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Abstract

We investigate the choice between posted prices and auctions of competing sellers with

private valuations. Assuming that buyers face higher hassle costs in auctions, we show the

existence of monotone pure strategy equilibria where sellers offer posted prices rather than

auctions if and only if they have a sufficiently high reservation value. Posted prices sell with

lower probability but yield a larger revenue in case of trade. Using an empirical strategy to

compare revenues of posted prices and auctions that takes selling probabilities explicitly into

account, we find our theoretical predictions supported by data from eBay auctions on ticket

sales for the EURO 2008 European Football Championship.

JEL Codes: D43, D44, D82, L13.

Keywords: Auctions / bidding, Competing Sellers, Single-Crossing, Posted Prices.

1 Introduction

Anyone who wishes to sell via an (online) trading platform has to decide upon two issues: What

type of trade mechanism to choose and how to specify this mechanism. At eBay, for instance,

sellers can decide to run an auction or to offer a transaction at a posted price and have to fix

a reserve price for the auction or the posted price.1 A first glance at actual eBay transactions

typically hints at a trade-off: Auctions are more likely to be successful but yield a lower average

revenue than posted-price transactions.2 This seems to be in contrast to the textbook advice

∗Corresponding author. Email address: eberhard.feess@vuw.ac.nz
1In practice, there are several variants of posted price or auction-institutions (e.g. at eBay it is possible to allow

for price suggestions by buyers or to set secret reserve prices in auctions) and hybrid designs such as buy-it-now

options.
2See, for instance, Halcoussis and Mathews (2007) or Hammond (2010).
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that auctions are better for sellers than posted-price offers because they permit sellers to price

discriminate with respect to bidders’ valuations.

Recently, Einav et al. (2018) suggested an explanation for this empirical observation: If a

monopolistic seller has high opportunity costs of selling the item, it is unlikely that there are at

least two bidders with valuations above the seller’s opportunity costs. If buyers face hassle costs

when participating at an auction, then such a monopolistic seller may strictly prefer offering

the item at a posted price rather than at an auction. As a result, posted prices tend to be

optimal for a seller with high opportunity costs, whereas auctions are optimal for a seller with

low opportunity costs.

In this paper, we extend this analysis to the mechanism choice of competing sellers. As

suggested by the literature on competing mechanism designers (see the literature review below),

it is anything but straightforward to translate results for monopolistic sellers to sellers who

compete with the design of their trade mechanism. E.g., it has been shown by Eeckhout and

Kircher (2010) that competing sellers may only choose posted prices (rather than auctions)

whenever meetings between buyers and sellers are rival.3 Our model, however, establishes a

translation of the findings by Einav et al. (2018) to a setting with competing sellers: As long as

buyers do not face auction-specific hassle costs, competing sellers will only offer auctions. But

if sellers’ valuations are continuously distributed and buyers face auction-specific hassle costs,

it is an equilibrium that sellers with low opportunity costs of selling offer auctions while sellers

with high opportunity costs offer posted prices.

We model the strategic choice between posted prices and auctions by a set of sellers as

a finite action game with incomplete information as analyzed in Athey (2001). Sellers have

quasi-linear preferences with a private valuation for one unit of a homogenous good drawn

independently from (not necessarily identical) continuous probability distributions with full and

identical support. Each seller is endowed with one unit of the homogenous good and chooses

between posted prices and auctions with start prices. For a given profile of mechanisms chosen

by the sellers, buyers act as price takers and the market clears. In other words, buyers who

do not trade in equilibrium cannot benefit from trading at a price offered by a seller who does

not trade in equilibrium, and buyers who do trade in equilibrium cannot benefit from either not

trading or trading with some other seller who does not trade in equilibrium.

For a given strategy by the other sellers, any mechanism can be fully characterized by

the induced probability of trade P and the expected revenue in case of trade R. The set of

mechanisms at a seller’s disposal can therefore be depicted by a set of points in the plane,

3Eeckhout and Kircher (2010) demonstrate that for competing sellers the superiority of auctions over posted

prices crucially depends on the search technology. Auctions - or other screening mechanisms - loose their supe-

riority as compared to posted prices if a meeting between a seller and a buyer is sufficiently rival. Then, posted

prices resemble an efficient device for an ex-ante sorting (rather than an ex-post screening) of buyers.
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and we will refer to this set of points as a (P,R)–plot of mechanisms. For a given strategy of

other sellers, a seller will never choose a mechanism that is dominated in the sense that another

mechanism would either yield a higher selling probability with at least the same revenue in case

of trade or a larger revenue with at least the same selling probability.

We first demonstrate that, without auction-specific hassle costs, a posted price f is always

dominated by an auction with start price f and, as also shown with models of competitive

mechanism design by McAfee (1993) or Peters (1997), sellers will only offer auctions with start

prices that are monotone increasing in their valuation. Part of the literature (see e.g. Carare

and Rothkopf, 2005; Wang et al., 2008; Einav et al., 2018), however, has reasonably emphasized

that posted prices may be preferred by at least some buyers due to lower hassle costs that can

be attributed to waiting times, the time needed to enter an auction several times (Leszczyc et

al., 2009) and the costs of monitoring different auctions when searching for options promising

a greater surplus (Chan et al., 2017).4 Even when some people enjoy taking part in auctions,

assuming that hassle costs are, on average, larger compared to posted prices seems reasonable.

