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Highlights 

 A multiscale simulation method is presented for analyzing and evaluating transport 

infrastructure and public space urban designs. 

 A mesoscale agent-based model, traffic emission models, and microclimate simulations are 

coupled to develop the modeling method. 

 A two-fold evaluation is conducted, including mesoscale traffic-related emissions and the 

resulting air pollution at pedestrian level, in line with the microclimate of public open spaces 

and thermal comfort. 

 An urban modeling-design framework is proposed and applied in a case study in Beijing.  

 A holistic urban design strategy is helpful for achieving both an integration within the 

transport infrastructure and public space system and an external integration with the 

ecosystem.  
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 The findings are valuable for supporting urban designers and planners to build an 

environmentally- and pedestrian- friendly integrated transport infrastructure and public space 

plan. 

 

Abstract  

Traditional urban and transport infrastructure planning that emphasized motorized transport has 

fractured public space systems and worsened environmental quality, leading to a decrease in active 

travel. A novel multiscale simulation method for supporting an integrated transportation 

infrastructure and public space design is presented in this paper. This method couples a mesoscale 

agent-based traffic prediction model, traffic-related emission calculation, microclimate simulations, 

and human thermal comfort assessment. In addition, the effects of five urban design strategies on 

traffic pollution and pedestrian level microclimate are evaluated (i.e., a “two-fold” evaluation). A 

case study in Beijing, China, is presented utilizing the proposed urban modeling-design framework 

to support the assessment of a series of transport infrastructure and public space scenarios, including 

the Baseline scenario, a System-Internal Integration scenario, and two External Integration scenarios. 

The results indicate that the most effective way of achieving an environmentally- and pedestrian- 

friendly urban design is to concentrate on both the integration within the transport infrastructure and 

public space system and the mitigation of the system externalities (e.g., air pollution and heat 

exhaustion). It also demonstrates that the integrated blue-green approach is a promising way of 

improving local air quality, micro-climatic conditions, and human comfort.  

Keywords 

Multiscale model; Urban design; Traffic pollution; Microclimate simulation; Thermal comfort; 

Agent-based model. 
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1. Introduction 

1.1. Background 

Traditional transportation and urban planning paradigms emphasize maximizing the efficiency 

of motorized transport, which have caused negative impacts on urban environmental quality (De 

Nazelle et al., 2011). Motor vehicles have become a dominant contributor to local air pollution and a 

major risk for public health (Fenger, 1999; Su et al., 2015). In addition, massive transport 

infrastructure developments and a short of open spaces worsen the quality of the outdoor thermal 

environment and contribute to the urban heat island (UHI) effect. For instance, the annual air 

temperature in the center of Beijing rose 0.94 ◦C during the rapid urbanization from 1981 to 2000, 

almost three times of the heat rise from 1961 to 1980 (Ren et al., 2007). At a neighborhood scale, the 

car-oriented transport infrastructure construction also causes disconnected non-motorized transport 

networks and uncomfortable tracts of leftover public spaces (Anciaes et al., 2016; Carmona, 2003). 

Consequently, these outdoor spaces with deteriorated environmental quality, low walkability, and 

poor aesthetic design may discourage individuals from engaging in physical activities, especially 

walking (Chen & Ng, 2012; De Nazelle et al., 2011; Ewing & Cervero, 2010). Less active travel 

opportunities, in turn, increase auto-mobile usage, leading to heavier air pollution and heat emissions.  

To break this vicious circle, there is a need for a new planning paradigm that prioritizes the needs 

of non-motorized travelers and the ecosystem by the design of an attractive, comfortable, and 

environmental-friendly Integrated Transport Infrastructure and Public Space System (Carmona, 

2003; Cervero et al., 2017; Ravazzoli & Torricelli, 2017; United Nations, 2013). An integrated 

transport infrastructure and public space system, in this work, indicates that the urban spaces adjacent 

to transportation infrastructure are not an afterthought but are carefully designed as a public space 

network in parallel with the transport network. Such an integrated system, featuring human-centered 

and sustainable design, should encourage active travel, reduce pollution to the natural environment 

and be sensitive to local climate. To evaluate integrated system effectiveness, Heeres et al. (2016) 

distinguished three degrees of integration in a transportation project. As an analogous, the integration 



Jo
ur

na
l P

re
-p

ro
of

 2 

levels in transport and spaces systems designs could be defined as Functional Isolation (no functional 

integration between transport and spaces), System-Internal Integration, and External Integration. 

System-Internal Integration means exploring problems within the transport and spaces system, while 

External Integration indicates addressing problems within a broader context (e.g., human systems, 

and the ecosystem) and aiming for the improvement of overall livability and sustainability in an area.  

1.2. Literature Review 

In this respect, many efforts have been paid to develop urban design and planning principles for 

creating integrated transport and spaces systems. Among others, five urban design strategies have 

been highlighted in literature (Kramer, 2013; Marchettini et al., 2014; Mueller et al., 2017; Shirehjini, 

2016; Townsend, 2016; Woodcock et al., 2009) which are as follows: 1) mixed land-use and compact 

urban development, 2) accessible and connected street configuration with dedicated active travel 

infrastructures, 3) motorized transport emissions reduction, 4) climate-sensitive1 urban public spaces, 

and 5) green and blue infrastructure provision. The first two approaches could only achieve System-

Internal Integration, while the last three obtain External Integration with other urban systems, 

especially the ecosystem. More than anything else, green infrastructure is proved beneficial for 

mitigating UHI effects and transport emissions by using the filtering and absorption capability of 

trees and green buffer belts (Abhijith et al., 2017; Morakinyo & Lam, 2016). Additionally, Rozos et 

al. (2013) demonstrated that an integrated blue-green approach that provides high-quality water 

services in parallel with green spaces is even more effective than the sole use of “green” or “blue” 

infrastructure. 

Many studies in recent years have focused on quantitative evaluation of the influence of these 

approaches on individuals, especially on pedestrians’ walking behavior. In doing this, computer 

modeling methods have been widely accepted as a key technique (Robinson, 2012). Martins et al. 

(2016) investigated the influence of resilient urban design strategies on outdoor climate and 

pedestrian thermal comfort; Du and Mak (2018) explored the influence on pedestrian level wind 

environment. Aschwanden (2014) and De Nazelle (2007) examined the impact of active travel plans 
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on local air pollution and walking behavior. Despite the knowledge acquired from all these studies, 

there is still a lack of research on evaluating the effectiveness of these approaches on building the 

integrated transport infrastructure and public space system.  

According to De Nazelle et al. (2011), transportation infrastructure and public space plans impact 

individuals’ travel mode choice, route choice, and physical activity. Besides, both plans have a direct 

link with environmental quality (e.g., air pollution, heat) that will further influence human behavior. 

Because motorized transport planning is usually undertaken at an urban scale/district scale, it has 

environmental impacts in this large scale too; whereas, its impact on individuals is most evident and 

direct at the pedestrian level. Urban public spaces (particularly those adjacent to infrastructures) 

design is typically performed at an urban block scale that may determine pedestrians’ walking 

experience through affecting microclimate conditions and thermal sensation.In order to quantitatively 

assess the impact of various integrated transport and spaces plans on pedestrians and their physical 

activity (particularly walking behavior), this study aims at using computer simulations to perform a 

“two-fold” evaluation:  

 urban scale traffic-related emissions and the resulting air pollution at pedestrian level;  

 the microclimate of public open spaces and thermal comfort.  

On the one hand, to assess road traffic emissions and the resulting local air pollution, a majority 

of studies introduced coupled modeling methods that combine traffic prediction models, emission 

calculations, and dispersion models (Borrego et al., 2003; Hatzopoulou & Miller, 2010). Generally, 

there are two ways for vehicle traffic estimation: one is using conventional aggregate models based 

on trips data, and the other is dis-aggregate Agent-Based Models (ABM) or activity-based models. 

