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Puertos, Universitat Politècnica de Catalunya Barcelona, Spain.

Abstract

The main objective of this work is to describe a general and original ap-

proach for computing an off-line solution for a set of parameters describing

the geometry of the domain. That is, a solution able to include informa-

tion for different geometrical parameter values and also allowing to compute

readily the sensitivities. Instead of problem dependent approaches, a gen-

eral framework is presented for standard engineering environments where

the geometry is defined by means of NURBS. The parameters controlling

the geometry are now the control points characterising the NURBS curves or

surfaces. The approach proposed here, valid for 2D and 3D scenarios, allows

a seamless integration with CAD preprocessors. The proper generalised de-

composition (PGD), which is applied here to compute explicit geometrically

parametrised solutions, circumvents the curse of dimensionality. Moreover,

optimal convergence rates are shown for PGD approximations of incompress-

ible flows.
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1. Introduction

The current role of computational simulations in modern engineering de-

sign is limited by the complexity of the simulations that are required, par-

ticularly during the final stages of a design. The main problem is motivated

by the number of configurations that need to be tested (e.g. loads, boundary

conditions, material parameters and geometric configurations).

One alternative to decrease the computational complexity in this scenario

is to introduce a reduced order model [30]. The main idea involves projecting

the governing equations describing the full model onto a space with lower

dimension that is described using a reduced order basis. Well known methods

to produce reduced order basis are Krylov-based methods [18], the reduced

basis method [32] and the proper orthogonal decomposition (POD) [5, 23].

More recently, the proper generalised decomposition (PGD) [9, 10] has gained

popularity due to its ability to build reduced basis with no prior knowledge

of the solution. The PGD starts by considering the solution not only as

a function of the standard coordinates (i.e., space and time) but also of

any parameter of interest (e.g. boundary conditions, external loads, material

parameters). The problem involving a range of all the desired parameters

can be solved at the cost of several problems of the same size as the original

problem for a particular choice of the parameters. This expensive calculation,

usually referred as the off-line stage, is performed only once, usually making

use of high performance computing resources, to build the reduced order

basis that is written as an explicit function of the coordinates (space and

time) and the parameters (i.e. a computational vademecum, see [11]). Then,

the on-line stage consists of just a particularisation of the solution by using,

in the simplest case, an interpolation of the already computed results.
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The PGD has been successfully applied to numerous multi-dimensional

problems involving boundary conditions, material parameters and external

loads as extra coordinates, to name a few, see [9, 10] and references therein.

The application to problems involving geometrically parametrised domains

is generally more challenging and the existing work is usually limited to

simple geometries where the extra coordinates involve a scaling: the length

of an interval in one-dimensional problems [11], the thickness of extruded

geometries [6, 22] or problem specific parameters [19]. More recently, an

approach based on an initial subdivision of the computational domain in

macro-elements was proposed in [2]. This idea was extended to domains

with interfaces in [40] and has been also applied to an engineering design

process in [13]. Other reduced order models, such as POD, have been recently

considered for general parametric geometries [4] but its application in a PGD

framework remains unexplored. The main difficulty of dealing with geometric

parameters, compared to material, boundary conditions or other parameters,

in this context is to obtain a separable expression of the discrete problem.

In this paper, a new approach to incorporate the geometric parameters

as extra coordinates in a PGD framework is proposed. The objective is to

produce a general methodology to solve geometrically parametrised problems

that can be used for any geometrical model. This is in contrast with existing

methodologies [2, 40] that require a piecewise linear approximation of the

geometry to ensure that the finite element mesh can be nested in the mesh

of macro-elements used to parametrise the geometry. Here, the domain is

assumed to be parametrised using the NURBS boundary representation of

the domain, as usually done in a computer-aided design (CAD) environment.

The control points of the NURBS entities defining the boundary are consid-

ered as extra coordinates and a mapping between a reference domain and
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the current configuration is proposed by using a solid mechanics analogy. An

explicit and separated representation of the mapping is derived and the ap-

plication of the proposed methodology to Stokes flow problems is presented

using examples of increasing difficulty in two and three dimensions. Contrary

to the approach in [2, 40], the methodology proposed in this paper considers

geometric parameters that are independent of the spatial discretisation, i.e.

the control points of the NURBS entities defining the boundary representa-

tion of the domain. In addition, the technique presented here enables the

solution of the multi-dimensional problem to be computed using curved high-

order finite elements [38]. This is in contrast with the technique introduced

in [2, 40], which requires an affine mapping between a reference element and

the so-called macro-elements that are used to parametrise the geometry and

it is therefore not applicable to curved high-order elements. In addition, the

technique proposed in this work uses geometric parameters that are directly

related to the CAD entities defining the boundary of the domain, making it

suitable to interactive shape design. The proposed technique is considered

an important step towards the full integration of computational geometry

and analysis [12, 21, 33, 34], specially in the field of reduced order modelling.

The proposed methodology is related to the shape calculus commonly

used in the context of parametric shape optimisation [14]. In fact, the pro-

posed methodology can be used to obtain explicit closed form expressions

of the the shape derivatives as they can be computed from the generalised

PGD solution at a negligible cost.

It is worth mentioning that a NURBS boundary representation of the

domain is considered in this work. Other geometric representations found

in CAD systems could also be considered within the proposed framework,

provided that appropriate geometric parameters are selected to perform ge-
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ometric changes of the CAD model.

The structure of the remainder of the paper is as follows. Section 2

presents the problem statement using the Poisson equation on a geomet-

rically parametrised domain and summarises the application of the PGD.

Section 3 describes in detail the proposed technique to build a generalised

solution assuming that a mapping between a reference configuration and the

current one can be written in separated form. In Section 4, a methodology to

integrate this approach in a CAD environment is presented. Considering the

geometric parameters as the control points of the NURBS entities describing

the boundary of the domain, the methodology to build a mapping that can

be explicitly written in separated form is detailed. Finally, Section 5 presents

a series of numerical examples of increasing difficulty involving the solution

of Stokes flow problems in two and three dimensions.

2. Problem statement and geometrically parametrised solutions

2.1. The Poisson equation on a parametrised domain

The methodology proposed here can be directly extended to second order

linear problems such as the Stokes problem that is studied in the examples.

However, in order to simplify the presentation, the heat problem (Poisson)

is presented in detail for a parametrised domain Ωµ ⊂ Rnsd (with nsd num-

ber of spatial dimensions), whose boundary ∂Ωµ is characterised by a set of

geometric parameters µ ∈ I ⊂ Rnpa (with npa number of parameters charac-

terising the geometry) and is partitioned into Dirichlet, ΓµD, and Neumann,

ΓµN , boundaries such that ∂Ω
µ

= Γ
µ

D ∪ Γ
µ

N and ΓµD ∩ ΓµN = ∅. Note that the

set I ⊂ Rnpa , which characterises the admissible range for parameters µ, can

be defined as the Cartesian combination of the range for each parameter,

namely, I := I1 × I2 × · · · × Inpa with µi ∈ Ii for i = 1, . . . , npa.
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For each set of parameter µ, the objective is to determine the parametric

solution uµ(x), with x ∈ Ωµ, of the boundary value problem
−∇ · (K∇uµ) = s in Ωµ,

uµ = uD on ΓµD,

nµ · (K∇uµ) = t on ΓµN ,

(1)

where K is the thermal conductivity (symmetric and positive definite) ma-

trix, s is a source term, uD is the imposed temperature, t is the imposed

heat normal flux and n is the outward unit normal vector. The standard

variational form of the previous problem reads: find uµ ∈ Vµ for all v ∈ H1
Γµ
D

such that

a(µ;uµ, v) = `(µ; v), (2a)

where the space of trial functions is Vµ := {w ∈ H1(Ωµ) : w = uD on ΓµD}

and its corresponding test functions space is H1
Γµ
D

:= {w ∈ H1(Ωµ) : w =

0 on ΓµD}. The parametric bilinear and linear forms a(µ; ·, ·) and `(µ; ·) are

defined by

a(µ;u, v) :=
(
∇v,K∇u

)
Ωµ and `(µ; v) :=

(
v, s
)
Ωµ +

〈
v, t
〉

Γµ
N
, (2b)

where

(
u, v
)
Ω

=

∫
Ω

u v dΩ,
(
u,v

)
Ω

=

∫
Ω

u · v dΩ, and
〈
u, v
〉

Γ
=

∫
Γ

u v dΓ,

denote, respectively, the L2 product of scalar/vector functions in Ω and its

traces over Γ.

2.2. The multi-dimensional parametric problem

There are different alternatives to obtain, for any given set of parameters

µ, an approximation to the solution uµ(x) of problem (1). The obvious
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option of solving a new problem for every instance of µ is feasible but too

costly. A standard strategy to reduce the cost is to pre-compute off-line some

representative samples of the parametric family of solutions (e.g. snapshots

for reduced basis methods, principal components for POD). Then, any other

instance is computed on-line with a small computational overhead. Here, the

PGD is preferred because the off-line phase provides an explicit description

of the parametric solution, i.e. a computational vademecum see [11]. Thus,

in spite of an off-line phase more involved, the on-line phase is a simple

functional evaluation with a negligible computational overhead.

