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Abstract 

Efficient selections of particle-scale contact parameters in discrete element 

modelling remain an open question. The aim of this study is to provide a hybrid 

calibration framework to estimate linear contact stiffnesses (normal and tangential) 

for both two-dimensional and three-dimensional simulations. Analytical formulas 

linking macroscopic parameters (Young’s modulus, Poisson’s ratio) to mesoscopic 

particle parameters for granular systems are derived based on statistically isotropic 

packings under small-strain isotropic stress conditions. By taking the derived 

analytical solutions as initial approximations, the gradient descent algorithm 

automatically obtains a reliable numerical estimation. The proposed framework is 

validated with several numerical cases including randomly distributed monodisperse 

and polydisperse packings. The results show that this hybrid method practically 

reduces the time for artificial trials and errors to obtain reasonable stiffness 

parameters. The proposed framework can be extended to other parameter calibration 

problems in DEM. 

 

Keywords: Discrete element method; Homogenisation methods; Constitutive law; 

Contact force chains; Calibration method; Gradient descent. 
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1  Introduction 

The discrete element method (DEM) is widely employed to analyse the mechanical 

behaviour of granular materials in many engineering fields. Reliable DEM 

simulations can only be performed if particle parameters contained in DEM contact 

models are reasonably selected. However, the appropriate choice of these model 

parameters at the particle level, i.e. the model parameter calibration, still remains as 

one of main obstacles for a wider application of DEM to engineering problems [1, 2]. 

There are two approaches that are generally used to determine particle-level model 

parameters in DEM, namely the direct measuring approach and the bulk calibration 

approach [3]. The direct measuring approach measures the properties at the particle or 

contact level. Some properties for certain particles, such as glass or steel beads, are 

easy to be measured but may be difficult for most of particles, such as sand.  

DEM models typically simplify the complexity of a real physical system, 

particularly in terms of particle geometry, contact interaction, and the number of 

particles involved. Thus even if particle-scale properties can be measured accurately, 

it does not mean that the system represented by DEM can exhibit the same level of 

accuracy as the real system at the macroscopic level [4]. Consequently, the aim of 

parameter calibration is to acknowledge the simplifications made in DEM models and 

to adjust the particle-scale parameters to capture the salient mechanical behaviour 

observed in physical tests [5, 6]. Based on this idea, the so-called bulk calibration 

approach is developed as a mainstream method to calibrate parameters in DEM. 

The calibration of DEM parameters with bulk material behaviour is a process of 

determining the causal factors (mesoscopic parameters) from a set of observations or 

measures (macroscopic results) and is thus an inverse problem. The corresponding 

forward problem is estimating or predicting the macroscopic stress-strain behaviour 
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(also called constitutive relations) of a particle assembly based on particle-scale 

parameters. This forward problem is of great interest to physics, soil mechanics, and 

material science and has received a large number of considerations. As a foundation to 

address the calibration of DEM parameters, constitutive laws of granular materials 

and the corresponding homogenisation methods are revisited in Section 2.  

The bulk calibration approach requires physical experiments as a match target of  

DEM models. Except for bi-axial and tri-axial tests that are commonly used for the 

calibration of confined granular materials, many physical experiments have been 

introduced to calibrate the mesoscopic parameters, such as cylindrical mixer 

apparatus [7], static packing pressure test [8], and lifting cylinder tests [9]. Although 

simpler experiments have been introduced, large amount of time for trials and errors 

is still required [3, 10-13]. Some researchers use the sensitivity tests of different 

parameters on the bulk properties to accelerate the selection of appropriate parameters 

[3], but the calibration process is still very time-consuming and inefficient.  

Another recent development of the bulk calibration approach is the use of statistical 

algorithms to determine mesoscopic parameters in DEM, such as response surface 

methodology [14], artificial neural networks [15, 16], Latin hypercube sampling and 

Kriging [17], random forest [18], genetic algorithm [19, 20], sequential quasi-Monte 

Carlo [21] and Bayesian approach [22]. Although these statistical algorithms allow 

researchers to quantify a wide range of phenomena and seem to serve as a panacea for 

many complex problems, they simply provide an empirical approximation and cannot 

replace the study on underlying physical laws.  

As the first part of a series of work to address some of parameter calibration 

problems in DEM, the aim of this paper is to provide a hybrid analytical-

computational framework that can robustly estimate the particle-scale stiffness 



5 

 

parameters in the linear contact model for disc/spherical particle assemblies. On the 

basis of a brief review on commonly used homogenisation methods, a set of 

continuum-based theoretical formulae between particle-scale stiffnesses and macro 

material properties are explicitly formulated based on kinematic hypothesis. These 

analytical formulae are checked with the numerical solutions for wide ranges of 

porosities and stiffness ratios. By using the derived analytical solutions as the initial 

values, a gradient descent technique is then proposed to predict more reliable particle-

scale stiffness values for general granular systems. 

The paper is organised as follows: Section 2 derives a general constitutive relation 

for a granular assembly and then further develops it to a simplified analytical version 

suitable for explicitly formulating particle stiffnesses. Section 3 designs two groups of 

biaxial/triaxial numerical test cases to illustrate main differences between the derived 

formulas and numerical results for both monodisperse particle packings and 

polydisperse particle packings. Section 4 proposes a hybrid analytical-computational 

framework in which the formulas derived in Section 3 is used to obtain the initial 

estimation of the two contact stiffnesses and then a gradient descent based 

computational procedure is employed to further refine the prediction of the 

parameters.  

 

2 Constitutive laws for granular assemblies 

2.1 A brief review of the homogenisation method 

The homogenisation method has played an important role in obtaining constitutive 

laws of granular materials. Acting as a bridge connecting the macro-scopic stress-

strain responses and particle-scale parameters, various homogenisation methods have 

been developed to derive constitutive relations of granular materials. Some commonly 
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used homogenisation methods are briefly reviewed below. 