In comparison with the aggregate approach, ABM gives insights of individual agents’ behavior and 

how the agents interact with each other and with the different configurations of a built environment 

(Van Dam et al., 2013). ABM is also helpful for predicting impacts of individuals’ decision on 

system-level outcomes such as the traffic (Waraich et al., 2009; Wise et al., 2017). In order to estimate 

vehicular emissions, numerous techniques were developed, which can be categorized into three types 
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according to their most appropriate scale of application (Smit et al., 2008). MEASURE, TEE, and 

COPERT are the most powerful tools in each type. Among others, COPERT is regularly applied in 

calculating traffic-related emissions on urban regions and small areas (ibid.). The measurement is 

performed based on traffic data and vehicular emission factors expressed as functions of average car 

speed (Gkatzoflias et al., 2007). Among the numerous pollution dispersion models such as Gaussian 

plume models and OSPM, Computational Fluid Dynamics (CFD) models are appropriate for small 

scale urban areas because CFD simulates air turbulence in a more sophisticated process (Vardoulakis 

et al., 2003). 

On the other hand, there is considerable work involves evaluating the microclimate of open 

spaces using numerical models (e.g., Chokhachian et al., 2017; Shooshtarian et al., 2018). Four 

critical determinants of the outdoor microclimate are airspeed, air temperature, relative humidity, and 

mean radiant temperature. CFD models and MUKLIMO are common microclimate computational 

models. The condition of local microclimate can greatly influence pedestrian’s thermal comfort2, 

which has been assessed through a couple of indices such as the Predicted Mean Vote (PMV), 

Universal Thermal Climate Index (UTCI), and Physiological Equivalent Temperature (PET). 

Nasrollahi et al. (2017) used both PMV and UTCI to evaluate thermal comfort. To this end, several 

modeling techniques were developed to measure the degree of human’s thermal satisfaction by 

considering the four microclimate factors and two personal parameters (i.e., clothing insulation and 

metabolic rate). ENVI-met and RayMan are the most frequently used models. 

At a scale of open public spaces, ENVI-met (Bruse, 2002) is a powerful tool for modeling both 

microclimatic condition and thermal comfort (e.g., Chatzidimitriou & Yannas, 2016; Girgis et al., 

2016; Salata et al., 2016). It is a three-dimensional prognostic model using CFD as a core process 

that is capable of simulating the surface-plant-air interactions in urban areas with a spatial resolution 

of 0.5—10m and a temporal resolution of 10 seconds. Although ENVI-met allows simulating the 

dispersion and deposition of multiple contaminants such as particles and gases through the embedded 

dispersion model, most of the literature uses measured traffic emission as input data (e.g., Morakinyo 
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& Lam, 2016; Wania et al., 2012). In this way, it is limited in predicting the air pollution under 

different transport network, land-use, and public space configurations which yield various traffic 

emission distributions. Despite the numerous investigations on estimating dynamic traffic emissions 

due to different urban layout, few studies considered both urban scale emissions, and pedestrian scale 

air pollution, microclimatic condition, and human comfort. Robinson (2012, p. 57) argued that “a 

way to overcome this problem is to couple different models capable of resolving different scales”. 

1.3. Research Objectives  

To achieve the “two-fold” evaluation mentioned above, the novelty of this paper lies in proposing 

a multiscale simulation method to combine agent-based traffic simulation, vehicular emission 

calculations, microclimate simulations, and human thermal comfort evaluation. The spatial scales are 

defined as 1) mesoscale is 10km to 100km (e.g., urban districts), 2) microscale is less than 1km (e.g., 

city blocks), and 3) human scale is the individual body (Ooka, 2007).  

In this study, microscale sites have been chosen for evaluating pedestrian level air quality, climate 

conditions, and thermal comfort. The acceptable walking distance of 400m (a 5-minute walk) is used 

to determine the range of sites (Aultman-Hall et al., 1997; Congress for the New Urbanism, 2000). 

In an attempt to capture local air quality in transport and spaces systems, this work considers the 

dynamic traffic emissions generated from mesoscale road transport. Thus, the research field is scaled 

up to include a mesoscale research segment and a buffer zone.  

This paper, for the first time, presents a coupling framework to predict road traffic and related air 

pollution under mesoscale transport and spaces design proposals and to evaluate microscale air 

quality and climatic conditions. A realistic case in Beijing also demonstrates the urban modeling-

design framework. Note, the suite of models is not expected to represent the complexity of the real 

urban environment entirely; it can offer assessments of and comparisons between various alternative 

design scenarios.  

The remainder of the paper is organized as follows. Section 2 first describes the overall coupling 

simulation method and associated models, followed by a description of using this method as an urban 
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design support tool. Section 3 mainly demonstrates how the methodology is applied to Beijing to 

achieve a sustainable redesign of the vacated urban spaces in Beijing-Zhangjiakou (Jing-Zhang) 

High-Speed Rail (HSR) project. A series of urban design scenarios, including the Functional 

Isolation scenario (Baseline), System-Internal Integration scenario (Plan 0), and two External 

Integration scenarios (Plan 1 and Plan 2) are analyzed. Section 4 shows the simulation results, and 

discussions and conclusion are included in Section 5. The detailed explanation of algorithms and 

input parameters can be found in the Supplementary Data. 

2. Methodology 

This section presents the multiscale modeling approach proposed in this study, which involves 

four stages (see Fig. 1). In Figure 1, green boxes indicate the four modeling stages, parameters within 

gray boxes express the inputs of different models, and yellow boxes highlight the key modeling 

outputs studied in this research. 

Stage 1: Agent-based modeling. ABM is used to predict traffic volume (cars on each road section 

in 24 hours a day) on a mesoscale baseline road network. The simulation result is then validated by 

comparisons with real-time data, after which the model is adjusted.  

Stage 2: Traffic emission calculation. We compute the mass of air pollutants emitted by the cars 

simulated in ABM, and the result of hourly traffic emission Etotal over the road network is then used 

for assessing transport and spaces plans. Afterward, Etotal is converted to emission rates for importing 

to microsimulation. Among the range of traffic-induced pollutants, Nitrogen Oxides (NOx) is chosen 

as an example domain since road transport is the leading source of NOx emissions in urban areas. 

For example, mobile sources account for 71% of the total NOx emission in Beijing (Hao et al., 2000). 

Stage 3: Microclimate simulation. We zoom into a microscale to model the impact of using 

different design strategies on pollutant concentration C*(in this case, refers to NOx concentration), 

airspeed, air temperature, relative humidity and mean radiant temperature. The emission rates yielded 

from the previous step and other required input files are imported into the simulation, keeping it 

consistent with the mesoscale.  
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Stage 4: Human thermal comfort assessment. The microsimulation results of pollution 

concentration and local climate conditions along with the personal parameters, are used for assessing 

pedestrian’s thermal comfort through both PMV and UTCI indices. 

 

 A multiscale simulation method for coupling ABM, Emission Calculation, Microclimate 

Simulation, and Thermal Comfort Assessment.  

2.1. Agent-Based Modeling (ABM) 

To capture the movement of cars, we adopt the Smart-City Model (Van Dam et al., 2017) which 

links an agent-based model of a synthetic population for a sample district with the spatial description 

of transport infrastructures and public spaces in Geographic Information System (GIS). Firstly, the 

real-world road network and land-uses (including residential areas, workplaces, public open spaces) 

of a mesoscale self-defined segment are represented as two separate layers. Subsequently, by using 

local socio-demographic data (i.e., population density, the ratio of workers/non-workers, household 

size and car-ownership) along with the location information of residential tracts, the model randomly 

generates car agents depending on the population density of residential areas.  

