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Abstract

In this paper, the weak Harris theorem developed in [18] is illustrated by using
a straightforward Wasserstein coupling, which implies the exponential ergodicity
of the functional solutions to a range of neutral type SDEs with infinite length of
memory. A concrete example is presented to illustrate the main result.
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1 Introduction

The ergodicity theory is a rich and active area in the study of Markov processes and related
topics. Existing results include both qualitative characterizations (for instance, existence
and uniqueness of invariant probability measures, strong Feller property, irreducibility)
and quantitative estimates (convergence rate of Markov transition semigroups, gradient
and heat kernel estimates, etc.). Among many other references, we would like to mention
[10, 12, 26, 31] for the study of non-degenerate stochastic differential equations (SDEs)
and stochastic partial differential equations (SPDEs), and [13, 15, 16, 17, 25, 30, 33] for
degenerate SDEs/SPDEs. In these references, several different probability distances (for
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example, total variational distance, L2 distance, and Wasserstein distance) have been
adopted to measure the convergence rate of Markov transition semigroups. Efficient tools
developed in the literature include functional inequalities (for instance, weak Poincaré,
Poincaré, and log-Sobolev inequalities), Lyapunov type criteria, Harris’ theorem, and
coupling method, etc.

For path-dependent SDEs (i.e., the coefficients depend on the history), which are also
called functional SDEs or SDEs with memory, the solutions are no longer Markovian.
In this case, one investigates the functional solutions (i.e., the segment process, also
called window process, of the solutions), which are Markov processes on the path space
determined by the length of memory. However, the above tools mentioned are very hard
to apply to such kind of infinite-dimensional Markov processes:

• Due to the lack of characterization on Dirichlet forms, functional inequalities are
not yet established;

• The Lyapunov condition on the path space is less explicit since the formulation
of infinitesimal generator is not yet available; on account of the same reason, the
classical coupling argument via coupling operator is invalid;

• The classical Harris’ theorem does not apply since the functional solutions are highly
degenerate (infinite-dimensional Markov processes with finite-dimensional noises).

To see that the above mentioned tools do not work for path-dependent SDEs, we
consider the following instructive example taken from [8, 18]

(1.1) dX(t) = b(X(t− 1))dt+ σ(X(t− 1))dW (t), t ≥ 0,

with the initial datum X(θ) = ξ(θ), θ ∈ [−1, 0], where b : R→ R is a Lipschitz function,
σ : R → R is a positive strictly increasing bounded Lipschitz function, ξ : [−1, 0] → R
is a continuous function, and W is a 1-dimensional Brownian motion. As shown in [27]
that (1.1) has a reconstruction property, i.e., given the trajectory (X(t, ω))t∈[N,N+1] for
some N > 0, the initial path (ξ(t))t∈[−1,0] can be reconstructed with probability one.
Whence, the functional solution to (1.1) does not admit the strong Feller property and
nor the mixing property. Moreover, a “small set” has to be a singleton, and the classical
Lyapunov condition (based on infinitesimal generator) does not hold true any more since
both the drift and the diffusion are lack of the present information.

In recent years, some new approaches have been developed to investigate the ergod-
icity and related properties for path-dependent SDEs. When the noise term is path-
independent and the drift depends only on a finite segment of path, the ergodicity under
the total variational distance was investigated in [8], while gradient estimates and Har-
nack type inequalities (which in particular imply the strong Feller and irreducibility) have
been established in [3, 34, 32], to name a few, by using coupling by change of measures.
When the noise part is also path-dependent, but both drift and noise parts depend only
on a fixed length of past path, a weak Harris’ theorem has been established in [18] to
derive the exponential ergodicity under the Wasserstein distance. In case the noise is

2



path-dependent, we would like to emphasize that the ergodicity under the total variation-
al distance and the strong Feller property are not available since the laws of functional
solutions with different initial data are mutually singular. The weak Harris’ theorem
has been applied in, e.g., [7, 11, 23, 29] to establish the ergodicity for highly degenerate
stochastic dynamical systems including Markov processes with random switching.

In this paper, we aim to investigate by using a straightforward Wasserstein coupling
the exponential ergodicity for a class of neutral type SDEs with infinite length of memory.
Such kind of model fits more real world systems whose time evolution depends on the whole
history (cf. [24, Chapter 6]). Intuitively, the farer the history, the weaker the influence
to the evolution of the system. So, in the following we will take a reference norm on the
path space which indicates that the influence of history decays exponentially when the
time goes to −∞.

For an integer d ≥ 1, let (Rd, 〈·, ·〉, | · |) be the standard d-dimensional Euclidean space,
and Rd ⊗ Rd the family of all d × d-matrices equipped with the Hilbert-Schmidt norm
‖·‖HS. C = C((−∞, 0];Rd) stands for the space of all continuous maps f : (−∞, 0]→ Rd.
For a map f(·) : (−∞,∞)→ Rd, define its segment map f· : [0,∞)→ C by setting

ft(θ) := f(t+ θ), t ≥ 0, θ ∈ (−∞, 0].

For a fixed number r ∈ (0,∞), let

Cr =
{
φ ∈ C : ‖φ‖r := sup

−∞<θ≤0
(erθ|φ(θ)|) <∞

}
.

Then, (Cr, ‖ · ‖r) is a Polish space. The norm ‖ · ‖r fits the intuition of exponential decay
with regard to the influence of history; that is, the contribution to the norm from the
history at time θ < 0 has a minus exponential discount erθ. For any θ ∈ (−∞, 0], let
ξ0(θ) ≡ 0, a d-dimensional zero vector.

Consider the following path-dependent SDE of neutral type

(1.2) d{X(t)−G(Xt)} = b(Xt)dt+ σ(Xt)dW (t), t > 0, X0 = ξ ∈ Cr,

where G, b : Cr → Rd and σ : Cr → Rd ⊗ Rd are measurable with G(ξ0) = 0, (Xt)t≥0 is
the segment process associated with (X(t))t≥0, (W (t))t≥0 is the d-dimensional Brownian
motion on a complete filtration probability space (Ω,F , (Ft)t≥0,P). For more motivating
examples of (1.2), please refer to [24, p.201-202].