 

2.1.1 Voigt’s hypothesis 

Voigt’s hypothesis (also called the kinematic assumption) assumes that the strain in 

the material is uniform. This hypothesis enables determining the local displacement 

field from the global strain [23]. Such a displacement field in accordance with the 

uniform strain is also called the “mean displacement field”. Voigt's hypothesis has 

been used to describe the displacement field of granular packings [24-26]. However, 

the hypothesis restricts the possible movement of particles (kinematic constraint) and 

yields an upper-bound solution [27]. Even though some improvement has been made 

by considering more elaborate factors, such as the particle rotation effect, the derived 

solution still significantly overpredicts the actual values [28]. Based on the minimum 

potential energy principle, the Young’s modulus derived from Voigt’s hypothesis is 

proved to be an upper bound solution [29]. 

 

2.1.2 Reuss’s hypothesis 

Apart from Voigt's hypothesis based on the uniform strain, another well-known 

hypothesis comes from the idea that all stress components in granular material are 

uniform and is called Reuss’s hypothesis or the static assumption [30]. Reuss’s 

hypothesis generally deduces the local contact forces from the global uniform stress 

[23]. Based on the minimum complementary energy principle, the modulus derived 

from Reuss’s hypothesis is proved to be a lower bound solution [29]. Some 

constitutive relationships of granular materials based on Reuss’s hypothesis can be 

found in [31, 32].   

 



7 

 

2.1.3 Best fit hypothesis and Piece-wide fit hypothesis 

The best fit hypothesis is developed based on the observation that the actual 

displacement field in granular materials does not coincide with but fluctuate about the 

mean displacement field. By minimising the difference between the actual contact 

displacement and the mean field displacement, the relation between the macroscopic 

strain and the particle-scale displacement field can be established [27]. The 

application of the best fit hypothesis on deriving constitutive relationships of granular 

packings can be found in [27, 33]. The best-fit strain approaches are reportedly 

inconsistent with local force equilibrium in randomly disordered granular packings 

and thus give rise to an uncontrolled approximation of the strain field [34]. 

Although the averaged strain of a particle assembly can be obtained from the best fit 

of the displacement field, the actual strain is non-uniform in the amorphous granular 

packing. To capture the feature of non-uniform strain at the particle scale, a scheme of 

piece-wise fit to the displacement field is introduced in [27]. To this end, a concept of 

the “local region” is defined to represent a particle and its vicinity. By fitting the 

displacement conditions at each “local region”, a local strain can be introduced. Then 

the overall strain for the entire granular packing can be obtained by averaging all the 

local strains. Basically, the piece-wide fit hypothesis considers the effect of the 

particle-scale fabric variation due to the structural heterogeneity of a granular packing 

and can be regarded as a conceptual improvement of the best fit hypothesis. However, 

the piece-wide fit hypothesis is seldom reported by follow-up studies, probably due to 

the extreme complexity of its derived formulation.   

 

2.1.4 Affine and non-affine fields 

This method originates from the understanding that particle displacements in 
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amorphous materials do not conform to the imposed affine strain. This observation 

leads to the idea of decomposing particle displacements into affine parts and non-

affine parts. By subtracting the expected homogeneous deformation, the non-affine 

velocity or displacements fields can be obtained in simulations of granular materials 

[35, 36].  

These non-affine displacements or “noise” are typical of the same order of 

magnitude as the relative affine displacement of neighbouring particles, and thus 

cannot be regarded as a small correction. Ignoring the “noise” displacements (as in 

both Voigt’s and Reuss’s hypothesises) or treating them as a limited perturbation (as in 

the best fit hypothesis and the piece-wide fit hypothesis) yields inaccurate predictions 

for macroscopic properties [37, 38]. A constitutive relation of granular materials based 

on the understanding of non-affine displacements is derived in [34, 39]. However, as 

the derived Young’s modulus highly depends on the artificial choice of the coarse-

graining function, this method has not been widely used.  

 

2.1.5 Other methods 

Various homogenisation theories can be found in the existing literature. The self-

consistent hypothesis is developed by Hershey [40] to find the effective Young’s 

moduli for aggregates of crystals. It divides the macro-scopic quantity (such as strain 

or stress) in aggregates into the local uniform quantity in the component and the far-

field uniform quantity component of the aggregate. Depending on the selected 

macroscopic quantity, the method can degenerate into Voigt’s hypothesis or Reuss’s 

hypothesis if the local strain or stress equals to the far-field counterpart [41].  

The method based on Voronoi-Delaunay tessellations is also used to describe the 

internal structure of granular materials [42, 43]. To facilitate stress-strain analysis of 
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granular materials, the tessellation of a two-cell system including both solid cell space 

and void cell space is further studied [44]. The particle-scale Voronoi-Delaunay 

tessellations can reflect the spatial arrangement of a granular assembly and can be 

partly regarded as an improvement of the before-mentioned piece-wide fit hypothesis. 

Furthermore, Voigt’s or Reuss’s hypothesis can be applied to each Voronoi cell to 

obtain the constitutive relation [23]. Although this Voronoi-Delaunay tessellation 

based method is conceptually attractive, its mathematical expressions incorporating 

stress-strain relations are highly sophisticated. Particularly the macroscopic material 

parameters (Young’s modulus and Poisson’s ratio) of granular materials are hard to be 

explicitly expressed.  

 

2.1.6 Brief summary  

Constitutive relations of granular materials have been developed in science and 

engineering fields. Although various hypothesises are involved and sophisticated 

formulations have been derived, the accurate prediction of constitutive relations of 

granular materials remains to be an outstanding issue. In the absence of accurate 

constitutive relations, the relations between macro material parameters, such as 

Young’s modulus and Poisson’s ratio, and mesoscopic parameters, such as contact 

stiffnesses, cannot be established. As a result, the determination of reasonable 

particle-scale stiffness values used for DEM analysis is still difficult.  