When taking these auction-specific hassle costs into account, we find that (P,R)–plots, and

thereby equilibrium mechanism choices, exhibit single-crossing in the sense that sellers offer

posted prices if and only if they have a sufficiently high valuation.

Our model yields a set of hypotheses regarding the shape and relative position of (P,R)–

plots for posted prices and auctions. First of all, undominated mechanisms resemble a downward

sloping graph in the (P,R)–plot as an undominated mechanism with lower selling probability

yields a higher revenue in case of trade. Together with the single-crossing of undominated

mechanisms in (P,R)–plots for posted prices and auctions, this permits us to compare aggre-

gate performance of posted prices and auctions: Selling probabilities for posted prices are, in

equilibrium, lower than selling probabilities for auctions, but successfully posted prices are above

final auction prices. Moreover, we can characterize equilibrium mechanism choices of individual

sellers: Single-crossing of (P,R)–plots of posted prices and auctions implies that there is an

excess revenue of auctions relative to posted prices for large selling probabilities, but an excess

revenue of posted prices over auctions for small selling probabilities. Hence, a seller’s equilibrium

mechanism choice is monotone in her valuation along the set of undominated mechanisms. She

will choose an auction with a low start price (a high posted price) if her valuation is low (high).

In order to test the hypotheses derived from our model, we use data for tickets to matches

of the 2008 UEFA European Football Championship, because the perishable nature and the

lack of a competitive fringe guarantee sufficient heterogeneity in buyers’ and sellers’ valuations,

and therefore in equilibrium mechanism choices. We provide support for the aforementioned

4Other reasons for why buyers might find auctions less attractive than posted-price sales have been identified

e.g. by Harris and Raviv (1981) (excess capacity), Wang (1993) (homogenous buyer valuations), Mathews (2004)

and Bauner (2015) (risk aversion), and Zeithammer and Liu (2006) (time discounting).

3



insights on aggregate performances of posted prices and auctions by simple regression analysis.

Furthermore, our data suggest that posted prices are sold with a higher probability than auctions

with the same start price, which supports the assumption of bidders’ auction-specific hassle

cost. To test the main hypothesis from our model that auctions yield lower expected final prices

conditional on sale than posted prices for sufficiently small identical selling probabilities, we first

estimate the selling probability both for auctions and posted prices. We then use this predicted

selling probability in order to explain the excess revenue of an auction over a hypothetical

posted price at which this item would have needed to be offered in order to be sold with the

same probability. In line with our model, we then find that auctions outperform posted prices

for large identical selling probabilities and vice versa.

Our analysis regarding the existence of a monotone pure strategy equilibrium adds to the

literature on competing mechanism designers that establishes the optimality of auctions and

addresses the convergence of optimal start prices to the sellers’ costs in a competitive equilibrium

setting (see McAfee (1993) or Peters (1997)) or for competing auctions (see Peters and Severinov

(1997), Burguet and Sakovics (1999), Peters and Severinov (2006), Hernando-Veciana (2005), or

Virag (2010)). As this literature focuses on the emergence of efficient trade institutions as the

result of competition between sellers, it is typically assumed that sellers have identical or publicly

observable costs (for an exception see Peters (1997)). By contrast, our paper analyzes the impact

of unobservable seller heterogeneity on mechanism choice and thereby addresses the question

of optimal mechanism design for different types of sellers. Specifically, the representation of

a seller’s choice set by (P,R)–plots visualizes how straightforward trade-offs between selling

probability and revenue in case of trade ensure the existence of pure strategy equilibria. The

crucial role of this revenue-probability trade-off for equilibrium existence has been emphasized

in the literature on competitive search where sellers who offer a smaller share of the surplus

(and thereby keep a larger revenue for themselves) are visited less frequently by buyers; see,

e.g., Moen (1997) or, more recently, Guerrieri et al. (2010) and Chang (2017).

Some of our empirical results are in line with previous empirical work on the comparison

between auctions and posted prices: The aforementioned papers by Halcoussis and Mathews

(2007), Hammond (2010) and Einav et al. (2018) also find that auctions are unconditionally

more likely to be successful but yield a lower price conditional on sale than posted prices.

Our theoretical model gives an explanation for this finding in the context of a platform with

competing sellers by showing that, in equilibrium, auctions (posted prices) are typically chosen

in combination with a low start price (high posted price), which implies a high (low) selling

probability and low (high) expected revenue conditional on sale. In a dataset that includes

almost all kinds of items sold on eBay, Einav et al. (2018) use variation in the same sellers’

mechanism choices to empirically estimate single (P,R) – plots. We develop (P,R) – plots

by exploiting heterogeneity of different sellers in a sample of homogenous items, controlling
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for observable item characteristics. In a different vein, Hammond (2013) and Bauner (2015)

estimate a structural model of sellers’ mechanism choices in order to make predictions about

counterfactual markets. In their data, posted prices and auctions also co-exist, and sellers for

whom they estimate higher valuations are more likely to choose posted prices. In contrast to

all studies reviewed in this paragraph, we theoretically demonstrate the co-existence of auctions

and posted prices in equilibrium, and apply an estimation strategy that is designed to test our

theoretical hypotheses regarding (P,R)–plots.