Daily activity pattern APk is developed to generate a series of events with timestamps for worker 

agents (k1) and non-worker agents (k2) for capturing the diversity of activity schedules with relatively 

limited statistics around timing and occurrence (e.g., time use survey), that is (Eq.1), 

 𝑨𝑷𝑘 = {(𝐴𝑇𝑗 , 𝑀𝐷𝑗 , 𝑆𝐷𝑗 , 𝑃𝐷𝑗)} (Eq.1) 

where the activity type ATj includes residential, industrial, commercial, leisure, or cultural activities. 

Each activity is determined by three parameters: 1) a mean departure time MDj to represent the peak 
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hour of the departure period, 2) a standard deviation SDj to simulate the variability in the departure 

time among agents, and 3) a probability of departure PDj to account for agents that do not necessarily 

undertake certain trips. APk is generated by assuming no dependency between different activities and 

agents have no alternative choices during the same period (e.g., go to the park or go to shops at 

lunchtime). An example is given in the Supplementary Data (S1). These activities are also pre-defined 

in the land-use GIS layer. 

To emulate individual route choice behavior, the original Smart-City Model applied the Dijkstra's 

shortest-path algorithm (Skiena, 1998), which could be found in the Supplementary Data (S2). After 

running for a Baseline scenario, we assess the quality of the results of traffic volume TVi on each 

road segment i by comparing it with the realistic road usage data. In some calibration case studies, 

we found that the initial model cannot provide an accurate representation of the real-life traffic 

probably because the agents did not take account of traveling speeds when planning their routes. The 

validation outcomes in Beijing case study will be presented in Section 4. Thus, a significant 

improvement of this research is allowing the agents to consider the specific travel speed on each road 

when planning routes (roads of a higher hierarchy often have a higher speed). In other words, car 

agents use a quickest-path algorithm to choose routes (see Supplementary Data S3). When assigning 

speeds to the transport network, we first attached the design speed as a parameter to the road layer. 

Then the value was adjusted based on historical statistics and the real data for the sampling area. 

2.2. Traffic Emission Calculation 

Since the area chosen for this study is at a meso/urban scale, we use COPERT 4 to estimate on-

road traffic emissions. The total air pollutant mass discharged from road transport Etotal is calculated 

as a sum of exhaust pollutants Eexh (e.g., gases and particles) and non-exhaust pollutants Enon-exh, 

which indicates the evaporation losses of the fuel system (European Environment Agency [EEA], 

2016). For each road segment i, Eexh consists of hot emission Eh,i and cold-start emission Ec,i which 

occurs respectively after and before the vehicle subsystems have reached their normal operating 

temperature. These are measured based on Eq.2 and 3. 
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 𝑬ℎ,𝑖 = 𝑒ℎ × 𝑻𝑽𝑖  × 𝐿𝑖 (Eq.2) 

 𝑬𝑐,𝑖 = 𝑒ℎ × (𝑒𝑐 𝑒ℎ⁄ − 1) × 𝑻𝑽𝑖  × 𝐿𝑖 × 𝛽 (Eq.3) 

where Li is the length of road i. eh indicates emission factors while ec/eh denotes the over-emission 

level compared to hot emission, and β is the fraction of mileage driven with a cold engine. The 

emission factors eh are functions of vehicle types (fuel, emission standard, and capacity or weight) 

and the mean traveling speed. They are derived from the results of comprehensive scientific projects. 

This research uses the most recent COPERT eh documented in the Air Pollutant Emission Inventory 

Guidebook (EEA, 2016). Inevitably, COPERT has limitations in using mean speed to estimate eh and 

taking traffic jam into account only during model development. To minimize the possible inaccuracy, 

we ensured that the application of eh is within the travel speed limits provided in the Guidebook and 

the applied case studies have relatively common driving conditions, e.g., not choosing traffic calming 

regulated places (Ntziachristos et al., 2000). Moreover, the length of each link in the road layer is 

more than 500m because the dependability of COPERT rises as the road link length rises above 400m 

(Samaras et al., 2014).  

This simulation also reads the approved hourly traffic data TVi yielded by the agent-based model. 

The model then outputs the hourly emissions Etotal [g] of NOx on each road i. Having run for a 

Baseline scenario, COPERT also operates under the integrated mesoscale urban plans. The NOx 

emissions are later converted to time-dependent emission rates [mg/s•m] to be prepared as an input 

for the next step. Emission rate SOUC for each hour of the day is calculated using Eq.4.1 (for line 

sources) and Eq.4.2 (for area sources). 

 
𝑺𝑶𝑼𝐶 = 𝑬𝑡𝑜𝑡𝑎𝑙−ℎ/(1000 × 3600 × 𝐿𝑖) (Eq.4.1) 

 
𝑺𝑶𝑼𝐶 = 𝑬𝑡𝑜𝑡𝑎𝑙−ℎ/(1000 × 3600 × 𝐴𝑖) (Eq.4.2) 

where Etotal-h is the total road traffic emission in an hour h [0-23] generated from COPERT. Li the 

length of a road section i has a unit of [m], and Ai the area of a road crossing i has a unit of [m2]. 
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2.3. Microclimate Simulation 

In order to quantify the impact of different transport and spaces designs on pedestrian-level air 

pollutant concentration and microclimatic conditions, we zoom into a microscale, selecting a research 

site within a 5-minute walk. The microclimate assessment is performed using ENVI-met 4 modeling 

technique, which is designed for this scale (Bruse, 2002). ENVI-met consists of four sub-models: the 

atmosphere model, the vegetation model, the soil model, and the building model (Bruse, 2007; Simon, 

2016). The atmosphere model simulates the key processes in the microclimate: wind field, air 

temperature, humidity, radiative fluxes, turbulence, as well as pollutant dispersion and deposition. 

The non-hydrostatic three-dimensional Navier-Stokes formula is used for calculating wind speed. Air 

temperature and relative humidity are determined by the combined advection-diffusion equation 

considering internal sources and sinks. The same equation is harnessed for calculating the particle 

concentration C* [mg/m3] and can be written in Einstein summation as follows (Eq.5):  

 
𝜕𝐶

𝜕𝑡
+ 𝑢𝑖

𝜕𝐶

𝜕𝑥𝑖
=  

𝜕

𝜕𝑥𝑖
(𝐷𝐼𝐹𝐶

𝜕𝐶

𝜕𝑥𝑖
) + 𝑺𝑶𝑼𝐶(𝑥, 𝑦, 𝑧) + 𝑆𝐸𝐷𝐶(𝑥, 𝑦, 𝑧) (Eq.5) 

where C indicates particle concentration [mg(C) /kg(Air)] which is converted to C* [mg/m3] for output. 

DIFC and SEDC denote the diffusion coefficient and the sedimentation of pollutants, respectively. 

SOUC describes local particle sources which are grouped into three types: point sources [mg/s], line 

sources [mg/s•m], and area sources [mg/s•m2]. The cartesian coordinates xi ={x, y, z}, and the 

corresponding wind speed vectors ui ={u, v, w}. 

2.4. Thermal Comfort Computation 

Taking into account both the climatic parameters and the personal factors of clothing insulation 

and metabolic rate, we then analyze human thermal comfort through both PMV and UTCI indices. 

PMV evaluates thermal comfort of the whole microscale research site (1.5m above ground). At 

selected points of the site at the height of 1.5m, thermal comfort is assessed using UTCI. The 

calculation of PMV can be performed by the Bio-met module in ENVI-met directly while UTCI is 
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not a part of the model. Thus, we use the RayMan software to do the measurement, which is one-

dimensional in space and time-independent (Matzarakis et al., 2007, 2010).  