The reason for failure to accurately predict constitutive relationships of granular 

materials may be attributed to the fact that most homogenisation methods are derived 

from the continuum-based theory. The existing literature has shown that the 

continuum elasticity is valid only under certain conditions for granular materials [45, 

46]. Granular systems, whether spatially disordered or ordered particle packings, are 
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observed to transfer forces in a chain-like way when subjected to external loads [47, 

48]. It is the fact that force propagation along force chains does not preclude elasticity 

of granular matter, but it is understandable that the continuum theory cannot be 

expected to describe the mesoscopic inter-particle forces perfectly, even in the small-

strain elastic stage [45]. Although numerous attempts have been made toward the 

characterisation of force networks in granular matters, the current knowledge about 

force chains is still inadequate to connect the micro elasticity to the macro elasticity 

(continuum-based mechanics).  

In the following subsections, a set of kinematic solutions is derived based on the 

strain energy formulation in Section 2.2, and a set of simplified kinematic solutions is 

further obtained under the condition of isotropic assumption. The derived simplified 

kinematic solution will be evaluated with numerical solutions in Section 3.  

 

2.2 General Relation between mesoscale stiffnesses and macroscale elastic constants 

Basically, two kinds of elastic contact models without bond are commonly used in 

DEM. One is the linear contact model and the other is the non-linear Hertz contact 

model [5]. In this study, based on the assumption that the deformation of the granular 

assembly is statistically uniform in the space (Voigt’s hypothesis), the particle-scale 

parameters in the linear contact model are derived. The reasons for choosing Voigt’s 

hypothesis are not just because of its concise formulation but also the reported 

reliability in terms of capturing the stress-strain behaviour of granular materials.  

The fundamental idea of matching particle-scale parameters and macro material 

parameters is the equivalence of strain energy between a granular system and the 

corresponding continuum:  

 discrete continuumU U  (1) 
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The strain energy is equal to the work done by the contact forces which act from the 

un-deformed state until the state of the current deformation [49]. It should be noted 

that only displacements in both normal and tangential contact directions are 

responsible for changes in strain energy of the equivalent continuum because the 

topology of a disc/spherical particle assembly is independent of the rotations of 

particles [50], and no rolling stiffness and damping are considered. The total strain 

energy stored in the entire system is given by:  

 
0 0

1

k kc
n s

N
u u

N n s s

k

U F d F d 
 



 
  

 
     (2) 

where 
k

nu  and 
k

su denote the normal and tangential relative displacements of 

contact k, respectively; Fn and Fs are contact forces in the normal and shear directions, 

respectively; dδn and dδs are infinitesimal deformations in the normal and shear 

directions, respectively; and Nc is the total number of contacts excluding the contacts 

with zero force in the entire granular system because only the contacts carrying forces 

contribute to the mechanical balance [51]. 

For the linear contact model in DEM, the contact forces can be expressed with 

contact relative displacements as follows: 

 ,  N n n s s sF K u F K u     (3) 

where Kn and Ks are the normal and tangential stiffnesses of the contact; nu  and 

su are the normal and tangential relative displacements of the contact, respectively. 

It should be noted that Eq. (3) is only valid within the Coulomb limit. i.e., the 

tangential force is equal or less than the maximum friction force.  

The strain energy stored in contact k with a linear contact relation is given by: 
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  
1

2

k k k k k

n n n s s sU K u u K u u       (4) 

By equating the particle displacements to the displacements of the corresponding 

points in the continuum, the relationship between the relative displacement of 

particles 
k

iu  and the equivalent local strain 
k

ij in the continuum is determined as: 

 
   

( )
B Ak k k k k

i ij j j ij ju x x L       (5) 

where 
 A

jx  and 
 B

jx  are the coordinates of particles A and B in the xj direction; kL  is 

the distance of contact k (between the centres of particles A and B here); and 
k

j is 

the j-component of the direction vector of contact k. The normal relative displacement 

k

nu  can be expressed as 

 
   

( )
i

B Ak k k k k k k k k

n i ij j j i ij i ju u x x L            (6) 

The tangential relative displacement 
k

su  can be written as
  

 
k k k k k k k k k k k

s i n mn n ij i j mu u u L L            (7) 

Substituting Eqs. (6) and (7) into (4), the energy stored in the granular system with the 

linear contact relation can be rewritten as: 

 
c

1

1
( )( )

2

NNc
k k k k k k k k k k k k k k k k k k k k k k k k k

n ij i j mn m n s kl l ij i j k km m mn m n k

k k

U U K L L K L L L L                 


         (8) 

Then the strain energy density for the whole system is given by: 

 

 (2D model)

 (3D model)

U

S
u

U

V




 



 (9) 

where S is the total domain area of the particle assembly in the 2D case, while V is the 

total volume in the 3D case. In what follows, we derive the formulas for 3D cases, 

while the properties in 2D cases can be readily obtained by ignoring the third index 
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and replacing V by S.  

According to the theory of elasticity, the stress tensor of a continuum can be 

obtained by differentiating the strain energy density with respect to the corresponding 

strain tensor as follows: 

 ij

ij

u








 (10) 

We assume that the macro material properties of a granular assembly are statistically 

uniform in the space, so a local strain in any position for the corresponding continuum 

equals to the overall strain: 

 = k

ij ij    (11) 

Therefore Eq. (10) for the corresponding continuum can be expressed as: 

 
c

1

1 1
( )

NkNc
k k k k k k k k k k k k k k k k k

ij n ij i j mn m n s ik k j mn i j m nk
k kij

U
K L L K L

V V
              




     

  (12) 

The elastic stiffness tensor can be obtained by differentiating the stress component 

with respect to the corresponding strain component as: 

   

   

c

c

2 2

1

2 2

1 1

1
( )

( )
                               

c

N
ij ij k k k k k k k k k k k k

ijmn n i j m n s in j m i j m nk
kmn mn

N N
k k k k k k k kn s s

i j m n in j m

k k

C K L K L
V

K K K
L L

V V

 
          

 

      



 

       
   


 



