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Abstract

Recently, the so-called Very High Bond (VHB in short) tape has proven to be an ideal polymer for producing
devices made of electric field-responsive functional materials, e.g., actuators in soft robotics, stretch sensors
in wearable devices, and energy harvesters generating power from ambient motions. The VHB polymer
is commercially available in several thicknesses. For this study, we have selected VHB 4905 due to its
wide use as a common material for dielectric elastomers. The acrylic-based polymer is highly deformable,
extremely viscoelastic, and highly sensitive to temperature fluctuations. Hence, in order to understand
its mechanical and electro-mechanical behaviour, extensive experiments need to be conducted to unravel
temperature dependencies in addition to strain-rate dependences. In this study, we present a wide variety
of temperature experiments ranging from -30◦C to 80◦C at various strain rates and stretch levels under
homogeneous deformation and temperature fields. The study demonstrates a pronounced influence of the
temperature on the mechanical response of the VHB polymer. For VHB within the temperature range of our
study, an increased temperature mechanically softens the material and vice-versa. After conducting a wide
range of experiments, we propose a finite strain thermo-viscoelastic constitutive model that is an extension
of a phenomenologically-motivated model where a non-linear evolution law is devised based on the classical
concept of the multiplicative decomposition of the deformation gradient. Then, decoupled one-dimensional
equations are derived and fitted to experimental data to identify relevant material parameters appearing in
the model. The thermo-viscoelastic model validation shows its reasonably good capability to predict the
experimental results.

Keywords: VHB polymer, Thermo-viscoelasticity, Temperature dependence, Dielectric elastomers

1. Introduction

Smart or functional materials undergo a change in size, shape, stiffness, and other mechanical attributes upon
the application of external fields (temperature, electric or magnetic field). Recently, among other smart ma-
terials, electro-active polymers (EAPs) drew considerable attention due to their wide range of applications.
In EAPs, the external field is the electric field resulting from an electric potential difference. In contrast to
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traditional functional materials (e.g., piezoelectric materials), EAPs can react with extremely large strains up
to 400% under a combined electromechanical loading [3, 59, 60, 48]. Such large scale actuations make them
very promising candidates for use in various engineering applications, for example, as sensors, actuators,
and energy harvesters. EAPs in actuators are utilized in the form of a thin film that is sandwiched between
two compliant electrodes and then exposed to an electric potential difference, which creates Maxwell forces
between the electrodes. In summary, such a process can be considered as a mechanical output as a result of
electric stimuli [3, 59, 60].

Basically, two major groups of polymers have been used as EAPs, namely acrylic-based polymers (e.g.,
VHB) and silicon-based polymers. However, due to insufficient electro-mechanical coupling effects, un-
filled pure polymers are currently not optimal choices for dielectric applications. In order to enhance actua-
tions, a significant amount of effort has been directed towards developing polymer composites with enhanced
actuation properties. In this case, three major techniques have actively been explored, e.g. polymers filled
with highly piezoelectric particles, polymer blends of two or more different dielectric polymers, and syn-
theses of new polymers with tailored actuation characteristics, see Alshammari et al. [5], Dang et al. [12],
Ellingford et al. [15], Keip et al. [29], Hossain [22]. Despite such limitations, VHB is being considered as
one of the most widely used EAP candidates for making actuator prototypes due to its moderate actuation
properties, large stretchability, low susceptible to dielectric breakdowns, and commercial availability. The
VHB series (mainly VHB 4910 and VHB 4905 of 1 mm and 0.5 mm thicknesses, respectively) are very soft
materials that exhibit physically non-linear viscoelastic behaviour with a very high stretchability, extreme
temperature sensitivity, and pronounced dissipative behaviours, see Wissler and Mazza [62], Hossain et al.
[21], Mehnert and Steinmann [43].

Despite a wide range of potential applications of VHB polymer, extensive mechanical and electro-mechanical
experimental characterisations at large strains are limited in the literature. In an effort to quantify viscoelas-
tic behaviour of this important polymer, Wissler and Mazza [62] published one of the earliest experimental
works. They performed various single-step relaxation and creep experiments at room temperature. For a
thorough understanding of VHB’s viscoelastic behaviour, a comprehensive mechanical characterization by
various experimental tests was performed by Hossain et al. [20]. In contrast to the earlier works of Wissler
and Mazza [62], Hossain et al. [20] performed several sets of experiments that are essential in character-
izing a viscoelastic material, e.g., single-step relaxation tests, multi-step relaxation tests, monotonic tests,
and loading-unloading cyclic tests at different strain rates and at various extent of strains. Since VHB has a
high stretchability, Patra and Sahu [47] conducted viscoelastic experiments on VHB 4910 up to a strain of
twelve hundred percent. Furthermore, Sahu et al. [58] performed experimental investigations on the same
material and found that the material possesses strong time-dependent creep and stress relaxation. It has been
shown that the creep and stress relaxation characteristics vary with the holding stress and holding strain,
respectively.

Very recently, Mehnert and Steinmann [41] did experiments on VHB 4905 in order to quantify the influence
of conductive electrodes on the mechanical stress responses. They found that the influence of a Carbon con-
ductive grease, an essential component of electro-mechanical experiments, on the mechanical stress of VHB
4905 is significant and cannot be neglected. Note that all of the above-mentioned experiments have been
conducted assuming a uniaxial type homogeneous deformation discarding the influences of a temperature
field. Most of the actuator devices are fabricated by pre-stretching the polymer under a pure shear defor-
mation. Therefore, very recently, a detailed quasi-static study under a pure shear deformation mode was
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conducted on VHB 4910 polymer by Ahmad and Patra [4], Ahmad et al. [63]. Although viscoelastic exper-
imental studies under a purely mechanical load of either VHB 4910 or VHB 4905 are available now, to the
best of the authors’ knowledge, there is no extensive experimental work that deals with thermo-viscoelastic
characterisations and constitutive modelling of VHB. Note that Guo et al. [17] conducted a few experiments
on VHB 4910 to show temperature dependencies on relaxation functions. A complete thermo-viscoelastic
characterisation that includes standard experimentation, i.e. loading-unloading cyclic tests, single-step and
multi-step relaxation tests and quasi-static experiments at very slow strain rates under various temperatures,
has not been performed yet. Moreover, obeying the relevant laws of thermodynamics, a constitutive mod-
elling framework needs to be developed in a three-dimensional framework that can easily be implemented
in a finite element framework for the simulation of inhomogeneous deformations.