In practice, this can be interpreted as taking µ as additional indepen-

dent variables (or parametric coordinates) instead of problem parameters.

Hence, the unknown temperature field is not interpreted any more as a

parametric solution, denoted as uµ, but it is seen now as a function in a

larger dimensional space and it is written as u(x,µ) with (x,µ) ∈ Ωµ ×

I. Consequently, formally u lies in a tensor product space, namely, u ∈

Vµ ⊗ L2(I1) ⊗ L2(I2) ⊗ · · · ⊗ L2(Inpa). A standard weighted residuals ap-

proach, with integrals in Ωµ × I and the usual integration by parts only

in Ωµ produces a weak form in this multi-dimensional setup. Namely, find

u ∈ Vµ ⊗ L2(I1)⊗ L2(I2)⊗ · · · ⊗ L2(Inpa) such that

A(u, v) = L(v), ∀v ∈ H1
Γµ
D
⊗ L2(I1)⊗ L2(I2)⊗ · · · ⊗ L2(Inpa), (3a)

with the following definitions of the bilinear and linear forms

A(u, v) :=

∫
I1

∫
I2
· · ·
∫
Inpa

a(µ;u, v) dµnpa · · · dµ2 dµ1 and

L(v) :=

∫
I1

∫
I2
· · ·
∫
Inpa

`(µ; v) dµnpa · · · dµ2 dµ1.

(3b)

Obviously, the number of dimensions of the solution domain increases

with the number of parameters. To circumvent the curse of dimensional-

ity, the PGD approach [3, 9–11] is employed here. This approach assumes
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a separable structure in the function that approximates u. Note that the

tensor product space Vµ⊗L2(I1)⊗L2(I2)⊗· · ·⊗L2(Inpa) inherits the multi-

dimensional complexity of the problem and, in principle, does not assume

separability of the functions.

Moreover, the solution of (3a) requires an affine parameter dependence

of the different forms. This is standard in reduced order methods and it is

very well discussed in [26, 31]. More precisely, it is required that the different

forms are expressed (or at least well approximated) by the sum of products

of parameter-dependent functions and parameter-independent operators, for

instance

a(µ;u, v) =

Q∑
q=1

( npa∏
i=1

Θq
i (µi)

)
aq(u, v),

where Θq
i is a function that only depends upon the parameter µi. Note that

the forms aq(u, v) do not depend on the parameters (in particular, they are

integrated over domains parameter independent). In fact, finding the affine

parameter dependence of (2b) is a major concern in subsequent sections and

will enable to obtain a separated approximation of the solution, namely

u ≈ unPGD =
n∑

m=1

ψum(µ)wm(x).

3. Separated spatial mapping to determine generalised solutions

If the affine parameter dependence must be enforced, it is necessary to

integrate in space over domains not depending on the parameters. Note that

forms a(µ;u, v) and `(µ; v), see (2b), are integrated on spacial parametrised

domains (domains depending on parameters µ). As suggested in [2, 40], a

mapping Mµ is necessary (not sufficient) in order to have an affine param-

eter dependence. This mapping transforms a reference domain Ω into the
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geometrically parametrised (“deformed”) domain Ωµ, namely

Mµ : Ω× I −→ Ωµ

(X,µ) 7−→Mµ(X,µ) = x = X + d(X,µ).
(4)

As classically in computational mechanics, the reference configuration

Ω is associated to a reference coordinate system denoted by X, whereas the

distorted domain Ωµ will be associated to the spatial description x. Following

this analogy, a displacement field d is used to relate both coordinate systems.

It is worth noting that the mapping of Equation 4 resembles the so-called

family of perturbations employed in a shape analysis context [14] to compute

the derivatives of a shape functional.

The mapping Mµ can be defined in an ad hoc manner for each problem

[2, 13] or by a more general strategy [2, 40], but always has to induce an

affine parameter dependence of forms (2b). The strategy developed here is

general and it only requires a separated representation (or at least a good

approximation) of the displacement field d(X,µ). As it will be shown in

Section 4, this work proposes a way to integrate the PGD framework within

a CAD environment. Therefore, the displacement field will be constructed

based upon the motion of the control points of the NURBS describing the

boundary of the computational domain.

The introduction of the mapping Mµ allows to rewrite (2b) as integrals

over the reference computational domain Ω and its corresponding boundary

∂Ω, partitioned into the Dirichlet, ΓD, and Neumann, ΓN , boundaries, all

independent of parameter µ. Namely,

a(µ;u, v) =
(
J−1
µ ∇Xv, det(Jµ)KJ−1

µ ∇Xu
)
Ω

=
(
∇Xv,Hµ∇Xu

)
Ω

and

`(µ; v) =
(
v, det(Jµ) s

)
Ω

+
〈
v,nµ · [adj(Jµ)n] t

〉
ΓN
,

(5)

where [Jµ]ij = [∂xj/∂Xi] is the Jacobian matrix of the mapping Mµ and the

Nanson’s formula has been used to transform the integral on the Neumann
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boundary. It is worth noting that Jµ and nµ are the only elements in the

above equations that depend upon the parameters µ. Moreover, in order to

compact the notation a new matrix Hµ is introduced,

Hµ :=
adj(JTµ ) K adj(Jµ)

det(Jµ)
, (6)

and the definition of the adjoint operator, adj(A) = det(A)A−1, has been

used.

Note that even for ad hoc [2] or a piecewise linear [2, 40] mappings,

the affine parameter dependence of the different forms in (5) must be now

determined.

Remark 1 (Mapping for the Stokes problem). Despite being more cumber-

some, the same rationale can be applied for the Stokes problem without any

extra conceptual challenge. The bilinear viscosity form is reproduced here for

illustration purposes

a(µ;u,v) =
(
∇v,C : ∇u

)
Ωµ =

(
∇Xv, Ĉ

µ
: ∇Xu

)
Ω
,

where Cijkl = ν δik δjl, Ĉ
µ

ijkl = ν det(Jµ) δik [J−Tµ ]js [J−1µ ]sl and ν > 0 is the

kinematic viscosity. Note that [A]ij denotes the component ij of a matrix A.

3.1. Separated displacements

The methodology proposed here allows to obtain an affine parameter

dependence (namely, a separable expression for Hµ) quasi-analytically if the

mapping can be written (or at least, well approximated) with a separated

representation, that is as a sum of separated terms, namely

Mµ(X,µ) = X +
N∑
m=1

ψm(µ) dm(X), (7)

where ψm and dm are parametric and spatial functions respectively and N

is the total number of terms required to express the mapping in a separated
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form. Section 4 details the strategy to construct the N parametric and

spatial functions using the CAD boundary representation of the domain with

NURBS.

The separated representation of the mapping, given by equation (7), in-

duces a separated Jacobian matrix

Jµ(X,µ) =
∂x

∂X
(X,µ) = Insd +

N∑
m=1

ψm Am, (8)

where Am := [∂dm/∂X] for m = 1, . . . , N .

3.2. Affine parameter dependence

The affine parameter dependence of a(µ;u, v) as defined in (5), is in

practice determined by obtaining a separated expression of Hµ. In order to

obtain a separated expression for matrix Hµ, both adj(Jµ) and det(Jµ) are

analytically separated. Then, the higher order PGD projection proposed in

[25] is used to obtain a compact separation for Hµ.

The separated representation for the determinant, det(Jµ), can be ob-

tained using Leibniz formula from equation (8), whereas for adj(Jµ), the

Leverrier’s algorithm [17] is employed. This method is a consequence of the

Cayley-Hamilton theorem [7, 20] and the Newton’s identities [24]. It enables

to express the adjoint of a matrix A ∈ Rn×n in terms of its trace and its

powers, namely

adj(A) =
n−1∑
s=0

As
∑

k1,k2,...,kn−1

n−1∏
l=1

(−1)kl+1

lklkl!
tr(Al)kl (9)

where kl ∈ N0 and s+
∑n−1

l=1 lkl = n−1. In practice, the two cases of interest

are 2D (n = 2) and 3D (n = 3) problems, which are detailed next.
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3.3. Two-dimensional approach

In 2D the Jacobian Jµ is a 2×2 matrix. From (8), the separated expression

for its determinant is

det(Jµ) =
(

1 +
N∑
m=1

ψm(µ)
[
Am

]
11

)(
1 +

N∑
m=1

ψm(µ)
[
Am

]
22

)
−
( N∑
m=1

ψm(µ)
[
Am

]
21

)( N∑
m=1

ψm(µ)
[
Am

]
12

)
, (10)

again [A]ij denotes the component ij of the matrix A.