 
 (13) 

where in  is Kronecker’s delta function. The physical meaning of Cijmn is the stiffness 

for tension or compression in one principal direction when strains in the other 

directions (perpendicular to the principal direction) are constrained to be zero. Both 

terms  
2

1

cN
k k k k k

i j m n

k

L    


  and  
c 2

1

N
k k k

in j m

k

L   


  in Eq.(13) are purely determined by the 

packing structure of a granular assembly and can be determined once the fabric 

components of particles are known (it is easy to do in a numerical model).  
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Although granular assemblies are inherently amorphous and heterogeneous in 

general, the mechanical behaviour of a granular assembly can still be regarded as an 

elastic body in the case of small deformation. The usual constitutive formulations for 

general elastic media, either iso- or aniso-tropic, are well-established in solid 

mechanics. The relation between the equivalent elastic parameters and the particle-

scale parameters can be established based on the established formulation. For example, 

the elastic stiffness tensor ijmnC  for isotropic elastic solid is given as: 

 = ( )
2(1 ) (1 )(1 2 )

ijmn in jm im jn ij mn

E E
C


     

  
 

  
  (14) 

where E and ν are Young’s modulus and Poisson’s ratio, respectively.  

By comparing Eq.(13) with Eq.(14), the equivalent Young’s modulus and Poisson’s 

ratio in an isotropic granular assembly can be obtained. Eq.(13) unveils the 

fundamental relation between the particle-scale stiffness, fabric configuration and 

equivalent macroscale deformation parameters. For a specific packing assembly, the 

equivalent elastic parameters can be determined by combining the packing structure 

and the known particle stiffnesses. On the other hand, we can understand how the 

macro deformation of granular material is related to the fabric configuration without 

considering particle breakage and deterioration. For simplicity, a more simplified 

constitutive law will be derived in the next section. 

 

2.3 A simplified constitutive law for the granular assembly with an isotropic structure 

 Eq.(13) is a generalised description and can be applied to any particle packing. 

Under the condition that all particles are of equal size and have the same material 

properties, Eq. (13) can be simplified as: 

 
c2 2

1 1

4 ( ) 4cN N
k k k k k kn s s

ijmn i j m n in j m

k k

r K K r K
C

V V
      

 


    (15) 
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where r is the radius of particles. Similar results have already been found in [27, 29, 

52, 53]. 

For a granular assembly with a large number of particles and contacts, the 

orientations of contact normals can be assumed to obey a statistically even 

distribution. Eq. (15) can thus be expressed in a continuum form. Let the distribution 

density function of particle contacts be ( ) or ( , )     , where θ is the angle in the 

polar coordinate system (2D, Fig. 1a), and γ and β are the angles in the spherical 

coordinate system (3D, Fig. 1b). The density function of contacts represents the 

number of contacts that direct to a certain angle in space and therefore satisfies the 

condition: 

 

2

0

2

0 0

( ) 1                        (2D)

( , )sin 1   (3D)

d

d d



 

  

     

 


 




 
 (16) 

The number of contacts in a local area dΩ is given as ( )cN d    or ( , )cN d    , 

where Nc is the total number of contacts in the volume V.  

Under the condition that the particle assembly is statistically isotropic or quasi-

isotropic, the distribution density function has the form: 

 

1
( )       (2D)

2

1
( , )   (3D)

4

 


  






 


 (17) 

Replacing the summation in Eq. (15) by integration leads to: 

 

2 2

2 2

4 ( ) 4
   (2D)

2 2

4 ( ) 4
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4 4
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C
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d d

V V
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 

      
 

 

 

 
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
 
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

 

 

 (18) 

Here    
2

0
d d






      for the 2D case and    
2

0 0
sind d d

 

  


      for the 
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3D case. So Eq. (18) can be reduced to: 

 

2 2
2 2

0 0

2 2
2 2

0 0 0 0

2 ( ) 2
                                 (2D)
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sin sin    (3D)
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 
 



 
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In the polar or spherical coordinate system, a contact normal can be represented as: 
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ξ  (20) 

By substituting Eq. (20) into Eq. (19) and evaluating the integrals, the elastic stiffness 

tensor can be explicitly expressed as: 
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By comparing Eq. (21) with the usual expression of stiffness tensor (see Eq.(14)) in 

solid mechanics, we have 
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As the above closed-form solutions are derived based on the assumption that all of 

the strain components throughout the model are uniform (i.e. the Voigt hypothesis 

[30]), the corresponding solution is called a kinematic solution [54]. For convenience, 

Eq. (13) is termed the generalised kinematic solution, and Eq. (21) and its derived Eqs. 

(22) and (23) are called the simplified kinematic solutions. The error due to 

introducing such a statistically isotropic simplification will be investigated in the next 

section. 
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3 Comparison between numerical tests and derived formula 

3.1 Test schemes 

To fully determine the equivalent elastic properties of a 2D granular assembly, 

including Young’s modulus E and Poisson’s ratio v, two loading cases are employed 

in biaxial/triaxial tests. One is to keep the lateral confining stress constant (shown in 

Fig. 2a) while the other is to keep the lateral boundary fixed (see Fig. 2b), during axial 

compression testing. 

  In the case of a constant confining stress, the equivalent elastic modulus of 

granular materials can be numerically given by: 

 c( )E








 (24) 

where the subscript index c represents a constant confining stress condition.  

The specimen is loaded along the vertical direction until the axial strain is up to a 

relatively small value (5×10-4 is adopted in our model). Here a loading-unloading case 

can be used to check whether or not the granular specimen is in a state of elastic 

deformation during loading/unloading. 

According to the second case which keeps the lateral boundary fixed, the elastic 

constants E and ν of the specimen can be determined by the slope of the axial 

deviatoric stress versus the axial strain as: 

  
(1 )

( )
(1 )(1 2 )

f

E  

  

 


  
 (25) 

where the subscript index f represents a fixed boundary condition.  

