nefa denotes the number of edges/faces of the cell Ωe. For triangular

cells nefa = 3 and for tetrahedral cells nefa = 4.

The proposed FCFV method uses the mixed form of the Poisson problem

in the so-called broken computational domain, namely

q + ∇u = 0 in Ωe, and for e = 1, . . . , nel,

∇ · q = s in Ωe, and for e = 1, . . . , nel,

u = uD on ΓD,

n · q = −t on ΓN ,

JunK = 0 on Γ,

Jn · qK = 0 on Γ,

(5)

where, following [18], the jump operator is defined as the sum of the values

from the left and right of an interface, that is J�K = �e +�l.

It is worth noting that the last two equations in (5) impose the continuity

of the solution and the normal flux across the interface Γ, respectively.
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2.2. Strong form of the local and global problems

As it is usual in HDG methods [8, 20, 21, 31] and FCFV methods, the

strong form of the problem is split into the so-called local problem, defined

element-by-element, 

qe + ∇ue = 0 in Ωe,

∇ · qe = s in Ωe,

ue = uD on ∂Ωe ∩ ΓD,

ue = û on ∂Ωe \ ΓD,

(6)

for e = 1, . . . , nel, and the global problem, defined over the interface Γ and

the Neumann boundary 
JunK = 0 on Γ,

Jn · qK = 0 on Γ,

n · q = −t on ΓN .

(7)

The local problem (6) is a pure Dirichlet problem defined on each cell and

introduces the value of the solution at the cell faces, û, as an independent

variable.

Remark 1. The first equation in (7) is automatically satisfied due to the

imposition of the Dirichlet boundary condition in the local problem and the

unique value of û on the interior faces

2.3. Second-order FCFV weak formulation

Let us denote by V1(Ω) the space of L2(Ω) functions that are, at most,

linear in each cell, V0(Ω) the space of L2(Ω) functions that are constant in

each cell and V̂0(Γ) the space of L2(Γ) functions that are constant on each
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cell face. With these definitions, the discrete weak formulation of the local

problem is: find (uhe , q
h
e ) ∈ V1(Ωe)× [V0(Ωe)]

nsd such that

−
∫

Ωe

qhedΩ =

∫
∂Ωe∩ΓD

uDnedΓ +

∫
∂Ωe\ΓD

ûhnedΓ, (8)

−
∫

Ωe

∇v · qhedΩ +

∫
∂Ωe

v(ne · q̂he )dΓ =

∫
Ωe

vsdΩ (9)

for all v ∈ V1(Ωe) and for e = 1, . . . , nel. It is worth noting that in equa-

tion (8), a constant test function has been arbitrarily chosen in the space

[V0(Ωe)]
nsd and it has been used that qhe ∈ [V0(Ωe)]

nsd , that is ∇ · qhe = 0.

The so-called numerical flux, q̂he , is defined as

ne · q̂he :=

ne · q
h
e + τe(P0u

h
e − uD) on ∂Ωe ∩ ΓD,

ne · qhe + τe(P0u
h
e − ûh) elsewhere,

(10)

where P0 denotes the projection operator over the space of constant func-

tions [24, 25] and τe is a stabilisation parameter. The parameter τe is selected

to ensure stability and accuracy of the resulting scheme. The importance of

the stabilisation parameter has been extensively studied in the work by Cock-

burn and co-workers [4, 8, 20–23].

Remark 2. There are two differences between the scheme proposed here and

the original FCFV [28]. First, here the primal variable is approximated using

piecewise linear polynomials, whereas in the first-order FCFV method piece-

wise constant functions are used. Second, the definition of the numerical

flux considered here follows the rationale of the hybridised DG method with

reduced stabilisation [24], by introducing the projection operator P0. As dis-

cussed in [24], if the projection operator is not introduced in equation (10),

the resulting method is only first-order accurate, providing no advantages with

respect to the original FCFV. Therefore, the use of the projection operator,
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together with a richer space for approximating the primal variable, is required

to obtain a second-order accurate scheme.

Introducing the expression of the numerical flux in equation (9) and in-

tegrating by parts the first term, leads to the following discrete weak formu-

lation: find (uhe , q
h
e ) ∈ V1(Ωe)× [V0(Ωe)]

nsd such that

−
∫

Ωe

qhedΩ =

∫
∂Ωe∩ΓD

uDnedΓ +

∫
∂Ωe\ΓD

ûhnedΓ, (11)∫
∂Ωe

vτeP0u
h
edΓ =

∫
Ωe

vsdΩ +

∫
∂Ωe∩ΓD

vτeuDdΓ +

∫
∂Ωe\ΓD

vτeû
hdΓ (12)

for all v ∈ V1(Ωe) and for e = 1, . . . , nel.

The discrete weak form of the global problem is obtained following an

analogous process. It becomes: find ûh ∈ V̂0(Γ ∪ ΓN) such that

nel∑
e=1

∫
∂Ωe\ΓD

ne · q̂hedΓ = −
nel∑
e=1

∫
∂Ωe∩ΓN

tdΓ, (13)

a constant test function has been arbitrarily chosen in the space V̂0(Γ∪ΓN).

