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ABSTRACT Robust synchronization of chaotic systems becomes a hot topic in scientific and engineering
fields because of the ubiquitous existence of time-variant external disturbances in complex application
scenarios. In contrast with existing studies that the resultant synchronization error has a supremum or
even diverges under the influence of time-variant external disturbances, this paper proposes a disturbance
rejection zeroing neurodynamic (DRZN) approach and its related controller for the robust synchronization of
chaotic systems against time-variant external disturbances. The controller designed by the proposed DRZN
approach distinctively features the rejection of external disturbances with the generated synchronization
error being convergence toward zero. Theoretical analyses guarantee that the DRZN approach and its related
controller inherently possess robustness. Moreover, numerical studies including three examples substantiate
the effectiveness of the proposed DRZN approach and its related controller for the synchronization of
chaotic systems against the time-variant external disturbances. Comparisons with existing approaches, e.g.,
the conventional zeroing neurodynamic (CZN) approach and the linear-active control (LAC) approach, show
the superiority of the proposed DRZN approach. Extensive tests further verify that the proposed DRZN
approach possesses the outstanding anti-disturbance performance, and thus is suitable for the practical
applications with time-variant external disturbances.

INDEX TERMS Zeroing neurodynamic approach, robustness, zeroing neural networks, chaotic systems,
external disturbances.

I. INTRODUCTION
Lorenz [1] creatively introduced the study on chaotic attractor
half a century ago. After such a pioneering work, a lot of
research on the chaotic control has been developed and inves-
tigated [2]–[8]. As an interesting and attractive phenomenon
in chaotic control, the chaotic synchronization has become
a heated research topic, which has attracted attentions of
the researchers in recent years [9]–[13]. The synchronization
of chaotic systems is a procedure that two (either identical
or nonidentical) chaotic systems adjust a provided prop-
erty of their motion to a frequent behavior by forcing or
coupling [14]. In other words, starting with random initial

The associate editor coordinating the review of this article and approving
it for publication was Nishant Unnikrishnan.

conditions, all states of the slave (or termed response) chaotic
system are forced to asymptotically track all states of the
master (or termed drive) chaotic system. The synchronization
of chaotic systems has numerous practical applications [15],
[16], such as secure communications [17], [18], finance sys-
tems [19], electronic systems [20], ecological systems [21],
and many different engineering systems [22]. For instances,
Mobayen and Ma [13] proposed a new nonlinear feedback
approach for the outstanding performance synchronization of
chaotic systems under the influence of external disturbances,
parametric uncertainties, Lipschitz nonlinearities as well as
time delays. Yang and Zhang [17] introduced an effective
global chaotic synchronization strategy of the identical sys-
tems, and then successfully applied to the secure commu-
nication. Naderi and Kheiri [18] detailedly investigated the
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exponential synchronization of the chaotic system without
linear term, and then successfully applied to the secure
communication. In [20], numerical, analog together with
digital-circuit models were detailedly investigated with
a specific chaotic system. In addition, a novel synap-
tic weight-update-learning rule of Hermite neural network
was proposed in [22], and it was applied to the cryp-
tography via combining Hermite polynomials. Moveover,
Chen et al. [23] novelly investigated the hybrid synchroniza-
tion behavior in an array of coupled chaotic systems with ring
connection.

Up to now, a large number of approaches and tech-
niques for the synchronization of chaotic systems have
been creatively proposed and effectively employed, such as
the sliding-mode-control approach [2], the neurodynamic
approach [24]–[29], the active-control approach [14], [30],
and the adaptive-backstepping control approach [31]. For
instances, Ahmad et al. [14] studied and investigated a new
global chaotic synchronization problem for identical chaotic
systems as well as nonidentical chaotic systems by novelly
utilizing a linear-active control (LAC) approach. In addi-
tion, Li et al. [24] presented a relatively simple controller
generated by the conventional zeroing neurodynamic (CZN)
approach for the synchronization of chaotic systems con-
sidering the influence of parameter perturbation, model
uncertainty as well as external disturbance. Lin et al. [31]
proposed an effective systematic approach for modeling and
neural adaptive-backstepping control of an uncertain chaotic
system by employing only input-and-output data from the
underlying-dynamical systems. In the work by Song and
Huang [32], the stabilization as well as synchronization of
chaotic systems considering the time-variant delays via inter-
mittent control were detailedly investigated. Li et al. [33]
novelly developed an effective unified approach for impulsive
lag-synchronization of chaotic systems in consideration of
time-delay by employing the stability theory of impulsive-
delayed-differential equations.

Among effective methodologies for the synchronization
of chaotic systems, the neurodynamic approach emerges to
be a prior alternative for researchers and engineers, due to
the advantages of parallelism, distributed storage, as well as
adaptive self-learning capability [34]–[44]. As typical kinds
of recurrent neural networks (RNN) [45]–[48], a large num-
ber of neural network models designed by the CZN approach,
are developed as feasible schemes for the time-variant engi-
neering problems solving (including the time-variant syn-
chronization of chaotic systems) [49]–[52]. For instances,
Zhang et al. [50] detailedly investigated the tracking con-
trol problems of Lorenz, Chen and Lu chaotic systems via
combining the CZN approach and gradient neurodynamic
approach for developing an effective controller. In addition,
a simple stabilization control approach of hyper-chaotic Lu
system with one control input was proposed in [51] by
employing the neurodynamic approach. Jin et al. [52] nov-
elly proposed an effective controller design approach for the
tracking control of a modified Lorenz nonlinear system in

consideration of singularities (or termed division by zero
issue) handling.