A continuous adapted process (X(t))t≥0 is called a solution to (1.2) with the initial
value X0, if P-a.s.

X(t) = X(0) +G(Xt)−G(X0) +

∫ t

0

b(Xs)ds+

∫ t

0

σ(Xs)dW (s), t ≥ 0.

We call (Xξ
t )t≥0 a functional solution to (1.2) with the initial value Xξ

0 = ξ ∈ Cr.
Throughout this paper, we assume that
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(A0) b and σ are continuous and bounded on bounded subsets of Cr, and there exists
α ∈ (0, 1) such that

|G(ξ)−G(η)| ≤ α‖ξ − η‖r, ξ, η ∈ Cr.

(A1) There exists a constant L0 > 0 such that

〈ξ(0)−η(0) +G(η)−G(ξ), b(ξ)− b(η)〉+ +‖σ(ξ)−σ(η)‖2
HS ≤ L0‖ξ−η‖2

r, ξ, η ∈ Cr.

(A2) For each ξ ∈ Cr, σ(ξ) is invertible, and supξ∈Cr{‖σ(ξ)‖+ ‖σ(ξ)−1‖} <∞.

(A3) There exists a continuous function V : Cr → R+ with lim‖ξ‖r→∞ V (ξ) = ∞ such
that

PtV (ξ) ≤ Ke−γ tV (ξ) +K

holds for some constants K, γ > 0.

Under (A0) and (A1), (1.2) has a unique functional solution (Xξ
t )t≥0; see [2, 4] for more

details. Before we proceed to investigate ergodicity of the functional solution to (1.2), we
introduce some additional notation. For the functional solution Xξ

t , which is a Markov
process, we define the Markov semigroup Pt by

Ptf(ξ) = Ef(Xξ
t ) =

∫
Cr

f(η)Pt(ξ, dη), t ≥ 0, f ∈ Bb(Cr), ξ ∈ Cr,

where Pt(ξ, A) := E1A(Xξ
t ), A ∈ B(Cr), which is the transition kernel of Xξ

t . As explained
above, Pt(ξ, ·) does not converges in the total variational distance in particular when the
noise term is path-dependent. Next, we take the Wasserstein distance induced by the
distance

(1.3) ρr(ξ, η) := 1 ∧ ‖ξ − η‖r, ξ, η ∈ Cr.

For any µ, ν ∈P(Cr), the collection of all probability measures on Cr, the L1-Wasserstein
distance between µ and ν induced by ρr is defined by

(1.4) Wρr(µ, ν) = inf
π∈C (µ,ν)

∫
Cr×Cr

ρr(ξ, η)π(dξ, dη),

where C (µ, ν) is the set of all couplings of µ and ν; that is, π ∈ C (µ, ν) if and only if π
is a probability measure on Cr × Cr such that π(· × Cr) = µ and π(Cr × ·) = ν. For the
Lyapunov function V in (A3), let

ρr,V (ξ, η) =
√
ρr(ξ, η)(1 + V (ξ) + V (η)), ξ, η ∈ Cr.
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Theorem 1.1. Assume (A0)-(A3). Then Pt has a unique invariant probability measure
π, and there exist constants c, λ > 0 such that

(1.5) Wρr,V (µPt, νPt) ≤ c e−λtWρr,V (µ, ν), µ, ν ∈P(Cr), t ≥ 0,

where Wρr,V is defined as in (1.4) with ρr therein replaced by the pseuso-metric ρr,V .
Consequently, there exists a constant C > 0 such that

(1.6) Wρr,V (Pt(ξ, ·), π) ≤ C e−λt
√

1 + V (ξ), t ≥ 0.

Theorem 1.1 only considers the exponential ergodicity of the solution to (1.2) in the
Wasserstein distance. However, the method used in its proof also works in the study of the
ergodicity with slower (i.e., subexponential, polynomial) convergence rates by replacing
(A3) with

PtV (ξ) ≤ V (ξ)−
∫ t

0

Ps(ϕ ◦ V )(ξ)ds+Kt, ξ ∈ C , t ≥ 0,

where function V : C → R is measurable with lim‖ξ‖r→∞ V (ξ) = ∞, ϕ : R+ → R+ is
concave with ϕ(0) = 0 and ϕ(s) ↑ ∞ as s ↑ ∞, and K ≥ 0 is a constant. See, for instance,
[8, 21] for the study of path-dependent SDEs with finite length of memory. We also remark
that, in [14], sufficient conditions are provided for subgeometric rates of convergence in
Wasserstein distance concerning general state-space Markov chains which need not to be
irreducible.

The proof of Theorem 1.1 is based on the weak Harris’ theorem developed [18] (see
Lemma 2.1 below for more details) and is completed by constructing a straightforward
Wasserstein coupling. It is worth pointing out that straightforward Wasserstein coupling,
also called generalized coupling, has been applied to study the exponential ergodicity
in Wasserstein type metrics for path-dependent SDEs, SPDEs, and some other infinite-
dimensional processes in the Wasserstein metric, see for instance [9, 22] and references
within.

To meet the conditions of Lemma 2.1 below, one has to overcome the difficulties
caused by the infinite length of memory. Unlike conditions (A0) and (A1), which are
explicitly imposed on the coefficients, the Lyapunov condition (A3) is set by means of
the semigroup Pt which is less explicit. In many cases, one may verify (A3) by using the
Lyapunov condition

(1.7) L V (ξ) ≤ −λV (ξ) + c, ξ ∈ Cr

for some constants c, λ > 0, where L is the extended generator corresponding to the
semigroup (Pt)t≥0. However, as already explained before, L is not yet available for the
present model. In this spirit, we present below explicit conditions for (A3).

Proposition 1.2. Let µ0 ∈P((−∞, 0]) such that

(1.8) δr(µ0) :=

∫ 0

−∞
e−2rθµ0(dθ) <∞,
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and set

(1.9) β :=
(

1 +
√
α1 + α2δr(µ0)

)2

.