Introducing the definition of the numerical flux in equation (13) leads to

the following weak form of the global problem: find ûh ∈ V̂0(Γ ∪ ΓN) such

that

nel∑
e=1

∫
∂Ωe\ΓD

(
ne · qhe + τe(P0u

h
e − ûh)

)
dΓ = −

nel∑
e=1

∫
∂Ωe∩ΓN

tdΓ. (14)

2.4. Second-order FCFV discretisation

To simplify the notation, the following sets of faces are introduced

Ae := {1, . . . , nefa},

De := {j ∈ Ae | Γe,j ∩ ΓD 6= ∅},

Ne := {j ∈ Ae | Γe,j ∩ ΓN 6= ∅},

Be := Ae \ De = {j ∈ Ae | Γe,j ∩ ΓD = ∅},

(15)
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corresponding to all faces of a cell, the faces on the Dirichlet boundary, the

faces on the Neumann boundary and the faces not on the Dirichlet boundary,

respectively. It is also convenient to denote the set of nodes of a cell Ωe

belonging to a face Γe,j as Fe,j. Finally, the indicator function of a set � is

defined as

χ�(l) =

{
1 if l ∈ �

0 otherwise.
(16)

With this notation, the discrete local problem becomes

− |Ωe|qe =
∑
j∈De

|Γe,j|njuD,j +
∑
j∈Be

|Γe,j|njûj, (17a)

meue = fe +
∑
j∈De

τjdj +
∑
j∈Be

τjrjûj, (17b)

where τj denotes the value of the stabilisation parameter on the j-th face,

assumed constant, qe contains the value of q in the cell and ue contains

the nodal values of the solution in the cell. The matrices and vectors in

equation (17b) are given by

(me)IJ :=

nefa∑
k=1

1

n
e,i
fn

|Γe,k|τkχFe,k
(I)(pe,i)J , (fe)I :=

1

nen
se|Ωe|, (18)

(dj)I :=
1

n
e,i
fn

uD,j|Γe,j|, (rj)I :=
1

n
e,i
fn

|Γe,j|δIj, (19)

where nen is the number of cell nodes, the vector pe,i is introduced to compute

the projection of the solution, i.e. the average of the nodal values of ue on

face Γe,i. Formally it is defined as

(pe,i)l =
1

n
e,i
fn

χFe,i
(l) (20)

with n
e,i
fn being the number of nodes of the face Γe,i.

The discrete local problem allows to obtain an explicit expression of both

the solution and its gradient in terms of the solution at the cell faces/edges,
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namely

qe = −|Ωe|−1ze − |Ωe|−1
∑
j∈Be

|Γe,j|njûj, (21a)

ue = m−1
e be + m−1

e

∑
j∈Be

τjrjûj, (21b)

where

be := fe +
∑
j∈De

τjdj, ze :=
∑
j∈De

|Γe,j|njuD,j. (22)

It is worth noting that equation (21b) involves the solution of a 3 × 3

system of equations for triangular cells and a 4 × 4 system for tetrahedral

cells. Given the size of the system and the definition of me, its inverse can

be analytically computed to reduce the computational cost of this operation.

The discretisation of the global problem of equation (14) leads, for i ∈ Be,

to

nel∑
e=1

{
|Γe,i|ni ·qe+|Γe,i|τipe,i ·ue−|Γe,i|τiûi

}
= −

nel∑
e=1

{
|Γe,i|ti χNe(i)

}
. (23)

By inserting the explicit expressions of equation (21), in the global prob-

lem of equation (23), a linear system of equations involving only the solution

on the faces as an unknown is obtained, namely

K̂û = f̂ . (24)

The global matrix K̂ and right hand side f̂ are obtained by assembling the

in the cell contributions given by

K̂e
i,j := |Γe,i|

(
τiτjpe,i ·

(
m−1

e rj
)
− |Ωe|−1|Γe,j|ni · nj − τiδij

)
, (25a)

f̂ ei := |Γe,i|
(
|Ωe|−1ni · ze − τipe,i ·

(
m−1

e be
)
− ti χNe(i)

)
, (25b)

for i, j ∈ Be and with δij denoting the Kronecker delta.

As discussed in remark 2, the use of the projection operator in the nu-

merical flux of equation (10) is required to obtain a second-order method. If
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the projection is not introduced, the resulting method is only first-order [24].

This minor difference is exploited in section 4 to devise an error indicator that

can be used to drive an automatic mesh adaptive process. Therefore, it is of

interest here to study the difference in the global system of equation (25) in-

duced by the introduction of the projection operator. The next result shows

that only the matrix me changes if the projection is not considered.

Lemma 1. Let us consider a face Γe,i of a triangular or tetrahedral cell Ωe

and uhe ∈ V1(Ωe). Then, the following equality holds∫
Γe,i

P0u
h
edΓ =

∫
Γe,i

uhedΓ. (26)

Proof. The first integral of equation (26) can be written as∫
Γe,i

P0u
h
edΓ = |Γe,i|P0u

h
e = |Γe,i|pe,i · ue (27)

because P0u
h
e is constant within each face.

The second integral of equation (26) can be easily computed using the

expression of the linear shape functions used to define the approximation uhe ,

namely∫
Γe,i

uhedΓ =
nen∑
l=1

(∫
Γe,i

NldΓ

)
ul =

nen∑
l=1

(
1

n
e,i
fn

|Γe,i|χFe,i
(l)

)
ul. (28)

where Nl and ul denote the linear shape function and nodal value associated

with the l-th node.