Although the exhibiting approach, such as the CZN
approach [24] and the LAC approach [14], have found
extensive applications in different scientific and engineer-
ing problems including the synchronization of chaotic sys-
tems. However, the research on robustness of the CZN
approach for applying to synchronization of chaotic systems
still remains deficient. Specifically, in complex application
scenarios, there unavoidably exist different forms of external
disturbances for chaotic systems such as offset errors, inter-
actionswith the environment, electromagnetism interferences
in circuit systems, as well as bounded-random noises during
signals transmission, etc. [53]. Sometimes those time-variant
external disturbances might have negative impacts on both
the stability and accuracy of the related controller or model
for the synchronization of chaotic systems, and even worse,
may cause the failure of the synchronization process [54].
Therefore, a robust approach is urgently needed for the syn-
chronization of chaotic systems to reject the time-variant
external disturbances in practice. This is the involved scien-
tific problem and also the motivation that we propose and
investigate a novel disturbance rejection approach and its
related controller in this work.

As a preliminary attempt, the researchers in reference [24]
proposed a relatively simple controller on the basis of
the CZN approach to reduce the negative impacts derived
from time-variant external disturbances. It was theoreti-
cally proven that, with bounded-and-random disturbances,
the resultant synchronization error has a supremum by using
such a controller [24]. However, the error accumulation phe-
nomenonmay occur if such a controller is applied in synchro-
nization of chaotic systems with multiple sub-systems or long
synchronization duration finally leading to a high computa-
tion burden and low synchronization accuracy. To accelerate
the synchronization process of chaotic systems, another work
in reference [55] introduced a super-exponential-zeroing neu-
rodynamic approach together with a controller without con-
sidering the time-variant external disturbances. It could be
theoretically proven that the resultant synchronization error
would have a supremum by using the related controller in ref-
erence [55] under the influence of disturbances. In addition,
Ahmad et al. investigated a new global chaotic synchroniza-
tion problem by novelly utilizing an LAC approach in [14].
However, the impacts of time-variant external disturbances
on the accuracy and stability of chaotic systems are not
considered in the work [14].

To handle the difficulties and limitations discussed above,
unlike the research based on the CZN approach [24] and LAC
approach [14] or focusing on the rate of convergence [55],
this paper proposes a novel disturbance rejection zeroing
neurodynamic (DRZN) approach and its related controller
for the robust synchronization of chaotic systems against the
time-variant external disturbances. The controller designed
by the proposed DRZN approach distinctively features the
rejection of time-variant external disturbances with the
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FIGURE 1. Zeroing neurodynamic architecture for synchronization of chaotic systems.

synthesized synchronization error being convergence toward
zero. Detailed theoretical analyses on the anti-disturbance
property and the convergence performance are provided and
compared with existing approaches to guarantee the inher-
ent robustness and effectiveness of the proposed DRZN
approach and its related controller. Numerical studies includ-
ing three synchronization examples, comparisons with exist-
ing approaches, and extensive tests verify the efficacy and
superiority of the proposed DRZN approach and its related
controller in practical applications. To the best of the authors’
knowledge, such a DRZN approach and its related controller
with the outstanding anti-disturbance property for the syn-
chronization of chaotic systems have not been reported in
other existing studies. Therefore, this work makes new pro-
gresses in both theory and practice for the robust synchro-
nization of chaotic systems. Moreover, the zeroing neuro-
dynamic architecture for designing the controller of chaotic
systems is presented in Fig. 1 for better understanding the
main principle. As shown in Fig. 1, the whole control system
via the proposed DRZN approach is a typical closed-loop
control system. The control system uses the initial states of
the master and slave chaotic systems as the input information,
and the control outputs are used as the system feedback for
the slave chaotic system. Both the final state outputs of the
master and slave chaotic systems can be integrated to the
plant and implemented as the effector for the whole control
system.

The rest of the paper is structured as follows. In Section II,
the problem formulation of the synchronization between two
chaotic systems under the influence of time-variant external
disturbances is presented as preliminaries. In Section III,
the DRZN approach and its related controller are proposed
with theoretical analyses. Section IV shows numerical stud-
ies including three synchronization examples, comprehensive
comparisons and extensive tests. Section V concludes the

paper. The main contributions of the paper are highlighted
as below.
• In contrast with existing works that the resultant syn-
chronization error has a supremum or even diverges
under the influence of external disturbances, this paper
proposes a novel DRZN approach and its related con-
troller for the synchronization of chaotic systems against
the time-variant external disturbances.

• The controller generated by the proposed DRZN
approach distinctively features the rejection of external
disturbances with the synthesized synchronization error
being convergence toward zero. It is a breakthrough in
the robustness research of neurodynamic approach as
well as the synchronization of chaotic systems.

• Theoretical analyses on the anti-disturbance property
and the convergence performance are presented and
compared to guarantee the inherent robustness and effec-
tiveness of the proposed DRZN approach and its related
controller.