In our context, all items are offered online and each seller has only very few items due to

the initial sales mechanism for tickets by UEFA. By contrast, Sun (2008) considers a seller with

multiple items that are simultaneously offered with posted prices and in auctions. Comparable

to our hassle costs, he adds a disadvantage of auctions due to monitoring costs or the necessity to

wait until the auction has closed. He then shows that the two mechanisms serve as a screening

device. Kuruzovich and Etzion (2018) consider sellers who utilize online auctions and offline

channels with posted prices simultaneously. They then analyze theoretically and empirically

how offline demand impacts the characteristics of auctions (reserve price, sales probability and

prices). While we compare auctions using optimal start prices with posted prices, Wang (2017)

analyzes a seller’s choice between auctions with zero start prices and posted prices and finds

that a wider dispersion of bidder valuations works in favor of auctions only if the web traffic is

sufficiently large. Last, the choice between auctions and posted prices by buyers is considered

by Katehakis and Puranam (2012) in the context of sequential purchases of multiple units and

Jiang et al. (2013) under the assumption of bounded rationality, but neither of these papers

consider the mechanism choice of (competing) sellers.

The remainder of the paper is organized as follows: We will develop and analyze our theoret-

ical model of mechanism choice by competing sellers and derive empirically testable hypotheses

in Section 2. Section 3 presents our empirical analysis. We conclude in Section 4.

2 Theory

2.1 The Model

Consider the following set-up modelling online trade. s ≥ 1 risk-neutral sellers are endowed

with one unit of an indivisible, homogenous good. Seller i ∈ S ≡ {1, ..., s} has reservation value

ri ∈ [0, 1] for her unit of the good. For each i ∈ S, ri is distributed with continuous density

hi(ri) with full support on [0, 1].

b > s risk-neutral buyers like to purchase one unit of the indivisible, homogenous good.

Buyer j ∈ B ≡ {1, ..., b} has valuation vj ∈ [0, 1] for one unit of the good. For each j ∈ B, vj

is distributed with continuous density gj(vj) with full support on [0, 1]. I.e., sellers and buyers
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have independently drawn private valuations for one unit of the indivisible good.5 We will refer

to the vector r = (r1, ..., rs) as the sellers’ and to the vector v = (v1, ..., vb) as the buyers’ profile,

and we call the collection (B,S) a market.

The setMi of mechanisms at seller i’s disposal consists of posted price offers fi and English

auctions with start price si where fi, si ∈ P with P = {0, δ, 2δ, . . . , 1} being a grid with grid

step δ ≤ 1
2 .6 If buyer j fails to trade, his utility is zero. As auctions take some time and yield

an (ex-ante) uncertain payoff, we allow buyers to have higher hassle costs when trading at an

auction rather than a posted price, and we denote this difference in hassle costs by c ∈ [0, 1).

That is to say, a buyer j with valuation vj strictly prefers an auction with final price p to a

posted price transaction at final price f if and only if vj − p− c > vj − f .

First, all sellers simultaneously choose a mechanism and then buyers compete for the offered

units. Denote the sellers’ choices of mechanisms as a profile m = (m1, . . . ,ms) ∈ M1 × . . .Ms

with mi being the mechanism (i.e., the posted price fi or the start price si) chosen by seller i.

The special case of a monopolistic seller (i.e., s = 1), resembles the model analyzed in Einav

et al. (2018).7

2.2 Buyer competition

For a given profile m of sellers’ mechanism choices, we assume that buyers are price takers. To

be specific, consider a profile of mechanisms m and a profile of valuations v. Denote by mc the

profile of mechanisms that accounts for the difference in hassle costs between auctions and posted

prices, i.e., mic = si for an auction with start price si and mic = fi− c for a posted price fi. We

will refer to the |B|th lowest value in (mc,v) as the market clearing price p∗.8 By construction,

there are as many buyers with a valuation v > p∗ as sellers with a mechanism mc ≤ p∗. To

determine trading partners, a (random) one-to-one matching of buyers with valuation v > p∗

and sellers with mechanisms mc ≤ p∗ is formed. If seller i offers an auction with starting price

si ≤ p∗ and is matched with buyer j, she receives p∗ from j, her payoff is p∗−ri, and the buyer’s

payoff is vj − p∗. If seller i offers a posted price fi with fi − c ≤ p∗ and is matched with buyer

5Assuming that the number of buyers exceeds the number of sellers is the relevant case in our dataset; see

Section 3.1. For the model, it implies that any posted price or start price of seller i has a strictly positive

probability to become the market clearing price. Whenever there are more sellers than buyers, it depends on the

(expected) profile of mechanisms offered by other sellers whether seller i’s posted price or start price can be the

market clearing price.
6We assume a regular grid to ease the exposition. The results remain valid for any finite set of at least three

prices including 0 and 1.
7In the main text, Einav et al. (2018) analyze a model with a monopolistic seller and identical buyers. A

setting with a private value component that is independently distributed across buyers is analyzed in an Online