Equality (26) follows from the definition of pe,i introduced in equation (20).

3. Second-order FCFV for the Stokes equation

3.1. Problem statement

The strong form of the Stokes problem can be written in the partitioned

domain and after splitting the second-order momentum conservation equa-
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tion into a system of two first-order equations, as

L+
√
ν∇u = 0 in Ωe, and for e = 1, . . . , nel,

∇ ·
(√

νL+ pInsd
)

= s in Ωe, and for e = 1, . . . , nel,

∇ · u = 0 in Ωe, and for e = 1, . . . , nel,

u = uD on ΓD,

n ·
(√

νL+ pInsd
)

= −t on ΓN ,

Ju⊗ nK = 0 on Γ,

Jn ·
(√

νL+ pInsd
)
K = 0 on Γ.

(29)

where ν > 0 is the viscosity and the last two equations enforce the continuity

of the velocity and the normal flux across the interface Γ respectively.

Remark 3. To simplify the presentation, this work considers the traditional

velocity-pressure HDG formulation of the Stokes equation [32], where the vec-

tor t does not correspond to the boundary traction and it is usually called a

pseudo-traction [13]. It is worth emphasising that the so-called Cauchy for-

mulation could also be employed here, using the formulation proposed in [16].

This formulation, contrary to other existing HDG methods, guarantees op-

timal convergence even for low order approximations. This idea was also

exploited in the context of linear elasticity to obtain optimal convergence for

low order approximations in an HDG context [27, 29, 30].

3.2. Strong form of the local and global problems

As usually done in HDG methods [9, 16, 25] and FCFV methods, the

strong form of the problem given by equation (29) is split into the local and
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global problems. The local problem

Le +
√
ν∇ue = 0 in Ωe,

∇ ·
(√

νLe + peInsd
)

= s in Ωe,

∇ · ue = 0 in Ωe

ue = uD on ∂Ωe ∩ ΓD,

ue = û on ∂Ωe \ ΓD.

(30)

is a pure Dirichlet problem and, therefore, requires the introduction of a

solvability constraint for the pressure [9], namely

1

|∂Ωe|

∫
∂Ωe

pedΓ = ρe (31)

where ρe is the mean value of the pressure on the boundary of the cell Ωe.

In addition, a compatibility condition is induced by the free-divergence

character of the velocity, namely∫
∂Ωe\ΓD

û · nedΓ +

∫
∂Ωe∩ΓD

uD · nedΓ = 0. (32)

As the continuity of the solution is automatically imposed by the intro-

duction of the velocity on the cell faces as an independent variable that is

uniquely defined on each face, the global problem imposes the continuity of

the normal flux across the interface and the Neumann boundary conditions,

that is Jn ·
(√

νL+ pInsd
)
K = 0 on Γ,

n ·
(√

νL+ pInsd
)

= −t on ΓN .
(33)

3.3. Second-order FCFV weak formulation

Following the same rationale presented for the Poisson problem, the dis-

crete weak formulation of the local Stokes problem is: find (uhe ,L
h
e , p

h
e ) ∈
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[V1(Ωe)]
nsd × [V0(Ωe)]

nsd×nsd × [V0(Ωe)] such that

−
∫

Ωe

LhedΩ =

∫
∂Ωe∩ΓD

√
νne ⊗ uDdΓ +

∫
∂Ωe\ΓD

√
νne ⊗ ûhdΓ, (34a)∫

∂Ωe

τew · P0u
h
edΓ =

∫
Ωe

w · sdΩ +

∫
∂Ωe∩ΓD

τew · uDdΓ +

∫
∂Ωe\ΓD

τew · ûhdΓ,

(34b)∫
∂Ωe\ΓD

û · nedΓ +

∫
∂Ωe∩ΓD

uD · nedΓ = 0, (34c)

1

|∂Ωe|

∫
∂Ωe

phedΓ = ρe, (34d)

for all w ∈ [V1(Ωe)]
nsd . It is worth emphasising that in equations (34a)

and (34c), a constant test function has been arbitrarily chosen in the spaces

[V0(Ωe)]
nsd×nsd and V0(Ωe) respectively. It is also worth noting that equa-

tion (34c) is exactly the compatibility condition introduced in equation (32).

As done in the standard FCFV method, this equation is then removed from

the local problem and imposed only in the global problem.

The weak form of the local problem has been introduced after using the

following definition of the numerical flux

ne ·
( ̂√

νLhe+pheInsd
)

:=

ne ·
(√

νLhe+pheInsd
)
+τe(P0u

h
e−uD) on ∂Ωe ∩ ΓD,

ne ·
(√

νLhe+pheInsd
)
+τe(P0u

h
e−û

h) elsewhere.

(35)

The discrete global problem that accounts for the transmission conditions,

the Neumann boundary condition and the incompressibility constraint reads:

find (ûh, ρe) ∈ [V̂0(Γ ∪ ΓN)]nsd × R such that

nel∑
e=1

∫
∂Ωe\ΓD

(√
νne ·Lhe + phene + τe(P0u

h
e − û

h)
)
dΓ = −

nel∑
e=1

∫
∂Ωe∩ΓN

tdΓ,

(36a)∫
∂Ωe\ΓD

û · nedΓ +

∫
∂Ωe∩ΓD

uD · nedΓ = 0 for e = 1, . . . , nel. (36b)
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It is worth noting that a constant test function in the space [V̂0(Γ ∪ ΓN)]nsd

has been used in equation (36a).