The constitutive modelling and numerical simulation of viscoelastic and thermo-viscoelastic behaviour of
polymeric materials at large strains has been an active field of research for several decades. Some classical
modelling approaches at finite strains are due to Lion [33], Holzapfel and Simo [24], Holzapfel [25], Simo
[57], Kaliske and Rothert [30], Bergstroem and Boyce [7, 8], Miehe et al. [39, 40], Dal and Kaliske [11],
Yuhai et al. [61], Saxena et al. [54]. In most models, the multiplicative decomposition of the deformation
gradient is performed into elastic and inelastic parts that yield differential-type viscoelastic formulations, cf.
Huber and Tsakmakis [23], Reese and Govindjee [49, 50], Amin et al. [1, 2], Koprowski et al. [31, 32],
Johlitz et al. [27, 28], Masri et al. [38], Rebouah and Chagnon [51], Haldar and Pal [26]. In this case, the
total stress is decomposed into an equilibrium stress, that corresponds to the stress response at an infinitely
slow rate of strain or the stress response when the time-dependent viscous effect is completely diminished,
and a viscosity-induced over-stress. To incorporate temperature influences into a viscoelastic model, most
of the earlier works adopt the concept of the so-called Time-Temperature-Superposition Principle (TTS)
which is only valid for thermo-rheologically simple materials, see for example [36, 44, 45]. For develop-
ing thermo-viscoelastic models in a thermodynamically consistent way, Lion [33], Sedlan [55], Reese and
Govindjee [50], Behnke et al. [6], Dippel et al. [14], Scheffer et al. [52, 53], Johlitz et al. [28], Mehnert et
al. [41, 42] proposed constitutive frameworks that are based on finite strain evolution laws and are not only
valid for thermo-rheologically simple materials but also for generic thermo-viscoelastic polymers.

Similar to the experimental characterisation, the constitutive modelling of the viscoelastic behaviour of
VHB 4910 is limited. For the modelling of the time-independent response (hyperelasticity) of the extremely
stretchable polymer, several phenomenologically-motivated energy functions, e.g., Neo-Hooke, Mooney-
Rivlin, Ogden, Yeoh, were used by Wissler and Mazza [62]. To capture the time-dependent behaviour of
the polymer, they further extended the model in line with the so-called quasi-linear viscoelasticity. Ther-
modynamically consistency of the model, an important criterion of material equations for modelling inelas-
ticities, is not proven in this work. After conducting an extensive viscoelastic experimental study, Hossain
et al. [20] proposed a thermo-dynamically consistent viscoelastic model which is an extension of the clas-
sical Arruda-Boyce model with a finite strain linear evolution law as proposed by Linder and co-workers
[34, 37]. This model fitted well all relevant viscoelastic data of VHB 4910. Patra and Sahu [47] proposed a
visco-hyperelastic model for capturing the time-dependent behaviour of VHB 4910 where they used a two-
parameter Gent model for the hyperelastic part and an integral-type memory function for the time-dependent
contribution. Their model also fitted well all relevant data up to a strain of twelve hundred percent.

The aims of the current contribution are twofold. On the one hand, a complete thermo-viscoelastic me-
chanical characterization of VHB 4905 is presented considering some standard experiments suitable for vis-
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(a) (b)

Figure 1: Specimen preparation. (a) Step 1: VHB tape with a required length is attached to a clean silicon paper, (b) Step 2: after
removal of the red protective surface of VHB

coelastic polymers at large strains, e.g. loading-unloading cyclic tests, quasi-static tests at very slow strain
rates, single-step relaxation tests, and multi-step relaxation tests under homogeneous thermo-mechanical
loads. On the other hand, a thermodynamically consistent phenomenologically-motivated geometrically
non-linear thermo-viscoelastic material model is developed for the VHB polymer. At this stage, all experi-
ments are performed under homogeneous deformation, for both mechanical and thermal loads. Hence, the
three-dimensional thermo-viscoelastic model is decoupled to a set of one-dimensional differential equations.
After that, all relevant parameters appearing in the model are identified by a simultaneous optimisation rou-
tine. Once all necessary material parameters are identified, the results are validated with the data that are
not included during the identification process.

The paper is organized as follows: in Section 2, a brief description is presented outlining the experimental
set-up, which is utilized to perform the experiments in our laboratory. In addition to the description of the
experimental procedures, experimental results are also analysed in this section. After that, an overview of
the finite strain thermo-mechanics of polymeric materials is depicted in Section 3. Furthermore, a specified
constitutive model for the finite strain thermo-viscoelasticity of polymeric materials is presented in Section
3.2 while in the same section, the constitutive equations are formulated in a one-dimensional form suitable
for the parameter identification as well as for the simulation and model validation. In Section 4, the sim-
ulation and validation of the model with the experimental data are demonstrated and discussed. Finally,
concluding remarks close the paper.

2. Thermo-viscoelastic experimental study

Extensive and systematic experimental characterizations are carried out on the acrylic-type VHB 4905 poly-
mer by a universal material test machine (Instron 5561). To accurately quantify the viscoelastic behaviour of
a polymeric material, quasi-static tests at very slow strain rates, loading-unloading cyclic tests, single-step
and multi-step relaxation tests at various strain levels, strain rates and temperatures are essential, see Lion
[33], Johlitz et al. [27, 28], Hossain et al. [20], Mehnert and Steinmann [43], Amin et al. [1, 2], Koprowski
et al. [31, 32], Dippel et al. [14], Scheffer et al. [52, 53], Xiang et al. [61]. Hence, in the following sections,
the experimental procedures and related results covering the above mentioned four major characterization
techniques will be discussed in detail.

2.1. Specimen preparation

For the thermo-viscoelastic experimental characterization outlined in this paper, among other brands, we
have chosen the acrylic VHB 4905 polymer 1 produced by 3MTM. The commercially available tape has a

1https://www.3m.com/3M/en_US/company-us/all-3m-products/˜/3M-VHB-Tape-4905
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Figure 2: A complete thermo-viscoelastic testing system: (1) is the main framework of the Instron 5567, (2) is the control computer,
(3) is the temperature chamber, (4) is the force transducer to monitor the applied force, and (5) is the crosshead of (1)

(a) (b)

Figure 3: (a) Temperature monitor device, (b) tensile test preparation equipment.
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thickness of 0.5 mm. For this study, we have purchased a 10 mm wide roll-like tape that was obtained from
3M. Note that 0.5 mm thick VHB polymer is selected for this study as it will be comparatively easier to
maintain homogeneous temperatures during experiments along the thickness direction. For the tests at room
temperature (20◦C), specimens with a length of 100 mm and a width of 10 mm are selected, maintaining
a 10:1 ratio, ideal for a uniaxial homogeneous deformation mode, see Wissler and Mazza [62], Hossain et
al. [20], Liao et al. [36], Patra and Sahu [47]. However, due to the displacement limit of the universal test
machine inside the temperature chamber, we had to use shorter specimens, i.e. a length of 20 mm which
is used only for a few temperature tests. Hence, tensile stresses of different length specimens (100 mm, 50
mm and 20 mm) at the same conditions (same deformation, same strain rates, and same temperatures) are
compared to each other. The results coincide with each other which means that the shorter specimen length
(20 mm) does not influence the homogeneous stress field along the specimen length.