Then (A3) holds for V (ξ) := ‖ξ‖2
r provided that the following two conditions hold:

(i) For any ξ ∈ Cr, there exist constants α1, α2 > 0 with α1 + α2δr(µ0) < 1 such that

(1.10) |G(ξ)|2 ≤ α1|ξ(0)|2 + α2

∫ 0

−∞
|ξ(θ)|2µ0(dθ).

(ii) There exist constants c0, λ1, λ2 > 0 with γ := λ1 − 2rβ − λ2δr(µ0) > 0 such that

2〈ξ(0)−G(ξ), b(ξ)〉+ ‖σ(ξ)‖2
HS ≤ c0 − λ1|ξ(0)|2 + λ2

∫ 0

−∞
|ξ(θ)|2µ0(dθ),(1.11)

(1.12) ‖σ(ξ)‖2
HS ≤ c0

(
1 + |ξ(0)|2 +

∫ 0

−∞
|ξ(θ)|2µ0(dθ)

)
.

The assumption on the Lyapunov function (i.e., lim‖ξ‖r→∞ V (ξ) = ∞) seems to be
a little bit restrictive. Whereas, provided that (i) the diffusion coefficient is uniformly
bounded, and the drift coefficient can be decomposed into two terms

b(ξ) = b1(ξ) + b2(ξ(0)), ξ ∈ Cr,

where b1 : C → Rd is uniformly bounded; (ii) the drift b satisfies the generalized
Veretennikov-Khasminskii condition, i.e., there exist constants κ,M > 0 such that

(1.13) 〈ξ(0)−G(ξ), b(ξ)〉 ≤ −κ|ξ(0)|, ξ ∈ Cr, |ξ(0)| ≥M,

the Lyapunov function can be designed via the present state but not the whole path. See
e.g. [7, Theorem 3.2 (ii) & Theorem 3.3 (i)] for further details. For further examples which
satisfy the generalized Veretennikov-Khasminskii condition, please refer to [8, Section 3]
for more details. If the drift term is pure delay, the condition (1.11) no loner holds true. In
this setup, we can replace (1.11) by the generalized Veretennikov-Khasminskii condition
(1.13) concerning the drift term b. Moreover, for the following semi-linear SDE of neutral
type

d
(
X(t)−

∫ 0

−τ
X(t+ θ)ρ(dθ)

)
=
(∫ 0

−τ
X(t+ θ)µ(dθ)

)
dt+ σ(Xt)dW (t),

where ρ, µ are signed measure on [−τ, 0], and σ is bounded Lipschitz and non-degenerate,
we can examine that (A3) still is satisfied by taking V (ξ) = |ξ(0)|2 and employing a
variation-of-constants formula although (1.11) is invalid; see [5, Section 4] for more details.

To conclude this section, we present below a concrete example to illustrate Theorem
1.1.
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Example 1.3. Let µ0(dθ) = 1
r0

er0θdθ ∈P((−∞, 0]) for some r0 > 2r and let

G(ξ) = γ1

∫ 0

−∞
ξ(θ)µ0(dθ), σ(ξ) = 1 + γ2

∫ 0

−∞
(1 ∧ |ξ(θ)|)µ0(dθ),

b(ξ) = −γ3ξ(0)− γ4

(
ξ(0)− γ1

∫ 0

−∞
ξ(θ)µ0(dθ)

) 1
3

+ γ5

∫ 0

−∞
ξ(θ)µ0(dθ)

for some constants γi > 0, i = 1, · · · , 5. If
(1.14)

γ2
1 < r0(r0 − 2r) and 2γ3 > 2r

(
1 +

γ1√
r0(r0 − 2r)

)2

+
γ2

2

r0(r0 − 2r)
+

2(γ5 + γ1γ3)√
r0(r0 − 2r)

,

assertions in Theorem 1.1 hold.

Remark 1.1. Path-dependent SDEs of neutral type have been utilized to model some
evolution phenomena arising in e.g. physics, biology and engineering; see, for instance,
[1, 19, 20]. Here, whenever µ0 is a signed measure on the finite time interval [−τ, 0] and
γ4 = 0, this example has been investigated in [1]. Moreover, the example can demonstrate
Proposition 1.2 in the case γ4 = 0 (the natural case). Whereas, we herein allow γ4 6= 0
just to emphasize that the drift term can be singular.

The remainder of this paper is organized as follows. In Section 2, Theorem 1.1 is
proved by using weak Harris’ theorem and Wasserstein coupling. Section 4 is devoted to
the proofs on Proposition 1.2 and Example 1.3.

2 Proof of Theorem 1.1

Now, we shall start to complete the proof of Theorem 1.1 by the aid of weak Harris’
theorem introduced in [18]. For readers’ convenience, we state it below in details. To
begin, we recall some notions.

Definition 2.1. Let X be a Polish space, and (Pt)t≥0 a Markov semigroup with transition
kernel Pt(ξ, ·) on X.

(1) A continuous function V : X → R+ is called a Lyapunov function for (Pt)t≥0, if
there exist constants γ,K > 0 such that

(2.1) PtV (ξ) :=

∫
X
V (η)Pt(ξ, dη) ≤ K e−γtV (ξ) +K, ξ ∈ X, t ≥ 0.

(2) A function ρ : X × X → [0, 1] is said to be distance-like if it is symmetric, lower
semi-continuous, and ρ(ξ, η) = 0 if and only if ξ = η.

(3) A set A ⊂ X is said to be ρ-small for Pt, if there exists ε ∈ (0, 1) such that

Wρ(Pt(ξ, ·), Pt(η, ·)) ≤ 1− ε, ξ, η ∈ A,

where Wρ is defined as in (1.4) for (X, ρ) replacing (Cr, ρr).
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(4) ρ is said to be contractive for Pt, if there exists ε ∈ (0, 1) such that

Wρ(Pt(ξ, ·), Pt(η, ·)) ≤ ε ρ(ξ, η), ξ, η ∈ X with ρ(ξ, η) < 1.