3.4. Second-order FCFV discretisation

Using the notation introduced in section 2.4, the discrete local Stokes

problem provides explicit expressions of the velocity, its gradient and the

pressure in terms of the velocity on the faces and the mean pressure. The

expressions are

Le = −|Ωe|−1
√
νZe − |Ωe|−1

√
ν
∑
j∈Be

|Γe,j|nj ⊗ ûj, (37a)

ue = M−1
e Be + M−1

e

∑
j∈Be

τjRjûj, (37b)

pe = ρe, (37c)

for e = 1, . . . , nel, where

Be := Fe +
∑
j∈De

τjDj, Ze :=
∑
j∈De

|Γe,j|nj ⊗ uD,j. (38)

and

(Me)IJ := Insd

nefa∑
k=1

1

n
e,i
fn

|Γe,k|τkχFe,k
(I)(pe,i)J , FI :=

1

nen
se|Ωe|, (39)

(Dj)I :=
1

n
e,i
fn

uD,j|Γe,j|, (Rj)IJ := Insd
1

n
e,i
fn

|Γe,j|δIj.

(40)

Analogously, the discretisation of the global problem of equation (36) after

inserting the expressions of equation (37), leads to a system of equationsK̂ûû K̂ûρ

K̂T
ûρ 0nel

û

ρ

 =

f̂û

f̂ρ

 , (41)
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where the global matrix and right hand side are obtained by assembling the

elemental contributions given by

(K̂ûû)
e
i,j := |Γe,i|

[
τiτjPe,i

(
M−1

e Rj

)
− ν|Ωe|−1|Γe,j|(ni · nj)Insd − τiδijInsd

]
,

(42a)

(K̂ûρ)
e
i := |Γe,i|ni, (42b)

(̂fû)
e
i := |Γe,i|

(
ν|Ωe|−1ni · Ze − τiPe,i

(
M−1

e Be

)
− ti χNe(i)

)
, (42c)

(̂fρ)
e := −

∑
j∈De

|Γe,j|uD,j · nj, (42d)

for i, j ∈ Be. The matrix Pe,i, introduced to account for the projection of

the solution on a space of constant functions on the face Γe,i, is defined as

Pe,i =

 pTe,i 01×3

01×3 pTe,i

 (43)

and

Pe,i =


pTe,i 01×4 01×4

01×4 pTe,i 01×4

01×4 01×4 pTe,i

 (44)

in two and three dimensions respectively. The vector pe,i was introduced in

equation (20).

4. Mesh adaptivity

As mentioned in section 2.3, the proposed FCFV can be seen as a par-

ticular case of the hybridised DG method with reduced stabilisation [24] and

therefore provides second-order convergence for the solution.

As mentioned in remark 2, the two key aspects to guarantee second-order

convergence are the projection operator used to define the numerical flux

and the richer space of approximation used for the primal variable. Without

16



the projection the method is only first-order accurate. This small difference

in the formulation is exploited here to devise an error indicator. Noting u

the solution of the proposed FCFV methodology and ũ the solution of the

method where the projection is not performed, the following error indicator

is proposed for the Poisson problem

Ee =

[
1

|Ωe|

∫
Ωe

(ũ− u)2 dΩ

]1/2

, (45)

with a similar definition for the Stokes problem.

To compute the desired cell size, the error indicator of equation (45) is

combined with the a priori local error estimate for elliptic problems [10] given

by

εe = ‖u− uh‖L2(Ωe) ≤ Ch1+nsd/2
e , (46)

for a constant degree of approximation, where he is the characteristic cell

size and C is a constant independent on the mesh size. By using Richardson

extrapolation, the following desired cell size is computed, for a desired error

ε,

h?e = he

(
ε

Ee

)2+nsd/2

. (47)

It is worth noting that the difference between u and ũ is only due to

the use of the projection of the solution over a space of constant functions.

Therefore, the majority of the calculations required to assemble the global

system of equations can be re-used, substantially reducing the computational

effort required to compute the error indicator of equation (45). In fact, as

detailed in remark 1, the only difference between both formulations is in the

matrix me in equation (25) and Me in equation (42) for the Poisson and

Stokes problems respectively.
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5. Numerical studies

This section presents a series of numerical experiments designed to test

the optimal convergence properties of the proposed technique and to compare

its performance with the recently proposed first-order FCFV [28]. Numerical

experiments are also presented to illustrate the accuracy of the method in

terms of the stabilisation parameter and the distortion and the stretching

of the meshes. In all the test cases where the analytical solution is known,

the relative error in the L2(Ω) norm is used to measure the accuracy of the

solution, namely

‖E‖L2(Ω) =
‖u− uex‖L2(Ω)

‖uex‖L2(Ω)

(48)

where uex denotes the analytical solution.

5.1. Optimal convergence of the second-order FCFV scheme for Poisson

equation

A mesh convergence study is performed for the Poisson problem using a

series of successively refined triangular meshes. Figure 1 shows the first three

levels of mesh refinement. Further levels of mesh refinement are introduced

in a similar fashion by subdividing a Cartesian grid. Similarly, for the three

dimensional numerical studies performed, the tetrahedral mesh is obtained

by subdividing a regular grid of hexahedral elements.