PMV was initially developed to rank the thermal (dis)comfort at different individual conditions 

within steady-state indoor situations (Fanger, 1972). In order to apply PMV to outdoor spaces, the 

index was adapted to include complex outdoor radiation (Jendritzky & Nübler, 1981) and was 

included in the International Organization for Standardization (ISO) standard (ISO, 1994). PMV can 

be calculated as follows (Eq.6): 

𝑃𝑀𝑉 = [0.028 + 0.303 × exp(−0.036𝐸𝑀)] × (𝐸𝐼 − 𝑉𝐷 − 𝑉𝑆 − 𝐵𝐿 − 𝐵𝐸 − 𝑋𝑅 − 𝑋𝐶) (Eq.6) 

with EM as mechanical energy production of the body, while EI as remaining internal energy which 

equals EI = EM (1-), with  meaning the mechanical work factor. VD and VS denote vapor diffusion 

through the skin, and evaporation of sweat on the skin, respectively. BL and BE indicate latent heat 

lost through breathing, and sensible heat gained/lost through breathing. XR describes the radiative 

energy balance of the body, and XC, the energy gained/lost through convection. 

UTCI was initiated to create a universally valid index for outdoor thermal comfort assessments 

in various climates, seasons, and locations. The advanced Fiala multi-node thermoregulation model 

(Fiala et al., 2001) was selected to calculate the human physiological reaction to the outdoor climatic 

conditions, and an adaptive clothing model was developed and coupled (Havenith et al., 2011). UTCI3 

follows the concept of equivalent temperature and is very sensitive to changes in air temperature, 

solar radiation, humidity and particularly wind speed comparing to other indices including PMV 

(Blazejczyk et al., 2012). However, it is limited to accepting only a narrow range of input parameters, 

e.g., the valid wind speed ranges from 0.5 to 17m/s.  

The scales of PMV could be classified in terms of thermal sensation, while the values of UTCI 

equivalent temperature are always categorized according to the grades of thermal stress. In 

Supplementary Data (Table S1), a comparison between PMV and UTCI and the thermal comfort 

zones of both indices are included.  
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2.5. Framework for Using the Coupled Simulation Method to Support Transport Infrastructure 

and Public Space Designs 

A flow chart of using the coupled modeling approach to evaluate different transport infrastructure 

and public space plans is presented in Figure 2. Firstly, the Baseline scenario is analyzed and assessed 

by a series of Key Performance Indicators (KPIs), and then new plans are created aiming at achieving 

an integrated transport and spaces system. Afterward, the design alternatives pass through the same 

multiscale modeling process.  

 

 Framework for using the coupled simulation method to support transport infrastructure and 

public space designs (orange boxes indicate design processes, green ones are the coupled models, blue 

boxes contain evaluation KPIs, gray boxes and dash lines imply the potential framework extensions). 

In this research, three types of KPIs are chosen: 1) mesoscale traffic-related air pollution, 2) 

pedestrian-level air pollutant concentration, wind, and thermal environment, and 3) human thermal 

comfort. Ultimately, a comparison of the KPIs of different scenarios can be used to support redesign 

and decision-making (plan selection). This allows making adjustments to the proposed plans or their 

overall design strategy, which could be re-evaluated, leading to an iterative development approach. 
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The design plans (geographical data inputs) used for different models are generated at different 

spatial scales. Mesoscale plans are drafted to choose overall design strategies and determine the 

spatial distribution of the transport network and land-uses. Microscale plans decide the detailed 

configuration of transport infrastructure and public spaces (e.g., the shape and size of pavements and 

water pools). For the sake of providing consistent evaluation results, the microscale plans in the 

framework are created based on the mesoscale plans.  

Noteworthy, this framework has opportunities for evaluating other KPIs such as vehicle miles 

traveled and public space occupancy (by ABM), as well as anthropogenic heat and humidity 

emissions produced by cars. By extending the emission calculation model, heat emissions exhausted 

through fuel combustion in cars could be measured based on heat released by cars per meter, hourly 

traffic volume on each road segment, and the road length (Sailor & Lu, 2004). Besides, anthropogenic 

moisture generated from the combustion of fuel can be calculated through the mass of fuel burned in 

vehicles (Sailor, 2011). 

3. Case study: Designing an Integrated Transport and Spaces System for the Jing-Zhang 

High-Speed Rail (HSR) project in Haidian District 

The Jing-Zhang Railway is the first railway in China. In 2016, the government decided to 

demolish the old rail track and launched a smart Jing-Zhang HSR project in order to serve the 2022 

Beijing Winter Olympics. Starting from Beijing North Railway Station in the northwest corner of the 

2nd Ring Road, a new underground HSR passing through the city center was designed aiming to 

connect Beijing with the neighboring city Zhangjiakou. After removing the old rail, Beijing 

Municipal Commission of Planning and Natural Resources and related sectors have planned to sew 

the road network in Haidian District; however, urban designs for restructuring the urban spaces above 

ground are still in the air. The most recent governmental proposal is to transform these spaces into 

public open spaces. However, there is an urgent need for handling two issues which are also the 

motivation of this study: how to choose urban design strategies to transform the linear spaces, and 

how to enhance walking experience under new transport infrastructure and public space plans.  



Jo
ur

na
l P

re
-p

ro
of

 14 

In this work, we apply the coupled modeling method to analyze the status quo transport and 

spaces system and test planned systems in terms of 1) mesoscale NOx emission distribution, 2) 

microscale NOx concentration, wind speed and air temperature, and 3) PMV and UTCI. As depicted 

in Figure 3, the mesoscale segment is chosen within a range of 800 meters to the underground section 

of the new HSR (10 km long), including a 2.5-3.0km buffer wrapped around the perimeter to avoid 

edge effects. Simultaneously, two sampling sites are selected for microscale analysis: one as a 

validation site with the availability of high-quality of data and the other a site which is directly 

affected by the proposed redevelopment under various design interventions. Site 1 covers a walkable 

area of 400m × 400m. Site 2 located in the middle of the railroad covering an area of 800m (400m 

either side of the rail) × 600m.  Location and road network of the studied areas shown in Figure 4. 

  

 The microscale sites, mesoscale segment, 

and buffer zone delimited in this study.  
 Location of the research site. 

3.1. Agent-Based Modeling for Predicting Dynamic Traffic 

3.1.1. Geographical data input 

To construct the spatial environment in Smart-City Model, we import a GIS road file (an 

illustration in Fig. 4) which is a sampling segment drawn from the OpenStreetMap dataset (Geofabrik, 
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2017). A land-use file is extracted according to the parcel map for Beijing (ibid.) and the Points of 

Interests map (Long & Liu, 2013). The land-use layer is then modified to add the characteristics of 

human activities provided by each area (for the multi-use parts, the percent of each activity is 

assigned).  

3.1.2. Socio-demographic data and activity schedule input 

The 6th population census of Beijing (National Bureau of Statistics of China, 2010) is utilized 

for creating a synthetic population. We then assign a value of density to the residential land-uses in 

GIS by taking into account the socio-demographic data of Haidian District that describes the local 

demographic distribution, population density, the number of permanent residents, and the ratio of 

residential land-use. The number of private vehicles per person and the rate of worker/non-

worker/visitors is extracted from (Beijing Haidian Yearbook Editorial Committee, 2017). Spatial-

temporal activity patterns for workers, non-workers, and travelers are created based on the 2008 Time 

Use Survey in China (National Bureau of Statistics of China, 2008). In this survey, residents’ 

activities are categorized into seven categories while they are summed up to five types in this 

simulation (for details see the paper (Yang et al., forthcoming)).  

Here, we only simulate private cars whose activity patterns are the same as the residents’ patterns. 

Other types of vehicles follow certain activity schedules that are out of the scope of this study (e.g., 

buses follow bus schedules). The simulated number of private cars is 80% of the total motor vehicles 

in Haidian District according to the statistics in (Beijing Transport Insitute, 2018).  

3.1.3. Road speed data input 

We first assigned the planned speed limit as a parameter to the road layer. Then the value was 

modified according to real-life data in Beijing: 1) a map of 2016 peak hour road network running 

speed (Beijing Transport Insitute, 2016), 2) statistics of 2017 peak hour road network running speed 

(Beijing Transport Insitute, 2017), and 3) average speed of the roads in the sampling area generated 

from a Didi taxi dataset. The results of average speed determination from Didi data show that the 

most frequency of mean speed on highway and expressway, main road, and secondary road are in the 
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range of 15-20, 10-15, and 8-13 [km/hr] respectively. These results are also compared with Zhang et 

al. (2017), the average speed on highway and expressway, and main road are consistent with their 

study (the mean speed calculation process and the outcomes are outlined in Supplementary Data S4). 