VHB 4905 is a very soft double-sided bonding tape that is difficult to handle. Therefore, prior to each test, a
careful and meticulous preparation technique is necessary to ensure that the specimen is not disturbed or de-
formed significantly from its original undeformed condition where any pre-deformation due to disturbances
might affect the accuracy of the test results. Due to its sticky property, VHB 4905 is widely used as an ad-
hesive tape for many industrial and household applications. Hence, to deal with its stickiness, we use clean
silicon paper to cover both sides of the tape before sample preparations. The clean and smooth silicon paper
is adhesion free so that it could be peeled off easily from the specimen when the test is about to begin. The
whole preparation process is as follows. In Step 1 (cf. Fig 1a), we attach the tape to the surface of a silicon
paper with a required length such as 90 mm (i.e., a 50 mm gauge section and a 20 mm gripping section).
Then a black marker is used to identify the gauge section with the help of a ruler and a calliper as is shown
in Fig 1(a). In Step 2 (cf. Fig 1b), the red protective thin film of both ends is peeled off until the marked
lines. For large strain tests, the specimen could possibly slide out from the copper shim. Therefore, another
layer of the same VHB 4905 is taped between the shim and the specimen. With this extra layer of tape with
sticky characteristics, sliding out can effectively be reduced. Finally, we peel off the entire protective film
in the gauge section carefully, and then put another silicon paper over the specimen to protect it from any
dust, as is shown in Fig 1(b). The shims make the specimen easy to be clamped in the grippers and ensure a
correct length of the gauge section of the specimen.

2.2. Experimental set-up

The universal test machine Instron 5567 is placed in a customized temperature chamber as shown in Fig
2, where (1) is the main framework of the Instron 5567, (2) is the control computer, (3) is the temperature
chamber, (4) is the force transducer to monitor the applied force, and (5) is the crosshead of (1). A force
sensor of±50 N maximum capacity is used which has a precision of 0.001 N. The chamber can regulate the
temperature from -50◦C to 150◦C. At room temperature, i.e., without the use of the temperature chamber,
the displacement limit of the machine is 800 mm, while within the chamber, the limit is confined to 200
mm. The maximum loading speed of the crosshead is 8 mm/s. The test machine interacts with the control
computer via the Bluehillr universal user interface software.

All results presented in this paper are expressed as the Piola (nominal) stress (i.e., applied force divided
by the initial undeformed cross-sectional area) against the corresponding stretch. Strain rates are the time
derivative of the engineering strain (i.e., applied displacement divided by the initial length of the gauge
section). At least two hundred data points of each test are acquired, and a smoothing technique is applied to
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Figure 4: Stretchability of VHB 4905 polymer at the reference temperature (20◦C). In this study, the material fails at λ = 11 with
a stretch rate of 0.1 /s

the results to reduce noise. To ensure reproducibility of all results, each experiment is repeated three times
and the average is taken as a representative result. Prior to an experiment, a de-humidifier is used to control
the humidity of the room environment. Besides, an air conditioner is used to control the room temperature at
20◦C. For tests needed to be regulated at a target temperature, specimens are conditioned for fifteen minutes
to achieve a stable temperature, which can be monitored through an in-built temperature sensor, as is shown
in Fig 3(a). A fifteen minutes period is sufficient for the temperatures of our thin specimens (0.5 mm) to be
homogeneous across the thickness direction. After these procedures of specimen preparation, we mount the
specimen on the upper and lower grippers, peel off the silicon paper gently without any pre-tension, regulate
the temperature if necessary, and start the test, as is shown in Fig 3(b) .

2.3. Loading-unloading cyclic experiments

In order to characterize the viscoelastic behaviour of the VHB polymer, at first cyclic experiments are car-
ried out applying different deformations, strain rates, and temperatures. In these experiments, we adopt three
different strain levels, i.e., 100%, 200%, and 300%, three different strain rates, i.e., 0.1 /s, 0.05 /s and 0.03
/s, and nine different temperatures, i.e. 80◦C, 60◦C, 40◦C, 20◦C, 10◦C, 0◦C, -10◦C, -20◦C, and -30◦C. Note
that according to the VHB performance manual supplied by 3M, the acrylic-based polymer goes through its
glass transition temperature (Tg) at approximately -40◦C. Results are presented in Figs 5, 6, 7 and 8. In Fig
5, strain-dependent results are presented ranging from -20◦C to + 60◦C temperatures while experiments are
conducted at a strain rate of 0.1 /s with strains of 100%, 200%, and 300%. These graphs indicate that at
all tested temperatures, a larger strain results in a bigger hysteresis with a larger residual strain. Moreover,
it is clear that the nonlinearity of the stress-stretch response is getting stronger from a higher to a lower
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Figure 5: Stress response and cyclic dissipation of three strain levels (100%, 200%, and 300%) with respect to temperature varia-
tions at a fixed strain rate of 0.1 /s, (a) -20◦C, (b) 0◦C, (c) 40◦C, (d) 60◦C. These results demonstrate that the VHB 4905 becomes
less dissipative with an increasing positive temperature
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Figure 6: Stress response with respect to different temperatures and strain rates (0.1 /s, 0.05 /s, and 0.03 /s) at a fixed strain of 300%,
(a) -20◦C, (b) 0◦C, (c) 20◦C, (d) 40◦C, (e) 60◦C, (f) 80◦C. As expected, VHB 4905 shows pronounced strain-rate dependence where
a faster rate produces large stress and vice-versa 9
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Figure 7: Temperature-dependent stress response under a wide range of temperature where experiments are conducted at 200%
strain and 0.1 /s strain rate, (a) below 0◦C, (b) above 0◦C. All results clearly reveal that the temperature field has a major role in
changing mechanical stress responses of the VHB polymer.

temperature at the same strain. These results also demonstrate that the VHB 4905 becomes less dissipative
with an increasing positive temperature.