To obtain the expression for the adjoint requires to particularise (9),

namely

adj(A) = tr(A)I2 −A,

which is a linear mapping because the trace is also linear. Thus, the Jacobian

in separated form as presented in (8) can be written as

adj(Jµ) = I2 +
N∑
m=1

ψm adj
(
[∂dm/∂X]

)
= I2 +

N∑
m=1

ψm adj(Am). (11)

Consequently, recalling that adj(AT ) = adj(A)T , the matrix Hµ in (6)

can be rewritten as

det(Jµ) Hµ = K +
N∑
m=1

ψm K adj(Am) +
N∑
m=1

ψm
[
K adj(Am)

]T
+

N∑
m=1

N∑
l=1

ψmψl adj(Am)T K adj(Al).

The separated expression of Hµ is efficiently obtained with a numerical higher

order PGD projection [25].

3.4. Three-dimensional approach

Following the previous rationale, in 3D the Jacobian Jµ is a 3× 3 matrix.

The separated expression for the determinant, det(Jµ), is obtained using
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Leibniz formula as

det(Jµ) =
∑
σ∈S3

sgn(σ)
3∏
i=1

(
1+

N∑
m=1

ψm(µ)
[
Am

]
iσ(i)

)
, (12)

where S3 is the set of the six permutations of the integers {1, 2, 3}, where

the element in position i after the reordering σ is denoted σ(i), and sgn(σ)

denotes the signature of σ (i.e. +1 for even σ and −1 for odd σ). Note that

such a separation will induce sums of order N3.

The adjoint of the Jacobian is also separated by means of particularising

(9) to 3D,

adj(A) = 1
2

[(
tr(A)

)2 − tr(A2)
]
I3 − tr(A)A + A2,

and given the separation of the Jacobian in (8) implies

adj(Jµ) = I3 +
N∑
m=1

ψm
[
tr(Am)I3 −Am

]
+

N∑
m=1

N∑
l=1

ψmψl
[1
2

(
tr(Am) tr(Al)− tr(AmAl)

)
I3 − tr(Am)Al + AmAl

]
.

(13)

As done in 2D, once the adjoint is separated, from (6), a separated expression

for det(Jµ)Hµ = adj(JTµ ) K adj(Jµ) can be computed. In this case, it consists

of N4 terms. As previously noted for 2D, the separated expression of Hµ is

obtained with the higher order PGD projection described next.

3.5. The higher order PGD projection

To obtain a separated approximation of Hµ, namely

Hµ ≈ Hsep
µ (x,µ) =

NH∑
m=1

ψH
m(µ) AH

m(X),

13



equation (6) has to be solved. This is done by means of the higher order

PGD projection [25], which in practice obtains the separated approximation

with an L2 projection, say

(
v,Hsep

µ

)
Ω×I =

(
v, adj(JTµ ) K adj(Jµ)/ det(Jµ)

)
Ω×I (14)

for all v in a suitable space. In practice, the PGD strategy is implemented.

Thus, a greedy approach is used. For computational efficiency, it is critical

to use the exact separated expressions for the determinant, see (10) and (12),

and the adjoint of the Jacobian, see (11) and (13). In practice, each mode of

Hsep
µ is obtained by solving

(
v, det(Jµ)ψH

n AH
n

)
Ω×I =

(
v, adj(JTµ ) K adj(Jµ)

)
Ω×I

−
(
v, det(Jµ)

n−1∑
m=1

ψH
m AH

m

)
Ω×I , (15)

where now, as usual in PGD, v lives in the tangent space of the mode. By

solving Equation (15) instead of (14), the separated representation of the

determinant and adjoint of the Jacobian can be used on the right hand side.

This enables evaluating the integrals in the high dimensional space Ω×I as

products of integrals in the spatial domain Ω and integrals in the parametric

dimensions Ii, for i = 1, . . . , npa.

Note that the higher order PGD projection allows many parameters with-

out any prior knowledge, is computationally efficient, and the precision of this

approximation (i.e. the total number of terms NH) can be controlled by the

user. Finally, it is worth emphasising that Equation (15) is solved only once

and provides an approximated separated representation of the matrix Hµ for

any value of the geometric parameters.

When the Neumann boundary depends upon the parameters the same

PGD-projection rationale is applied to obtain a separated representation of
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the normal vector nµ appearing in Equation 5. This operation is performed

once and provides a separable approximation of nµ that can be used for any

value of the geometric parameters.

4. Integration within a CAD environment

In this section a procedure to integrate the methodology described in the

previous section within a CAD environment, employing non-uniform rational

B-spline (NURBS), is proposed. The fundamental concepts on non-uniform

rational B-spline (NURBS) curves and surfaces are summarised in Appendix

A.

To simplify the presentation, the technique to integrate the PGD ap-

proach with a CAD environment is described here for the the two dimen-

sional case. The details for the extension to three dimensional domains are

given in Appendix B.

The boundary of the parametrised domain, ∂Ωµ, is assumed to be de-

scribed by a set of NURBS curves {Cµ
j }j=1,...,M , being M the total number

of curves, namely

∂Ωµ =
M⋃
j=1

Cµ
j ([0, 1]).

4.1. Geometric parameters

The geometric parameters µ ∈ I ⊂ Rnpa are defined as the variations of

the original coordinates of the control points of the NURBS curves describing

the boundary. More precisely, for each NURBS curve Cj, with j = 1, . . . ,M ,

having njcp + 1 control points, the undisturbed boundary is characterised by

the coordinates of the control points: Bj
i , for i = 0, . . . , njcp. This config-

uration will be used as the reference one in Ω and will be associated to a

reference coordinate system denoted by X. The distorted domain, Ωµ, will
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be associated to the spatial description x. The boundary in the spatial do-

main, ∂Ωµ, is defined by the position of the displaced control points, namely

Bj
i + δBj

i . The displacement range for each control point is characterised by

δBj
i ∈ Ij

i = [δxji , δx
j

i ]× [δyj
i
, δy

j

i ].

In fact, each displacement of a control point i on the j-th NURBS, δBj
i ,

might depend upon the parameters and can be written as

δBj
i = µi,j1 e1 + µi,j2 e2, (16)

where ei, for i = 1, 2, are the unit coordinate vectors. Then µ ∈ I :=

I1×I2×· · ·×IM , where Ij = Ij
1×Ij

2×· · ·I
j

n
j
cp+1

is the range of variation

of the coordinates of the control points of the curve Cj.

Consequently, the maximum number of geometric parameters is

npa =
M∑
j=1

(njcp + 1)nsd, (17)

but in practical problems, the number of geometric parameters npa is drasti-

cally lower than m because not all the control points of all the curves are to

be modified during the design stage.

Remark 2. In a practical setting it is common to introduce some restrictions

on the motion of the control points (viz. pure translations, rotations, expan-

sions...), meaning that the motion of a set of control points can be expressed

with a significantly low number of parameters.

4.2. Separated representation of the boundary displacement

The variation of a control point Bj
i of a NURBS curve Cj, namely δBj

i ,

changes the definition of the original curve only in the support of the basis
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Figure 1: Change in the shape of a NURBS curve induced by the variation of the coordi-

nates of the control point B3
4 given by δB3

4.

function Rj
i , given by the subspace of the parametric space [λi, λi+qj+1]. The

modified NURBS curve is parametrised by

Cµ
j (λ) =

n
j
cp∑

i=0

(Bj
i + δBj

i )R
j
i (λ) λ ∈ [0, 1]. (18)

Figure 1 illustrates the effect of modifying the coordinates of one control

point of a NURBS. The curve in red is the result of modifying the coordinates

of the control point B3
4 of the original curve in black, also depicted in Figure

A.34. It can be observed that both curves are identical in the interval [0,1/3]

of the parametric space whereas they differ in the interval [1/3,1], which is

the support of the basis function R3
4 associated to the control point B3

4.

Given a computational mesh for the reference configuration, Ω, the bound-

ary mesh nodes affected by the motion of a control point can be easily iden-

tified. The procedure starts by finding the NURBS curve to which each

boundary mesh node belongs and its associated parametric coordinate by

using a standard NURBS point projection algorithm [28]. For each bound-

ary mesh node Xk, the index j ∈ {1, . . . ,M} and parametric coordinate λk

such that Cj(λk) = Xk are computed. Then, for a deformed configuration,

induced by the variation of a control point Bj
i of a NURBS curve Cj, namely
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δBj
i , the new position of each boundary node is computed as xµk = Cµ

j (λk).

Therefore, the variation of the control points of a boundary curve Cj

induces a displacement of the boundary mesh nodes, namely

d∂j (Xk,µ) = xµk −Xk , for all k ∈ S,

where S = {l ∈ {1, 2, . . . , nmn} : X l ∈ ∂Ω} is the index set of mesh nodes on

the boundary of the computational domain and nmn is the total number of

mesh nodes. It is worth noting that d∂ denotes a displacement field defined

only on the boundary of the domain, different to the displacement field in

Equation (7) that is defined in the whole domain.