The following result is due to [18, Theorem 4.8].

Lemma 2.1. Let ρ be a distance-like function on X × X, and V a Lyapunov function
such that (2.1) holds for some constants γ,K > 0. If there exists a constant t∗ > 0 such
that {V ≤ 4K} is ρ-small and ρ is contractive for Pt∗, then there exists a constant t > 0
such that

WρV (µPt, νPt) ≤
1

2
WρV (µ, ν), ∀ µ, ν ∈P(X),

where ρV (ξ, η) :=
√
ρ(ξ, η)(1 + V (ξ) + V (η)), ξ, η ∈ X.

To apply this result to the present model, for any δ > 0 and R > 0, let

ρr,δ = 1 ∧ (δ−1ρr), BR = {ξ ∈ Cr : ‖ξ‖r ≤ R},

(2.2) tR,δ = 1 +
1

2r
log

(
3

2δ2

( 2e2r

(1− α)2

(
2R +

δ

3

)2

+
R2

1− α

))
,

where ρr was given in (1.3). Obviously, the metric ρr,δ is equivalent to ρr. To check
the conditions in Lemma 2.1 for the present setup, we need to prepare the following four
lemmas concerned, respectively, with the (local) irreducibility, the continuity with respect
to the initial variable, ρr,δ-small property, and ρr,δ-contractive property for the Markov
transition kernel.

Lemma 2.2. Under the conditions of Theorem 1.1, for any R, δ > 0,

(2.3) inf
ξ∈BR

P(Xξ
t ∈ Bδ) > 0, t ≥ tR,δ.

Proof. The idea of proof is essentially borrowed from that of [28, Lemma 2.2], where the
crucial point is to apply a standard result (e.g., [6, Lemma I.8.3]) that a uniform elliptic
diffusion process is irreducible. So, below we will compare the radial process |Xξ|(s) with
an elliptic diffusion process. For any ξ ∈ BR and δ > 0, let h ∈ C∞b (R+;Rd) such that

(2.4) h(0) = ξ(0)−G(ξ)− δ(1− α)

3
(1, 0, · · · , 0), |h| ≤ |h(0)|, and h(s) = 0 for s ≥ 1,

where α ∈ (0, 1) was introduced in (A0). Let

(2.5) ΛXξ

(t) = Xξ(t)−G(Xξ
t ), ΛXξ,Xη

(t) = ΛXξ

(t)− ΛXη

(t), t ≥ 0.

By taking (A0) into consideration, we have

(1− α)2 sup
0≤u≤s

(e2ru|Xξ(u)|2) ≤ (1− α)‖ξ‖2
r + sup

0≤u≤s
(e2ru|ΛXξ

(u)|2), s ≥ 0.(2.6)
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Consider the following radial process

(2.7) D(s) := |ΛXξ

(s)− h(s)|2 − δ2(1− α)2

9
, s ≥ 0.

By Itô’s formula, it follows that

d(e2rsD(s)) = 2 re2rsD(s)ds+ e2rsdD(s)

= e2rs
{

2 rD(s) + 2〈ΛXξ

(s)− h(s), b(Xξ
s )− h′(s)〉+ ‖σ(Xξ

s )‖2
HS

}
ds

+ 2 e2rs〈ΛXξ

(s)− h(s), σ(Xξ
s )dW (s)〉, s ≥ 0.

(2.8)

Define the stopping time

(2.9) τ = inf
{
s ≥ 0 : e2rs|D(s)| ≥ δ2(1− α)2

18

}
.

Since D(0) = 0 and D(s) is continuous with respect to s, we have P(τ > 0) = 1. In terms
of (2.7) and (2.9), we therefore have

δ2(1− α)2

18
≥ e2rs|D(s)| ≥ |D(s)| ≥ δ2(1− α)2

9
− |ΛXξ

(s)− h(s)|2, s ∈ [0, τ ].

As a consequence, we arrive at

(2.10) |ΛXξ

(s)− h(s)|2 ≥ δ2(1− α)2

18
, s ∈ [0, τ ].

Combining (2.10) with (A2), we obtain from (2.8) that

(2.11)
d

ds
〈e2rsD(s)〉 = 4 e4rs|σ∗(Xξ

s )(ΛXξ

(s)− h(s))|2 ∈ [c1, c2], s ∈ [0, τ ∧ t]

for some constants c2 > c1 > 0. Herein, 〈·〉 means the quadratic variation of a continuous
semi-martingale and t ≥ tR,δ, which is to be fixed in what follows. Next, we are going to
claim that (2.11) implies that

(2.12) P
(

sup
0≤u≤s

(e2ru|D(u)|) < δ2(1− α)2

18

)
> 0, s ≥ 0.

To achieve (2.12), we extend (e2rsD(s))s∈[0,τ ] into (e2rsD(s))s≥0 in the following manner

(2.13) Y (s) := e2r(s∧τ)D(s ∧ τ) + 1{s>τ}(W
1(s)−W 1(τ)), s ≥ 0,

where (W 1(s))s≥0 stands for the first component of (W (s))s≥0. Consequently, (2.11) gives
that

d

ds
〈Y (s)〉 ∈ [c1 ∧ 1, c2 ∨ 1].
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By applying [6, Lemma I.8.3] and using Y (0) = 0, this yields

(2.14) P
(

sup
0≤u≤s

|Y (u)| < c
)
> 0, s, c > 0.

Combining this with (2.9) and (2.13), we obtain

P
(

sup
0≤u≤s

(e2ru|D(u)|) < δ2(1− α)2

18

)
= P

(
sup

0≤u≤s∧τ
(e2ru|D(u)|) < δ2(1− α)2

18
, s < τ

)
= P

(
sup

0≤u≤s
|Y (u)| < δ2(1− α)2

18

)
> 0.