From Fig 7, it can clearly be seen that at a fixed strain rate (i.e., 0.1 /s) and deformation (i.e., 200%), a
decreasing temperature not only results in increasing hystereses but also this temperature effect changes the
shape of the stress-stretch curves, compare the loading-unloading curves at different strain levels, the same
strain rate 0.1 /s, and the same temperature in each graph. However, it does not mean that the nonlinearity
modes are distinct at different temperatures. As is shown in Fig 4, at room temperature when the specimen
is loaded at a larger deformation up to 900% deformation, the stress-strain curve also demonstrates a strong
nonlinearity similar to that at a lower temperature of -20◦C. In both cases, the slope of the curve bends down
at a stretch of approximately 3 to a stable one, and tilts up at a stretch of approximately 7, although the strain
range and stress levels are different between two temperature fields, -20◦C and 20◦C, respectively. Figs 7
and 8 demonstrate the temperature dependence at 200% and 300% deformations, respectively, at the same
strain rate of 0.1 /s. As is shown, a lower temperature yields a higher stress level and a larger hysteresis with
a larger residual strain, which is similar to the results of a higher strain rate. Moreover, we perform several
cyclic tests with more than five cycles with a strain recovery period to reach the stress-free state, and it is
revealed that the curves at all cycles overlap. That means there is no observed plasticity and damage such as
the Mullins effect. Very recently, Fan and Szpunar [64] also presented similar observations for VHB. They
found that the apparent ’Mullins effect’ is almost recoverable after two hours of holding between the first
cycle and the second cycle. Thus, the polymer is a purely viscoelastic material.

2.4. Single-step relaxation experiments

Single-step relaxation tests are used to determine the so-called basic elasticity, or in other words, the equi-
librium stress response of polymeric materials. That means, for each test, the specimen is loaded at the
maximum speed of the test machine and is held at a certain strain level. During that time, the sample is
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Figure 8: Temperature-dependent stress response under a wide range of temperature where experiments are conducted at 300%
strain and 0.1 /s strain rate. (a) below 0◦C, (b) above 0◦C.

allowed to relax for three hours to reach an equilibrium stress. In our previous contributions, e.g. Hossain
et al. [20], Mehnert and Steinmann [43], a thirty-minute period was taken as a holding time. However, to
obtain a relaxed stress close to the equilibrium stress, a three-hour duration is taken as the relaxation time in
the current study. Then the relaxed stress after a three-hour holding time of each strain level is considered
as the equilibrium stress, which usually excludes the stress part generated by any polymeric viscosity.

Single-step relaxation experiments are performed on tensile specimens from 100% to 800% strains with an
interval of 100% strains. For a better demonstration purpose, the stress history curves are shifted along the
time axis to avoid overlapping of the curves, as is shown in Fig 9(a). From the results, it can be observed
that with time evolving, the stress attenuates to an equilibrium level. However, at a larger strain, it takes a
longer time to relax. This implies that at a larger strain level, more relaxation time is required to obtain an
equilibrium stress. Figure 9(b) shows the loading curves with the relaxed stresses in a stress-strain format
so that the amounts of relaxed stresses can clearly be visible. When the specimen is loaded to a certain
strain level and is held there, the total stress (viscous over-stress plus the basic elastic stress) begins to drop
gradually, and finally stabilises at a certain point. At each strain level, there is a corresponding equilibrium
stress (basic elastic stress). If all the relaxed stress points are connected, the so-called equilibrium (basic
elasticity) path can be obtained.

2.5. Multi-step relaxation experiments
Another way to identify the equilibrium stress of a polymeric material is the multi-step relaxation tests.
Similar to the single-step relaxation experiments, the specimen is stretched to a certain strain level and is
allowed to relax for a three-hour period before the specimen is re-loaded to the next strain level instead of
being unloaded. In contrast to single-step relaxation experiments, in a multi-step relaxation test, several
equilibrium stresses can be extracted only with the help of a single sample with a couple of steps in one test
set-up. In this case, a multi-step relaxation experiment is carried out at increments of 100%, 300%, 500%,
and 700% strains. As is shown in Fig 10(a), the single-step relaxation tests and the corresponding steps of
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Figure 9: Single-step relaxation test results from 25% to 800% strains. (a) Stress histories with respect to relaxation times, (b)
Stress-strain curves depicting the amount of stress relaxations during the holding times

the multi-step relaxation tests share similar relaxation history curves with very close relaxed stresses (equi-
librium stresses). Figure 10(b) shows the loading curves in a stress-stretch form.

2.6. Quasi-static experiments
Furthermore, several quasi-static tensile tests at very slow strain rates (i.e., 0.0001 /s) are also carried out.
More tensile experiments at an even slower strain rate (i.e., 0.00001 /s) are performed and it is observed that
the latter results coincide with tests of 0.0001 /s strain rate. Hence, the 0.0001 /s strain rate is considered
as the slowest strain rate for the quasi-static tensile tests. A single tensile experiment at such a low strain
rate takes almost one day that allows a sample to sufficiently relax while it is being loaded. That means, the
stress induced by any kind of viscosity will disappear and the loading curve can be regarded as the equilib-
rium (basic elasticity) path. Comparing the relaxed stresses of single-step and multi-step relaxation tests, it
is found that they are almost identical. For a comparison purpose, single-step and multi-step relaxations and
quasi-static test results are presented in Fig 11 which will be used for the calibration of the equilibrium path.

In an effort to identify the effects of temperature on the equilibrium response of the VHB, we also perform
a few more quasi-static tensile tests under various temperatures at the same strain rate of 0.0001 /s. Note
that these tests require a very long time, almost a day for only a single test. Therefore, regulating a specified
temperature for such a long time is a cumbersome task. During the tests, several factors, e.g., perturbations
by the air circulation, vibrations from the air-conditioning compressor, zero drift effects due to a temperature
change of the stress sensor etc, create great risks which introduce strong oscillations and errors into some
of the test results. Here, we only demonstrate an average of several successful tests after many unsuccessful
quasi-static trials. The test at -20◦C of 500% deformation with a section of unloading exhibits a stable
curve. Fig 12 shows that at 500% deformation of the -20◦C test, the stress level (near 0.12 MPa) is only
about 50% higher than that of 20◦C (slightly above 0.08 MPa). In contrast, at a 300% strain and 0.1 /s strain
rate tests, the stress level of -20◦C (near 2.6 MPa) is 2000% higher than that of 20◦C (about 0.11 MPa), as
is shown in Fig 8. Besides, the unloading path at -20◦C indicates that a sizeable hysteresis still exists, which
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Figure 10: Multi-step relaxation tests. (a) Intermittent stress history curves, (b) Stress-stretch curves depicting the amount of stress
relaxations during holding times
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Figure 11: Comparison of relaxed equilibrium stresses obtained from single-step relaxation experiments (•), from multi-step relax-
ation tests (4), and from quasi-static tests (−−) up to 800% strains. Equilibrium stresses from three different sets of experiments
match very closely
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Figure 12: Quasi-static tensile experiments at a 0.0001 /s strain rate at different temperatures to illustrate the influences of temper-
ature on the equilibrium stress responses: After couple of unsuccessful tests, two successful experiments at -20◦C and 20◦C are
presented which show that the temperature has a minor influence on the elastic stress compared to the total viscoelastic stress