3.1.4. Model Validation & Adjustment 

After setting up the model for a baseline transport infrastructure and public space environment, 

the next step is to decide whether the modeled results resemble measured data; this is the so-called 

validation process. In this respect, the result of road usage frequency of the initial ABM using 

shortest-path is compared to Baidu Maps and the measured traffic volume of eight road sections (see 

the positions in Fig. 4). Afterward, we adjust the model to let the vehicle agents follow a quickest-

path algorithm. To assess the reliability of the adjusted ABM, we compare the outputs of the quickest-

path model and the shortest-path model with the real-life data. To measure how well the simulated 

traffic volume TVsimulated matches the corresponding measured amount TVmeasured, we introduce the 

Relative Error metric defined as (Eq.7): 

 𝑅𝑒𝑙𝑎𝑡𝑖𝑣𝑒 𝐸𝑟𝑟𝑜𝑟 = (𝑻𝑽𝑠𝑖𝑚𝑢𝑙𝑎𝑡𝑒𝑑 − 𝑻𝑽𝑚𝑒𝑎𝑠𝑢𝑟𝑒𝑑) 𝑻𝑽𝑚𝑒𝑎𝑠𝑢𝑟𝑒𝑑⁄  * 100% (Eq.7) 

here, a value of zero implies perfect modeling results, a value of 100% indicates the generated result 

is larger by a factor of two, and value of -100% means the result is smaller by a factor of two.  

3.2. Mesoscale Urban Plan Scenarios 

After validation, this study then uses the ABM to predict on-road traffic of a Functional Isolation 

scenario (Baseline), a System-Internal Integration scenario (Plan 0), and two External Integration 

scenarios (Plan 1 and 2). In the base case, land-uses adjacent to the old rail are mainly educational 

and residential with some pieces of commercial and leisure areas (see Fig. 5(a)). Public green spaces 

and the urban blue system (i.e., rivers and canals) are separated into pieces by the rail (see Fig. 5(b)). 

Furthermore, there are many dead-end roads near to the old rail. Similarly, walking and cycling 

infrastructures are disconnected and designed without considerations of human environmental 

comfort. An elevated light rail juxtaposed with the railway will continue to operate in the future which 

is kept in new designs.  
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(a) (b) (c) 

 Road and land-use layout and the planned underneath part of the Jing-Zhang HSR: (a) 

Baseline scenario, (b) System-Internal Integration Plan0, and (c) External Integration Plan1 and 2.  

Plan 0 focuses on integration within the transport and spaces system by connecting existing road 

networks and reusing leftover urban spaces. According to the official transportation plan, the road 

network above the underground section of the HSR will keep unchanged but will add some joint 

passages to increase accessibility. As for the above-ground parts of the HSR, underpasses 

(represented as orange lines in Fig. 5(a)) are used to connect the road networks on both sides. 

Following the planning strategies of mixed land-use and compact urban development (listed in the 

Introduction), underutilized linear spaces along the line are repurposed as residential, industrial, and 

commercial land-uses. Since no governmental plan describes how the vacated urban spaces will be 

redesigned as public open spaces after demolishing the old rail, this scheme assumes them as a linear 

space covered by light gray granite pavement without vegetation, which is created as a reference plan.  

Based on Plan 0, Plan 1 and 2 (see Fig. 5(c)) adopt the other design methods outlined in the 

Introduction that integrates the transport and spaces system with the external ecosystem, i.e., to 

provide green and blue infrastructure and to reduce mobile emissions. The approaches applied in Plan 

1 are transforming the old railway into a lawn and planting bushes along the main road. Plan 2 

introduces a systematic blue-green approach that unifies the existing green and blue spaces into a 
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linear park. This scenario attempts to take the transport and spaces environment and the natural 

environment as a whole.  

3.3. Mesoscale Pollution Estimation 

After running the ABM for 24 hours under the four scenarios, it outputs the hourly numbers of 

cars traveling over the road network which are used as inputs to the COPERT. Although the COPERT 

methodology is developed based on European data, it has been applied to China in recent decades 

(e.g., Cai & Xie, 2007; Wang et al., 2010). Lang et al. (2012) used the measured emission factors eh 

for cars with emission standards from Euro 0 to 4 to calibrate the COPERT eh, showing that the 

software is suitable for assessing car emissions in Beijing. Referring to the Beijing Vehicle Activity 

Study (Huan et al., 2005), we assume the type of modeled vehicle as 90% passenger cars and 10% 

light-duty vehicles, most of which consume unleaded gasoline fuel and subject to the China IV and 

5 Emission Standards (equivalent to Euro 4 and 5 standard). The mean eh used for each type of 

vehicles are selected from (EEA, 2016) as shown in Supplementary Data (Table S2).   

3.4. Microclimate Simulation 

3.4.1. Research Sites 

Based on the four mesoscale planning scenarios, we then zoom into the microscale to test the 

effect of transport and spaces designs on the pedestrian level environment.  

Initially, at Site 1 (see Fig. 6 (a)), we conduct a comparison of experimental measurements with 

ENVI-met model outputs in order to validate the CFD simulation performed by ENVI-met. The 

parameters investigated include air temperature and relative humidity. Monitoring data was gathered 

by the Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences and 

measurements were performed consecutively since the year 2002 with readings taken every 1 hour at 

about 22.5m above ground (on the monitoring point depicted in the Figure). Once verified ENVI-met 

input parameters and the CFD simulation, the same configuration files and databases are then applied 

to simulate the different design scenarios on site 2 for the same period. 
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Afterward, at Site 2 (see Fig. 6 (b)), the non-motorized transport network was severely separated 

by the old railway, and large tracts of public spaces were leftover coupled with a serious lack of green 

spaces and dedicated pedestrian infrastructures. Significant efforts should be made to improve the 

walking environment of Site 2; therefore, we choose it as an exemplary study field for testing different 

integrated transport and spaces design scenarios. As shown in Figure 6(b), three locations within this 

site are selected for examination of microclimate modeling outputs during the whole simulation 

period. Location A lies in the middle of the railway, while Location B is on the southern side of the 

rail. Location C is on the northern side of the railway line, close to the main road. These measurement 

points were selected to best capture the impact of the design interventions and provide insights into 

how this site will be affected. 

  

(a) (b) 

 The microscale research sites: (a) Site 1 (validation site) and the monitoring point, (b) Site 2 

with the locations of point A, B, and C that chosen to analyze the impact on the whole site.  

3.4.2. ENVI-met Initialization 

ENVI-met is formed by three parts: 1) an area input file that describes the three-dimensional 

geometry of the research site, 2) a configuration file that illustrates the initialization conditions such 

as meteorological data, and 3) databases that define sources (e.g., traffic emissions are described as 

linear sources), plants (include simple plants and 3D vegetation), soil, etc. 

 Area Input File. In order to represent the layout of buildings, roads, the old rail, public spaces, 

and vegetation precisely, we synthesize high-resolution OpenStreetMap and Baidu Maps images with 
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comparing with field measurements to create the area input files. Two computational files cover a 

vertical height of 200m with a uniform Cartesian grid. 

 Configuration Wizard. Beijing has a monsoon-influenced humid continental climate that 

features hot and humid summers along with cold and windy winters. To depict the atmospheric 

conditions, we use a historical dataset (The Weather Channel), which records the hourly values of air 

temperature, wind speed, wind direction, and relative humidity in Beijing since 1930. As for 

simulation days selection, we choose the typical days with extreme weather in the past three years 

when people feel the most uncomfortable in doing outdoor activities.  