Appendix. Restricting ourselves to s = 1 in our model, yields all results derived in Einav et al. (2018).
8Results do not rely on this particular rule of defining a market clearing price. Any convex combination of the

|B|th lowest and the (|B|+ 1)th lowest value leaves the results unaltered.
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j, she receives fi from j, her payoff is fi − ri, and the buyer’s payoff is vj − (fi − c). 9

Example 1 Consider a market with two sellers and three buyers and suppose the sellers have

chosen the mechanisms m1 = s1 and m2 = f2. Now order the profile of valuation v = (v1, v2, v3)

and the profile of mechanisms mc = (s1, f2−c) from lowest to highest. Suppose we get (s1, v1, f2−
c, v2, v3). Then, p∗ is the 3rd lowest entry on this list, i.e., p∗ = f2 − c and buyer 2 and 3 are

trading with seller 1 and 2. The buyer matched with seller 1 (who conducts an auction) pays

p∗ = f2 − c, the buyer matched with seller 2 (who offers a posted price) pays f2. As auctions

generate hassle costs of c, both buyers receive the same utility in this case, but seller 1 receives a

lower revenue than seller 2. If ordering valuations and mechanisms yields (s1, f2 − c, v1, v2, v3)

instead, p∗ = v1. Again, buyers 2 and 3 trade with sellers 1 and 2, but seller 1 now receives

a revenue of p∗ = v1 while seller 2 still receives f2. For f2 < v1, seller 1 would now receive a

larger revenue.

To relate these trading rules to the literature, observe that if all sellers offer posted prices,

our trading rules are identical to a posted offer market (see, e.g., Ketcham et al. (1984)) and if all

sellers offer auctions, our trading rules are identical to a sellers’ offer double auction. The latter

follows Peters and Severinov (2006) who demonstrate that cross-bidding forms an equilibrium

which yields homogenous final auction prices identical to those in a sellers’ offer double auction

if sellers compete by simultaneously choosing reservation prices in auctions. For a mixed setting

where sellers offer posted prices and auctions, our trading rules guarantee that the market clears

and all buyers act optimally given the sellers’ offers: It is better for each buyer who trades to

trade at the market clearing price rather than not trading at all or trading at a start price or

posted price offered by any seller who does not trade. Likewise, no buyer who does not trade

would benefit from trading at the market clearing price.

2.3 Seller’s mechanism choice

(P,R)–plots When sellers simultaneously choose mechanisms, each seller i picks a mechanism

from Mi that maximizes her expected revenue given the distribution of expected mechanism

choices by the other sellers and subsequent buyer competition as described in the previous para-

graph. To fix notation, let seller i expect seller j to choose a mechanism according to the

probability distribution µij : Mj → [0, 1], and denote the corresponding profile of probability

9So technically, we assume that buyers benefit from trading at a posted price rather than suffer from trading

at an auction. Alternatively, one could assume that buyer valuations include auction specific hassle costs and

posted prices induce hassle costs that are lower by c. All that matters is the difference in hassle costs in favor of

posted prices. Simply assuming (uniform) hassle costs in auctions would require considering different supports of

valuations for buyers and sellers (or sufficiently high buyer/seller ratios) to accommodate the empirical finding

that auctions with a start price of zero (almost) always sell the item.
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distributions by µi = (µij)j 6=i. For a given profile µi, each mechanism mi ∈ Mi yields a selling

probability p(µi,mi) and an expected revenue conditional on selling R(µi,mi). For further refer-

ence, denote seller i’s expected utility from mechanism mi given expectations µi and reservation

value ri by Ui(µi,mi, ri).

We will refer to a plot that, for a given seller i, for each mechanism mi ∈Mi and expectations

µi, depicts the revenue conditional on selling R(µi,mi) on the vertical and the selling probability

p(µi,mi) on the horizontal axis as a (P,R)–plot. Independent of hassle costs c ∈ [0, 1), we can

state some direct implications of the trading rules we investigate. First, market clearing prices

conditional on being above fi (or si) are increasing in fi (or si), i.e., (P,R)–plots for auctions

and posted prices are downward-sloping.

Lemma 1 (i) Consider seller i with expectations µi and two auctions with start prices si and

s′i and s′i > si. Then, p(µi, si) > p(µi, s
′
i) and R(µi, si) < R(µi, s

′
i). (ii) Consider two posted

prices f ′i > fi. Then, p(µi, fi) > p(µi, f
′
i) and R(µi, fi) < R(µi, f

′
i).

Proof. Let mi be a mechanism offered by seller i with reservation value ri and expectations

µi. Then, p(µi,mi) depicts the probability that the market clearing price is at least si if mi is

an auction with start price si or at least fi− c if mi is a posted price offer at fi. For a profile of

mechanisms and valuations (m,v), the market clearing price is the |B|th lowest value in (mc,v).

Whenever the |B|th lowest value is at least s′i (f ′i − c), it is also at least si < s′i (fi− c < f ′i − c).
This implies p(µi, si) ≥ p(µi, s

′
i) (p(µi, fi) ≥ p(µi, f

′
i)). Since there are more buyers than sellers

(b > s) and v has full support, there is a positive probability that the market clearing price is

in (si, s
′
i) ((fi− c, f ′i − c)). This implies p(µi, si) > p(µi, s

′
i) (p(µi, fi) > p(µi, f

′
i)). Moreover, the

|B|th lowest value in (mc,v) conditional on being above s′i (f ′i) weakly exceeds the |B|th lowest

value in (mc,v) conditional on being above si < s′i (fi < f ′i) in any profile (mc,v). Together

with the full support of v this induces a positive probability of si (fi) to be a market clearing

price and implies R(µi, si) < R(µi, s
′
i) (R(µi, fi) < R(µi, f

′
i)).