means that the loading path of this test has not reached equilibrium yet. In fact, the relaxation time could
be longer at a lower temperature. As a result, in order to reach the equilibrium path at -20◦C, the strain rate
could be even smaller than that of 20◦C (i.e., 0.0001 /s), which requires ten days or more time for only one
test and is not practical in consideration of the aforementioned error factors. Hence, we tend to conclude
that the temperature influence on the equilibrium path is negligible in comparison to the influence on the
viscosity. Similar observations for other polymers have been documented in the literature, see Johlitz et al.
[28], Dippel et al. [14], Koprowski et al. [32].

3. A thermo-viscoelastic model at finite strain

3.1. Kinematics
In order to consider a combination of mechanical and thermal loads, a multiplicative decomposition of the
deformation gradient F into a thermal part FΘ and a mechanical deformation FM is introduced as

F = FMFΘ. (1)

For more details about this approach, see Lu and Pister [35], Reese [50], Lion [33], Erbts et al. [16]. Further-
more, to capture the time-dependent viscoelastic response at finite strains, a multiplicative decomposition of
the deformation gradient is frequently used as

F = FMFΘ = F vol
M F iso

MFΘ = F vol
M F j

M,eF
j
M,vFΘ (2)

where j = 1 · · ·n is related to the possibility of multiple viscous mechanisms with each one represented by
a Maxwell element. Note that viscous responses are assumed to be isochoric only, see Reese and Govindjee
[50], Dippel et al. [14], Miehe et al. [40]. Furthermore, we can use the deformation gradient F for the defi-
nition of the right Cauchy-Green tensor C = F TF . The corresponding elastic and inelastic right Cauchy-
Green strain tensors are defined as Cj

M,e = [F j
M,e]

TF j
M,e and Cj

M,v = [F j
M,v]TF j

M,v, respectively. We
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here introduce the thermal expansion coefficient α and the temperature difference (∆Θ = Θ − Θ0) which
results in the decomposition of the Jacobian determinant into

J = detF = detFM detFΘ = JMJΘ, (3)

where the thermal Jacobian is scaled either with an exponential function as JΘ = exp(3α∆Θ) or with a
linear function, i.e., JΘ = α∆Θ + 1, see Dippel et al. [14], Erbts et al. [16]. Furthermore, the definition of
the isochoric right Cauchy-Green tensor is C = J− 2

3C. As the thermal expansion is purely volumetric it
holds that the isochoric Cauchy-Green tensor capturing the combined deformation is equal to the mechanical
contribution, i.e.

C = CΘCM = CM . (4)

Finally, as rubber-like materials can be assumed to be incompressible at a constant temperature the de-
composition between the mechanical and the thermal deformation resembles a decomposition into a purely
isochoric and a purely volumetric deformation. In this case, we can state that

JM = 1 and J = JΘ. (5)

3.2. A thermo-viscoelastic energy function

In an effort to derive a generic energy function for thermo-viscoelastic polymers, in our previous contri-
butions the specific heat capacity is assumed to be temperature independent, i.e. c(Θ) = c0 = const, see
Mehnert et al. [41]. Departing from the definition of c(Θ) = −Θ ∂2Ψ

∂Θ∂Θ , a full derivation of the energy
function Ψ(F ,Θ) can be obtained where a linear scaling of the isothermal energy contribution W0(FM ) is
produced with the temperature in the form

Ψ(F ,Θ) =
Θ

Θ0
W0(FM )−

[
Θ−Θ0

]
M(JΘ)− c0

[
Θ−Θ0 −Θ ln

( Θ

Θ0

)]
, (6)

where M(JΘ) describes the purely volumetric thermal expansion of the material. However, it is well docu-
mented in the literature that the key mechanical material parameters such as the shear modulus and the bulk
modulus exhibit nonlinear dependencies with respect to the temperature, see Treloar [65], Nowinski [46],
Johlitz et al. [27, 28]. Therefore, Reese and Govindjee [50], Benhke et al. [6] formulated a generalized
and realistic energy function by taking an advanced definition of the specific heat capacity that depends on
temperature in the form as

c(Θ) = c0 −Θ
∂2g(Θ)

∂Θ2
W0(FM ), (7)

where g(Θ) is a temperature sensitive scaling function. A double integration of the above equation with
applications of appropriate initial and boundary conditions result in a nonlinear relation between the tem-
perature and the energy function in the form

Ψ =

[
Θ

Θ0
+ g(Θ)

]
W0(FM )−

[
Θ−Θ0

]
M(JΘ)− c0

[
Θ−Θ0 −Θ ln

( Θ

Θ0

)]
. (8)

For modelling thermo-viscoelastic material behaviour, it is a common practice to decompose the isothermal
energy contributionW0(CM ) into an isochoric contribution W̃iso(CM ,C

j
M,v) and a volumetric contribution

W̃vol(JM) where the latter vanishes if we consider the material to be incompressible at a constant temper-
ature. Note that W̃iso(CM ,C

j
M,v) depends not only on the deformation gradient but also on a number of
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tensorial internal variables CMj ,v. The subscript j (j1···N ) is related to the possibility of multiple viscous
mechanisms.