The boundary conditions and source term are selected such that the an-

alytical solution of the problem is known and given by

uex(x) = exp
(
α sin(ax1 + cx2) + β cos(bx1 + dx2)

)
, (49)

with α = 0.1, β = 0.3, a = 5.1, b = 4.3, c = −6.2 and d = 3.4.

Figure 2 shows the relative L2(Ω) norm of the error of the solution and its

gradient as a function of the characteristic mesh size h. The results clearly
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(a) Mesh 1 (b) Mesh 2 (c) Mesh 3

Figure 1: First three meshes used to perform the mesh convergence studies in two dimen-

sions.

1.0

1

2.0

1

(a) u

1.0
1

(b) q

Figure 2: Mesh convergence of the error of the solution and its gradient in the L2(Ω) norm

for two dimensional Poisson problem.

show the optimal second-order convergence of the error of the solution and

the first-order convergence of the error of the solution gradient. The results

of the original FCFV are also included, clearly showing the gain in accuracy

achieved for the solution u for a given spatial discretisation. The gradient of

the solution is only marginally more accurate as the approximation space for

this variable is not changed with respect to the original FCFV.

The results of the analogous study in three dimensions are shown in Fig-
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0.9
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1

(a) u

1.0

1

(b) q

Figure 3: Mesh convergence of the error of the solution and its gradient in the L2(Ω) norm

for three dimensional Poisson problem.

ure 3, demonstrating the optimal convergence of the error for both the so-

lution and its gradient as well as the increased accuracy with respect to

the first-order FCFV. In this case uniform tetrahedral meshes are used and

the boundary conditions and source term are selected so that the analytical

solution is known and given by

uex(x) = exp
(
α sin(ax1 + cx2 + ex3) + β cos(bx1 + dx2 + fx3)

)
, (50)

with α = 0.1, β = 0.3, a = 5.1, b = 4.3, c = −6.2, d = 3.4, e = 1.8 and

f = 1.7.

5.2. Optimal convergence of the second-order FCFV scheme for Stokes equa-

tion

A mesh convergence is next performed for the Stokes problem in two and

three dimensions. For the two dimensional problem the viscosity parameter

is set to ν = 1 and the source term and boundary conditions are selected
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1.0
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(a) u

1.0
1

(b) L

1.0

1

(c) p

Figure 4: Mesh convergence of the error of the velocity, its gradient and the pressure in

the L2(Ω) norm for two dimensional Stokes problem.

such that the analytical solution is
uex1 (x) = x2

1(1− x1)2(2x2 − 6x2
2 + 4x3

2),

uex2 (x) = −x2
2(1− x2)2(2x1 − 6x2

1 + 4x3
1),

pex(x) = x1(1− x1).

(51)

For the three dimensional problem the viscosity parameter is also set to

ν = 1 and the source term and boundary conditions are selected such that

the analytical solution is

uex1 (x) = 1/2 + (x3 − x2) sin(x1 − 1/2),

uex2 (x) = 1− x2(x3 − x2/2) cos(x1 − 1/2)− x2(x1 − x2/2) cos(x3 − 1/2),

uex3 (x) = 1/2 + (x1 − x2) sin(x3 − 1/2),

pex(x) = x1(1− x1) + x2(1− x2) + x3(1− x3).

(52)

Figures 4 and 5 show relative L2(Ω) norm of the error of the velocity, its

gradient and the pressure as a function of the characteristic mesh size h.

The error of the velocity converges with second-order accuracy whereas

first-order convergence is observed for its gradient, with an important gain

on accuracy in the pressure. For the three dimensional test case, the optimal

convergence is again observed for all the variables.
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Figure 5: Mesh convergence of the error of the velocity, its gradient and the pressure in

the L2(Ω) norm for three dimensional Stokes problem.

(a) u (b) L (c) p

Figure 6: Error of the velocity, its gradient and the pressure in L2(Ω) norm as a function

of the CPU time for two dimensional Stokes problem.

5.3. Computational cost

The convergence studies performed in the previous section show an im-

portant gain in accuracy of the proposed second-order FCFV method when

compared to the original FCFV in the same mesh. In this section both

methods are compared in terms of the computational time by using the same

meshes and the same problem described in sections 5.1 and 5.2.

Figure 6 shows relative L2(Ω) norm of the error of the velocity, its gradient

and the pressure as a function of the CPU time for the two dimensional Stokes

problem. The results show that the proposed second-order FCFV is able to

produce more accurate results for the velocity and the pressure using the
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(a) u (b) L (c) p

Figure 7: Error of the velocity, its gradient and the pressure in L2(Ω) norm as a function

of the CPU time for three dimensional Stokes problem.

same CPU time when compared to the first-order FCFV, whereas similar

results are obtained for the velocity gradient. In three dimensions similar

conclusions are obtained, as shown in Figure 7. The results show that the

proposed second-order FCFV provides the same accuracy as the original first-

order FCFV with orders of magnitude less CPU time when the velocity is

of interest. For instance, an error in the velocity field of the order of 1%

is obtained in less than 1 second with the second-order FCFV whereas the

first-order FCFV requires 2.7 hours.

The results for the Poisson problem, not displayed here for brevity, show

the same advantages for the proposed second-order FCFV.

5.4. Influence of the stabilisation parameter

The next study considers the influence of the stabilisation parameter τ

in the accuracy of the proposed second-order FCFV method using the same

meshes and the same problem described in sections 5.1 and 5.2.