Using the expression of the original and modified NURBS boundary

curves, the displacement of the boundary mesh node Xk = Cj(λk) that

belongs to the NURBS curve Cj can be written in separated form as

d∂j (Xk,µ) =

n
j
cp∑

i=0

δBj
i R

j
i (λk) =

n
j
cp∑

i=0

nsd∑
s=1

µi,js esR
j
i (λk),

where the dependence of the displacements of the control points in terms of

the parameters described in (16) has been used. Moreover, since the NURBS

parameter λk is only dependent on the spatial coordinates Xk, and not on

the geometric parameters µ, the previous equation can be written as,

d∂(Xk,µ) =
M∑
j=1

d∂j (Xk,µ) =
M∑
j=1

n
j
cp∑

i=0

nsd∑
s=1

µi,js esR
j
i

(
C−1
j (Xk)

)
,

which characterises the displacement of the boundary nodes and has a sepa-

rated expression of the form

d∂(Xk,µ) =

npa∑
i=1

φi(µi)δi(Xk). (19)

Note that this expression is compatible with the desired structure of the

displacements described in Equation (7). In fact, it can be further compacted
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by means of the higher order PGD projection [25] to obtain a more compact

separation in the form of the displacement field in Equation (7), namely

d∂(Xk,µ) =

npa∑
i=1

φi(µi)δi(Xk) =
N∑
m=1

ψ∂m(µ)d∂m(Xk), (20)

where the precise expression of the parametric and spatial functions, ψ∂m and

d∂m respectively, is given by the higher order PGD projection described in

Section 3.5.

It is important to note that the total number of terms in the separated

representation, N , will be, in the majority of cases, much lower than npa,

which is defined in (17). In practical applications, a large percentage of

mesh boundary nodes will not be affected by a variation of the control points

of a particular NURBS curve describing the boundary, so the displacement

will be zero for a large number of boundary nodes. More precisely, the set

of mesh nodes affected by the variation of a control point Bj
i of a NURBS

curve Cj can be defined as

Sji = {l ∈ S : X l = Cj(λl) for λl ∈ [λi, λi+q+1]} . (21)

4.3. Separated representation of the geometric mapping

The proposed strategy to build a mapping Mµ between the reference

configuration, Ω, and the current configuration, Ωµ, consists on solving a solid

mechanics problem. The reference configuration is assumed to be a linear

elastic medium and the displacement of mesh boundary nodes, induced by

the variation of NURBS control points, is interpreted as a Dirichlet boundary

condition. The following problem governing the static deformation of Ω is

considered ∇X · σ + f = 0 in Ω

d(X) = d∂(X,µ) on ∂Ω,
(22)
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where f is an external force defined by the user. The stress tensor σ is given

by

σ =
Eν

(1 + ν)(1− 2ν)
tr(ε)I +

E

1 + ν
ε,

where E and ν denote the Young’s Modulus and the Poisson’s ratio of the

elastic medium and the deformation tensor is defined as

ε = ∇S
Xd :=

1

2

(
∇Xd+ (∇Xd)T

)
.

with d being the unknown displacement field.

This strategy has been successfully applied in the context of high-order

curved mesh generation, see [27, 29, 39] for further details. The key aspect

here is to write the approximated solution, dh, in separated form by using

the separated representation of the imposed boundary displacement derived

in Section 4.2.

The discretisation of the weak formulation associated to the strong form

of the solid mechanics problem (22) leads to a system of linear equations that

can be written as A11 A12

A21 A22

 d

d∂

 =

0

0

 , (23)

where d and d∂ are vectors containing the nodal values of the approximated

displacement dh and the imposed displacement of boundary nodes respec-

tively.

The matrix A11 in (23) is symmetric and positive definite. Thus, solv-

ing for d induces a linear application applied on d∂, see Appendix C for

more details. Since d∂ has a separable expression, see (19), the solution of

the previous system will induce a separated expression for all nodal values

and, consequently, the piecewise interpolation, standard in finite elements,
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produces a separated representation at any point of the domain, namely

dh(X,µ) =
N∑
m=1

ψm(µ)dm(X), (24)

which is exactly the desired structure of the displacements in Equation 7.

5. Numerical examples

This section presents three numerical examples that show the optimal ap-

proximation properties of the proposed PGD approach and its potential for

two and three dimensional problems involving geometric parameters as extra

coordinates. The examples involve the simulation of Stokes flows using a sep-

arable expression that employs the same parametric function for both velocity

and pressure. This alternative was shown to be superior to other approaches

in [15], for instance, to satisfy the so-called Ladyzhenskaya-Babuška-Brezzi

(LBB) condition [16]. In all the examples k denotes the degree of approx-

imation used for the velocity field and the parametric functions, whereas a

degree of approximation k−1 is used for the pressure field. This ensures sat-

isfaction of the LBB, although the accuracy of the pressure field is expected

to be lower than the accuracy of the velocity field.

5.1. Rotating Couette flow

The first example considers the Couette flow around two infinite coaxial

circular cylinders centred at the origin and with radius Rin and Rout respec-

tively, with Rin < Rout, as represented in Figure 2. The boundary conditions

correspond to known angular velocities, Ωin and Ωout, at Rin and Rout, re-

spectively. It is worth noting that the pressure must be specified at a point

to remove its indeterminacy, as only Dirichlet boundary conditions for the

velocity are considered. Here the pressure is imposed at one point of the

outer boundary.
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Figure 2: Computational domain for the solution of the rotating Couette flow and mag-

nitude of the velocity of the analytical solution.

The analytical solution for this problem is known [8]. The azimuthal

component of the velocity is given by

vφ =
R2

outΩout −R2
inΩin

R2
out −R2

in

r +
(Ωin − Ωout)R

2
outR

2
in

R2
out −R2

in

1

r
(25)

where r = ‖x‖2. The magnitude of the velocity of the analytical solution is

also depicted in Figure 2 for Ωin = 0 and Ωout = 1.

The inner radius Rin is considered an extra parameter within the pro-

posed PGD framework and the objective is to find, in the off-line stage, the

generalised velocity and pressure fields for Rin ∈ [1, 2.5]. It is worth noting

that the variation of the inner radius induces the variation of the eight control

points (i.e. 16 parameters in two dimensions) of the NURBS curve describ-

ing the inner circle, as represented in Figure 2. However, as mentioned in

Remark 2, the motion of these control points can be controlled by a single

parameter µ representing the variation of the radius of the inner circle.

In this example the reference configuration corresponds to Rin = 1 and

Rout = 5 and µ ∈ I1 = [0, 1.5]. Three unstructured triangular meshes of
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(a) Mesh 1 (b) Mesh 2 (c) Mesh 3

Figure 3: Three unstructured triangular meshes of the reference domain used for the

solution of the Couette flow problem.

(a) k = 2 (b) k = 3 (c) k = 4

Figure 4: Quality of the coarsest mesh of the reference domain, shown in Figure 3 (a),

using different degrees of approximation.

the reference domain, with 251, 1,023 and 4,256 elements respectively, are

represented in Figure 3. These meshes are generated using the technique

proposed in [35] to guarantee that elements without an edge on a curved

boundary can be mapped to a reference triangle using an affine mapping.

The quality of the coarsest mesh of the reference domain, measured using

the scaled Jacobian [39], is represented in Figure 4. The minimum quality

observed is, as expected near the inner boundary where the elements show

the maximum distortion.

Figure 5 shows the deformed configuration for three values of the param-
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(a) µ = 0.5 (b) µ = 1 (c) µ = 1.5

Figure 5: Quality of the coarsest mesh of the deformed domain with k = 4 for different

values of the parameter µ.
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Figure 6: Evolution of the quality of the deformed meshes corresponding to the reference

mesh of Figure 3 (a) as a function of the parameter µ using different meshes and degrees

of approximation.

eter µ, namely µ = 0.5, µ = 1 and µ = 1.5. These plots also represent the

quality of the deformed mesh obtained by using the elastic analogy described

in Section 4.3. In all cases, the minimum quality is higher than 0.65.

To further illustrate the robustness of the mesh deformation technique

employed within the proposed PGD framework, Figure 6 shows the evolution

of the quality of the deformed meshes as a function of the parameter µ

using four different meshes and three different degrees of approximation. As

expected, the worst case scenario corresponds to the maximum deformation

induced by a parameter µ = 1.5, but in all cases the minimum quality is
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(a) m = 1 (b) m = 2 (c) m = 3 (d) m = 4

(e) m = 5 (f) m = 6 (g) m = 7 (h) m = 8

Figure 7: First eight normalised spatial modes of [Hµ]11 on the mesh of Figure 3 (c) with

800 elements in the parametric dimension and with k = 4.

always higher than 0.6. Furthermore, it is worth noting that the influence of

the parameter µ on the quality of the deformed meshes is less important for

finer meshes.