To illustrate the lemma, consider seller 1 in Example 1. Observe that seller 1 indeed sells

her unit unless s1 > v2 and that the price she receives (conditional on selling) is increasing from

f2 − c to s1 as soon as s1 > f2 − c.
A second general feature of buyer competition in our model (independent of hassle costs c) is

that all auctions trade at a (uniform) market clearing price. This implies that the expected final

price conditional on selling at an auction with start price si (i.e., the expected market clearing

price conditional on being weakly larger than si) is increasing in si (see Lemma 1(i)). Expected

prices unconditional on sale, however, are independent of si.

Lemma 2 Consider two auctions with start prices si and s′i with s′i > si, and suppose both

auctions sell the item. Then, final auction prices are identical.
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Proof. Let m be a profile of mechanisms and v a profile of valuations and suppose seller i

offers an auction with start price si while seller i′ offers an auction with start price si′ . As the

market clearing price p∗ is the Bth-lowest value in (mc,v), seller i (seller i′) trades if and only

if si ≤ p∗ (si′ ≤ p∗) and - in any case - the price is p∗.

Suppose, for instance, that seller 2 in Example 1 offers an auction with reservation price

s2 < v2 while everything else stays the same. Then, both auctions trade at the 3rd lowest value

in mc which is s2 whenever s1 < v1 < s2 < v2 < v3, whereas it is v1 if s1 < s2 < v1 < v2 < v3.

With hassle costs for auctions (i.e., c > 0), the item is sold at a posted price f if and only

if f − c ≤ p∗ and the item is sold at an auction with start price s if and only if s ≤ p∗. Hence,

the item is more likely to be sold at a posted price f than at an auction with start price s = f .

Consider, for instance, again Example 1 with s1 < v1 < f2 − c < s2 < v2 < v3. If f2 > v2, seller

2 sells the unit at a posted price f2 but not at an auction with start price f2.

Lemma 3 Consider seller i with expectations µi and a mechanism mi that offers trade at a

posted price fi and a mechanism m′i that offers trade at an auction with start price si = fi. (i)

Suppose c = 0. Then, p(µi,mi) = p(µi,m
′
i). (ii) Suppose c > 0. Then, p(µi,mi) > p(µi,m

′
i).

Proof. Let mi be a mechanism offered by seller i with reservation value ri and expectations

µi. Then, p(µi,mi) depicts the probability that the market clearing price is at least si if mi is

an auction with start price si or at least fi− c if mi is a posted price offer at fi. For a profile of

mechanisms and valuations (m,v), the market clearing price is the |B|th lowest value in (mc,v).

For c = 0, the |B|th lowest value in (mc,v) is the same whether i offers an auction with start

price si or a posted price fi = si. This implies p(µi, si) = p(µi, fi). For c > 0, the |B|th lowest

value in (mc,v) if i offers a posted price fi is at most as large as the |B|th lowest value if i

offers an auction with si = fi. This implies p(µi, fi) ≥ p(µi, si). Since there are more buyers

than sellers (b > s) and v has full support, there is a positive probability that fi with si − c is

the market clearing price, i.e., the unit is sold with a posted price fi = si but not at an auction

with a starting price si. This implies p(µi, fi) > p(µi, si).

For c = 0, it is straightforward to see that the item is sold at a posted price f with the

same probability as at an auction with start price f (see Lemma 3). In both cases, the selling

probability is the probability that the market clearing price is at least f . Auctions, however, yield

a revenue conditional on sale that is strictly larger than f (unless f = 1) as all prices between

0 and 1 can be market clearing prices given the full support assumption on the distribution of

buyers’ profiles. As a consequence, an auction mi with start price s = f is to the north of a

mechanism m′i with posted price f in the (p,R)–plot of seller i and sellers will never choose to

sell at a posted price.

For c > 0, the (P,R)–plot of auctions is no longer (weakly) to the north of the (P,R)–plot

of posted prices but single-crosses the (P,R)–plot of posted prices from below. To see this,
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Figure 1: Elements of (p,R)–plots for auctions and posted prices with hassle costs.

observe first that the item is sold at a mechanism mi offered by seller i at a posted price of 1

with a strictly larger probability than with an auction m̄i with start price 1 (while the revenue

conditional on sale remains the same). Hence, the (P,R)–plot of posted prices starts to the

right of the (P,R)–plot of auctions (see Figure 1). On the other hand, there is a single-crossing

result for (P,R)–plots of the following kind: If an auction m̄i with start price s yields – for given

beliefs of the seller – a larger revenue in case of sale than a mechanism mi with a posted price

that is sold with the same probability (which is the posted price f = s+ c), this also holds for

any auction m̄′i with a start price s′ < s and a mechanism m′i with a posted price f ′ = s′+c (see

Figure 1). The intuition is simple: Reducing the posted price by δ reduces revenue conditional

on sale by δ, but reducing the start price of an auction by δ reduces revenue conditional on

sale (by δ) only if the start price happens to be the market clearing price (which occurs with

a probability strictly smaller than 1). Graphically, this implies a smaller negative slope of the

(P,R)–plot of auctions and a single-crossing of (P,R)–plots for auctions and posted prices.