The combination of the above two tests can determine the Poisson’s ratio of a 

specimen under small strain. We define a constant n as the ratio of the slope of stress-

strain in the fixed boundary condition to the slope of stress-strain in the constant 
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confining stress condition:  

 
( )

( )

f

c

n















 (26) 

Then the Poisson’s ratio can be determined as: 
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n
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  (27) 

The above test schemes will be adopted for the following both monodisperse and 

polydisperse packings to determine the equivalent Young’s modulus and Poisson’s 

ratio.  

 

3.2 Monodisperse particle packing 

As shown in Fig. 3, a granular assembly with monodisperse (equal-sized) particles 

enclosed in a square/cubic box is generated with Particle Flow Code (PFC) software 

[55] which is also used to perform all the following simulations in this study. The 

granular assembly is isotopically compacted to a predefined stress state, using the so-

called wall-servo mechanism, which is a way of adpaptively moving walls to compact 

the specimen to the a prescribed confining stress state [55, 56]. The default time step 

in PFC software is used in all the following numerical tests, and this default value is 

dependent on the current contact stiffnesses used, masses and sizes of all particles in 

the system [55]. Note an initial coefficient of friction is used to generate the granular 

specimens with different porosities [57-60]. By performing a sequence of numerical 

models with different initial friction coefficients (from 0 to 1), the porosity in the 

whole domain can be calculated from the eatablished models. The relations between 

the initial friction coefficient and porosity of the specimens are obtained as shown in 

Fig. 4. To prevent possible rearrangements of particles (irreversible plastic 

deformation) for the granular system subjected to a small strain condition, the initial 
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coefficient of friction is then replaced with a relatively larger coefficient of friction 

(e.g. 1.0), prior to performing loading and unloading tests. The model parameters 

adopted are listed in Table 1.  

 The axial deviatoric stress versus the axial strain is shown in Fig. 5, indicating that 

the specimen subjected to an axial strain of 5×10-4 is under an elastic state. This check 

is always recommended for a specific model due to two reasons: (1) the specimen 

before testing may not be in a sufficiently converged state (may interfering the initial 

stress-strain curves); (2) the model porosities affect the range of the elastic region. i.e, 

the elastic region for a loose model may stop at a relatively small axial strain while 

the counterpart for a dense model exists even if under a relatively large axial strain. 

A loading rate of 5×10-5m/s is applied to the loading walls (both upper and lower 

walls). The loading rate is chosen to make the model in a quasi-static state. To make a 

comprehensive comparison between our proposed formula and the numerical values, 

we perform a large number of tests with various porosities and stiffness ratios (Ks/Kn).  

In addition, the vertical components of the elastic stiffness matrix from the 

generalised kinematic solutions, the simplified kinematic solutions, a static solution 

documented in [26], and the numerical DEM solutions are compared. Figures 6 and 7 

show the variations of the vertical component of the stiffness matrix (C2222 in the 2D 

or C3333 in the 3D model) with different porosities and stiffness ratios (Ks/Kn). 

The results show that the differences between the generalised kinematic solution and 

the simplified kinematic solution are very small in DEM models with different 

porosity values and stiffness ratios, which indicates that our simplified kinematic 

solution is reliable.  

Although significant differences can be found between the numerical results and 

analytical solutions (kinematic and static solutions), the derived kinematic solutions 
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are observed to predict the trend of elastic constants better than the static solutions in 

DEM specimens with varied Ks/Kn ratios.  

From the perspective of continuum mechanics, the static hypothesis tends to yield a 

lower bound solution compared to the exact solution, while the kinematic solution 

derived from Voigt’s hypothesis corresponds to an upper solution [61, 62]. It is natural 

to expect that the numerical DEM solution should be an intermediate value between 

the lower and upper bound solutions. However, Figs. 6 and 7 show that the analytical 

solutions (both kinematic and static solutions) always overpredict the elastic constants 

of granular matter. The mechanism behind these differences will be discussed in 

Section 3.2.  

 

3.3 Polydisperse particle packing 

A granular packing with varied sizes (polydisperse) is of more interests in 

engineering applications. Although the formulas (21)-(23) are derived based on the 

condition that the particles are equal-sized, they are extended here for polydisperse 

packings with the particle diameter 2r being replaced by the median diameter (d50) of 

the polydisperse granular packing. To find out how much error may be introduced by 

such an extension, several tests are conducted with various uniformity coefficients (Cu) 

but a fixed d50:  

 Cu=d60/d40  (28) 

where d60 and d40 are the diameters below 60% and 40% of the total particles, 

respectively. The particle size distributions adopted for the simulations are shown in 

Table 2. The initial friction coefficient, normal and tangential particle stiffnesses are 

taken as 0.01, 1×108Pa and 5×107Pa, respectively.  

The errors of using both the original kinematic solution and the simplified kinematic 
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solution are compared with the numerical solutions (see Fig.8). As Cu increases, the 

original kinematic solution gives a worse estimation but the simplified kinematic 

solution predicts the numerical solution better. The simplification that uses d50  to 

replace the distance between two arbitrary particles in Eqs. (21)-(23) may give rise to 

a relatively lower estimation. Such an underestimation compensates the error 

originally arising from the kinematic hypothesis. Therefore, although the formulas 

(21)-(23) are derived from the monodisperse packing, they can still provide relatively 

reliable estimations of macro material parameters for granular packings.  

 

3.4 Mechanism responsible for differences between analytical and numerical solutions  

External loads are transferred in granular materials in a way totally different from 

that in continuum media [63-65]. Figure 9 shows a two-dimensional granular 

experiment using binary photo-elastic discs. These discs in a box are subjected to pure 

shear deformation: the discs are squeezed vertically while being expanded with an 

equal horizontal velocity so that the total area remains constant.  

The colours of the discs in experiments become brighter when subjected to greater 

contact forces. The figure shows that several column-like particle chains undergo 

significantly greater contact forces compared to most particles in the system. The load 

transfer mechanism in the granular medium exhibits significantly discontinuous and 

inhomogeneous features. 