A crucial aspect of the proposed PGD strategy is the separation of the

matrix Hµ defined in Equation (6). As discussed previously, Hµ does not

generally admit an exact separable expression and therefore a separable ap-

proximation is computed here via the higher-order PGD-projection [25].

Figure 7 shows the first eight normalised spatial modes of the component

[Hµ]11. The results suggest that the first two modes capture the main global

features of [Hµ]11, whereas the rest of modes capture the local variations near

the inner circle. The results for the second diagonal component, [Hµ]22, not

displayed for brevity, show the same behaviour but with the expected rotation

of 90 degrees due to the symmetry of the domain and the displacement field.

Similarly, Figure 8 shows the first eight normalised spatial modes of the
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(a) m = 1 (b) m = 2 (c) m = 3 (d) m = 4

(e) m = 5 (f) m = 6 (g) m = 7 (h) m = 8

Figure 8: First eight normalised spatial modes of [Hµ]12 on the mesh of Figure 3 (c) with

800 elements in the parametric dimension and with k = 4.
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Figure 9: First eight parametric modes of Hµ on the mesh of Figure 3 (c) with 800

elements in the parametric dimension and with k = 4.

component [Hµ]12. The results show, again how the first modes capture

the global behaviour of the component [Hµ]12, whereas the last modes show

relevant spatial variations in the close vicinity of the inner circle.

The first eight normalised parametric modes of Hµ are represented in

Figure 9. It is worth recalling that the same parametric modes are associated
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Figure 10: Evolution of the amplitude of the spatial modes αm of the matrix Hµ using

different meshes and degrees of approximation.

to all the components of the matrix Hµ.

The amplitude, αm, corresponding to the mode m of the separation of

Hµ, is computed as the product of the Euclidean norms of the spatial and

parametric functions. Figure 10 shows the amplitudes of [Hµ]11 using three

different meshes and three different degrees of approximation. The results

show that, for this example, the number of terms required to obtain a separa-

ble approximation of the matrix Hµ using the higher-order PGD-projection

is completely independent on the spatial discretisation. In all cases, 12 modes

provide a decrease in the amplitude αm of exactly 13 orders of magnitude and

the amplitude is the same in all meshes and for all degrees of approximation.

Using the separation of the matrix Hµ, the rotating Couette flow prob-

lem is solved to obtain the generalised solution of the Stokes problem. The

first eight normalised spatial modes of the magnitude of the velocity field

are shown in Figure 11. The simulation was performed using the mesh of

Figure 3 (c), 800 equally-spaced elements in I1 = [0, 1.5] and a degree of

approximation k = 4. The solution of the coaxial Couette flow problem re-

quires imposing Dirichlet boundary conditions for the velocity at the inner

and outer boundaries of the spatial domain. This is implemented within the

PGD framework by adding one initial mode that fulfils the non-homogeneous
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(a) m = 1 (b) m = 2 (c) m = 3 (d) m = 4

(e) m = 5 (f) m = 6 (g) m = 7 (h) m = 8

Figure 11: First eight normalised spatial modes of the magnitude of the velocity computed

on the mesh of Figure 3 (c), 800 elements in the parametric dimension and a degree of

approximation k = 4.

Dirichlet boundary conditions. Its spatial part is computed as the solution

of the Stokes problem at the reference mesh and its parametric component

is taken as a constant function equal to one. The next PGD modes are

computed by imposing homogeneous Dirichlet boundary conditions, ensur-

ing that the separated PGD solution satisfies the required Dirichlet boundary

conditions.

The first eight normalised parametric modes associated to the spatial

modes of Figure 11 are represented in Figure 12. It is worth recalling that

the same parametric mode is associated to all the components of the velocity

and the pressure fields. The results reveal that the parametric modes of the

velocity field show a similar behaviour compared to the parametric modes of

the separation of Hµ, shown in Figure 9. The first two modes are smooth

whereas the next modes, that contribute less to the global solution, show a
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Figure 12: First eight parametric modes of the rotating Couette flow on the mesh of

Figure 3 (c) with 800 elements in the parametric dimension and with k = 4.

more oscillatory character.

To illustrate the gain in accuracy as the number of modes increases, Fig-

ure 13 shows the absolute value of the error in the magnitude of the velocity

computed with the proposed PGD approach using N modes for different val-

ues of the parameter µ. The computation has been performed on the mesh

of Figure 3 (c), with 800 elements in the parametric dimension and a degree

of approximation k = 4. In all cases, the results illustrate that the compu-

tation with four modes is almost three orders of magnitude more accurate

than using a single mode.

To further analyse the accuracy of the proposed PGD approach when the

number of modes is increased, the relative error in the L2(Ω × I1) norm,

defined as

εPGD =


∫
I1

∫
Ω

(uPGD − u) · (uPGD − u)dΩ dµ∫
I1

∫
Ω

u · u dΩ dµ


1/2

, (26)

is studied. Figure 14 depicts the evolution of εPGD as a function of the number

of PGD modes for three different degrees of approximation and four different

meshes. The discontinuous lines in Figure 14 show the relative error of the
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(a) µ = 0.5, N = 1 (b) µ = 0.5, N = 2 (c) µ = 0.5, N = 4

(d) µ = 1, N = 1 (e) µ = 1, N = 2 (f) µ = 1, N = 4

(g) µ = 1.5, N = 1 (h) µ = 1.5, N = 2 (i) µ = 1.5, N = 4

Figure 13: Absolute value of the error in the magnitude of the velocity computed with

the proposed PGD approach using N modes for different values of the parameter µ. The

computation has been performed on the mesh of Figure 3 (c), with 800 elements in the

parametric dimension and a degree of approximation k = 4.

standard FEM solution measured in the L2(Ω×I1) norm. The evaluation of

the error of the FEM solution in the L2(Ω× I1) norm requires the solution

of as many FEM problems as the number of elements in the parametric di-
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Figure 14: Error of the PGD solution as a function of the number of PGD modes using

three different meshes for the solution of the Couette flow problem. The discontinuous

line represents the error using standard FEM.

mension used by the PGD approach, multiplied by the number of integration

points within each element.

The results clearly illustrate the increased level of accuracy as the number

of modes is increased. In addition, the increased accuracy induced by the

use of finer meshes or higher degrees of approximation can be observed. It

worth noting that the PGD solution achieves its maximum accuracy (i.e.

the accuracy of a standard FEM solution) using a low number of modes. For

coarse meshes, the maximum accuracy of the PGD solution is achieved with

three or four modes. For finer meshes, the PGD approach provides accurate

results with only three or four modes and requires between six and 11 modes

to reach the same level of error as the standard FEM solution.

Next, the accuracy of the PGD solution for different values of the param-

eter µ is studied. Figure 15 shows the difference between the PGD solution

and the FEM solution, in logarithmic scale, as a function of the parameter

µ and the number of PGD modes using different degrees of approximation.

The results show that the accuracy of the PGD solution depends only weakly

on the value of the parameter selected. For values of µ = 0, corresponding

to the undeformed configuration, the error is lower for a moderate number of
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(a) k = 2 (b) k = 3 (c) k = 4

Figure 15: Difference between the PGD solution and the FEM solution, in logarithmic

scale, as a function of the parameter µ and the number of PGD modes using different

degrees of approximation.

PGD modes. This is expected because for µ = 0 the displacement function

d is null and the Jacobian Jµ is equal to the identity matrix. But for a large

enough number of modes, the difference between the PGD solution and the

FEM solution shows very little dependence on the value of µ, illustrating the

robustness of the proposed PGD approach.

The last numerical study for the rotation Couette flow considers a mesh

convergence analysis for the proposed PGD approach. The PGD solution is

computed on the three meshes shown in Figure 3 using three different orders

of approximation. Figure 16 shows the evolution of the relative error in the

L2(Ω×I1) norm, εPGD, as a function of the characteristic element size h. For

each simulation the minimum number of PGD modes required to achieve

the maximum accuracy is considered, as described earlier when presenting

the results of Figure 14. The results show that, when enough modes are

considered within the PGD framework, the error εPGD converges with near an

optimal rate hk+1.
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Figure 16: Relative error between the PGD and analytical solutions in the L2(Ω×I1) norm

as a function of the characteristic element size h for different degrees of approximation k.

Figure 17: Detail of the computational domain for the solution of the Stokes flow around

two circular cylinders.