So, (2.12) holds true.
By using the fundamental inequality: 1

2
|u|2 − |v|2 ≤ |u − v|2, u, v ∈ Rd, and recalling

that h(s) = 0 for s ≥ 1, we deduce from (2.6) and ξ ∈ BR that

P
(

sup
0≤s≤t

(e2rs|D(s)|) ≤ δ2(1− α)2

18

)
≤ P

(
sup

0≤s≤t
(e2rs|ΛXξ

(s)− h(s)|2) ≤ δ2(1− α)2

6
e2rt
)

≤ P
(

sup
0≤s≤t

(1

2
e2rs|ΛXξ

(s)|2 − e2rs|h(s)|2
)
≤ δ2(1− α)2

6
e2rt
)

≤ P
(

sup
0≤s≤t

(e2rs|ΛXξ

(s)|2) ≤ 2 sup
0≤s≤1

(e2rs|h(s)|2) +
δ2(1− α)2

3
e2rt
)

≤ P
(

sup
0≤s≤t

(e2rs|Xξ(s)|2) ≤ 1

1− α
R2 +

2

(1− α)2
sup

0≤s≤1
(e2rs|h(s)|2) +

δ2

3
e2rt
)
.

(2.15)

On the other hand, we observe that

P(Xξ
t ∈ Bδ) = P

(
e−2rt sup

−∞<s≤t
(e2rs|Xξ(s)|2) ≤ δ2

)
= P

(
‖ξ‖2

r ∨ sup
0≤s≤t

(e2rs|Xξ(s)|2) ≤ e2rtδ2
)

≥ P
(

sup
0≤s≤t

(e2rs|Xξ(s)|2) ≤ e2rtδ2
)
.

Combining this with (2.12) and (2.15), it follows that we need to show

(2.16)
1

1− α
R2 +

2

(1− α)2
sup

0≤s≤1
(e2rs|h(s)|2) +

δ2

3
e2rt ≤ e2rtδ2, t ≥ tR,δ.

By (2.4), (A0), G(ξ0) = 0 and ξ ∈ BR, we infer that

|h|2 ≤ |h(0)|2 ≤
(

2R +
δ

3

)2

,
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which incurs

sup
0≤s≤1

(e2rs|h(s)|2) ≤ e2r
(

2R +
δ

3

)2

.

Then (2.16) holds definitely provided that

2δ2

3
e2rt ≥ 2e2r

(1− α)2

(
2R +

δ

3

)2

+
R2

1− α
,

which indeed is true for t ≥ tR,δ.

Lemma 2.3. Under conditions of Theorem 1.1, there exists a constant K > 0 such that

(2.17) E‖Xξ
t −X

η
t ‖2

r ≤ KeK t ‖ξ − η‖2
r, t ≥ 0, ξ, η ∈ Cr.

Proof. The proof of Lemma 2.3 is more or less standard (cf. [2, 4]). Whereas we herein
provide an outline of the argument just to make the content self-contained and emphasize
some corresponding differences due to the infinite memory and the neutral term. Let
Λξ,η(t) = ΛXξ,Xη

(t) for simplicity. Using (A0) we have

(2.18) e2rt‖Xξ
t −X

η
t ‖2

r ≤
1

1− α
‖ξ − η‖2

r +
1

(1− α)2
sup

0≤s≤t
(e2rs|Λξ,η(s)|2).

Thus, to obtain the desired assertion (2.17), it is sufficient to show that

(2.19) Γ(t) := E
(

sup
0≤s≤t

(e2rs|Λξ,η(s)|2)
)
≤ JeJt‖ξ − η‖2

r, t ≥ 0, ξ, η ∈ Cr

for some constant J > 0. Applying Itô’s formula and using (A1) and (A2), we obtain

e2rt|Λξ,η(t)|2 ≤ 4‖ξ − η‖2
r +

∫ t

0

e2rs{2r|Λξ,η(s)|2 + L0‖Xξ
s −Xη

s ‖2
r}ds

+ 2

∫ t

0

e2rs〈Λξ,η(s), (σ(Xξ
s )− σ(Xη

s ))dW (s)〉.

Combining this with (2.18), (A2) and BDG’s inequality, we find out constants c1, c2, c3 > 0
such that

Γ(t) ≤ 4‖ξ − η‖2
r + c1

∫ t

0

{‖ξ − η‖2
r + Γ(s)}ds

+ E
(

sup
0≤s≤t

(e2rs|Λξ,η(s)|2)

∫ t

0

e2rs‖σ(Xξ
s )− σ(Xη

s )‖2
HSds

)1/2

≤ 4‖ξ − η‖2
r + c1

∫ t

0

{‖ξ − η‖2
r + Γ(s)}ds+

1

2
Γ(t) + c2

∫ t

0

E(e2rs‖Xξ
s −Xη

s ‖2
r)ds

≤ 1

2
Γ(t) + c3(1 + t)‖ξ − η‖2

r + c3

∫ t

0

Γ(s)ds.

11



Consequently,

Γ(t) ≤ 2c3(1 + t)‖ξ − η‖2
r + 2c3

∫ t

0

Γ(s)ds.

By Gronwall’s inequality, we obtain

Γ(t) ≤ 2c3(1 + t)e2c3t‖ξ − η‖2
r.

Therefore, (2.19) follows from (2.18) immediately.

Lemma 2.4. Under conditions of Theorem 1.1, for any R, δ > 0,

(2.20) Wρr,δ(Pt(ξ, ·), Pt(η, ·)) ≤ 1− α2
t

2
< 1, t ≥ tR,δ/4, ξ, η ∈ BR,

holds for tR,δ/4 in (2.2) and αt := infξ∈BR P(Xξ
t ∈ Bδ/4).