In the next step, the isochoric energy is further decomposed into an elastic part W̃ e
iso(CM ) and a viscous

contribution W̃ v
iso(CM ,C

j
M,v) that captures the time dependent behaviour [24, 25]. In order to gauge both

the elastic and the viscous energy contributions independently from each other, we also transform the spe-
cific heat capacity into a form that contains separate scaling functions ge(Θ) and gv(Θ) which are multiplied
with the respective energy contribution, resulting in

c(Θ) = c0 −Θ
∂2ge(Θ)

∂Θ2
W̃ e

iso(CM )−Θ
∂2gv(Θ)

∂Θ2
W̃ v

iso(CM ,C
j
M,v). (9)

Note that several scaling functions, both for the elastic and viscous parts, exist in the literature, see [6, 50,
41, 42]. An appropriate choice of the scaling functions depends on the experimental data of a particular
polymer. These modifications ultimately lead to a full-scale thermo-viscoelastic energy function of the form

Ψ =

[
Θ

Θ0
+ ge(Θ)

]
W̃ e

iso(CM ) +

[
Θ

Θ0
+ gv(Θ)

]
W̃ v

iso(CM ,C
j
M,v)

−
[
Θ−Θ0

]
M(JΘ)− c0

[
Θ−Θ0 −Θ ln

( Θ

Θ0

)] (10)

which can be considered as a combination of four separate energy functions, i.e., Ψ = Ψe
iso + Ψv

iso + Ψvol +
Ψe

th.

3.3. Three-dimensional stresses for thermo-viscoelasticity

A decoupled formulation of the total energy function in the case of a nearly-incompressible material moti-
vates a decomposition of the stress tensor into an isochoric part and a volumetric part. Hence, the mechanical
stress tensor is decomposed as

SM = Svol + Siso = 2
∂Ψvol

∂CM
+ 2

∂Ψiso

∂CM
, (11)

where Svol = JMpC
−1
M is the volumetric part of the stress and p = ∂Ψvol(JM )/∂JM is the hydro-

static pressure. Note that for a fully incompressible material JM = 1 and p serves as a Lagrange mul-
tiplier. In order to obtain the isochoric stress Siso from the energy function Ψiso, another stress S̄M =
2∂Ψiso(C̄M ,Cv)/∂C̄M is introduced which is related to the former one via a fourth-order projection ten-
sor P = ∂C̄M/∂CM by

Siso = J− 2
3P : S̄M with P = I− 1

3
C−1

M ⊗CM , Iijkl = δikδjl (12)

where δij is a Kronecker delta. The stress S̄M is further decomposed into elastic and viscous parts, i.e.
S̄M = S̄

e
M + S̄

v
M . Each stress mentioned above requires a separate energy function to have a complete

representation. For the ground state elasticity, the Carrol [10] model is chosen since it has shown excel-
lent performance in fitting hyperelastic experimental data of polymeric materials with only three material
parameters, see Steinmann et al. [56], Hossain et al. [18, 19, 21]. Hence, a Carrol-type energy function is
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scaled with a temperature-dependent factor as

Ψe
iso(C̄M ,Θ) =

[
Θ

Θ0
+ ge(Θ)

] [
aĪ1 + bĪ4

1 + c
√
Ī2

]
, (13)

where a, b, c are the material parameters and Ī1, Ī2 are the first and second invariants of the isochoric right
Cauchy-Green tensor C̄M . From equation (11) and using the relation in (13), the elastic part of the stress
tensor can be calculated:

S̄
e
M = 2

∂Ψe
iso

∂C̄M
=

[
Θ

Θ0
+ ge(Θ)

] [
[2a+ 8bĪ3

1 ]I + c[Ī1I − C̄M ]Ī
1/2
2

]
, I ≡ δij . (14)

For the viscous part of the energy function, we take the approach formulated by Koprowski et al. [31,
32], Dippel et al. [14], Scheffer et al. [52], Sedlan [55] that yields nonlinear evolution laws. In order
to capture more complex experimental data presented in Section 2, we take two different non-equilibrium
energy functions in the viscous part. In this case, the first part is derived from a higher order Yeoh model of
cubic type and the second part is from a Neo-Hooke energy function as

Ψv
iso(C̄M,e,Θ) =

2∑

j=1

Ψv,j
Y +

5∑

j=3

Ψv,j
NH =

2∑

j=1

cj4[Ij1,e − 3]3 +
5∑

j=3

cj5[Ij1,e − 3], (15)

where cj4 and cj5 are material constants with each Maxwell spring’s element. Note that Ij1,e is the first

invariant of C̄j
M,e, i.e., Ij1,e = tr(C̄j

M,e) = tr(F−T
M,v · C̄M ·F−1

M,v). Afterwards, the non-equilibrium viscous
stress is defined as

S̄
v
M = 2

∂Ψv
iso

∂C̄M
=

[
Θ

Θ0
+ gv(Θ)

]


2∑

j=1

6cj4[Ij1,e − 3]2[Cj
M,v]−1 +

5∑

j=3

2cj5[Cj
M,v]−1


 , (16)

where Cj
M,v is a tensorial internal variable related to a Maxwell element. For this, an evolution equation

can be derived as

Ċ
j
M,v =

4

ηj
∂Ψv,j

iso

∂Ij1,e

[
CM −

1

3

[
CM : [Cj

M,v]−1
]
Cj

M,v

]
, (17)

where a proportionality factor ηj is introduced representing the viscoelasticity of the jth Maxwell element.
For the proof of the thermodynamical consistency and a detailed derivation of the above equation, see
Koprowski et al. [31, 32], Scheffer et al. [52], Saxena et al. [54]. Note that we have two energy functions
in the non-equilibrium viscous part, cf. Eqn (15). Hence, according to Eqn (17), they will end up with two
evolution equations as the first one, using the Yeoh-type non-equilibrium energy function (15)1, becomes

Ċ
j
M,v =

12

τ j1
[Ij1,e − 3]2

[
CM −

1

3

[
CM : [Cj

M,v]−1
]
Cj

M,v

]
, j = 1 · · · 2, τ j1 =

ηj

cj4
(18)
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and the second equation from the Neo-Hooke non-equilibrium function (15)2 yields

Ċ
j
M,v =

4

τ j2

[
CM −

1

3

[
CM : [Cj

M,v]−1
]
Cj

M,v

]
, j = 3 · · · 5, τ j2 =

ηj

cj5
. (19)

3.4. One-dimensional constitutive models for thermo-viscoelasticity

Since all of the results presented in Section 2 are produced from a homogeneous mode of deformation, the
constitutive model discussed above needs to be reformulated in a one-dimensional form in order to identify
the material parameters as well as to validate the applied model. In uniaxial tests, the specimen is elongated
only in one direction, i.e., λ1 = λwhile the other two directions are free to move. From the incompressibility
condition at fixed temperature, i.e., detF = detF̄ = detF v = detFΘ = 1, i.e., λ1λ2λ3 = 1 and the
assumption of symmetry the complementary principal stretches follow as λ2 = λ3 = λ−1/2. Therefore,
the complete deformation gradient reads F = {λ;λ−1/2;λ−1/2}. Note that since the elongation is only in
one direction, the specimen will contract in the transversal directions and due to the stress-free boundary
conditions, both Piola stresses P2 and P3 are zero and only the Piola stress P1 needs to be determined.
Inserting all this information in Eqn (14), the elastic part of the Piola stress is obtained:

P e =

[
Θ

Θ0
+ ge(Θ)

] [
2a+ 8b[2λ−1 + λ2]3 + c[1 + 2λ3]−

1
2

] [
λ− λ−2

]
(20)

for details, see Hossain [20], Steinmann et al. [56]. Note that since we have observed negligible influence
of the temperature on the equilibrium response during our study, ge(Θ) = 1 − Θ

Θ0
is taken here. Now, the

viscous part of the stress for a single Maxwell element is formulated (assuming incompressibility for the
internal variable Cv) from Eqn (16):

P v =

[
Θ

Θ0
+ gv1(Θ)

] 2∑

j=1

P v,j +

[
Θ

Θ0
+ gv2(Θ)

] 5∑

j=3

P v,j

=

[
Θ

Θ0
+ gv1(Θ)

] 2∑

j=1

6cj4

[
λ2

[λjv]2
+

2λjv
λ
− 3

]2 [
λ

[λjv]2
− λjv
λ2

]

+

[
Θ

Θ0
+ gv2(Θ)

] 5∑

j=3

2cj5

[
λ

[λjv]2
− λjv
λ2

]
, (21)

where λ2
v is the principal stretch of the internal variable Cv. Similar to the one-dimensional formulation of

the total stress, the first evolution law (18) is derived:

˙
λjv =

4

τ j1

[
λ2

[λjv]2
+

2λjv
λ
− 3

]2 [
λ2

λjv
− [λjv]2

λ

]
, j = 1, 2 (22)

and the one-dimensional form of the second evolution equation (19) is

˙
λjv =

4

3τ j2

[
λ2

λjv
− [λjv]2

λ

]
, j = 3 · · · 5. (23)
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Now both the scalar-valued differential equations need to be discretized by a suitable integration scheme.
Discretizing by the unconditionally stable implicit Euler-backward integration scheme, the differential equa-
tion for the internal variable λjv for a single Maxwell element yields

λjv = λj,nv +
4∆t

3τ j2

[
λ2

λjv
− [λjv]2

λ

]
, (24)

where [•]k = [•] (tk) and ∆t = tn+1 − tn. For the sake of brevity, the index for the current value (tn+1) of
the stretch λjv has been dropped in Eqn (24). Eqn (24) is non-linear in terms of λjv. Therefore, a Newton-type
iterative scheme is required to find the current value of λjv that need to be inserted in Eqn (21) to obtain the
updated value of the total Piola stress, P (t) = P e + P v(t).

4. Parameter identification and model validation

4.1. Hyperelastic parameter identification at the reference temperature
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Figure 13: Parameter identification: Hyperelastic material parameters of the Carrol model identified by the quasi-static experimental
data measured at the reference temperature (20◦C)

For the identification of hyperelastic material parameters appearing in a constitutive model, three main pro-
cedures have been discussed in the literature, see Koprowski et al. [31, 32], Johlitz et al. [27, 28], Hossain
et al. [20]. The first option is to perform single-step relaxation experiments at various strain levels. When
a test specimen is held at a certain strain, the stress will gradually reduce and will asymptotically reach an
equilibrium stress state, which can be considered as the relaxed and basic elastic stress at the corresponding
strain. The second option for identifying equilibrium stresses and subsequent parameter identification is to
conduct multi-step relaxation experiments. In contrast to single-step relaxation tests, in multi-step experi-
ments, the equilibrium stresses are extracted from one specimen at consecutive steps of strains and stress
relaxations.

The third option is to apply a monotonic quasi-static loading at a sufficiently slow strain rate. To find such
a slow strain rate, an iterative technique needs to be applied. For that, quasi-static tests are performed at
several consecutively decreasing slow strain rates. If the corresponding stress does not decrease despite the
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Table 1: Hyperelastic parameters identified with the quasi-static data by Carrol model

a [MPa] b [MPa] c [MPa]
6.018e-03 1.215e-09 2.820e-02

decreasing strain rates, such a strain rate is considered as an optimum strain rate for quasi-static tests. At
such a very low strain rate, all viscosity is considered to have disappeared and only hyperelastic (equilib-
rium) stresses will remain. Since all three types of tests reflect the same equilibrium path, their equilibrium
stresses at a particular strain should ideally be identical or very close to each other, and that is the case in Fig
11. These almost identical results reflect the reproducibility and accuracy of our experiments under different
types of test procedures. Since experimental data from three different sources almost coincide with each
other, we choose the quasi-static test data for a subsequent parameter identification as they consist of more
data points. Therefore, the quasi-static data are fitted to the Carrol model for the parameter identification by
Eqn (20). The identified parameters are shown in Table 1, and the fitting result is shown in Fig 13. Despite
the fact that the equilibrium path at the reference temperature exhibits a strong nonlinearity with a complex
’S’ shape curve, the employed Carrol model fits the data perfectly. The scaling function ge can be identified
based on the one successful data at -20◦C as is shown in Fig 12. However, its validation at another tem-
perature is not possible at this stage. This is due to a lack of further data under the extreme complexities
in conducting temperature-dependent experiments at very slow strain rates, see discussion in Section 2.6.
Moreover, the identified values of ge based on the equilibrium data at -20◦C is insignificant in compared to
gv. Hence, it is concluded in this study that the elastic part of the model is not influenced by a temperature
change, i.e., ge(Θ) = 1− Θ

Θ0
in Eqn (20).

4.2. Viscoelastic parameter identification and validation at the reference temperature
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Figure 14: Viscoelastic parameter identification: Three different strain rates are used to identify viscous parameters while the
hyperelastic parameters identified earlier are kept frozen. Five Maxwell elements (2 Yeoh and 3 Neo-Hooke), each having two
material parameters, are well enough to capture the strain rate-dependent data up to 800% strains.