 The analytical solutions are developed based on the homogenisation or averaged 

assumption which accounts for all the mechanical contacts equally. The nature of only 

a portion of strong contacts involved in transferring the external loads explains why 

considering weak contacts equally as strong contacts will make the derived equivalent 

stiffnesses overpredicting the actual value.  
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4 Refined estimations of linear contact stiffnesses with a numerical strategy 

4.1 The closed-form formulation of particle-scale stiffnesses 

In material science and physics, the macroscopic description of the deformation 

behaviour of granular materials is important. On the contrary, in DEM simulations for 

geo-materials, a more practical concern is how to estimate the values of stiffness 

parameters in contact models for particles, based on the macroscopic material 

properties.  

From Eqs. (22) and (23), the particle-scale stiffnesses can be obtained as  
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Note that the values of Nc and V (or S) are not known in prior unless the model has 

been generated, but an estimation of S/Nc (2D) or V/Nc (3D) from empirical formulas 

is possible. Particularly, the median radius (d50/2) can take the place of the particle 

radius r in Eqs. (29) and (30) to obtain approximations for Kn and Ks in granular 

materials with a varied particle size distribution, as is done in Section 3.1.3. This 

scheme will be further verified in Section 4.3.3. 

 

4.2 The estimation of (S/Nc) or (V/Nc) based on randomly distributed specimens 

The ratio of S/Nc (2D) or V/Nc (3D) governs the density of the granular packing and 

can be described by the coordination number cN and the porosity ϕ. As two particles 
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can only form one contact, the coordination number cN  and the porosity ϕ are defined 

by: 
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where pN  is the total number of particles, and Sv or Vv is the total area/volume of the 

voids. Assuming that the area/volume of a particle is Sp or Vp, then 

 or V P V PV V V S S S    . For a monodisperse granular packing, the total particle 

area/volume can be determined by: 
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Combining Eqs. (31)-(33), the ratio of S/Nc (2D) or V/Nc (3D) is given by: 
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For a randomly distributed granular assembly, although the relationship between the 

porosity ϕ and the coordination number cN  is not unique, a proportional relationship 

has been proven to exist [33, 66]. As the porosity of a granular assembly is highly 

influenced by the initial friction coefficient, the relation between the packing related 

parameter 1/ (1- ) cN  and the numerical initial friction coefficient is investigated in the 

pre-stated benchmark models with a large range of porosity.  

Figure 10 shows that a quadratic relation is found in both 2D and 3D cases. The 
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relevant fitted relation can provide a satisfactory estimation for the packing parameter 

1/ (1- ) cN  in randomly distributed granular packings. The actual porosity in a granular 

packing may slightly vary with the changes in the particle size distribution, particle 

numbers involved in models, and confining stress conditions, and thus the empirical 

formulas in Fig. 10 is simply an estimation. If the estimation made by the provided 

empirical relations is found to be unsatisfactory during the following iterative 

computations, a remedial measure can be taken by choosing the actual value of S/Nc 

(2D) or V/Nc (3D) in the already generated model as a new approximation. Moreover, 

the approximation errors will be effectively reduced by the iterative scheme to be 

introduced in Section 4.3.  

    With the use of the empirical estimations for the packing related parameter 

1/ (1- ) cN , the initial approximation values for the particle-scale parameters Kn and Ks 

can be given before generating the DEM model. These derived values will act as the 

initial guess for the iterative computational scheme proposed below to further 

improve the estimation for Kn and Ks. 

 

4.3 Using gradient descent to estimate particle-scale stiffnesses  

4.3.1 Error function and gradient descent scheme  

The calibration process of particle-scale parameters for a granular assembly is 

equivalent to finding suitable parameter values to minimise the difference between the 

targeted macro-scopic behaviour and the actual behaviour. Thus the following error 

or cost function is constructed: 

 2 2

1 2( , ) ( 1) ( 1)
E

L E
E


  



 
       (35) 

where E and    are the equivalent Young’s modulus and Poisson’s ratio of the 

granular assembly; E and ν are the targeted Young’s modulus and Poisson’s ratio; β1 
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and β2 are two positive weighting coefficients with β1 + β2 = 1. When only the 

targeted Young’s modulus is required, β1=1 and β2 = 0. When both modulus and 

Poisson’s ratio are of equal importance, β1=β2=0.5. As E and   both are functions of 

Kn and Ks, the calibration process is now reduced to solve the minimisation problem 

(35), and thus many numerical methods can be used. In this work, the gradient 

descent scheme is adopted due to its simplicity. 

To find the minimum of a function using gradient descent, independent variables are 

iteratively updated in the opposite direction of the gradient (or approximate gradient) 

of the function. The iterative procedure can be described as: 

 :i i i
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where xi is an independent parameter; the symbol “:= ” means assignment; ηi is a 

learning rate to determine the size of the iterative step to be taken to reach a minimum; 

i

L

x




represents the derivative or gradient of the function along the xi direction. 

Due to highly non-linear and discontinuous features of the error function, three 

modifications are made to the above gradient descent algorithm to enhance the 

practicability and convergence.  

The first measure is scaling. Both Kn and Ks are normalised by the initial values of 

Kn and Ks (denoted as nK and sK , and given by Eqs. (29) and (30)), and the resulting 

normalised normal and tangential stiffnesses kn and ks are expressed as: 

 ,  n s
n s

n s

K K
k k

K K
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Now the error function can be rewritten as: 

 ( , ) ( , ) ( , )n s n sL E F K K f k k     (38) 

 The second modification is that the gradient of the error function is approximated 
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by using the finite-difference method [67], i.e., the partial derivatives of the error 

function are given as: 
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where ∆kn and ∆ks are (small) increments of the normalised particle stiffnesses kn and 

ks. At the first iteration, ∆kn and ∆ks are set to be ∆kn =-αKn and ∆ks =-αKs where the 

parameter α is typically taken around ~0.2. For other iterations, ∆kn and ∆ks are taken 

to be the step increments of kn and ks. This means that the gradient of the error 

function is approximated by its secant slope.  