• Numerical studies including three synchronization
examples, comparisons with existing approaches,
as well as extensive tests verify the efficacy and supe-
riority of the proposed DRZN approach and its related
controller under the influence of time-variant external
disturbances in practical applications.

II. PROBLEM FORMULATION
The problem formulation of the synchronization between two
chaotic systems under the influence of time-variant external
disturbances are presented in this section. Consider a master
chaotic system with a general form as below:

ẋm(t) = fm(xm(t)), (1)

where xm(t) = [xm1(t), xm2(t), · · · , xmn(t)]T ∈ Rn

is the state vector of the master chaotic system, and

121186 VOLUME 7, 2019
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fm(·) : Rn
→ Rn is the nonlinear-mapping vector of a spe-

cific master chaotic system. Then, the slave chaotic system
with a general form is depicted in

ẋs(t) = fs(xs(t))+ u(t), (2)

where vector xs(t) = [xs1(t), xs2(t), · · · , xsn(t)]T ∈ Rn

is the state vector of the slave chaotic system, and map-
ping fs(·) : Rn

→ Rn is the nonlinear-mapping vector
of a specific slave chaotic system. Besides, vector u(t) =
[u1(t), u2(t), · · · , un(t)]T ∈ Rn is the control-input vector
sent to the slave chaotic system for synchronization.

Note that the exhibiting approaches have found extensive
applications in the synchronization of chaotic systems. How-
ever, with unexpected impacts, such as the electromagnetism
interferences in communication systems and continuous-and-
random noises during the signal transmission, which could be
deemed as time-variant external disturbances for the related
chaotic systems, a more practical form of master chaotic
system can be depicted in the following form to describe the
involved scientific problem:

ẋm(t) = fm(xm(t))+ %(t), (3)

where %(t) = [%1(t), %2(t), · · · , %n(t)]T ∈ Rn denotes the
bounded external disturbances during the synchronization
process, i.e., |%i(t)| ≤ %max for t ∈ [0,Td], and %i(t) = 0
for t > Td, with i = 0, 1, · · · , n, %max being a constant, and
Td being a synchronization duration, of the master chaotic
system.

If the initial-state vectors xm(0) and xs(0) of the master and
slave chaotic systems are different from each other, the state
trajectories of such two systems may differ very much. The
objective in the paper for synchronization between the master
chaotic system (3) with external disturbances %(t) and the
slave chaotic system (2) is to design a control-input vector
u(t) so that the slave system is forced to track the master
system with the synthesized state error e(t) = xm(t) − xs(t)
converging toward zero.
Remark 1: Due to the complexity of the synchroniza-

tion process of chaotic systems, the external disturbances
may be unavoidable in real-world applications. In addi-
tion, most of specific chaotic systems could be formulated
as the master chaotic system (3) with a general form of
nonlinear-differential equations, such as Lu chaotic sys-
tems [50], Chen chaotic systems [51], and Lorenz chaotic sys-
tems [52], which covers most common chaotic systems [24].

III. DESIGN APPROACHES AND THEORETICAL ANALYSES
In this section, we propose the DRZN approach for design-
ing the controller of chaotic systems. For further investi-
gation and better comparison, the controller designed by
the CZN approach is also provided. In addition, theoretical
analyses are presented to guarantee the effectiveness and
robustness of the proposed DRZN approach and the related
controller.

A. DESIGN APPROACHES
To achieve the synchronization between the slave chaotic
system (2) and the master chaotic system (3) under the influ-
ence of external disturbances, a controller is designed by the
DRZN approach with detailed process shown as below.

Firstly, to monitor the synchronization process of chaotic
systems (2) and (3), a vector-valued error function to measure
the difference between the states of the master and slave
chaotic systems is defined as below:

e(t) = xm(t)− xs(t). (4)

To make each element ei(t) (with i = 1, 2, · · · , n) of the
synthesized error (4) converge towards zero with respective
to time t , the DRZN approach is employed with its dynamic
equation described as below:

ė(t) = −κϒ(e(t))− ν
∫ t

0
e(τ )dτ + %(t), (5)

where design parameters κ ∈ R+ and ν ∈ R+ are chose
for the stability as well as convergence of the neurodynamic
model, and vector %(t) denotes the time-variant external dis-
turbances that need to be rejected. In addition, ϒ(·) : Rn

→

Rn is an alternative activation-function vector mapping. Note
that the elements of the activation-function vector mapping
can be a monotonically-increasing odd function which could
be adjusted to improve the convergence performance of the
neurodynamic model. Without losing of generality and also
for simplicity, a linear activation-function ϒ(e(t)) = e(t) is
utilized and investigated in the paper.

By substituting chaotic systems (2) and (3) into dynamic
equation (5), the corresponding neurodynamic model for
the synchronization of chaotic systems can be depicted as
follows:

fm(xm(t))+ %(t)− fs(xs(t))− u(t) = −κϒ(xm(t)

− xs(t))− ν
∫ t

0
(xm(τ )− xs(τ ))dτ + %(t) (6)

with ė(t) = ẋm(t)− ẋs(t). Due to the fact that there unavoid-
ably exist unexpected time-variant external disturbances in
complex application scenarios, the synchronization of chaotic
systems would be a knotty time-variant problem. As readily
founded in neurodynamic model (6), the proposed DRZN
approach can effectively handle the disturbance rejection
issue in a relatively simple manner by fully exploiting both
the time-derivative and integral information of the involved
chaotic systems.