Proof. For any ξ, η ∈ BR, let (Xξ
t )t≥0 be the functional solution to (1.2) with the initial

value Xξ
0 = ξ ∈ Cr, and (X̃η

t )t≥0 the functional solution to (1.2) with the initial datum

X̃η
0 = η but for an independent Brownian motion (W̃ (t))t≥0 replacing (W (t))t≥0. We

call (Xξ
t , X̃

η
t ) an independent coupling of the functional solutions to (1.2). In view of the

independence of (Xξ
t )t≥0 and (X̃η

t )t≥0, we deduce that

Wρr,δ(Pt(ξ, ·), Pt(η, ·)) ≤ E(1 ∧ (δ−1‖Xξ
t −X

η
t ‖r))

≤ 1

2
P(Xξ

t ∈ Bδ/4, X
η
t ∈ Bδ/4) + P({Xξ

t /∈ Bδ/4} ∪ {Xη
t /∈ Bδ/4})

= 1− 1

2
P(Xξ

t ∈ Bδ/4)P(Xη
t ∈ Bδ/4)

≤ 1− α2
t

2
.

Hence, (2.20) holds true due to Lemma 2.2.

Lemma 2.5. Under the conditions of Theorem 1.1, for any β ∈ (0, 1) there exist constants
δβ, tβ > 0 such that

(2.21) Wρr,δ(Pt(ξ, ·), Pt(η, ·)) ≤ β ρr,δ(ξ, η), t ≥ tβ, δ ∈ (0, δβ]

for any ξ, η ∈ Cr with ρr,δ(ξ, η) < 1.

Proof. Our proof is based on the Girsanov transform and Warsserstein coupling, which
is more straightforward than the “binding construction” argument adopted in [18, p.254-
257]. For ξ, η ∈ Cr, let (Xξ

s )s≥0 be the functional solution to (1.2), and let (Y η(s))s≥0

solve the following SDE

(2.22) d{Y η(s)−G(Y η
s )} =

{
b(Y η

s ) + λΛξ,η(s)
}

ds+ σ(Y η
s )dW (s), s ≥ 0, Y η

0 = η,

12



where λ > 0 is a constant, Λξ,η(s) := ΛXξ,Xη
(s) is defined in (2.5). For λ > 0 sufficiently

large, the additional drift λΛξ,η(s) strongly pushes Y η
s moving toward to Xξ

s whenever
s ↑ ∞. Indeed, when λ > 0 is sufficiently large, for any r0 ∈ (0, r), there exists a constant
c > 0 such that

(2.23) E‖Xξ
s − Y η

s ‖2
r ≤ c e−r0s‖ξ − η‖2

r, s ≥ 0, ξ, η ∈ Cr,

and, for any stopping time τ ,

(2.24) E‖Xξ
s∧τ − Y η

s∧τ‖2
r ≤ c ‖ξ − η‖2

r, s ≥ 0, ξ, η ∈ Cr

as shown in the proof of [4, (3.11)],
To compare Y η

s with Xη
s via the Girsanov theorem, let h(s) = λσ−1(Y η

s )Λξ,η(s) and
set

Rt := exp
(
−
∫ t

0

〈h(s), dW (s)〉 − 1

2

∫ t

0

|h(s)|2ds
)
.

Generally, Rt may not be a well defined probability density, so we shall restrict it by the
following stopping time

τε = inf

{
s ≥ 0 :

∫ s

0

|h(s)|2ds ≥ ε−1‖ξ − η‖2
r

}
for some constant ε ∈ (0, 1) sufficiently small to be determined later. By Girsanov theo-
rem, dQε := Rt∧τεdP is a probability measure on (Ω,F ) under which

W̃ (s) := W (s) +

∫ s∧τε

0

h(u)du, s ≥ 0

is a d-dimensional Brownian motion. Let Ỹ η(s) solve the SDE

d{Ỹ η(s)−G(Ỹ η
s )} =

{
b(Ỹ η

s ) + 1{τε≥s}λ Λ̃ξ,η(s)
}

ds+ σ(Ỹ η
s )dW (s), s ≥ 0, Ỹ η

0 = η,

where Λ̃ξ,η(s) := ΛXξ,Ỹ η(s). By the weak uniqueness of solutions to (2.22) up to time t∧τε,
we have

(2.25) P(Xη
t ∈ ·) = Qε(Ỹ

η
t ∈ ·), Ỹ η

t∧τε = Y η
t∧τε , t ≥ 0.

To estimate Wρr,δ(Pt(ξ, ·), Pt(η, ·)), we take the following Wasserstein coupling of P
and Qε:

Π(dω, dω̃) =(1 ∧Rt∧τε)(ω)P(dω)δω(dω̃)

+
(1−Rt∧τε)

+(ω)(Rt∧τε − 1)+(ω̃)

E[(1−Rt∧τε)
+]

P(dω)P(dω̃),
(2.26)

13



where δω is the Dirac measure at point ω, and the last term vanishes if E[(1−Rt∧τε)
+] = 0

which is only possible when ξ = η. Combining this coupling with (2.25), and noting that
ρr,δ ≤ 1, we obtain that

Wρr,δ(Pt(ξ, ·), Pt(η, ·))

≤
∫

Ω×Ω

ρr,δ(X
ξ
t (ω), Ỹ η

t (ω̃))Π(dω, dω̃)

≤ E
[
ρr,δ(X

ξ
t , Ỹ

η
t )(1 ∧Rt∧τε)

]
+ E

[
(Rt∧τε − 1)+

]
≤ E

[
1{t≤τε}ρr,δ(X

ξ
t , Y

η
t )
]

+ E
[
1{t>τε}ρr,δ(X

ξ
t , Ỹ

η
t )
]

+ E
[
(Rt∧τε − 1)+

]
=: I1(t) + I2(t) + I3(t).