5.2. Stokes flow around two circular cylinders

The second example is inspired by the studies of [1, 36] on the analysis of

micro-swimmers. The problem involves the computation of the Stokes flow

in a rectangular channel of dimension 40× 14 with two circular cylinders of

radius R1 and R2, where the distance between their centres is D, as repre-

sented in Figure 17. Slip boundary conditions are considered on the surface

of the cylinders, a free slip boundary condition on the top and bottom bound-

aries, a imposed horizontal velocity of unit magnitude on the left boundary

and a homogeneous Neumann boundary condition on the right part of the

boundary.
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The geometric parameters considered are the radius of the cylinders and

the distance between their centres. In addition, as done in the context of

microswimmers, it is assumed that the variation of the two radius is linked

so that R2
1 + R2

2 remains constant, that is the area enclosed by the two

cylinders is constant. It is worth noting that the variation of these geometric

parameters involve the variation of all the control points (i.e. 32 parameters)

of the two NURBS describing the circles represented in Figure 17. However,

as done in the previous example, it is possible to re-parametrise the motion

in terms of only two parameters, µ1 ∈ I1 = [−1, 1] which controls the radius

of the cylinders and µ2 ∈ I2 = [−1, 1] controlling the distance between the

cylinders.

The reference configuration corresponds to R1 = R2 = 0.8 (µ1 = 0) and

D = 14 (µ2 = 0). The minimum and maximum values for the radius of

the cylinders are 0.3578 (µ1 = −1) and 1.0733 (µ1 = 1) which, given the

link between R1 and R2, correspond to the cases where the area of one of the

circles is 90% and 10% respectively of the total area occupied by both circles.

For the distance, the maximum and minimum values are 15.5 (µ2 = −1) and

12.5 (µ2 = 1) respectively.

A computational mesh with 2,338 triangular elements is generated for the

reference configuration. For a cubic degree of approximation (for geometry

and velocity), Figure 18 shows the quality of the mesh for the reference con-

figuration and for two deformed configurations corresponding to the extreme

cases with µ1 = µ2 = −1 and µ1 = µ2 = 1. It can be observed that, even

for the large deformations corresponding to the extreme cases of Figures 18

(b) and (c), the minimum quality (measured as the scaled Jacobian) is near

0.7, which is similar to the quality observed in the previous example for a

simpler problem.
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(a) µ1 = µ2 = 0

(b) µ1 = µ2 = −1

(c) µ1 = µ2 = 1

Figure 18: Computational mesh and quality for three values of the geometric parameters

µ1 and µ2.

Next, the separation of the matrix Hµ, defined in Equation (6), is consid-

ered. As discussed previously Hµ does not generally admit an exact separable

expression and therefore a separable approximation is computed here via the

higher-order PGD-projection described in [25].

Figure 19 shows the first six normalised spatial modes of the component
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(a) m = 1 (b) m = 2 (c) m = 3

(d) m = 4 (e) m = 5 (f) m = 6

Figure 19: First six normalised spatial modes of [Hµ]11 on the mesh of Figure 18 (a) with

25 elements in I1, 45 elements in I2 and with k = 4.

(a) m = 1 (b) m = 2 (c) m = 3

(d) m = 4 (e) m = 5 (f) m = 6

Figure 20: First six normalised spatial modes of [Hµ]12 on the mesh of Figure 18 (a) with

25 elements in I1, 45 elements in I2 and with k = 4.

[Hµ]11. Similarly, Figures 20 and 21 show the first six normalised spatial

modes of the component [Hµ]12 and [Hµ]22 respectively.

It is worth noting that some of the modes in Figure 19 resemble the modes

obtained in the previous example and represented in Figure 7, whereas other

modes display a completely different spatial variation. This indicates that

the similar modes are the ones that carry information about the change of the

radius of the cylinders whereas the different ones are related to the variation

of the distance between the cylinders.

Contrary to the previous example, it is apparent that more modes are
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(a) m = 1 (b) m = 2 (c) m = 3

(d) m = 4 (e) m = 5 (f) m = 6

Figure 21: First six normalised spatial modes of [Hµ]22 on the mesh of Figure 18 (a) with

25 elements in I1, 45 elements in I2 and with k = 4.

necessary to describe the global behaviour of the matrix Hµ. For instance,

in the previous example only two modes were needed to describe the global

information of the matrix Hµ whereas now the fourth mode of all the compo-

nents of Hµ and the fifth mode of [Hµ]22 contain global information. Also,

contrary to the previous example, it is interesting to observe the different

behaviour of the modes associated to the diagonal terms of the matrix Hµ.

This is due to the more complex motion induced by the geometric parame-

ters, compared to the previous example.

The first eight normalised parametric modes of Hµ are represented in

Figure 22. It is worth recalling that the same parametric modes are associ-

ated to all the components of the matrix Hµ. It is interesting to observe the

similar qualitative behaviour of the parametric modes of µ1, represented in

Figure 22 (a), and the parametric modes obtained in the previous example,

represented in Figure 9. This is expected as in both cases these modes are

related to the variation of the radius of a circle. The parametric modes as-

sociated to the distance between the cylinders, represented in Figure 22 (b),

display a less oscillatory character than the modes associated to the variation

of the radius of a circle.
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(b) µ2

Figure 22: First eight parametric modes of Hµ on the mesh of Figure 18 (a) with 25

elements in I1, 45 elements in I2 and with k = 4.
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Figure 23: Evolution of the amplitude of the spatial modes αm of the matrix Hµ using

different degrees of approximation.

To illustrate the increased complexity due to the introduction of two

geometric parameters, Figure 23 shows the amplitude, αm, corresponding

to the mode m of the separation of Hµ, computed as the product of the

Euclidean norms of the spatial and parametric functions.

The amplitude, αm, corresponding to the mode m of the separation of

Hµ, is computed as the product of the Euclidean norms of the spatial and

parametric functions. Figure 10 shows the amplitudes of [Hµ]11 using four

different meshes and three different degrees of approximation. The results
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show that, for this example, the number of terms required to obtain a separa-

ble approximation of the matrix Hµ using the higher-order PGD-projection

is significantly higher than in the previous example. To provide a decrease

in the amplitude αm of six orders of magnitude the number of modes vary

from 50 and 63 for an order of approximation ranging from k = 2 to k = 4,

showing again that the number of modes is not highly dependent upon the

spatial discretisation.

Using the separation of the matrix Hµ, the Stokes flow around the two

cylinders is computed with the proposed approach to obtain the generalised

solution. The first six normalised spatial modes of the magnitude of the

velocity and the pressure fields are shown in Figure 24. The simulation was

performed using the mesh of Figure 18 (a), 25 equally-spaced elements in

I1 = [−1, 1], 45 equally-spaced elements in I2 = [−1, 1] and a degree of

approximation k = 4.

The first eight normalised parametric modes associated to the spatial

modes of Figure 24 are represented in Figure 25. It is worth recalling that

the same parametric mode is associated to all the components of the velocity

and the pressure fields.

Contrary to the previous example, it can be observed that the spatial

modes for the velocity and the pressure do not resemble the spatial modes of

the matrix Hµ, illustrating the increased complexity of the current problem.

In addition, it is worth noting that the parametric modes associated to the

first parameter µ1 shows a more oscillatory character than µ2 when the sep-

aration of the matrix Hµ is studied (as shown in Figure 22), whereas the the

second parameter µ2 shows a more oscillatory character than µ1 when the

separation of the velocity and pressure is considered (as shown in Figure 25).

This indicates that the flow around the two cylinders changes slowly when
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(a) Velocity, m = 1 (b) Pressure, m = 1

(c) Velocity, m = 2 (d) Pressure, m = 2

(e) Velocity, m = 3 (f) Pressure, m = 3

(g) Velocity, m = 4 (h) Pressure, m = 4

(i) Velocity, m = 5 (j) Pressure, m = 5

(k) Velocity, m = 6 (l) Pressure, m = 6

Figure 24: First six normalised spatial modes of the magnitude of the velocity (left) and

pressure (right) computed on the mesh of Figure 18 (a) with 25 elements in I1, 45 elements

in I2 and with k = 4.
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(b) µ2

Figure 25: First eight parametric modes of the Stokes flow around two circular cylinders

on the mesh of Figure 18 (a) with 25 elements in I1, 45 elements in I2 and with k = 4.

the radius of the cylinders is varied whereas the flow changes more rapidly

when the distance between the cylinders is varied.

Next, the solutions obtained with the proposed PGD framework are rep-

resented for different values of the geometric parameters. Figure 26 shows the

magnitude of the velocity and the pressure fields for the three configurations

shown in Figure 18.