Lemma 4 Suppose c > 0 and consider seller i with expectations µi. (i) If mi offers trade at

a posted price fi with fi = 1 and m̄i is an auction with start price si = fi, then p(µi,mi) >

p(µi, m̄i) and R(µi,mi) = R(µi, m̄i). (ii) If mi offers trade at a posted price fi ≥ c and m̄i is an

auction with start price si = fi− c, then p(µi,mi) = p(µi, m̄i). Moreover, R(µi,mi) < R(µi, m̄i)

implies R(µi,m
′
i) < R(µi, m̄

′
i) for all m′i that offer trade at a posted price c < f ′i < fi and m̄′i

that offer trade at an auction with start price f ′i − c. (iii) Posted prices f ′i < c are dominated by

fi = c.

Proof. Let mi and m̄i be mechanisms offered by seller i with reservation value ri and

expectations µi. (i) Let mi be a posted price fi = 1 and m̄i be an auction with start price

si = 1. Obviously, R(µi,mi) = R(µi, m̄i). p(µi,mi) is the probability that the market clearing

price is (at least) 1− c and p(µi, m̄i) is the probability that the market clearing price is at least

1. As b > s and v has full support, this implies p(µi, m̄i) < p(µi,mi) (see Figure 1). (ii) Let
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mi be a posted price fi ≥ c and m̄i be an auction with start price si = fi − c. p(µi,mi) is the

probability that the market clearing price is at least fi − c and p(µi, m̄i) is the probability that

the market clearing price is at least si = fi − c. Hence, p(µi, m̄i) = p(µi,mi). Now suppose

that R(µi,mi) < R(µi, m̄i), i.e., the auction with si = fi − c yields a larger revenue in case

of sale than the posted price fi. As the revenue of a posted price conditional on sale is the

posted price, R(µi,m
′
i) = R(µi,mi)− δ for a posted price offer m′i at f ′i = fi − δ. By contrast,

R(µi, m̄
′
i) > R(µi, m̄i)− δ for an auction m̄′i with start price s′i = si − δ, as the market clearing

price decreases by δ if and only if the start price si is the market clearing price. Given that v

has full support, this is the case with a positive probability that is bounded away from 1. As

this is true for all fi, it follows that R(µi,mi) with mi being a posted price offer at fi decreases

more steeply in fi than R(µi, m̄i) with m̄i being an auction with start price si = fi − c while

p(µi,mi) = p(µi, m̄i) for all fi ≥ c (see Figure 1). (iii) As b > s, a posted price fi = c is sold

with probability 1 for any profile of mechanisms m−i offered by other sellers. A posted price

f ′i < c would, therefore, only reduce revenue in case of sale without being able to increase the

selling probability.

As in the case without hassle costs, sellers with larger reservation value care less about the

selling probability and more about the revenue conditional on sale, and therefore ”move up the

(P,R)–plot” as their reservation value increases. Hence, there is again a monotone pure strategy

equilibrium where sellers with higher reservation values choose mechanisms with lower selling

probability and larger revenue conditional on sale. The only difference is that these mechanisms

are auctions for sufficiently small start prices and posted prices for sufficiently high reservation

values.

Proposition 1 Suppose c > 0. Then, there is a pure strategy equilibrium in which each seller

i’s equilibrium strategy exhibits a threshold valuation r̃i ∈ [0, 1) such that i offers an auction if

ri < r̃i and offers a posted price if ri ≥ r̃i.

Proof. For seller i, consider the following ordering of strategies onMi: First, list all auctions

with start prices from si = 0 to si = 1, then, add all posted prices from fi = 0 to fi = 1. Let

o(mi) be the rank of mechanism mi on this list. A monotone pure strategy of seller i is a

strategy, αi : [0, 1] →Mi such that for given beliefs o(αi(ri)) ≥ o(αi(r
′
i)) for r′i > ri, i.e., seller

i chooses mechanisms with higher start prices / posted prices and switches at most once from

auctions to posted prices as her valuation increases. By Lemma 4, (P,R)–plots of auctions and

posted prices for given beliefs cross at most once. For given beliefs µi of seller i, consider two

mechanisms mi and m′i with p(µi,mi) > p(µi,m
′
i). If R(µi,mi) ≥ R(µi,m

′
i), m

′
i will never be

chosen by the seller. If R(µi,mi) < R(µi,m
′
i) and m′i yields higher expected utility than mi

when the seller has reservation value ri it also yields higher expected utility for any r′i > ri

because p(µi,mi) > p(µi,m
′
i) and the probability to enjoy the reservation value is larger under
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m′i. This establishes single-crossing of mechanism choices as in Lemma 4 for the entire ordered

list of mechanisms. This together with Theorem 1 in Athey (2001) implies the existence of a

pure strategy equilibrium in non-decreasing strategies, i.e., with sellers’ choosing mechanisms

with a higher rank as their reservation value increases.