The next step is to identify the viscoelastic parameters. With the hyperelastic parameters, the equilibrium
stress can be calculated, and the over-stress modulus cji and over-stress relaxation spectrum τ ji are yet to
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Table 2: Viscoelastic parameters at the reference temperature: Two Maxwell elements with a Yeoh type non-equilibrium energy
function

c1
4 [MPa] τ1

1 [s] c2
4 [MPa] τ2

1 [s]
3.227e-05 3.048e+02 1.630e-10 3.954e-04

Table 3: Viscoelastic parameters at the reference temperature: Three Maxwell elements with a Neo-Hooke type non-equilibrium
energy function

c3
5 [MPa] τ3

2 [s] c4
5 [MPa] τ4

2 [s] c5
5 [MPa] τ5

2 [s]
1.327e-02 3.427e+01 2.115e-03 5.403e+02 4.503e-04 1.233e+05

be identified in order to obtain the viscous over-stress. Since the viscoelastic phenomenon has a strain rate-
dependent behaviour, we identify the parameters using three sets of data at 800% strain and at different strain
rates, which are 0.01 /s, 0.03 /s, and 0.05 /s, simultaneously. Note that during the identification process, we
find that five Maxwell elements (2 Yeoh and 3 Neo-Hooke) can capture the viscoelastic behaviour with a fair
accuracy while more elements could not improve the results significantly. During the viscoelastic parameter
identification, the hyperelastic parameters appearing in Table 1 are kept frozen. For the viscoelastic param-
eter identification, Eqns (20) and (21) are jointly fitted with experimental data and the identified parameters
are shown in Tables 2 and 3. Simulation results produced by the identified parameters are shown in Fig 14.
Both strain rate dependence and large strain nonlinearities are captured successfully.

Now a complete set of viscoelastic parameters is identified at the reference temperature (room temperature),
see Tables 1, 2 and 3. Afterwards, the applicability of the viscoelastic model needs to be checked by predict-
ing other test conditions which are not included in the parameter identification process. Firstly, an extended
strain rate 0.1/s, which is not included in the identification process, is selected at 300% and 800% strains
as is shown in Fig 15(a). Comparing the simulation results and experimental data, it can be seen that the
model can predict the data quite well even for such large deformations. Furthermore, the model is simulated
with three strain rates (0.1 /s, 0.05 /s, and 0.3 /s) at a 300% strain which clearly demonstrates that it can
predict a wide range of strain rates and strains, cf. Fig 15(b). Only a small discrepancy occurs at 300%
where the stress levels predicted by the model are slightly higher than the experiments. Besides the cyclic
test simulations mentioned above, few single-step relaxation tests are also simulated at 100%, 300%, 500%,
and 700% strains. As is shown in Fig 16, the relaxation behaviour including relaxation time and relaxation
stresses can be predicted with an excellent agreement between experimental data and model predictions.

4.3. Viscoelastic parameter identification and validation at various temperatures

After the parameter identification at room temperature (reference temperature), the next step is to identify
the influence of temperature by the scaling functions appearing in the model, i.e., gv1 and gv2 in Eqn (21). It
is already mentioned that the temperature has a negligible influence on the equilibrium response. Hence, we
just need to identify the scaling functions gv1 and gv2 . After several trial and errors, the following functions
are best fitted to the experimental data,

gv1(Θ) = − Θ

Θ0
+ exp

([ Θ0

Θ0 − 40

]CT

−
[ Θ

Θ0 − 40

]CT )
; gv2(Θ) = − Θ

Θ0
+

exp(aT
Θ0
Θ ln Θ0

Θ ) + bT

1 + bT
(25)

where aT , bT , cT are parameters that are identified from a set of temperature-dependent viscoelastic data.
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Figure 15: Viscoelastic model validation at the reference temperature : a) 300% and 800% strains data are used with a strain rate
of 0.1 /s, b) 300% strain data are used at three different strain rates (0.1 /s, 0.05 /s, 0.03 /s)
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Figure 16: Viscoelastic model validation at the reference temperature : Model validations with single-step relaxations data show an
excellent agreement between the model and experiments

Based on the data of 300% strain and -20◦C, 20◦C, and 60◦C temperatures, parameters appearing in the
scaling functions are identified as in Table 4 and the fitting results are shown in Fig 17. It is clear that with a
decrease in temperature, the stress level increases exponentially, and our model can capture such significant
temperature-dependent effects quite well despite a very high variation in the stress level.

The final step is to validate the model at other temperature conditions. Firstly, 80◦C and 0◦C cyclic tests
at 100%, 200%, and 300% strains are validated and results are illustrated in Fig 18(b) which show a good
agreement between the model simulation and experimental data. At 0◦C, it is shown in Fig 18(a) that
although their stress levels are not exactly the same between the simulation and experimental data, these
show the same curve tendency and the same strain dependence. We also validate the strain rate dependence
at different temperatures, i.e., -20◦C and 60◦C. Fig 19 shows that both strain rates can be predicted quite
well although stress values between two tests differ by more than 20 times. In summary, our model matches
the experimental data quite well with a satisfactory agreement.
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Figure 17: Thermo-viscoelastic parameter identification taking into account of a wide range of temperature data from -20◦C to
60◦C with a strain of 300% and a strain rate of 0.1 /s: (a) -20◦C, (b) 20◦C and 60◦C.
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Figure 18: Thermo-viscoelastic model validation from 100% to 300% strains at 0.1 /s strain rate: (a) 0◦C, (b) 80◦C.

5. Conclusion

In this contribution, a detailed thermo-viscoelastic experimental characterization of the widely-used VHB
polymer is presented. In order to quantify viscoelastic behaviour of the polymer, all classical experi-
mentations, i.e., quasi-static tests at very low strain rates, single-step and multi-step relaxation tests, and
loading-unloading cyclic tests are conducted at different strain rates and at different temperatures. Rele-
vant viscoelastic experiments reveal a pronounced influence of the temperature on the VHB polymer where
an increasing positive temperature above the reference temperature (room temperature) softens the mate-
rial mechanically and vice-versa. A thermodynamically consistent phenomenologically motivated thermo-
viscoelastic material model at finite strain is proposed where the time-invariant hyperelastic part is derived
from a Carrol type energy function. At first, we identify hyperelastic material parameters of the Carrol
type model using the quasi-static experimental data. For viscoelastic parameter identification, a simultane-
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Figure 19: Thermo-viscoelastic model validation from 0.03 /s to 0.05 /s strain rates of 300% strain: (a) -20◦C, (b) 60◦C.

Table 4: Temperature-responsive viscoelastic parameters

aT [1] bT [1] cT [1]
1.931e+01 2.120e-01 2.076e+01

ous optimisation technique is used taking three different strain rate data at room temperature into account,
which helps in finding the best sets of material parameters. Once a complete set of viscoelastic parameters
is identified, we use them to validate other sets of data that are not utilised in any identification process.
All validation examples show a satisfactory agreement between model and experimental data. Since VHB
is extensively used as a dielectric elastomer, in a forthcoming contribution, thermo-electro-viscoelastic ex-
perimentation will be presented and data will be compared with a thermo-electro-mechanically coupled
computational model.
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