Primarily, to examine the impacts of design schemes on local air pollution and wind field, we 

conduct simulations in wintertime, a period with high NOx pollution and strong wind (Chen et al., 

2015; The Weather Channel). Though spring witnesses the strongest wind, it can also dissipate the 

air pollutants emitted by cars and eminently improve atmospheric condition; thus, spring is not 

capable of representing the bad weather in Beijing. The wintertime simulations are carried out on five 

consecutive workdays from October 30 to November 3, 2017. The reliability of input data (pollution 

sources) is the main reason for chosen these days. The emission sources used for ENVI-met is derived 

from the traffic volume results, which were calibrated by the measured data of the typical weekdays 

from September to November in 2017. In addition, every year from mid-November, the government 

starts coal-heating after which mobile sources are not the dominant emission source in the city. 

Therefore, this five-day simulation can eliminate the impact of coal-fired power plants emissions.  

Furthermore, to assess air temperature and thermal comfort, we simulate a period characterized 

by high temperature and solar radiation. According to historical data, the hottest and the most humid 

days in Beijing appear in the mid-July. Thus, five consecutive workdays from July 17 to 21 are 

picked. In ENVI-met, a typical time frame is 24—48h, so we combined three simulations for 

wintertime simulations and three others for summertime. Each simulation starts from 0:00, and the 

first two hours are not counted in the final result (see details in Supplementary Data, Table S3, S4).  
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 User-Defined Databases. In the winter day simulations, a user-defined emission source input 

file is also needed. In this file, each road segment has a unique ID along with a designated source 

type. In this work, road portions are defined as line sources while road crossings as area sources and 

the height of release are defined at 0.5m. Samples for two kinds of source data are listed in 

Supplementary Data (Table S5).  

3.5. Thermal Comfort Assessment 

The simulated climate data from ENVI-met, i.e., air temperature, relative humidity, solar 

radiation, and wind speed, are imported into Bio-met and RayMan. The body parameters required for 

the PMV and UTCI measurement are derived from a report of the National Health Commission of 

China (2015). As an example, this study chooses an average Chinese man in age 35 to examine his 

thermal satisfaction when walking in a hot and humid summer day (July 17, 2017). The clothing 

insulation parameters and metabolic rate chose from (Auliciems & Szokolay, 2007) are listed in the 

Supplementary Data (Table S6). 

3.6. Microscale Urban Design Scenarios 

According to the current transport and spaces system conditions, we developed three microlevel 

integrated design scenarios, as presented in Figure 7. The species and features of trees, grasses, and 

hedges adopted in the simulation correspond to the findings of a field survey (for details 

Supplementary Data-Table S7). 

 System-Internal Integration scenario (Plan 0): uses the remaining urban areas as residential and 

industrial lands, sews the dead-end roads on two sides of the railway with providing walking and 

cycling lanes, and replaces the old rail by a granite pavement;  

 External Integration scenario (Plan 1): based upon Plan 0, supplants the granite cover by a linear 

grassland and adds bushes along the north main road for reducing mobile emissions; 

 External Integration scenario using a blue-green approach (Plan 2): based upon Plan 1, 

configures a linear park equipped with a variety of trees and ponds and doubles the roadside trees.  
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(a) (b) (c)  

 Microscale integrated design scenarios: (a) Plan 0, (b) Plan 1, and (c) Plan 2. 

4. Simulation Results 

4.1. ABM Output and Model Validation 

The shortest-path (initial Smart-City Model) and the quickest-path model (adjusted model) run 

separately for 24 hours in a workday. A comparison between the two simulations can be made based 

on Figure 8 and Figure 9.  

  

 Mean hourly traffic volume generated by 

the ABM using the shortest-path algorithm. 

 Mean hourly traffic volume generated by 

the ABM the quickest-path algorithm. 

The heatmaps visualize average hourly use of each road, reflecting traffic distribution over the 

transport network. The road system presented in Figure 4 indicates that the most massive traffic 

should occur in the six highways and expressways. Hence, the model based on the quickest route 

algorithm is a better representative of road usage than that based on the shortest route. Vehicles 

moving with the shortest-path tend to choose some shortcuts (e.g., the red lines at the bottom middle 

of Fig. 8) which in many cases do not match the real situation. 
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Figure 10 gives us more insights into these road use patterns since it measures the frequency with 

which eight main roads are used. Two histograms show average hourly road usage of the shortest-

path simulation, the real-life case, and the quickest-path simulation, during morning rush hour (6:00 

am-10:00 am) and evening rush hour (3:00 pm-7:00 pm). Histogram of the shortest-path model differs 

widely from the real data while the quickest-path model shows more similarity with the real-life case.  

 

 

 Histogram of morning and evening peak hours road usage of simulation using the shortest-path 

algorithm, real data, and simulation using the quickest-path algorithm. 

Moreover, as it is shown in Table 1, Relative Error of the outputs derived from the quickest route 

model ranges between -30% and 50%, much smaller than those yielded by the shortest route model, 

ranging from -90% to 110%. Given the above, the adjusted model provides a relatively better 

prediction of real-world road transport. 

Table 1. Relative Error (%) of the Simulated Results (positions of the road section are shown in Fig. 4). 

Road sections A B C D E F G H 

Shortest-path -45.40 -24.44 62.46 27.01 -86.60 -24.92 103.25 25.15 

Quickest-path -21.76 16.10 -28.41 12.71 -25.87 -24.86 46.80 -23.45 

 

4.2. Mesoscale Pollution Estimation 
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As an illustration, Figure 11 shows grams of NOx emitted by private cars averaged over a run for 

24 hours. At the mesoscale, Plan 0 differs slightly from the status quo and is similar to Plan 1 and 2. 

In comparison with the base case, there are three significant changes in the new plans. Firstly, on the 

right-side highway, the sections close to the downtown pollute more NOx, peaking at more than 10kg 

for each hour. Secondly, the road highlighted by circle 1 in Fig. 11(b) generates nearly four times 

pollutants than the Baseline scenario. This is because we increased the road connectivity in this area. 

Finally, the road highlighted by circle 2 in Fig. 11(b) shows a slight difference to the Baseline with 

yielding roughly twice the amount of emissions.  

  

(a) (b) 

 Mean hourly NOx pollution [g] generated in: (a) Baseline scenario and (b) Plan 0/1/2. 

4.3. Microscale Climate Simulation and Model Validation 

4.3.1. Model Validation on Site 1 

To validate the microclimate simulations, we extract the hourly-based air temperature and 

relative humidity meteorological parameters from experimental measurement database during both 

wintertime and summertime simulation periods (from October 30 to November 3, 2017, and from 

July 17 to 21, 2017). The ENVI-met simulation outputs (22.5m above ground) at the monitoring point 

in Site 1 are compared with the real data using Relative Error as a measure.  
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Figure 12 shows the simulated results and measured values of air temperature in winter and 

summertime periods. On the whole, the simulated outputs have an overall concordance with real data 

during the ten simulation days. The relative error obtained by wintertime simulation is between -40% 

and 80%. It can be found that the model predicts lower air temperature during most of the daytime in 

winter. Summertime simulations generate more accurate results, the relative errors of which range 

from -10% to 45%.  

Figure 13 compares the relative humidity values yielded by the simulation and measurements. 

Simulated values of the microclimate model are comparable to monitored data. In winter, the model 

tends to estimate higher levels of humidity with an average relative error of 67%. In summer, the 

model gives an excellent estimate with a mean relative error of 12%.  

It can be seen that field measurement and results from ENVI-met numerical simulations, 

especially from the summertime simulation, are in good agreement. 

 

 

 Simulated air temperature and real data at the monitoring point (22.5m height from the ground) 

and the relative error in wintertime (Oct 30—Nov 3) and summertime (July 17—21). 
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 Simulated and observed relative humidity at the monitoring point (22.5m height from the ground) 

and the relative error in wintertime (Oct 30—Nov 3) and summertime (July 17—21). 