Figure 8 shows the relative error, measured in the L2(Ω) norm, as a

function of the stabilisation parameter for the two and three dimensional

Poisson problem and for two levels of mesh refinement. The results show that

a maximum accuracy in the solution is achieved for a value of the stabilisation

23



(a) 2D (b) 3D

Figure 8: Error of the solution and its gradient in L2(Ω) norm as a function of stabilisation

parameter τ for Poisson problem.

(a) 2D (b) 3D

Figure 9: Error of the velocity, its gradient and the pressure in L2(Ω) norm as a function

of stabilisation parameter τ for Stokes problem.

parameter of 102 or larger, whereas the error of the solution gradient seems

insensitive to the choice of this parameter. The behaviour is almost identical

in both two and three dimensions.

For the Stokes problem, similar conclusions are obtained, as illustrated in

Figure 9. In this case, the velocity gradient and the pressure are insensitive
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to the stabilisation parameter τ , whereas the velocity requires a value of 102

or larger to provide the maximum accuracy.

It is worth emphasising that the value required to achieve the maximum

accuracy of the solution is the same for two and three dimensional problems

and for Poisson and Stokes problems. In addition, compared to the results

presented in [28] for the first-order FCFV, the proposed second-order FCFV

is less sensitive to a particular choice of the stabilisation parameter.

It is also worth mentioning that further numerical examples, not reported

here for brevity, confirm that the conclusions extracted from these numerical

experiments do not depend upon the spatial discretisation or the problem.

Identical behaviour has been observed for both Poisson and Stokes problems,

in two and three dimensions and for different levels of mesh refinement.

5.5. Influence of the cell distortion and stretching

The last study considers the solution of Poisson and Stokes problems

in meshes involving distorted and stretched cells. To illustrate the type of

cells tested, Figure 10 shows the mesh corresponding to the third level of

refinement where the cells have been randomly distorted, as explained in [28]

and with stretched cells with a stretching factor of 100.

Figure 11 shows a mesh convergence study for the Poisson problem in two

and three dimensional meshes that have been distorted by randomly moving

the interior nodes (i.e. the nodes not on the boundary of the domain) as

described in [28]. The results are almost identical to the ones obtained for

regular meshes and displayed in Figures 2 and 3, showing that the proposed

method is insensitive to mesh distortion.

The same conclusions are also obtained for the Stokes problem in two and

three dimensions as shown in Figure 12.
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(a) Distorted cells (b) Stretched cells

Figure 10: Mesh with (a) distorted and (b) stretched cells to test the sensitivity of the

FCFV to mesh quality.
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1

(b) 3D

Figure 11: Mesh convergence of the error of the solution and its gradient in L2(Ω) norm

for 2D and 3D Poisson problem with irregular mesh.

Next, the influence of the cell stretching is considered. Two cases involv-

ing a maximum stretching factor, s, of 10 and 1,000 are considered, where

this factor is measured in each cell as the ratio between the longest and the

shortest edges. Figure 13 shows the relative L2(Ω) norm of the error of the

solution and its gradient as a function of the characteristic mesh size for the

Poisson problem solved in stretched meshes in two and three dimensions.
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Figure 12: Mesh convergence of the error of the velocity, its gradient and the pressure in

L2(Ω) norm for 2D and 3D Stokes problem with irregular mesh.
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Figure 13: Mesh convergence of the error of the solution and its gradient in L2(Ω) norm

for 2D and 3D Poisson problem with stretched meshes with stretching factor s = 10 and

s = 1, 000.

Almost identical results are observed for both stretching factors. In the two

dimensional problem a marginal lower error is observed for the mesh with

stretching factor s = 10 whereas for the three dimensional problem the mesh

with stretching factor s = 1, 000 produces a slightly lower error.

The results for the Stokes problem in two and three dimensions are dis-
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Figure 14: Mesh convergence of the error of the velocity, its gradient and the pressure in

L2(Ω) norm for 2D and 3D Stokes problem with stretched meshes with stretching factor

s = 10 and s = 1, 000.

played in Figure 14, confirming the conclusions observed for the Poisson

problem.

It is worth noting that contrary to other FV methods, the proposed

second-order FCFV method not only shows an accuracy that is insensitive

to mesh distortion and stretching but also preserves the optimal rate of con-

vergence in all the variables, i.e. the solution and its gradient for the Poisson

problem and the velocity, its gradient and the pressure for the Stokes prob-

lem.

6. Numerical examples

6.1. Irrotational flow past a full aircraft

To show the ability of the proposed method to efficiently solve large scale

problems involving complex geometries, the irrotational flow around a full

aircraft is considered. A tetrahedral mesh with 5,125,998 cells is considered,

leading to a global system of 11,283,113 equations to find the solution on
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(a) Velocity (b) Pressure

Figure 15: Magnitude of the velocity and pressure distribution for the irrotational flow

around a full aircraft configuration.

the cell faces. The magnitude of the velocity, computed from the gradient

of the solution, and the pressure, computed from the Bernoulli equation are

displayed in Figure 15.

The solution using the proposed second-order FCFV took 5.1 minutes

for the computation of all the elemental matrices and the assembly and 6.4

minutes to solve the global system of equations using a direct method. The

developed code is written in Matlab and the computation was performed in

an IntelR© XeonR© CPU @ 3.70GHz and 32GB main memory available.