(2.27)

Next we are going to estimate three terms above, one-by-one.
Firstly, by (2.23), there exists a constant c > 0 such that

(2.28) I1(t) ≤ c e−r0t/2δ−1‖ξ − η‖r = c e−r0t/2ρr,δ(ξ, η)

for arbitrary ξ, η ∈ Cr with ρr,δ(ξ, η) < 1. Next, by Hölder’s inequality, the strong Markov

property, (2.17), (2.23), (2.24), Ỹ η
t∧τε = Y η

t∧τε due to (2.25), and noting that the SDE for

Ỹ η
s coincides with (1.2) when s ≥ τε, we obtain that

I2(t) ≤ δ−1E
[
‖Xξ

t − Ỹ
η
t ‖r1{τε<t}

]
= δ−1E

[
1{τε<t}

{
E‖Xξ′

t−τε − Ỹ
η′

t−τε‖r
}∣∣

(ξ′,η′)=(Xξ
t∧τε ,Y

η
t∧τε )

]
≤ δ−1

√
P(τε < t)KeKtE‖Xξ

t∧τε − Y
η
t∧τε‖2

r

≤
√
cKeKtP(τε < t) ρr,δ(ξ, η)

(2.29)

for any ξ, η ∈ Cr with ρr,δ(ξ, η) < 1. On the other hand, Chebyshev’s inequality, (A0)-
(A2) and (2.23) imply

P(τε < t) ≤ P
(∫ t

0

|h(s)|2ds ≥ ε−1‖ξ − η‖2
r

)
≤ c1ε ‖ξ − η‖−2

r

∫ t

0

E‖Xξ
s − Y η

s ‖2
rds

≤ c2 ε

∫ t

0

e−r0sds ≤ c2 ε

r0

(2.30)

for some constants c1, c2 > 0. Combining (2.30) with (2.29), we may find out a constant
c3 > 0 such that

(2.31) I2(t) ≤ c3

√
εec3tρr,δ(ξ, η), ξ, η ∈ Cr, ρr,δ(ξ, η) < 1.

14



By Hölder’s inequality and the definition of the stopping time τε, we obtain

I2
3 (t) ≤ ER2

t∧τε − 1

≤ E exp
(
− 2

∫ t∧τε

0

〈h(s), dW (s)〉 −
∫ t∧τε

0

|h(s)|2ds
)
− 1

≤
(
E exp

(
6

∫ t∧τε

0

|h(s)|2ds
))1/2

− 1

≤ e3ε−1‖ξ−η‖2r − 1 ≤ 3ε−1‖ξ − η‖2
re

3ε−1‖ξ−η‖2r ,

where the last step is due to the inequality: ex− 1 ≤ x ex, x ≥ 0. Hence, for any ξ, η ∈ Cr

with ρr,δ(ξ, η) < 1, we infer that

I3(t) ≤
√

3ε−1/2e
3
2
ε−1δ2‖ξ − η‖r =

√
3ε−1/2δe

3
2
ε−1δ2ρr,δ(ξ, η).

Combining this with (2.27), (2.28) and (2.31), we arrive at

Wρr,δ(Pt(ξ, ·), Pt(η, ·)) ≤ c3

{
e−r0t/2 + eKt/2ε+ ε−1/2δe

3
2
ε−1δ2

}
ρr,δ(ξ, η)

for any ξ, η ∈ Cr with ρr,δ(ξ, η) < 1. Thus, (2.21) holds by taking t > 0 sufficiently large
and ε = δ ∈ (0, 1) sufficiently small.

Proof of Theorem 1.1. Since lim‖ξ‖r→∞ V (ξ) = ∞, there is a constant R > 0 such that
{V ≤ 4K} ⊂ BR. By Lemmas 2.3 and 2.4, there exists t0 ≥ tR,δ/4 such that {V ≤ 4K} is
ρr,δ-small and ρr,δ is contractive for Pt for any t ≥ t0 and δ > 0. So, in terms of Lemma
2.1, Pt has a unique probability measure π, and there exists a constant t1 > 0 such that

(2.32) Wρr,δ,V (µPt1 , νPt1) ≤
1

2
Wρr,δ,V (µ, ν), µ, ν ∈P(Cr).

Combining this with the semigroup property, to prove (1.5) it suffices to find out a constant
C > 0 such that

(2.33) Wρr,δ,V (δξPt, δηPt) ≤ Cρr,δ,V (ξ, η), t ∈ [0, t1], ξ, η ∈ Cr.

By (2.1) and (2.17), besides Hölder’s inequality, there exists a constant C > 0 such that

Wρr,δ,V (δξPt, δηPt) ≤ E
√
ρr,δ(X

ξ
t , X

η
t )(1 + V (Xξ

t ) + V (Xη
t ))

≤
√

Eρr,δ(Xξ
t , X

η
t )E(1 + V (Xξ

t ) + V (Xη
t ))

≤ C
√
ρr(ξ, η)(1 + V (ξ) + V (η))

= Cρr,δ,V (ξ, η)

for any t ∈ [0, t1], ξ, η ∈ Cr. Therefore, (2.33) holds true so that (1.5) is available by in
addition taking the equivalence of ρr and ρr,δ.

Next, by (2.1), we have π(V ) :=
∫

Cr
V dπ <∞, so that (1.5) implies

Wρr,V (Pt(ξ, ·), π) = Wρr,V (δξPt, πPt) ≤ c e−λt
∫

Cr

ρr,V (ξ, η)π(dη) ≤ C e−λt
√

1 + V (ξ)

for some constant C > 0.
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3 Proofs of Proposition 1.2 and Example 1.3

Proof of Proposition 1.2 . For simplicity, we write X(t) = Xξ(t) and Xt = Xξ
t . By (2.6),

it is sufficient to find out a constant c > 0 such that

(3.1) E
(

sup
0≤s≤t

(e2rs|ΛX(s)|2)
)
≤ c

(
(1 + t)‖ξ‖2

r + e2rt
)
.

By Fubini’s theorem and integration by substitution, we deduce from (1.8) that∫ t

0

∫ 0

−∞
e2rs|X(s+ θ)|2µ0(dθ)ds

=

∫ t

0

∫ −s
−∞

e−2rθe2r(s+θ)|X(s+ θ)|2µ0(dθ)ds+

∫ 0

−t
e−2θ

∫ t+θ

0

e2rs|X(s)|2dsµ0(dθ)

≤ δr(µ0)‖ξ‖2
rt+ δr(µ0)

∫ t

0

e2rs|X(s)|2ds,

(3.2)

which, together with (1.10), leads to: for any ε > 0, there exists a constant cε > 0 such
that∫ t

0

e2rs|ΛX(s)|2ds ≤
(

1 + ε+ (1 + 1/ε)α1

)∫ t

0

e2rs|X(s)|2ds

+ (1 + 1/ε)α2

∫ t

0

∫ 0

−∞
e2rs|X(s+ θ)|2µ0(dθ)ds

≤ cε‖ξ‖2
rt+

(
1 + α1 + α2δr(µ0) + ε+ (α1 + α2δr(µ0))/ε

)∫ t

0

e2rs|X(s)|2ds.