In the final modification, the increments in each iterative step are changed to  
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(40) 

where the learning rate ηi is chosen to be a constant and further multiplied by the error 

function. This modification to the step size is motivated by the fact that if the error 

function is sufficiently smooth, 
n

L

k




and 

s

L

k




will be equal to zero and ∆kn=∆ks=0 at the 

minimum value, but this smoothness assumption may not be valid in the current 

situation. Thus the presence of the error function effectively reduces the size of the 

learning step when the error function approaches to its minimum, leading to a more 

robust scheme with better convergence.  

  Then the particle stiffnesses in each iterative step are given by: 
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   (41) 

When kn and ks  are converged, the estimated values of Kn and Ks can be obtained by 
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the substitution of Eq. (37). 

 

4.3.3 The implementation procedures 

To develop the above-proposed methodology into a standard calibration procedure, 

we summarise the numerical steps involved in Fig.11. First, we take the 

experimentally determined Young’s modulus and Poisson’s ratio as the target values 

for the granular system concerned. By using the empirical relations of S/Nc or V/Nc, 

we can estimate reasonable initial values (Kn, Ks) for the particle-scale stiffnesses 

based on a desired porosity in the model according to Eq. (29)  for 2D or Eq. (30) for 

3D. A sequence of estimations to Kn and Ks can be obtained by the iterative procedure 

Eq. (41) until the error function L(E*,ν*) is smaller than a pre-defined tolerance. At 

each iterative step, standard DEM simulations such as biaxial or triaxial tests are 

performed to obtained both E*,ν* for the given values of Kn and Ks. 

 

4.4 Numerical tests of the proposed method   

Four numerical cases (see Fig. 12), including a monodisperse random packing (case 

1 and case 3), a polydisperse random packing (case 2) and a three-dimensional 

monodisperse packing with random distribution (case 4),  are performed to show the 

robustness of the proposed method. The targeted Young’s modulus and Poisson’s ratio 

are 10GPa and 0.2, respectively, for all the test cases. Furthermore, the iterative 

process is terminated when the error function is less than 10-4.  

 

Case 1: Monodisperse random packing 

A monodisperse granular packing with 1833 particles (the radius is 0.1m, the initial 

coefficient of friction is 0.1) is randomly generated in a square container and 
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isotropically consolidated to a uniform stress state of 1MPa. The parameters αn, αs, 

learning rates ηn and ηs are taken as 0.22, 0.22, 0.001 and 0.001, respectively. The 

predicated Kn and Ks and the errors during the iterative process are listed in Table 3. 

 

Case 2: Polydisperse random packing 

A random packing of 1655 particles with radii evenly distributed from 0.05m to 

0.1m and the initial coefficient of friction 0.1 is generated in a square container and 

isotropically consolidated to a bi-axial stress level of 1MPa. The parameters αn, αs, 

learning rates ηn and ηs are taken as 0.2, 0.2, 0.001 and 0.001, respectively. The 

convergent histories of  Kn and Ks and the errors are shown in Table 4. 

 

Case 3: Estimating Kn and Ks with only the elastic modulus of a polydisperse packing 

The elastic modulus and Poisson’s ratio can be easily measured for solid, but are 

often difficult for granular assemblies, and also the obtained values may not be 

sufficiently accurate. When Poisson’s ratio is not available or its value is not reliable, 

the proposed method can estimate Kn and Ks by setting β1=1 and β2=0 in the error 

function. A granular assembly with the particle radii evenly distributed from 0.05m to 

0.1m is generated to show the capability of our proposed method to estimate Kn and 

Ks to only match Young’s modulus. The parameters αn, αs, learning rates ηn and ηs are 

taken as 0.24, 0.24, 0.001 and 0.001, respectively. The convergent histories of  Kn and 

Ks and the errors are shown in Table 5. 

 

Case 4: Estimating Kn and Ks with the elastic modulus of 3D monodisperse packing 

A three-dimensional monodisperse granular assembly is generated to show the 

iterative process of the proposed method. 4369 particles with a radius of 0.25m are 
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randomly distributed in the model. The 3D specimen is isotropically consolidated to a 

uniform stress state of 1MPa. The parameters αn, αs, learning rates ηn and ηs are taken 

as 0.1, -0.5, 0.01 and 0.01, respectively. The convergent histories of Kn and Ks and the 

errors are shown in Table 6. 

The evolution histories of the error function during the iterative process for all the 

four cases are depicted in Fig. 13. Clearly, the error functions are not monotonically 

decreasing, due to nonlinear and discontinuous features of the relationship between 

the meso-scopic contact stiffnesses and the macro-scopic material properties. 

However, the error function in all the cases exhibits a significant decrease from a 

relatively large initial value to a value less than 10-4. The tests show that the proposed 

framework for the estimation of linear contact stiffnesses is practicable and effective 

for both monodisperse and polydisperse packings. Note, however, that the choice of 

the parameters αn, αs, ηn and ηs will affect the convergence of the iterative procedure. 

 

5 Concluding Remarks 

A hybrid analytical-computational method has been proposed to calibrate the linear 

contact stiffnesses Kn and Ks for DEM simulations. Based on the derived semi-

analytical and semi-empirical formula, a reasonable initial estimation to Kn and Ks can 

be obtained. By taking their values as the initial guess, Kn and Ks can be iteratively 

refined by using the gradient descent method to minimise the error function which 

measures the difference between the achieved equivalent macroscopic parameters 

(Young’s modulus and Poisson's ratio) and the targeted values. The proposed 

framework has been validated and confirmed to be applicable to randomly generated 

monodisperse and polydisperse packings.  