To illustrate the accuracy of the proposed approach, Figure 27 shows the

difference between the standard FE solution and the PGD solution for the

magnitude of the velocity and the pressure corresponding to the three config-

urations shown in Figure 18. For all the configurations, the results obtained

with the proposed PGD framework are in excellent agreement with the results

obtained using a standard FE solver. For the first configuration displayed in

Figure 27, corresponding to µ1 = µ2 = 0, the difference between the mag-

nitude of the velocity field using FEM and the PGD in the L2(Ωµ) norm is

0.0143 and the difference between the pressure field using FEM and the PGD

in the L2(Ωµ) norm is 0.0277. For the second configuration of Figure 27, cor-

responding to µ1 = µ2 = −1, the difference between the magnitude of the
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(a) Velocity, µ1 = µ2 = 0 (b) Pressure, µ1 = µ2 = 0

(c) Velocity, µ1 = µ2 = −1 (d) Pressure, µ1 = µ2 = −1

(e) Velocity, µ1 = µ2 = 1 (f) Pressure, µ1 = µ2 = 1

Figure 26: Magnitude of the velocity (left) and pressure (right) computed on the three

configurations shown in Figure 18 with 25 elements in I1, 45 elements in I2 and with

k = 4.

velocity and pressure fields using FEM and the PGD in the L2(Ωµ) norm

are 0.0267 and 0.0592 respectively. Finally, for the last configuration of Fig-

ure 27, corresponding to µ1 = µ2 = 1, the difference between the magnitude

of the velocity and pressure fields using FEM and the PGD in the L2(Ωµ)

norm are 0.0218 and 0.0787 respectively. It is worth emphasising that the

accurate results obtained, with differences between PGD and standard FE

simulations lower than 8% for the whole range of geometric configurations,

have been obtained with very coarse meshes in the parametric spaces, only

25 elements in I1 and 45 elements in I2.

It is also worth recalling that the higher accuracy obtained in the ve-

locity field, compared to the pressure, is due to the use of a higher order
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(a) Velocity, µ1 = µ2 = 0 (b) Pressure, µ1 = µ2 = 0

(c) Velocity, µ1 = µ2 = −1 (d) Pressure, µ1 = µ2 = −1

(e) Velocity, µ1 = µ2 = 1 (f) Pressure, µ1 = µ2 = 1

Figure 27: Difference between the standard FE solution and the PGD solution for the

magnitude of the velocity (left) and pressure (right) computed on the three configurations

shown in Figure 26.

approximation for the velocity to ensure satisfaction of the LBB condition.

5.3. Stokes flow around an arbitrarily shaped vesicle

The last example is inspired by the study of vesicles suspended in a vis-

cous flow presented in [37]. The characterisation of such flows is of interest

in many biomechanical applications and the simulations often require the

computation to be performed for a large variety of geometric configurations.

This example is used to demonstrate the applicability of the proposed tech-

nique in three dimensions by using three geometric parameters that lead to

substantial variations in the geometric model.

The problem considered here involves the simulation of the Stokes flow

around an arbitrarily shaped vesicle in a channel of dimension 10× 10× 20.
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Figure 28: Geometric model of a vesicle, showing the control net and the breaklines.

Slip boundary conditions are considered on the surface of the vesicle, an

imposed vertical velocity of unit magnitude in the inflow part of the boundary

(z = −10), a homogeneous Neumann boundary condition on the outflow part

of the boundary (z = 10) and free slip boundary conditions on the remaining

parts of the boundary.

The generic vesicle considered is modelled using a single degenerate cubic

NURBS with 20 control points and four patches, as illustrated in Figure 28.

The control points are arranged in three groups, according to their z co-

ordinate being positive, zero or negative. The geometric parametrisation

considers the motion of all the three groups independently by using three

parameters, µ1, µ2 and µ3 respectively. Each parameter is used to vary the

radial position of the control points whilst maintaining its z coordinate. For

the control points with positive z coordinate the radial coordinate is given

by r + 3µ1/4 with µ1 ∈ [−1, 1]. Similarly for the control points with zero

or positive z coordinate the radial coordinate is r + 3µ2/4 and r + 3µ3/4
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(a) µ = (−1,−1, 1) (b) µ = (−1, 1, 1) (c) µ = (0,−1, 1)

(d) µ = (0, 1, 0) (e) µ = (1, 0,−1) (f) µ = (1, 0, 0)

Figure 29: Geometric model of six different vesicle obtained by deforming the reference

configuration of Figure 28.

respectively, with µ2 ∈ [−1, 1] and µ3 ∈ [−1, 1].

The reference configuration, corresponding to µ = (µ1, µ2, µ3) = (0, 0, 0),

is shown in Figure 28.

The generalised PGD solution is computed using a tetrahedral mesh with

6,712 elements, 10 equally-spaced elements in each parametric interval I1 =

I2 = I3 = [−1, 1] and a degree of approximation k = 4.

To illustrate the variation in the geometry induced by the selected ge-

ometric parameters, Figure 29 shows six different geometric configurations

using different values for the geometric parameters. It can be observed that

the variations of the control points considered lead to substantial changes

in the geometric model. These variations induce a deformation of the mesh
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(a) µ = (−1,−1, 1) (b) µ = (−1, 1, 1) (c) µ = (0,−1, 1)

(d) µ = (0, 1, 0) (e) µ = (1, 0,−1) (f) µ = (1, 0, 0)

Figure 30: Detail of the six deformed high-order meshes corresponding to the configura-

tions shown in Figure 29.

generated for the reference configuration, computed in a separated form by

employing the strategy described in Section 4.3. Figure 30 shows six de-

formed meshes near the vesicle that correspond to the six variations of the

geometric parameters depicted in Figure 29. The colours represent the qual-

ity of the elements, measured as the scaled Jacobian.

Following the strategy described in this work, the matrix Hµ is separated

first using the higher-order PGD-projection. To provide a decrease in the

amplitude αm of five orders of magnitude, 50 modes are required in this

example. It is worth noting that this is almost the same number of modes

required for the previous two dimensional example to provide the same degree
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(a) µ = (−1,−1, 1) (b) µ = (−1, 1, 1) (c) µ = (0,−1, 1)

(d) µ = (0, 1, 0) (e) µ = (1, 0,−1) (f) µ = (1, 0, 0)

Figure 31: Magnitude of the velocity and isolines for the six configurations shown in

Figure 29.

in the amplitude of the modes of the matrix Hµ.

Using the separation of the matrix Hµ, the Stokes flow around the vesicle

is computed with the proposed approach to obtain the generalised solution.

A total of 160 modes are computed, being the amplitude of the last mode

three orders of magnitude lower than the amplitude of the first mode.

Figures 31 and 32 show the velocity and pressure fields for the six geomet-

ric configurations shown in Figure 29. These configurations are obtained
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(a) µ = (−1,−1, 1) (b) µ = (−1, 1, 1) (c) µ = (0,−1, 1)

(d) µ = (0, 1, 0) (e) µ = (1, 0,−1) (f) µ = (1, 0, 0)

Figure 32: Pressure field for the six configurations shown in Figure 29.

in the on-line phase as particularisations of the genearlised, six dimensional,

PGD solution. Both the velocity and pressure fields illustrate the ability of

the proposed PGD approach to capture significant changes in the flow field

induced by geometric variations of the CAD model.
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To quantify the accuracy of the proposed technique in a more complex

problem in three dimensions and with three geometric parameters, the par-

ticularised solutions for the velocity and pressure are compared to standard

finite element computations performed on the deformed configurations for

the six cases displayed in Figures 31 and 32. For the velocity field, the dif-

ference between the PGD and the finite element solution, measured in the

L2(Ω) norm, is 0.7%, 0.8%, 0.8%, 0.4%, 0.6% and 0.7% for the six cases

shown in Figure 31 respectively. Similarly, for the pressure field, the differ-

ence between the PGD and the finite element solution, measured in the L2(Ω)

norm, is 7%, 7%, 7%, 3%, 5% and 6% for the six cases shown in Figure 32

respectively. It is worth emphasising that the higher accuracy observed in

the velocity is due to the use of a higher interpolation degree for the velocity

field, compared to the pressure field, in order to satisfy the LBB conditions.

6. Concluding remarks

A computational framework for the computation of off-line solutions for

a set of parameters describing the geometry of a domain has been presented.

The proposed approach considers as parameters of the generalised PGD so-

lution the control points of the CAD boundary representation of the com-

putational domain. A mapping between a reference configuration and the

current configuration is proposed by interpreting the geometric changes as

a displacement field derived from a linear elastic problem. The key aspect

of the proposed approach is that the displacement field is explicitly written

in a separable form. This approach enables the incorporation of the PGD

rationale in a high-order finite element context.

The potential of the proposed approach is shown for a variety of problems

involving the solution of the Stokes equation in geometrically parametrised
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domains, both in two and three dimensions. The problems, of increasing

difficulty show the optimal approximation properties of the method and its

ability to accurately capture the flow features for significant changes of the

geometric model. For the most complex problem considered in this work,

the generalised solution computed with three geometric parameters in three

dimensions show good agreement when compared to a standard finite element

computation, with errors in the velocity field lower than 1% and errors in

the pressure field below 8%.

Next, the necessary concepts about NURBS curves are briefly recalled

and the proposed strategy to build a geometric mapping Mµ that can be

written in the separated form (7) is presented in detail.