According to neurodynamic model (6), the related con-
troller with explicit control-input vector u(t) is thus designed
as follow:

u(t) = fm(xm(t))− fs(xs(t))+ κϒ(xm(t)− xs(t))

+ ν

∫ t

0
(xm(τ )− xs(τ ))dτ. (7)

Note that the related controller (7) designed by the pro-
posed DRZN approach does not require any information
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FIGURE 2. Neuron-connection architecture of neurodynamic model (6)
for designing the controller of chaotic systems with xsi denoting the i th
neuron.

of external disturbances which is thus applicable in prac-
tical applications. For better understanding of practition-
ers, the neuron-connection architecture of neurodynamic
model (6) for designing the controller of chaotic systems
via the proposed DRZN approach is presented in Fig. 2.
As we can see from the figure, the neurodynamic model (6)
is a typical kind of Hopfield-type RNN [56], which can be
developed and implemented easily on analog circuits such as
very-large-scale-integration [57].

To lay a basis for further investigation and comparison,
the controller designed by the CZN approach for the synchro-
nization of chaotic systems is also provided as below [24]:

u(t) = fm(xm(t))− fs(xs(t))+ γ9(xm(t)− xs(t)), (8)

where design parameter γ ∈ R+ is set for the stability
and convergence of the above controller, and 9(·) : Rn

→

Rn is an alternative activation-function vector mapping for
the CZN approach. For better comparison, design parame-
ters are set to be γ = κ , and activation-function vector
mappings ϒ(·) and 9(·) are both set to be linear activation
function.

B. THEORETICAL ANALYSES
In this subsection, to guarantee the effectiveness and robust-
ness of the proposed DRZN approach as well as the related
controller (7) for the synchronization of chaotic systems
under the influence of time-variant external disturbances,
the theoretical analyses are presented. Then, the correspond-
ing theoretical results of the CZN approach are also presented
for better comparison.
Definition 1: For the synchronization of chaotic sys-

tems (2) and (3), starting with a random initial state xs(0),
a vector-valued error function e(t) at time t ≥ 0 synthesized
by a control system is said to be convergent toward zero if it
satisfies

limt→∞sup{‖e(t)‖E} = 0,

where symbol sup{·} denotes the supremum of a sequence,
and symbol ‖ · ‖E denotes the Euclidean norm of a vector.

Definition 2: For the synchronization of chaotic sys-
tems (2) and (3), starting with a random initial state xs(0),
a state trajectory xs(t) of slave chaotic system (2) at time
t ≥ 0 synthesized by a control system is said to be convergent
toward the state xm(t) of master chaotic system (3) with
external disturbances if it satisfies

xm(t)− xs(t) = e(t)→ 0, as t →∞.

Theorem 1: For the synchronization of chaotic systems (2)
and (3), starting with a random initial state xs(0), the vector-
valued error function e(t) at time t ≥ 0 synthesized by control
system equipped with controller (7) converges toward zero.

Proof: Review the neurodynamic model (6) designed by
the proposed DRZN approach as

fm(xm(t))+ %(t)− fs(xs(t))− u(t) = −κϒ(xm(t)

−xs(t))− ν
∫ t

0
(xm(τ )− xs(τ ))dτ + %(t). (9)

Within the region of convergence and e(t) = xm(t) − xs(t),
the Laplace transformation [58] of the ith subsystem of neu-
rodynamic model (9) is depicted as

L(ėi(t)) = L
(
− κei(t)− ν

∫ t

0
ei(τ )dτ + %i(t)

)
, (10)

where operator L(·) denotes the Laplace transformation with
i = 1, 2, · · · , n with activation-function vector mapping
being a linear activation function, i.e., ϒi(ei(t)) = ei(t).
From (10), we have

sei(s)− ei(0)

= −κei(s)−
ν

s
ei(s)+

∫
+∞

0
%i(t)exp(−st)dt, (11)

where
∫
+∞

0 %i(t)exp(−st)dt is the Laplace transformation of
each element of time-variant external disturbances, i.e., %i(t).
Note that equation (11) could be rewritten as the following
form:

(s2 + sκ + ν)ei(s) = sei(0)+ s
∫
+∞

0
%i(t)exp(−st)dt.

Note that in the field of signals and systems, the neurody-
namic model with time-variant disturbances can be skillfully
characterized and analyzed in the transform domain by alge-
braic manipulations.