Taking ε = (α1 + α2δr(µ0))1/2, we find out a constant c1 > 0 such that

(3.3)

∫ t

0

e2rs|ΛX(s)|2ds ≤ c1‖ξ‖2
rt+ β1

∫ t

0

e2rs|X(s)|2ds

where β1 > 0 is in (1.9). Now, by Itô’s formula, it follows from (1.11) that

e2rt|ΛX(t)|2 ≤ |Λξ(0)|2 +

∫ t

0

e2rs
{
c0 + 2r|ΛX(s)|2 − λ1|X(s)|2

+ λ2

∫ 0

−∞
|X(s+ θ)|2µ0(dθ)

}
ds+ 2

∫ t

0

e2rs〈ΛX(s), σ(Xs)dW (s)〉.
(3.4)

Plugging (3.2) and (3.3) into (3.4) and utilizing (A0) gives

e2rtE|ΛX(t)|2 ≤ c2

(
(1 + t)‖ξ‖2

r + e2rt
)
−
(
λ1 − 2rβ1 − λ2δr(µ0)

)∫ t

0

e2rsE|X(s)|2ds

for some constant c2 > 0. Since λ1 − 2rβ1 − λ2δr(µ0) > 0, this implies

(3.5)

∫ t

0

e2rsE|X(s)|2ds ≤ c3(1 + t)‖ξ‖2
r + c3e2rt
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for some constant c3 > 0. On the other hand, by BDG’s inequality, we deduce from (1.12)
and (3.2) that

2 sup
0≤s≤t

∣∣∣ ∫ s

0

e2ru〈ΛX(u), σ(Xu)dW (u)〉
∣∣∣

≤ 8
√

2E
(

sup
0≤s≤t

(e2rs|ΛX(s)|2)

∫ t

0

e2rs‖σ(Xs)‖2
HSds

)1/2

≤ 1

2
E
(

sup
0≤s≤t

(e2rs|ΛX(s)|2)
)

+ c4

(
e2rt + t‖ξ‖2

r +

∫ t

0

e2rsE|X(s)|2ds
)(3.6)

for some c4 > 0. Thus, by taking (3.3) and (3.4) into account and making use of (3.6)
and (A0), there exists a constant c5 > 0 such that

E
(

sup
0≤s≤t

(e2rs|ΛX(s)|2)
)
≤ c5

(
(1 + t)‖ξ‖2

r + e2rt +

∫ t

0

e2rsE|X(s)|2ds
)
.

Henceforth, (3.1) follows directly from (3.5).

Proof of Example 1.3. It suffices to verify (A0)-(A2) and conditions in Proposition 1.2.
Thanks to Hölder’s inequality, one has

(3.7) |G(ξ)−G(η)|2 ≤ γ2
1

∫ 0

−∞
|ξ(θ)− η(θ)|2µ0(dθ) ≤ γ2

1δr(µ0)‖ξ − η‖2
r, ξ, η ∈ Cr.

Therefore, (A0) holds for α = γ1

√
δr(µ0) < 1 owing to (1.14). By Hölder’s inequality

and (3.7), we can find some constants c1, c2 > 0 such that

〈ξ(0)− η(0)− (G(ξ)−G(η)), b(ξ)− b(η)〉+ + |σ(ξ)− σ(η)|2

≤
(

(ξ(0)− η(0)− (G(ξ)−G(η)))
{
− γ3(ξ(0)− η(0)) + γ5

∫ 0

−∞
(ξ(θ)− η(θ))µ0(dθ)

})+

+ γ2
2

(∫ 0

−∞
|ξ(θ)− η(θ)|µ0(dθ)

)2

≤ c1

{
|ξ(0)− η(0)|2 + |G(ξ)−G(η)|2

}
≤ c2‖ξ − η‖2

r, ξ, η ∈ Cr,

where the first inequality is due to

−γ4〈ξ(0)−G(ξ)− (η(0)−G(η)), (ξ(0)−G(ξ))1/3 − (η(0)−G(η))1/3〉 ≤ 0.

Consequently, (A1) holds true. According to the formula of σ(ξ), (A1) holds trivially.
Finally, we verify conditions in Proposition 1.2. Obviously, (1.8) holds with δr(µ0) =
1

r0(r0−2r)
<∞ due to r0 > 2r. Thanks to G(ξ0) = 0 and (3.7), (1.10) holds for α1 = 0 and

α2 = γ2
1 . By Hölder’s inequality, it follows that

(3.8) |σ(ξ)|2 ≤ 1 +
1

α
+ (1 + α)γ2

2

∫ 0

−∞
|ξ(θ)|2µ0(dθ), α > 0, ξ ∈ Cr.
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Next, by using (3.8), for any ε > 0 and ξ ∈ Cr,

2(ξ(0)−G(ξ))b(ξ) + |σ(ξ)|2

≤ 1 +
1

α
− 2γ3ξ

2(0) + 2(γ5 + γ1γ3)ξ(0)

∫ 0

−∞
ξ(θ)µ0(dθ) + (1 + α)γ2

2

∫ 0

−∞
|ξ(θ)|2µ0(dθ)

≤ 1 +
1

α
−
(

2γ3 − (γ5 + γ1γ3)ε
)
ξ2(0) +

(1

ε
(γ5 + γ1γ3) + (1 + α)γ2

2

)∫ 0

−∞
|ξ(θ)|2µ0(dθ).

Taking ε =
√
δr(µ0) and α ∈ (0, 1) sufficiently small and combining (1.14), we conclude

that (1.11) holds.
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