2.4 Testable Hypotheses

Our model yields the following set of testable hypotheses. First, our assumptions on buyer

competition immediately imply that the lower the start price or posted price, the higher the

probability that the expected market clearing price is above the start price or posted price:

Hypothesis 1 The selling probability of a particular item is decreasing in start prices and posted

prices.

For final auction prices, we need to take into account that observed prices are left censored

to start prices (because expected market clearing prices are increasing in start prices). Thus,

without correcting for censoring, auction prices are increasing in start prices (see Hypothesis 2a).

Due to market-clearing, however, final auction prices should be independent of start prices when

the corresponding regression corrects for censoring (see Hypothesis 2b).

Hypothesis 2 a) Final auction prices increase in start prices. b) Final auction prices uncon-

ditional on sale are independent of start prices.

While Hypothesis 1 mainly describes the usual trade-off between selling probability and

selling price found in the empirical literature, the single-crossing of (P,R)–plots as established

by Lemma 4 also implies several Hypotheses regarding the relative position of posted prices and

auctions in the (P,R)–plot (for an illustration see Figure 2). Proposition 1 uses this single-

crossing result to establish a pure strategy equilibrium in which auctions are better than posted

prices for seller i if and only if ri is below r̃i and the corresponding optimal selling probability

exceeds a threshold p̂i. If auctions (posted prices) are chosen by sellers with high (low) optimal

selling probabilities, the observed selling probabilities of auctions and posted prices should differ

significantly.

Hypothesis 3 Selling probabilities for posted prices are lower than selling probabilities for auc-

tions.

Furthermore, the optimality of auctions compared to posted prices beyond a threshold selling

probability P̂ also implies that the two mechanisms should differ in the vertical dimension, i.e.

regarding the revenue in case of trade and, as a consequence, regarding the start prices.

12
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Figure 2: Single-crossing (p,R)–plot and Hypotheses 2–4.

Hypothesis 4 Start prices in auctions are below posted prices.

Hypothesis 5 Successful posted prices are above final auction prices.

In our model, posted prices are only offered if bidders incur hassle cost of participating in

an auction, which implies that bidders prefer buying at a posted price to participating at an

auction with equally high start price. Hence, we should expect posted prices to be sold more

frequently as compared to equally high start prices.

Hypothesis 6 Posted prices are more frequently sold than auctions with equally high start

prices.

Finally, due to the single-crossing property of (P,R)–plots, all auctions with selling probabili-

ties above (below) that at the intersection of (P,R)–plots are superior (inferior) to posted prices

with the same selling probability. Hence, Proposition 1 concludes that high valuation sellers

(i.e. sellers that prefer low selling probabilities and high revenues in case of selling) offer posted

prices and low valuation sellers (who prefer high selling probabilities and low revenues in case of

selling) offer auctions. Our most important hypothesis is thus that, when selling probabilities

are the same for both selling modes, auctions lead to higher expected revenues for high selling

probabilities, while posted prices yields higher expected revenues for low selling probabilities:

Hypothesis 7 For low selling probabilities, posted prices are superior. For high selling proba-

bilities, auctions are superior.

3 Empirical Analysis

3.1 Data

We use data from secondary ticket sales for the EURO 2008, the European Football (Soccer)

Championship for national teams. 16 teams participated in this major European sport event,
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which took place in Austria and Switzerland from June 7th to June 29th. Tickets were valid

for a particular match of the championship. Altogether, 31 matches were played, including 24

matches in the preliminary round of four teams each in four groups playing round robin. The

best two teams of each group qualified for one of the four quarter finals, from which on teams

succeeded to the semi-final and the final in a knock-out-system.

As our model emphasizes the role of seller heterogeneity for the optimal choice of a trade

mechanism, ticket sales are a good testing ground for at least three reasons: First, for many

items sold on eBay such as computer hardware, there is a competitive fringe as they can also

be purchased in retail stores. This reduces the impact of buyers’ and sellers’ heterogeneity as,

independently of their own valuations, the competitive fringe establishes an upper bound on the

buyers’ willingness to pay and a lower bound on the sellers’ reservation value.

Second, tickets are perishable goods which we consider as an advantage for investigating the

effects we are interested in: A durable good which has not been sold can immediately be posted

again with a similar expected revenue for the seller. Thus, a seller’s ex ante valuation of not

selling the item at an auction has a lower bound at the expected revenue times the discount

factor for the duration of the auction (which is only a couple of days at eBay). By contrast, in

the extreme case of a good that completely perishes soon after the end of an auction or posted

price offer, the seller’s valuation of an unsold item is equal to her utility when consuming the

item herself should there be enough time left to do so. As we are interested in the heterogeneity

of sellers’ preferences, a perishable good seems most suitable for our analysis.

Third, seller heterogeneity has the strongest impact on mechanism choice if the number

of buyers exceeds the number of sellers. With just a few buyers, sellers are rather limited in

trading-off selling probabilities and revenues conditional on selling. Although we cannot identify

the number of buyers for each event in our data set, it is straightforward that the number of

buyers largely exceeds the number of sellers. Almost all items with a posted price up to twice

the original price are sold. Besides, at the first stage of the official ticket sale by the UEFA,

demand exceeded supply by a factor of about 33.10

Tickets were originally sold by the United European Football Association (UEFA) and the

national football associations. Because of excess demand, tickets were distributed in a lottery

among the applicants in the end of January 2008.11 In each match, there were three quality

categories of tickets depending on the distance and the angle to the pitch. Original prices

differed between qualities and varied form e45 (quality 3) to e110 (quality 1) for matches in

the preliminary round, up to e550 for the highest quality 1 in the final. A seller’s reservation

value ri in the model can be interpreted as the utility from watching the match in the stadium

herself, which is, of course, unobservable to us.