According to the final-value theorem [58], for bounded
external disturbances during the synchronization process,
i.e., |%i(t)| ≤ %max for t ∈ [0,Td], and %i(t) = 0 for t > Td
with i = 0, 1, · · · , n, we have∣∣∣ lim
t→∞

ei(t)
∣∣∣

=

∣∣∣∣ lims→0
sei(s)

∣∣∣∣
=

∣∣∣∣∣∣ lims→0

s2
(
ei(0)+

∫
+∞

0 %i(t)exp(−st)dt
)

s2 + sκ + ν

∣∣∣∣∣∣
121188 VOLUME 7, 2019
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=

∣∣∣∣∣∣ lims→0

s2
(
ei(0)+

∫ Td
0 %i(t)exp(−st)dt

)
s2 + sκ + ν

∣∣∣∣∣∣
≤

∣∣∣∣∣∣ lims→0
sup


∣∣s2∣∣ (|ei(0)| + ∣∣∣∫ Td0 |%i(t)|exp(−st)dt

∣∣∣)∣∣s2 + sκ + ν∣∣

∣∣∣∣∣∣

≤

∣∣∣∣∣∣ lims→0
sup


∣∣s2∣∣ (|ei(0)| + %max

∣∣∣∫ Td0 exp(−st)dt
∣∣∣)∣∣s2 + sκ + ν∣∣

∣∣∣∣∣∣

=

∣∣∣∣∣ lims→0
sup

{∣∣s2∣∣ |ei(0)| + %max|s| |(1− exp(−sTd))|∣∣s2 + sκ + ν∣∣
}∣∣∣∣∣

= 0.

With each element of error function bing | limt→∞ ei(t)| =
limt→∞ ei(t) = 0 (i = 1, 2, · · · , n), we finally obtain the
following result:

limt→∞sup{‖e(t)‖E} = 0. (12)

According to Definition 1, we finally have the result that
the vector-valued error function e(t) synthesized by the con-
trol system equipped with controller (7) converges toward
zero. The proof is thus completed. �
Corollary 1: For the synchronization of chaotic sys-

tems (2) and (3), starting with a random initial state xs(0),
the state trajectory xs(t) of slave chaotic system (2) at time
t ≥ 0 synthesized by a control system equipped with con-
troller (7) converges toward the state xm(t) of master chaotic
system (3) with external disturbances.

Proof: It can be generalized from Definition 2 and the
proof of Theorem 1. �

For better comparison, the corresponding theoretical
results of the controller (8) designed by CZN approach for
the synchronization of chaotic systems (2) and (3) are also
presented as the following lemma [24].
Lemma 1: For the synchronization of chaotic systems (2)

and (3), starting with a random initial state xs(0), the
vector-valued error function e(t) at time t ≥ 0 syn-
thesized by control system equipped with controller (8)
converges with a steady-state error having a supremum,
i.e., limt→∞sup{‖e(t)‖E} = ‖%(t)‖E/γ .

Proof: Review the neurodynamic model (6) designed by
the CZN approach as follows:

u(t) = fm(xm(t))− fs(xs(t))+ γ9(xm(t)− xs(t)). (13)

According the chaotic systems (2) and (3), with e(t) =
xm(t)−xs(t), one can obtain the following dynamic equation:

ė(t) = −γ e(t)+ %(t). (14)

Solving the above dynamic equation, one can readily obtain:

‖e(t)‖E ≤ α exp(−γ t)+
‖%(t)‖E
γ

, (15)

where α is a constant. Therefore, one can finally have:

limt→∞sup{‖e(t)‖E} =
‖%(t)‖E
γ

.

Therefore, it has the result that the vector-valued error func-
tion e(t) at time t ≥ 0 synthesized by control system equipped
with controller (8) converges with a steady-state error having
a supremum ‖%(t)‖E/γ . The proof is thus completed. �

IV. NUMERICAL STUDIES
In this section, numerical studies including three synchro-
nization examples, comparisons with existing approaches,
and extensive tests are performed to verify the effectiveness,
robustness as well as superiority of the proposed DRZN
approach and the related controller (7) for the synchro-
nization of chaotic systems with time-variant disturbance
rejection.

A. SYNCHRONIZATION EXAMPLES
In the examples, we successively consider the synchroniza-
tion of two identical Lu chaotic systems, synchronization
of two identical autonomous chaotic systems, and synchro-
nization of two nonidentical chaotic systems. Without losing
generality, the synchronization duration is selected to be
Td = 10 s. In addition, design parameters are selected to
be κ = 3 and ν = 30. The initial value of each state of
both the master chaotic systems and slave chaotic systems is
generated randomly between 0 and 1. The time-variant exter-
nal disturbances in the examples are selected to be %(t) =
[2, 2sin(0.2t) + 4exp(−0.5t), 3cos(0.1t) + 5exp(−0.2t)]T.
The numerical studies are carried out in MATLAB R2012b
environment implemented on a personal digital computer
with a CPU of Inter(R) Core(TM) i5-7200U @ 2.50 GHz,
4.00 GB memory and a Windows 10 Ultimate operating
system.

1) SYNCHRONIZATION OF TWO IDENTICAL LU CHAOTIC
SYSTEMS
Firstly, consider the following Lu chaotic system [24]:

ẋ1(t) = a(x2(t)− x1(t)),
ẋ2(t) = −x1x3(t)+ cx2(t),
ẋ3(t) = x1(t)x2(t)− bx3(t),

(16)

where a = 36, b = 3 and c = 20. For the synchronization
of two identical Lu chaotic systems, one can have the master
chaotic system with external disturbances is described as

ẋm(t) =

 a(xm2(t)− xm1(t))
−xm1xm3(t)+ cxm2(t)
xm1(t)xm2(t)− bxm3(t)

+ %(t), (17)

and the slave chaotic system with control-input vector is
described as

ẋs(t) =

 a(xs2(t)− xs1(t))
−xs1xs3(t)+ cxs2(t)
xs1(t)xs2(t)− bxs3(t)

+ u(t). (18)

The corresponding numerical results of synchronization
of two identical Lu chaotic systems (17) and (18) equipped
with controller (7) via the proposed DRZN approach are
presented in Fig. 3 and Fig. 4. Specifically, Fig. 3(a) shows
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FIGURE 3. Synchronization and disturbance rejection performance between two identical Lu chaotic
systems (17) and (18) equipped with controller (7) using the proposed DRZN approach.