Appendix A. Key concepts on NURBS

Appendix A.1. NURBS curves

A qth-degree NURBS curve is a piecewise rational function defined in

parametric form as

C(λ) =

ncp∑
i=0

BiRi(λ) λ ∈ [0, 1] (A.1)

where {Bi} are the coordinates of the ncp + 1 control points (forming the

control polygon) and {Ri(λ)} are rational basis functions defined as

Ri(λ) = νiC
q
i (λ)

/ (
ncp∑
i=0

νiC
q
i (λ)

)
.

In the above expression {νi} are the control weights associated to the

control points and {Cq
i (λ)} are the normalized B-spline basis functions of
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degree q, which are defined recursively by

C0
i (λ) =

1 if λ ∈ [λi, λi+1)

0 elsewhere

Ck
i (λ) =

λ− λi
λi+k − λi

Ck−1
i (λ) +

λi+k+1 − λ
λi+k+1 − λi+1

Ck−1
i+1 (λ)

for k = 1, . . . , q and where λi (for i = 0, . . . , nk) are the knots or breakpoints,

which are assumed ordered 0 ≤ λi ≤ λi+1 ≤ 1. They form the so-called knot

vector,

Λ = {0, . . . , 0︸ ︷︷ ︸
q+1

, λq+1, . . . , λnk−q−1, 1, . . . , 1︸ ︷︷ ︸
q+1

},

which uniquely describes the B-spline basis functions. The number of control

points, ncp + 1, and knots, nk + 1, are related to the degree of the parametri-

sation, q, by the relation nk = ncp + q + 1, see [28] for more details.

Figure A.33 shows an example of a two dimensional domain Ωµ where the

boundary is described by five NURBS curves. The curve C3 in Figure A.33

(b) is represented in Figure A.34 with the corresponding control polygon,

formed by six control points and the breakpoints. The knot vector for this

curve is given by

Λ = {0, 0, 0, 1/3, 2/3, 1, 1, 1}.

Appendix A.2. NURBS surfaces

A NURBS surface of degree q in λ and degree r in κ, is a piecewise

rational function defined in parametric form as

S(λ, κ) =

ncp∑
i=0

mcp∑
l=0

BilRi,l(λ, κ) 0 ≤ λ, κ ≤ 1,

where {Bil} are the coordinates of the (ncp+1)(mcp+1) control points (defin-

ing the control net) and {Ril} are rational basis functions defined as

Ril(λ, κ) = νil S
q,r
i,l (λ, κ)

/( ncp∑
i=0

mcp∑
l=0

νil S
q,r
i,l (λ, κ)

)
.
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(b)

Figure A.33: (a) Domain Ωµ and (b) NURBS curves describing the boundary of Ωµ, where

each colour represents a different curve.
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5=C3(1)

B3
4

Figure A.34: NURBS curve (solid line), control points (denoted by �), control polygon

(dashed line) and breakpoints (denoted by ◦).

In the above expression {νil} are the control weights associated to the

control points and {Sq,ri,l (λ, κ)} are the 2D B-spline basis functions of degree

q in λ and r in κ. Each 2D B-Spline basis function is defined as a tensor

product of 1D basis functions, that is

Sq,ri,l (λ, κ) := Cq
i (λ)Cr

l (κ).
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Appendix B. Integration within a CAD environment in 3D

In three dimensions, the boundary of the parameterized domain, ∂Ωµ, is

assumed to be described by using a set NURBS surfaces {Sµj }j=1,...,M , being

M the total number of surfaces, namely

∂Ωµ =
M⋃
j=1

Sµj ([0, 1]2).

Next, the necessary concepts about NURBS surfaces are briefly recalled

and the minimum changes that are required to extend the technique pre-

sented in Section 4 to three dimensional domains are detailed.

Appendix B.1. Geometric parameters

The geometric parameters µ ∈ I ⊂ Rnpa are defined as the variations of

the original coordinates of the control points of the NURBS surfaces de-

scribing the boundary. More precisely, for each NURBS curve Sj, with

j = 1, . . . ,M , having (njcp + 1)(mjcp + 1) control points, the undisturbed

boundary is characterised by the coordinates of the control points: Bj
il, for

i = 0, . . . , njcp and l = 0, . . . , mjcp. The boundary of the distorted domain, ∂Ωµ,

is defined by the position of the displaced control points, namely Bj
il + δBj

il.

The displacement range for each control point is characterised by

δBil
il ∈ Ij

il = [δxjil, δx
j

il]× [δyj
il
, δy

j

il]× [δzjil, δz
j

il].

In fact, each displacement of a control point on the j-th NURBS, δBj
il, might

depend upon the parameters and can be written as

δBj
il = µil,j1 e1 + µil,j2 e2 + µil,j3 e3, (B.1)

where ei, for i = 1, 2, 3, are the unit coordinate vectors. Then µ ∈ I :=

I1 × I2 × · · · × IM , where Ij = Ij
1 × Ij

2 × · · ·I
j

(njcp+1)(mjcp+1)
is the range of

variation of the coordinates of the control points of the curve Sj.
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Appendix B.2. Separated representation of the boundary displacement

The variation of a control point Bj
il of a NURBS surface Sj, namely δBj

il,

changes the definition of the original curve only in the support of the basis

function Rj
il, given by the subspace of the parametric space [λi, λi+qj+1] ×

[κl, κl+rj+1]. The modified NURBS surface is parametrised by

Sµj (λ, κ) =

n
j
cp∑

i=0

m
j
cp∑
l=0

(Bj
il + δBj

il)R
j
il(λ, κ) 0 ≤ λ, κ ≤ 1.

As in the two dimensional case, the displacement of the boundary mesh

node Xk = Sj(λk, κk) that belongs to the NURBS curve Sj can be written

in separated form as

d∂j (Xk,µ) =

n
j
cp∑

i=0

m
j
cp∑
l=0

nsd∑
s=1

µi,js esR
j
il(λk, κk),

where the dependence of the displacements of the control points in terms of

the parameters described in Equation (B.1) has been used. Moreover, since

the NURBS parameterd (λk, κk) is only dependent on the spatial coordinates

Xk, and not on the geometric parameters µ, the previous equation can be

written as,

d∂(Xk,µ) =
M∑
j=1

d∂j (Xk,µ) =
M∑
j=1

n
j
cp∑

i=0

m
j
cp∑
l=0

nsd∑
s=1

µil,js esR
j
il

(
S−1
j (Xk)

)
,

which characterises the displacement of the boundary nodes and has the de-

sired separated form, as in the two dimensional case given by Equation (19).

Appendix B.3. Separated representation of the geometric mapping

The strategy to obtain a separated representation of the geometric map-

ping is not dependent on the dimensionality of the problem. Therefore, the

strategy described in Section 4.3 is also valid in three dimensions. The im-

plementation details are given in Appendix C.
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Appendix C. Implementation details of the separated representa-

tion of the geometric mapping

To obtain a separated representation of the displacement function in the

whole domain, the solid mechanics problem (22) is considered. Its discreti-

sation leads to the system of equations (23).

Assuming that the mesh nodes are ordered so that the boundary nodes

are first, the vector D is given by

D =
(
DX1

1 , . . . , D
Xnsd

1 , DX1
2 , . . . , D

Xnsd

2 , . . . , DX1

|S| , . . . , D
Xnsd

|S|

)T
,

where DXl
k is the imposed displacement of node Xk in the Xl direction.

As usual in a FE context, the modified system of linear equations to be

solved, after accounting for the Dirichlet boundary conditions, is

A11d = −A12D.

The solution of this system of linear equations can be written as

d = −A−1
11 A12D =

|S|∑
k=1

BkDk (C.1)

where Dk =
(
DX1
k , . . . , D

Xnsd

k

)T
and Bk denotes the block of the matrix

B := −A−1
11 A12 containing the columns from nsd(k − 1) + 1 to nsdk, with

dimension nsd|S| × nsd.

Using the separated representation of the imposed displacement (19) for

each boundary node, the following separated representation of the nodal

values of the displacement is obtained

d =

|S|∑
k=1

Bk

M∑
j=1

n
j
cp∑

i=0

Φj
i (µ)Θj

i (Xk),

leading to the separated representation of the approximation of the displace-

ment function given by Equation (24).
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It is worth noting that the matrix B in Equation (C.1) only depends

on the spatial discretisation of the original configuration, Ω, and the selected

material parameters (E and ν) and it is independent on the geometric param-

eters µ. Therefore, it is possible to pre-compute and store the matrix B so

that the separated representation of the displacement of Equation (C.1) can

be computed with a negligible cost for different imposed boundary displace-

ments (i.e. for different configurations Ωµ induced by different variations of

the geometric parameters).

It is important to recall that the dimension of the matrix B is nsd(nmn −

|S|)× nsd|S|, which, in practical applications, is much lower than the size of

a standard FE matrix, namely nsdnmn × nsdnmn.
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paradigm for thin-shell finite-element analysis. International Journal

for Numerical Methods in Engineering, 47(12):2039–2072, 2000.
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