4.3.2. Microclimate Simulation Results on Site 2 

To start, we first use Leonardo to visualize the outputs at 13:00 (1.5m above ground) on 

November 2 and July 17 (examples of winter and summer simulations) for investigating the overall 

climatic conditions on Site 2 under the base case and Plan 0. 13:00 is the time when citizens in Beijing 

are likely to perform outdoor activities in all seasons. In order to present the extent to which three 

plans vary from the base case, we employ different analysis approaches. For example, figures 

depicting the absolute difference between Plan 0 and Plan 1/2 are provided for the analysis of NOx 

concentration and wind speed in wintertime.  

 Pollution Concentration in Wintertime. As depicted in Figure 14(a), NOx concentration of 

the base case is in-between 0—0.0766mg/m3 at 13:00 with the peak pollution appearing at a road 

crossing. Figure 14(b) shows the distribution of NOx pollution of Plan 0, in which more particles 

were generated from the upper left-hand corner (northwest) than in the base case, peaking at 

0.0940mg/m3. Correspondingly, the polluted range of the linear open space in the middle (position 
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of the old railway) shrinks closer to the main road. This probably because after reconfiguring the road 

network and land-uses, the north-south secondary road (encircled by circle 2 in Fig. 11(b)) on the left 

side of the sampling area was used intensively while car trips through the linear open space decreased.  

  

(a) (b) 

  

(c) (d) 

 NOx concentration [mg/m3]: (a) in Baseline scenario, (b) in Plan 0.                                                     

NOx concentration [mg/m3] comparison between: (c) Plan 1 and Plan 0, and (d) Plan 2 and Plan 0. 

Comparing to Plan 0, Plan 1 (Fig. 14(c)) shows a lower-level of NOx concentration (decrease by 

1.9µg/m3) on the upper of the linear grassland. This demonstrates the influence of the bushes planted 

along the main road in dispersing and depositing particles come from the upper left corner. At the 

same place on the linear open space, Plan 2 (Fig. 14(d)) displays a distinct difference to Plan 0, 

showing a decrease of 2.3µg/m3. This reveals that the configuration of doubled road trees with 

roadside bushes substantially improves the air quality in downwind areas. The bushes employed along 

the secondary road (on the lower left corner) is proved to have a similar impact on decreasing the 

downwind area NOx pollution. 
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 Wind Speed in Wintertime. Figure 15 (a) and (b) show that changing the lands of the right 

side of the railway into high-rise residential and industrial buildings leads to a wind speed rise by 

0.2m/s at the south end of the linear open space where tall buildings have been added. An addition of 

grasses and bushes along the main road in Plan 1 reduces wind speed by 0.76m/s for the near-road 

open areas in comparison with Plan 0 (see Fig. 15(c)). By deploying a forest and ponds on the linear 

park, Plan 2 contributes substantially to wind velocity decrease for the near-road places and the park 

itself with a maximum reduction of 0.85m/s (Fig. 15(d)). 

  

(a) (b) 

  

(c) (d) 

 Wind speed [m/s]: (a) in Baseline scenario and (b) in Plan 0.                                                               

Wind speed [m/s] comparison between: (c) Plan 1 and Plan 0, and (d) Plan 2 and Plan 0. 

Comparing the Baseline scenario outputs generated on the selected locations shows that point C 

has the lowest wind speed during most of the simulation time (depicted in Fig. 16). Point A and B 

that lies in the middle and southern side of the railway area experience stronger wind. Plan 0 triggers 

wind speed increases at all locations while Plan 1 reduces wind speeds to a similar level of Baseline. 
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At location A and B, it is eminent that Plan 2 can significantly reduce wind velocity with an average 

reduction of 0.2m/s in comparison with the base case. 

 

 

 

 Hourly wind speed [m/s] for the summertime simulation days (Oct 10 – Nov 03, 2017) at location A, 

B, and C (1.5m height) under four scenarios. 

 Air Temperature in Summertime. It can be seen from Figure 17 (a) that the temperature on 

main roads (peaking at 32.76°C) is higher than the railway surroundings (in-between 30.78—31.11°C) 

in the base case. In Plan 0, the temperature of the railway surroundings is lowered to 30.02—30.35°C, 

as shown in Figure 17(b). 
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(a) (b) 

  Air temperature [C] in (a) Baseline scenario and (b) plan0. Positions of location A, B, and C.                      

An analysis of air temperature variations during the five simulation days at exemplary locations 

are summarized in Figure 18. In general, the overall temperature at Location C (in roadside open 

space) is lower than Location A and B (in the linear railway area). It can be found that removing the 

old rail and covering natural soil with materials in Plan 0 lead to a reduction in ambient air 

temperature in most days. In particular, the maximum difference between Baseline and Plan 0 is up 

to 0.7°C, occurred at Location A on July 19. The impact of Plan 1 (replacing granite material with 

grass) and Plan 0 on heat stress mitigation is similar. Plan 2, which introduces a blue-green approach, 

proved to be the most effective scheme to lower air temperature consistently, especially at Location 

A and B (on the linear park). An addition of ponds, roadside trees, forest, and grass contributes to a 

decrease of temperature by roughly 1°C at 15:00 on July 20 and 21 compared to the status quo.  

 

 Hourly mean air temperature for the summertime simulation days (Oct 10 – Nov 03, 2017) at 

Location A, B, and C (1.5m height) under four scenarios. 
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Figure 18. Hourly mean air temperature for the summertime simulation days (Oct 10 – Nov 03, 2017) at 

Location A, B, and C (1.5m height) under four scenarios. 

 Predicted Mean Vote (PMV) in Summertime. Building upon the previous results, we then 

evaluate the outdoor thermal comfort through the PMV index. First of all, the PMV of the different 

scenarios at 13:00 is compared. Changing the old rail to a granite covered open space slightly 

promotes the thermal comfort of Plan 0 in which more areas have a PMV of under 5 (see Fig. 19 (a) 

and (b)). By comparing Plan 1 and 0, it can be concluded that provision of the linear grassland and 

hedges along the main road contributes to a substantial decrease in PMV (Fig. 19(c)). The blue-green 

infrastructure designed in Plan 2 has the most considerable impact; it enhances the overall thermal 

comfort of the linear park, where the PMV of most patches are below 4 (Fig. 19(d)).  

 Universal Thermal Climate Index (UTCI) in Summertime. The final part of this research 

assesses the outdoor thermal comfort through UTCI. Subsequently, the UTCI at Location A—C is 

investigated to explore the duration and degree of thermal stress in the four scenarios. As shown in 

Figure 20, the thermal comfort variations between four plans are eminent at Location A and B. On 

these two points, three plan alternatives all contribute to a decrease in UTCI values during the daytime 
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(6:00—17:00). Plan 0 largely reduces the UTCI temperature from 6:00—9:00, after which the 

reduction seems to be minimal.  

From 9:00 to 17:00 on every simulation day, individuals experience severe heat conditions in all 

scenarios. Comparing to Baseline, Plan 1 improves the daytime thermal sensation noticeably, 

decreasing UTCI by nearly 2°C, while Plan 2 decreases the value even more (reduces 6.5°C at 9:00 

on July 17). Plan 2 provides the best thermal condition for individuals that the very strong heat stress 

appeared on July 17—19 along with the extreme heat stress (more than 46°C) in the following days 

have been mitigated. In the morning (2:00—6:00), Plan 2 slightly increases UTCI by almost 1°C 

which may be caused by the increase of relative humidity due to higher coverage of vegetation (Wong 

& Peck, 2005).  At Location C, however, there is no apparent difference between the four scenarios, 

despite a UTCI decrease at 9:00 in Plan 0,1,2 (roughly 5°C).  