FIGURE 4. Absolute errors between two identical Lu chaotic systems (17) and (18) equipped with controller (7)
using the proposed DRZN approach.

real-time synchronization of such two identical Lu chaotic
systems (17) and (18) in 3-dimensional space. With initial
value of each state randomly generated in [0, 1], the slave
Lu chaotic systems (18) quickly synchronizes toward the
master Lu chaotic systems (17). In addition, Fig. 3(b) through
Fig. 3(d) respectively illustrate each state, i.e., xs1, xs2 and
xs3 of the slave system, which coincides well with each state,
i.e., xm1, xm2 and xm3, of the master system even under
the influence of external disturbances. As detailedly shown
in Fig. 4, the absolute values of synchronization errors of all
states are relatively small (or to say, ignorable), and quickly
converge toward zero. Moreover, the supremum of each error,
i.e., sup{|xmi − xsi|} (with i = 1, 2 and 3), shows conver-
gence tendency, which is consistent with the theoretical result

provided in Theorem 1, i.e., with the error function being con-
vergence toward zero. The above results illustrates the great
synchronization and disturbance rejection performance of the
proposed DRZN approach as well as the related controller (7)
for the synchronization of two identical Lu chaotic systems.

2) SYNCHRONIZATION OF TWO IDENTICAL AUTONOMOUS
CHAOTIC SYSTEMS
Consider the following new autonomous chaotic system pro-
posed in [14]:

ẋ1(t) = p(x2(t)− x1(t))+ x2(t)x3(t),
ẋ2(t) = (r − p)x1 − x1x3(t)+ rx2(t),
ẋ3(t) = −qx3(t)− sx2(t)x2(t),

(19)
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FIGURE 5. Synchronization and disturbance rejection performance between two identical autonomous chaotic
systems (20) and (21) equipped with controller (7) using the proposed DRZN approach.

where p = 40, q = 5, r = 30 and s ∈ [0, 10]. For the
synchronization of two identical autonomous chaotic systems
with the above form, we have the master chaotic system with
external disturbances is described as

ẋm(t)=

p(xm2(t)− xm1(t))+ xm2(t)xm3(t)
(r − p)xm1 − xm1xm3(t)+ rxm2(t)
−qxm3(t)− sxm2(t)xm2(t)

+ %(t), (20)

and the slave chaotic system with control-input vector is
described as

ẋs(t) =

p(xs2(t)− xs1(t))+ xs2(t)xs3(t)(r − p)xs1 − xs1xs3(t)+ rxs2(t)
−qxs3(t)− sxs2(t)xs2(t)

+ u(t). (21)

The corresponding numerical results of synchronization
of two identical autonomous chaotic systems (20) and (21)
equipped with controller (7) using the proposed DRZN
approach are illustrated in Fig. 5 and Fig. 6. Specifi-
cally, Fig. 5(a) shows synchronization of such two identical
autonomous chaotic systems (20) and (21) in 3-dimensional
space. With initial value of each state randomly generated
in [0, 1], the slave autonomous chaotic systems (21) also
quickly synchronizes toward the master autonomous chaotic
systems (20). In addition, Fig. 5(b) through Fig. 5(d) respec-
tively show each state, i.e., xs1, xs2 and xs3 of the slave
system, coincides well with each state, i.e., xm1, xm2 and xm3,
of the master system even under the influence of external

disturbances. As presented in Fig. 6, the absolute values of
synchronization errors of all states are also relatively small (or
say, ignorable), and quickly converge toward zero. Moreover,
the supremum of each error, i.e., sup{|xmi−xsi|} (with i = 1, 2
and 3), shows convergence tendency, which is consistent with
the theoretical result presented in Theorem 1, i.e., with the
error function being convergence toward zero.

3) SYNCHRONIZATION OF TWO NONIDENTICAL CHAOTIC
SYSTEMS
In the example, we further consider and achieve the syn-
chronization of two nonidentical chaotic systems, i.e., with
the maser chaotic system being the Lu chaotic system (17)
and the slave chaotic system being the autonomous chaotic
system (21).

The corresponding numerical results of synchronization
of two nonidentical chaotic systems (17) and (21) equipped
with controller (7) using the proposed DRZN approach are
illustrated in Fig. 7 and Fig. 8. Specifically, the real-time syn-
chronization of such two nonidentical chaotic systems (17)
and (21) is shown in Fig. 7(a) in 3-dimensional space. With
initial value of each state randomly generated in [0, 1],
the slave autonomous chaotic system (21) still quickly syn-
chronizes toward the master Lu chaotic system (17). In addi-
tion, Fig. 7(b) through Fig. 7(d) respectively show each
state, i.e., xs1, xs2 and xs3 of the slave autonomous chaotic
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FIGURE 6. Absolute errors between two identical autonomous chaotic systems (20) and (21) equipped with
controller (7) using the proposed DRZN approach.