It is worth noting that the time required to assemble the system of equa-

tions is slightly higher than the time reported in [28] for the first-order FCFV,

namely 3.7 minutes. This difference is due to the extra operations required

by the second-order method for the computation and assembly of the global

matrix as a result of the larger approximation space used for the primal

variable. The time required by the proposed second-order FCFV to solve the

system is almost identical to the time employed by the first-order method, 5.7

minutes, due to the global matrix having the exact same size and structure,

with the same number of non-zero elements.

Finally, it is worth noting that, as shown in section 5.3, the extra cost
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induced by the second-order FCFV for a given spatial discretisation leads,

in all the examples studied, to a substantial gain in accuracy. In general, for

a given error, the proposed FCFV is more efficient due to the second-order

accuracy obtained for the primal variable.

6.2. Stokes flow past a sphere

The next example considers the Stokes flow around a sphere. This clas-

sical three dimensional example is used to compare the accuracy and per-

formance of the proposed second-order FCFV against the original first-order

FCFV method for a problem involving large three dimensional meshes. The

domain of interest is Ω = ([−7, 15]× [−5, 5]× [−5, 5]) \ B1,0, where B1,0 is

the unit ball with centre at the origin. Homogeneous Neumann boundary

conditions are imposed on the outlet part of the boundary, corresponding to

x = 15, whereas Dirichlet boundary conditions, corresponding to the exact

solution, are imposed on the rest of the boundary.

Six unstructured tetrahedral meshes are considered with 3,107, 10,680,

43,682, 204,099, 686,853 and 2,516,099 cells respectively. The size of the

global system of equations to be solved to obtain the velocity on the cell faces

is 20,711, 72,249, 299,276, 1,409,916, 4,765,776 and 17,513,075 respectively.

Figure 16(a) shows the convergence of the error for the velocity, pressure

and gradient of the velocity as the mesh is refined. The results are com-

pared to the original first-order FCFV and clearly show the advantage of the

proposed method by providing second-order convergence on the velocity. In

this example the accuracy for the other variables is almost identical, with

a marginal gain observed in the computation of the pressure in the finest

meshes. Figure 16(b) shows the convergence of the drag as the mesh is re-

fined. The advantages of the proposed second-order FCFV are observed as

the convergence to the exact value is faster than with the original first-order
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(a) L2(Ω) error convergence (b) Drag convergence

Figure 16: Comparison between first and second-order FCFV for the Stokes flow past a

sphere. (a) Convergence of the error of velocity, pressure and gradient of the velocity in

the L2(Ω) norm and (b) convergence of the drag.

method. It is worth mentioning that, differently from the simulations in [28],

the results in figure 16 are obtained imposing a homogeneous Neumann con-

dition on the portion of the boundary representing the physical outflow, both

for the first-order and second-order FCFV. This choice stems from the engi-

neering practice of imposing a free traction on the outflow, instead of a given

velocity profile.

6.3. Mesh adaptivity for the Poisson problem

This section presents a numerical example to illustrate the strategy de-

scribed in section 4 to perform an automatic mesh adaptive process by com-

bining the results of the first-order and second-order FCFV methods. A two

dimensional Poisson problem with known analytical solution is considered in

Ω = [0, 1]2. The source term and Dirichlet boundary conditions are selected

so that the analytical solution is given by

uex(x1, x2) = exp
(
− 100

[
(x1 − 0.7)2 + (x2 − 0.7)2

] )
(53)
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(a) Mesh 1 (b) Mesh 3 (c) Mesh 6

Figure 17: Three meshes used in the automatic mesh adaptive process for the Poisson

problem.

(a) Mesh 1 (b) Mesh 3 (c) Mesh 6

Figure 18: Three FCFV approximations corresponding to the meshes of Figure 17.

and the desired accuracy is ε = 10−2.

The process starts with the coarse mesh represented in Figure 17(a). The

approximation with the proposed FCFV on the coarsest mesh is depicted in

Figure 18(a). By comparing the approximation of the second-order FCFV

with the approximation of the first-order FCFV method (i.e. without the

projection operator), a desired cell size is computed, using equation (47),

and a new mesh is generated. The mesh and the second-order FCFV ap-

proximation after two iterations of the mesh adaptive process are displayed

in Figures 17(b) and 18(b) respectively. It can be clearly observed how the
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(a) Exact error, ni=0 (b) Exact error, ni=2 (c) Exact error, ni=5

(d) Error indicator, ni=0 (e) Error indicator, ni=2 (f) Error indicator, ni=5

Figure 19: Exact error and indicator map in the L2(Ωe) norm for the three stages of the

adaptive process corresponding to the meshes and approximations shown in Figures 17

and 18.

mesh is coarsened in the regions where the approximation is almost constant,

whereas the mesh density is increased in the regions where the approxima-

tion changes rapidly. The adaptive process finishes in five iterations, when

the desired error is achieved. The final mesh and FCFV approximation are

represented in Figures 17(c) and 18(c) respectively.

As described in section 4, the adaptive process is driven by an error

indicator that results from computing the relative difference in each cell,

measured in the L2(Ωe) norm. To illustrate the efficiency of the proposed

error indicator, Figure 19 shows both the error indicator and the exact error

for the three iterations, ni, of the adaptive process corresponding to the

meshes and approximations shown in Figures 17 and 18.
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(a) Error indicator (b) Indicator efficiency

Figure 20: (a) Maximum value of the indicator and the exact error over all the cells and

(b) indicator efficiency.