  

(a) (b) 

  

(c) (d) 

 PMV in: (a) Baseline scenario, (b) Plan 0, (c) Plan 1, and (d) Plan 2. 
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 Hourly UTCI for the summertime simulation days (Oct 10 – Nov 03, 2017) at Location A, B, and C 

(1.5m height) under four scenarios. 

5. Discussions and Conclusion 

In a context of climate change, the effects of air pollution and UHI can be broadly intensified in 

large cities. The conventional urbanization process of prioritizing motorized transport infrastructure 

development should consider the challenge of planning integrated transport infrastructure and public 

space systems, characterized by pedestrian-friendly and climate-sensitive. This paper examines the 

impacts of using different design strategies in a Beijing case study through the lens of mesoscale 

traffic-related NOx emissions, and microscale NOx concentrations and wind velocity in winter along 
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with air temperature in summer. Human scale thermal comfort is assessed via PMV and UTCI indices. 

The multiscale simulation can be of the paramount value for transport and spaces systems planning. 

Initial results demonstrate that changes in the road network, land-use, and public space 

arrangement at a meso/urban scale have a direct impact on vehicle trip generation, resulting in 

changes in traffic emission distributions, though the baseline NOx emission quantity needs to be 

validated in future work for supporting final decision-making. The traffic-deduced air pollutant 

concentration under micro/block scale scenarios differ eminently.  

This study shows that a System-Internal Integration Plan (0) which applies the strategies of mixed 

land-use, compact urban development, connected road network equipped with dedicated walking and 

cycling infrastructures is insufficiently helpful for improving local air quality and pedestrian comfort. 

In certain areas, air quality may be even worsened due to the heavier traffic on adjacent roads. The 

compact development accompanied by high-rise buildings will increase the wind speed of particular 

open spaces around tall buildings by 0.2m/s. 

An External Integration scenario (Plan 1) that applies both the aforementioned strategies and the 

green infrastructure approach is a feasible means for reducing traffic emissions and promoting the 

outdoor atmospheric environment and human’s thermal satisfaction. Given that the emission sources 

input to the microscale Plans (0, 1, 2) differ marginally, it could be concluded that provisions of green 

infrastructures such as vegetation barriers can mitigate road traffic emissions by increasing particle 

dispersion and deposition. Some research shows that vegetation barriers can be useful for pollution 

abatement only if they are appropriately positioned and configured (Morakinyo & Lam, 2016; Wania 

et al., 2012). In this respect, this scenario configures near-road hedges at the height of 2m, which 

prove effective for reducing NOx concentration in downwind open areas by a maximum of 1.9µg/m3, 

in comparison with Plan 0. However, pollutants accumulated on the upwind side of the vegetation 

barrier due to the barrier effect, resulting in a maximum increase of 4.9µg/m3 for NOx concentration.   

Noteworthy, an External Integration scenario using a holistic strategy that concentrates on both 

integrated design within the transport infrastructure and public space system and mitigating the 
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system externalities (e.g., air pollution) by introducing a blue-green approach (e.g., linear parks) is 

the most effective way for achieving an environmentally- and pedestrian- friendly transport and 

spaces design. As presented in Plan 2, increasing the number of road trees and roadside hedges can 

lessen the downwind area NOx concentration in Plan 0 by nearly 2.3µg/m3. The level declines with 

increasing the distance from the main road. It is worth noting that the trees used in this case feature 

wide and low porosity in order to guarantee the pollutant dispersion effects since in some cases trees 

may contribute to air quality deterioration (Abhijith et al., 2017).  

Furthermore, the holistic approach has advantages in reducing the airflow in winter and the high 

temperature in summer, leading to a speed decrease of 0.85m/s (at 13:00) to Plan 0 ; however, a siloed 

green infrastructure solution such as a grassland (Plan 1) can only lead to a maximum of 0.76m/s 

reduction. At Location A and B, Plan 2 contributes to a decrease in air temperature by roughly 1°C 

(at 15:00 on July 20, 21) compared to the status quo. Moreover, pedestrians are exposed mostly to a 

comfortable thermal environment in Plan 2. It is clear that doubling the near-road vegetation and 

replacing the old rail by a linear park provides an average decrease of 1 PMV compared to the base 

case. Although the maximum value of PMV is above 5 when pedestrians are crossing an unshaded 

area, individuals could reach a thermal comfort condition when walking in the shade of trees. The 

blue-green approach also provides co-benefits such as raising adjacent residential land values (Zhang 

et al., 2012) and reducing cooling energy expenditure. Empirical studies indicate when the air 

temperature is higher than 26°C in summer in Beijing, every 0.5°C temperature decrease leads to a 

reduction of cooling energy consumption by roughly 20 × 107 W at peak hour (Zhang et al., 2011).  

The thermal comfort assessment through UTCI testified that all three plan alternatives contribute 

to a decrease in UTCI at the linear open space (Location A and B) during the daytime. Though the 

reduction of Plan 0 is minimal, Plan 1 noticeably improves the daytime thermal sensation and reduces 

UTCI by about 2°C. Plan 2 provides the best thermal condition for individuals, decreasing the value 

by 6.5°C (at 9:00 on July 17), mitigating the very strong heat stress on July 17—19 and the extreme 

heat stress in the following days. 
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From the simulation results in this case study, it is clear that the multiscale modeling method can 

give valuable insights into the impact of urban design choices on traffic pollution and microclimate 

condition, allowing an iterative process of updating designs based on feedback from the 

computational evaluation. Though this paper was initiated with assessments of a specific urban 

environment in Beijing, the urban morphology and meteorology data used to drive the simulations 

are commonly encountered in many other cities, especially those characterized by the monsoon-

influenced humid continental climate. Therefore, the proposed urban modeling-design framework for 

testing meso and micro scale transport infrastructure and public space design alternatives is expected 

to apply quite widely within the limitations of the simulation assumptions and measurement accuracy 

of the computational models adopted.  

With the same coupling method, other traffic prediction techniques could also be employed to 

take advantage of mode choice models and other route planning algorithms (e.g., considering 

congestion levels). Traffic emission calculations could be extended to measure traffic-related 

anthropogenic heat and humidity emissions, which can then be included within microclimate 

simulation (Girgis et al., 2016). Moreover, the ENVI-met simulation though considers heat storage 

in soil/road surfaces, the transient thermal effects in other materials such as walls are not simulated 

(Bruse, 2004) that could be improved. Some studies also demonstrated that ENVI-met tends to 

overestimate near-ground air temperature during nighttime, but slightly underestimate the value 

during the day for near road (Yang et al., 2013). In future work, application of a more realistic soil 

model would be helpful for addressing this issue. 

Next steps in our research are to feed the generated microclimatic conditions and thermal comfort 

back into the agent-based model and update the location and route choice algorithms to allow agents 

to consider outdoor environmental quality (shown as dash lines in Fig. 21). For example, an updated 

modeling tool may allow pedestrian agents to choose the high-level thermal comfort public spaces 

for leisure activities and the less polluted routes for their commute. Human exposure to air pollution 

can be studied too. Besides, the KIPs presented in Figure 2 could be chosen depending on the specific 



Jo
ur

na
l P

re
-p

ro
of

 37 

targets of realistic planning projects. Finally, this bottom-up environmental analysis framework may 

lead to decision support tools embedded in the early stage of urban design processes. The integration 

of climatology research and applied urban design is beneficial for guiding high-level planning.  

 

 Future work of the coupled modeling methodology. 
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1 Climate-sensitive (or responsive) urban design implies that urban spaces are designed with considering the essential 

components of microclimate such as air temperature and wind environment and can mitigate stressed local conditions 

and reduce pollution to the natural environment (Marchettini et al., 2014). 

2 Thermal comfort can be defined as individuals’ satisfaction with the thermal environment (ASHRAE, 2010). 

3 Universal Thermal Climate Index was defined as “the isothermal air temperature of the reference condition that would 

elicit the same dynamic response (strain) of the physiological model” (Jendritzky et al., 2012). 

                                                                 

 