FIGURE 7. Synchronization and disturbance rejection performance between two nonidentical chaotic
systems (17) and (21) equipped with controller (7) using the proposed DRZN approach.

system (21), almost overlaps each state, i.e., xm1, xm2 and xm3,
of the master Lu chaotic system (17) even under the influ-
ence of external disturbances. As detailedly shown in Fig. 8,
the absolute values of synchronization errors of all states
are also relatively small and can be ignorable, and quickly
converge toward zero. Moreover, the supremum of each error,
i.e., sup{|xmi−xsi|} (with i = 1, 2 and 3), shows convergence
tendency, which is also consistent with the theoretical result
provided in Theorem 1, i.e., with the error function being
convergence toward zero, for the case of synchronization of
two nonidentical chaotic systems.
Remark 2: Note that this work investigates the robust syn-

chronization of multiple dimensional chaotic systems against
time-variant external disturbances. Specifically, the dimen-
sion of the involved chaotic systems is set to be n.

Without loss of generality, the dimension n is chosen as
3 in the above synchronization examples of numerical stud-
ies. Actually, the dimension of the involved chaotic systems
can be chosen as 2 for low dimensional chaotic systems.
As shown in the above synchronization examples, the abso-
lute values of synchronization errors of all states are relatively
small (or to say, ignorable) with high enough synchroniza-
tion accuracy, and quickly converge toward zero within shot
time.

B. COMPARISONS WITH OTHER APPROACHES
In the subsection, to verify the robustness and superiority
of the proposed DRZN approach, we conduct and show the
numerical comparisons by using the CZN approach as well
as the LAC approach for the synchronization of two identical
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FIGURE 8. Absolute errors between two nonidentical chaotic systems (17) and (21) equipped with controller (7) using
the proposed DRZN approach.

FIGURE 9. Synchronization performance between two identical autonomous chaotic systems (20) and (21)
equipped with controller (8) using the CZN approach.

autonomous chaotic systems (20) and (21) under the influ-
ence of the same external disturbances.

The CZN approach was derived from Zhang et al. [24],
and it has been proven to effectively solve the time-variant
problems including the synchronization of chaotic systems
without external disturbances. To be specifically, for synchro-
nization of chaotic systems, the related controller designed by
the CZN approach is depicted as (8). For better comparison,
design parameter is set to be γ = 3. Other numerical condi-
tions are set the same as those in Section IV-A.2. The corre-
sponding numerical results of synchronization performance
between two identical autonomous chaotic systems (20)
and (21) equippedwith controller (8) using the CZN approach

are presented in Fig. 9 and Fig. 10. Specifically, with 3-
dimensional trajectories illustrated in Fig. 9(a), the slave
system (21) can not show an acceptable synchronization per-
formance. With initial value of each state randomly generated
in [0, 1], the slave autonomous chaotic systems (21) synchro-
nizes toward the master autonomous chaotic systems (20)
with a bounded error. In addition, Fig. 9(b) through Fig. 9(d)
shows each state, i.e., xs1, xs2 and xs3 of the slave system,
can not coincide well with each state, i.e., xm1, xm2 and xm3,
respectively, of the master system under the same influence
of external disturbances. As detailedly shown in Fig. 10, all
the absolute values of synchronization errors of all states
are also non-ignorable, and have an error bound but not
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FIGURE 10. Absolute errors between two identical autonomous chaotic systems (20) and (21) equipped with
controller (8) using the CZN approach.

FIGURE 11. Absolute errors between two identical autonomous chaotic systems (20) and (21) equipped with
controller (22) using the LAC approach.

converge toward zero. Moreover, the supremum of each error,
i.e., sup{|xmi − xsi|} (with i = 1, 2 and 3), does not show
convergence tendency but keeps within an error bound, which
is also consistent with the theoretical result presented in
Lemma 1, i.e., with the error function having a supremum,
i.e., ‖%(t)‖E/γ . Compared with the CZN approach, the above
results verify the robustness and superiority of the proposed
DRZN approach as well as the related controller (7) for the
synchronization and disturbance rejection of chaotic systems.

Recently, as a novel alternative method for the synchro-
nization of chaotic systems, the novel LAC approach [14] is
proposed for the design of controller. Specifically, the related
controller for the synchronization of two identical chaotic
systems (20) and (20) generated by the LAC approach is
provided as below:

u(t) =

xm2(t)xm3(t)− xs2(t)xs3(t)+ 2(xm1(t)− xs1(t))
xs1(t)xs3(t)− xm1(t)xm3(t)+ 3(xm2(t)− xs2(t))
xm2(t)xm2(t)− xs2(t)xs2(t)− 2(xm3(t)− xs3(t))

 ,
(22)

For better comparison, other numerical conditions are set the
same as those in Section IV-A.2. The simulated results of
synchronization between two identical chaotic systems (20)
and (21) equipped with controller (22) using the LAC
approach are presented in Fig. 11. As one can find in the
figure, all the absolute values of synchronization errors of all
states are also non-ignorable with the errors |xm1(t)− xs1(t)|
and |xm2(t) − xs2(t)| being divergent and |xm3(t) − xs3(t)|
having an error bound. Therefore, the time-variant external

disturbances would have a negative impact on the accuracy
and stability of chaotic systems equippedwith controller (22),
and even worse, may destroy the corresponding synchroniza-
tion process.