To further illustrate the performance of the error indicator and the au-

tomatic adaptive process, Figure 20(a) shows the maximum value of the

indicator and the exact error over all the cells as a function of the number

of iterations of the mesh adaptive process. The efficiency of the error indi-

cator, defined as the ratio between the exact error and the indicator is also

displayed in Figure 20(b), clearly illustrating the suitability of the proposed

technique to drive an automatic mesh adaptive process.

6.4. Mesh adaptivity for the Stokes problem

The last example involves the solution of the Stokes equations in three

dimensions for the complex geometry, taken from [34], depicted in Figure 21.

The corrugated channel has a height of 0.5µm and the curved profile is ob-

tained by repeating the expression

y =


1
2

(fω + fn) + 1
2

(fω − fn) cos
(

8π(2x−L)
7L

)
if |x| < 15

16
L,

fn if 15
16
L ≤ |x| ≤ L,

(54)
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Figure 21: Geometry description for the computation of the Stokes flow in a corrugated

channel with two spheres.

where fn = 0.5µm, fω = 4.5µm and L = 12.5µm. Two spheres of ra-

dius 0.2µm are placed inside the channel. The first sphere, with centre

(0, 0, 0.25)µm, is placed in the middle of the channel, where the cross sec-

tion is minimum, and it is expected to produce a major flow disturbance.

The second sphere, with centre at (−3.75, 1, 0.25)µm, is situated in a region

with larger cross section and it is expected to disturb much less the flow.

This scenario is utilised to show the ability of the proposed method to drive

the adaptivity for a problem involving an incompressible flow in a complex

geometry.

A Dirichlet boundary condition, corresponding to a velocity inlet given

by uD(x, y, z) = 64(y2 − 1/4)(z2 − 1/16), is introduced at one end of the

channel, at x = −L, depicted in red in Figure 21. A homogeneous Neumann

boundary condition is imposed at the outlet, at x = L, depicted in blue in

Figure 21. Homogeneous Dirichlet boundary conditions are imposed on the

rest of the boundary, corresponding to material walls.

The initial mesh, shown in Figure 22 (a), has 37,415 tetrahedral cells.
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(a) Mesh 1 (b) Mesh 4 (c) Mesh 7

Figure 22: Three of the meshes used for the adaptive computation of the Stokes flow in a

corrugated channel with two spheres.

The initial mesh is generated with a required element size of 0.05µm on the

surfaces defining two spheres, to ensure an appropriate geometric represen-

tation. An element size of 0.5µm is imposed in the domain, with a smooth

transition between these two values.

Next, the automatic adaptive process described in section 4 is applied,

with a desired accuracy of ε = 5× 10−2. Convergence of the estimated error

to the desired tolerance is achieved in this example after seven iterations of

the adaptive process. The resulting meshes in the fourth and seven iteration

are depicted in Figures 22 (b) and (c) respectively. The fourth mesh has

61,871 cells, with a minimum and maximum element size of 0.010µm and

0.594µm respectively. The last mesh has 116,913 cells, with a minimum and

maximum element size of 0.003µm and 0.520µm respectively. A detailed view

of the three meshes of Figure 22 near the two spheres is shown in Figure 23.

The velocity streamlines and the pressure field obtained using the last

mesh are represented in Figure 24. A detailed view of the velocity streamlines

and the pressure field near the sphere surfaces is shown in Figure 25. This

Figure offers a qualitative comparison of the major disturbance caused by

one sphere compared to the other.
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(a) Mesh 1 (b) Mesh 4 (c) Mesh 7

Figure 23: Detailed view of three of the meshes shown in Figure 22.

(a) Velocity (b) Pressure

Figure 24: (a) Velocity streamlines and (b) pressure field, obtained in the mesh of Figure 22

(c), at the last iteration of the adaptive computation.

(a) Velocity (b) Pressure

Figure 25: Detailed view of the (a) velocity streamlines and (b) pressure field, obtained

in the mesh of Figure 22 (c), at the last iteration of the adaptive computation.

37



7. Concluding remarks

This paper proposes a second-order FCFV method for the solution of

scalar and vector elliptic problems in two and three dimensions. Thus, as

in standard finite volumes, piece-wise constant approximations are used on

each face and explicit expressions for the matrix coefficients are obtained.

The proposed method preserves the attractive properties of the original

first-order FCFV method, namely the first-order convergence of the gradient

of the solution, without the need of a reconstruction, and the insensitivity to

mesh distortion and stretching. It also satisfies the LBB condition in the con-

text of incompressible flows. Contrary to the original FCFV, the proposed

method guarantees second-order convergence of the solution. Numerical ex-

periments show an increased performance when compared to the first-order

method in terms of the CPU time required to achieve a desired accuracy as

well as a lower sensitivity to the choice of the stabilisation parameter. A com-

bination of first-order and second-order schemes is used to devise an error

indicator that can be used to drive a mesh adaptivity process. An exten-

sive set of numerical experiments has been used to demonstrate the optimal

approximation properties of the method and more complex problems demon-

strate its potential for large scale three dimensional simulations, including a

Stokes problem where an automatic mesh adaptive process is employed.
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