The effectiveness of this proposed hybrid calibration method is attributed to both 
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factors: one is that the derived analytical formulas provide an initial guess close to 

true parameters. The other one is that the gradient-based iterative algorithm offers 

chances to optimise the parameters continuously. Both factors are indispensable for a 

successful calibration. Without a relatively accurate initial guess, the optimisation 

algorithm may suffer from unpredictable local optimums and possible divergence. On 

the other hand, without the use of an optimisation algorithm, the derived continuum-

based analytical solution may significantly under- or over-predict the actual 

parameters, due to its inability to account for wide range changes in porosity, particle-

scale Ks/Kn ratio, the particle number and randomness in DEM models.  

This proposed hybrid framework is generic and flexible in which any effective 

optimisation algorithms can be adopted to improve the prediction of the model 

parameters. The methodology can also be extended to other parameter calibration 

problems in DEM. 
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Tables 
Table 1. Model parameters used 

 
Parameters 2D model 3D model 

Particle radius (m) 0.1 0.5 

Initial model size (m) 8×8 20×20×20 

Number of Particles 1833 7639 

Normal stiffness (N/m) 108 108 

Tangential stiffness (N/m) 0.1~1×108 0.1~1×108 

Local damping 0.7 0.7 

 

Table(s)
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Table 2. Particle size distributions used in the simulations 

 
Specimen Particle size (m) d50 (m) Cu 

1 0.18 0.18 1.00 

2 0.16-0.2 0.18 1.12 

3 0.14-0.22 0.18 1.27 

4 0.12-0.24 0.18 1.45 

5 0.10-0.26 0.18 1.69 

6 0.08-0.28 0.18 2.00 

7 0.06-0.30 0.18 2.43 

8 0.04-0.32 0.18 3.06 
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Table 3. Estimation process of Kn and Ks in a monodisperse granular assembly 

 

Iteration Kn (N/m) KS (N/m) 
Young’s 

modulus (Pa) 

Poisson’s 

ratio 

Modulus 

error 

Poisson’s 

ratio error 

0 13352500 4450833 13479256 0.177 0.348 -0.114 

1 10414950 3471650 9990477 0.236 -0.001 0.178 

2 10414934 3471640 10494977 0.204 0.049 0.021 

3 10182886 3431141 9976366 0.222 -0.002 0.112 

4 10182882 3431143 10002330 0.217 0.000 0.087 

5 9546649 3695261 9667307 0.209 -0.033 0.047 

6 9546651 3695261 9751230 0.197 -0.025 -0.015 

7 9588986 3662764 10016067 0.193 0.002 -0.037 

8 9588985 3662765 9805469 0.200 -0.019 0.002 

9 9605966 3687070 10005307 0.201 0.001 0.007 
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Table 4. Estimation process of Kn and Ks in a polydisperse granular assembly 

 

Iteration Kn (N/m) KS (N/m) 
Young’s 

modulus (Pa) 

Poisson’s 

ratio 

Modulus 

error 

Poisson’s 

ratio error 

0 13352500 4450833 12250834 0.200 0.225 -0.002 

1 10682000 3560667 10032187 0.194 0.003 -0.028 

2 10681999 3560666 10021518 0.209 0.002 0.043 

3 10629690 3504728 9840505 0.211 -0.016 0.054 

4 10629689 3504729 9740761 0.212 -0.026 0.062 

5 10575279 3542058 9781819 0.216 -0.022 0.078 

6 10575271 3542053 9821254 0.206 -0.018 0.029 

7 10533175 3546570 9995560 0.198 0.000 -0.012 
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Table 5. Estimation process of Kn and Ks matching only the elastic modulus for a 2D 

monodisperse packing 

 

Iteration Kn (N/m) Ks (N/m) Young’s modulus (Pa) Modulus error 

0 13352500 4450833 13479256 0.348 

1 10147900 3382633 10167165 0.017 

2 10147898 3382632 10135995 0.014 

3 10149351 3383795 9905912 -0.009 
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Table 6. Estimation process of Kn and Ks matching only the elastic modulus for a 3D 

monodisperse packing 

 

Iteration Kn (N/m) Ks (N/m) Young’s modulus (Pa) Modulus error 

0 8342918 1390486 10251664 0.025 

1 7508626 2085730 11346501 0.135 

2 7508123 2085075 11337610 0.134 

3 6203517 2069598 10410624 0.041 

4 6194155 2059840 10405686 0.041 

5 6087605 2056510 9992706 -0.001 
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Figures 

 

         

(a) 2D model    

                       

      

 (b) 3D model 

Fig. 1 Polar coordinate (2D) and spherical coordinate (3D) for directional distribution of 

inter-particle contacts 

Figure(s)
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(a) Constant confining stress 

  

(b) Fixed lateral boundary 

Fig.2 Schematic of biaxial testing case 
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(a) 2D model                                     

    

(b) 3D model 

Fig.3 Benchmark models 
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(a) 2D model                                                

   

(b) 3D model 

Fig. 4 The relations between initial coefficient of friction and porosity in specimens 
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Fig.5 Axial deviatoric stress vs axial strain for elastic load/unload test (dense sample)
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(a) 2D model 

 

(b) 3D model 

Fig. 6 Vertical component of equivalent stiffness tensor in DEM model with varied porosity 
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(a) 2D model 

 

(b) 3D model 

Fig. 7 The vertical component of equivalent stiffness tensor in DEM models with varied 

Ks/Kn ratio 
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Fig. 8 The errors between the analytical solutions and the numerical solutions in the 

polydisperse packing 
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Fig.9 Load transfer in a granular solid subjected to pure shear deformation (photoelastic 

images)  
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(a) 2D model 

 

(b) 3D model 

Fig. 10 The changes in packing parameter 1/ (1- ) cN  with varied porosity 
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Fig. 11 Flow chart for iteratively determining Kn and Ks  
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(a) case 1 and case 3 

 

(b) case 2 

 

(c) case 4 

Fig. 12 Granular packings used for tests: (a) random monodisperse packing; (b) random 

polydisperse packing; and (c) 3D random monodisperse packing   
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Fig. 13 The iterative processes for illustrated cases 

 

 