Further, to further highlight the advantages of the proposed
DRZN approach and its related controller (7) compared with
the related works in recent years, comprehensive compar-
isons among different approaches for the synchronization of
chaotic systems with external disturbances are summarized
in Table 1. As seen from the comparisons, the DRZN pro-
posed in this paper shows the anti-disturbance performance
and high synchronization accuracy, which is substantiated via
three examples in Section IV-A. Compared with other exist-
ing approaches in recent years, the vector-valued error e(t)
synthesized by control system equipped with the proposed
controller converges toward zero, which is better than other
approaches (e.g., the CZN and LAC approaches [14], [24],
as well as the other recent approaches in [50]–[52], [55], [59])
with a bounded error or divergence tendency.

C. EXTENSIVE TESTS
To further investigate the anti-disturbance performance of
the proposed DRZN approach and the related controller (7),
extensive tests of chaotic systems with longer synchroniza-
tion duration (i.e., 50 s) as well as under different forms
of time-variant disturbances are conducted successively. The
corresponding numerical results are shown in Fig. 12 and
Fig. 13. Specifically, the absolute values of synchronization
errors illustrate a persistent convergence tendency for a long
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TABLE 1. Comparisons among different approaches for the synchronization of chaotic systems with time-variant external disturbances.

FIGURE 12. Absolute errors between two identical Lu chaotic systems (17) and (18) for 50 s duration equipped with
controller (7) using the proposed DRZN approach.

FIGURE 13. Absolute errors between two identical autonomous chaotic systems (20) and (21) for 50 s duration
equipped with controller (7) using the proposed DRZN approach.

TABLE 2. Maximal absolute values of errors at different time instants during the synchronization between two identical Lu chaotic systems (17) and (18)
under different forms of disturbances equipped with controller (7) using the proposed DRZN approach.

TABLE 3. Maximal absolute values of errors at different time instants during the synchronization between two identical autonomous chaotic systems (20)
and (21) under different forms of disturbances equipped with controller (7) using the proposed DRZN approach.

synchronization duration (see both Fig. 12 and Fig. 13).
It means that the synchronization errors can decrease to suf-
ficiently small as time tends to appropriately large enough.

In order to evaluate the synchronization performance in
finite time and also to monitor the convergence process
during the whole synchronization under different forms of
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external disturbances, themaximal absolute value of synchro-
nization error, i.e., max{e(t)}, synthesized by the proposed
DRZN approach and its related controller (7) at different
time instants, i.e., t = 10 s, 20 s, 30 s, 40 s, 50 s, is pre-
sented in Table 2 and Table 3 for synchronization of Lu and
autonomous chaotic systems, respectively. As both shown
in Table 2 and Table 3, all the maximal absolute values
of synchronization errors show convergence properties with
different forms of time-variant disturbances (i.e., the constant
form, sine form, exponential-decay form, and bounded ran-
dom form). The above graphical results are also consistent
with theoretical results. In other words, control system using
the DRZN approach and its related controller (7) can con-
verge toward the solution rapidly. All the numerical results
of extensive tests verify that the proposed DRZN approach
possesses the outstanding and inherent anti-disturbance per-
formance, and thus is suitable for practical applications
in the complex environment with time-variant external
disturbances.

V. CONCLUSION AND FUTURE WORKS
In this paper, a DRZN approach and its related controller (7)
have been proposed for the synchronization of chaotic sys-
tems against the time-variant external disturbances. Differ-
ing from existing works that the resultant synchronization
error has a supremum or even diverge under the influence
of external disturbances, the proposed DRZN approach can
effectively suppress the external disturbances with the syn-
thesized synchronization errors being convergence toward
zero. It has been proven that the proposed DRZN approach
and its related controller (7) inherently possess robustness.
Moreover, numerical studies via three different examples
have substantiated the effectiveness of the proposed DRZN
approach as well as its related controller (7) for the synchro-
nization of chaotic systems against the time-variant external
disturbances. Comparisons with existing approaches, e.g.,
the CZN approach and LAC approach, have shown the superi-
ority of the proposed DRZN approach. Meanwhile, extensive
tests have further shown that the proposed DRZN approach
possesses the outstanding and inherent anti-disturbance per-
formance, and thus is suitable for the practical applications
in complex application scenarios with time-variant external
disturbances.

Future works and improvements lie in the following facts:
i) investigation on different dimensional and different types of
chaotic systems under the influence of time-variant external
disturbances via the proposed DRZN approach and its related
controller; ii) investigation on the finite-time convergence
property of the proposed DRZN approach under the influ-
ence of time-variant external disturbances; iii) extension and
implementation of synchronization of chaotic systems with
internal system uncertainty with complete theoretical analy-
ses on robustness of the proposed DRZN approach; and iv)
development of the proposed DRZN approach and its related
controller on an electrical systems to verify the physical
realizability. As a final remark of this paper, to the best of

authors’ knowledge, this is the first work in the framework
of zeroing neurodynamic which is able to elegantly handle
the synchronization of chaotic systems under the influence
of time-variant external disturbances with zero-oriented con-
vergence performance.
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