10See e.g. http://www.seetheglobe.com/modules/news/article.php?storyid=1161
11Tickets were not auctioned due to distributional issues.
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eBay provided the main platform for re-sales, and created an own category for the EURO

2008 on their German website. We used the web spider BayWotch to collect data from February

1, 2008. Our final data set includes more than 12,000 observations with 87% auctions and

13% posted prices (see Table 1 for an overview of variables and descriptive statistics).12 Sellers

decided on the selling mode and the posted or an auction’s start price, both of which we will refer

to as the start price in order to save notation. In order to make prices for different matches and

categories of seat quality comparable, we measure all start prices and selling prices as multiples

of the original price.

The first three lines of Table 1 show the descriptives of the variables that we are mainly

interested in, that is, start prices, fraction of items sold and selling prices. The distribution

of ticket categories represents their relative availability in the stadiums. The majority of offers

contains tickets of the medium category 2. Most offers encompass more than one ticket. Packages

with three and more tickets are rare due to the low probability of receiving more than two tickets

in the original allocation by the UEFA. As the final price is likely to be affected by the number

of competing offers, we control for the number of simultaneous homogeneous offers in terms of

tickets for a certain match and a certain quality running at the same time. On average, there

are 72 homogeneous offers at one point of time.

Furthermore, the buyers’ willingness to pay (wtp) is likely to increase as the match ap-

proaches, but starts decreasing at some point as hassle costs for exchanging the tickets in due

time become very high. Therefore, we will also control for the square of days left until the

start of the match. Finally, the literature has shown that prices may depend on the duration

of postings, which sellers could choose to be one, three, five, seven or ten days,13 and on the

weekday and time when an auction ends.14

3.2 A First Look at Prices and Selling Probabilities

We start by testing Hypotheses 1 and 2, which refer to a separate analysis of auctions and posted

prices. The first two columns of Table 2 show that the selling probabilities are significantly

decreasing in start prices and posted prices, respectively (see Hypothesis 1). In all regressions

in Table 2 and thereafter, standard errors are clustered at the match level.

In the next two columns, the dependent variable is the actual selling price in auctions. In

column 3, we run a simple OLS model. Then, the start price is highly significantly positive as

predicted by Hypothesis 2a. However, the OLS estimation only takes into account sold items,

12Our original data set also included about 14% of mixed offers where an auction could be terminated by a

buy-now option. These offers are excluded in our analysis.
13We aggregated periods of one and three days in one variable which we will use as reference category in our

regressions. Disaggregating between one and three days has no impact.
14For instance, Lucking-Riley et al. (2007, p. 230) argues that bidders are more active in their leisure time.
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Table 1: Summary Statistics.

Whole sample Auctions Posted prices

(n = 12, 315) (n = 10, 715) (n = 1, 600)

Start price 1.038 0.337 5.728

(5.858) (1.282) (11.217)

Selling frequency 0.916 0.971 0.546

Selling price (if sold) 4.035 3.963 4.892

(4.169) (3.872) (6.917)

Category 1 0.202 0.199 0.221

Category 2 0.509 0.513 0.484

Category 3 0.289 0.288 0.295

1 Ticket 0.142 0.141 0.147

2 Tickets 0.745 0.771 0.575

3+ Tickets 0.113 0.088 0.278

Simultaneous homogenous offers 72.00 72.77 66.86

(4694.97) (4676.01) (4794.57)

Remaining time (until kickoff / days) 20.78 20.48 22.75

Duration 1 or 3 days 0.421 0.423 0.404

Duration 5 days 0.188 0.195 0.144

Duration 7 days 0.241 0.252 0.171

Duration 10 days 0.150 0.130 0.281

End of auction on

Saturday 0.103 0.101 0.116

Sunday 0.271 0.288 0.154

Evening (6 to 10 p.m.) 0.686 0.713 0.504

whereas unsold items, for which we would observe low prices if it was not for the high start

price, are neglected. We, therefore, follow the literature (see, for instance Lucking-Reiley et al.

(2007) or, more recently, Goncalves (2013)) by using censored normal regressions with variable

censoring point to estimate unconditional revenues, as observed prices are left-censored by the

start price. In line with Hypothesis 2b and in support of the way we model market clearing

prices as the result of cross-bidding, we find no impact of start prices on final auction prices.

We now proceed to the comparison of posted prices and auctions. In line with Hypothesis

4, Table 1 on the descriptive statistics shows that the mean posted price amounts to more than

the quintuple of the original price (5.73), while the mean start price for auctions is far below one

(around 0.34). The main reason for this huge difference is that around 86% of auction sellers

use the default start price of e1. When restricting attention to start prices weakly above the

original ticket price, the average mark-up in auctions is about four, so that start prices are high

if applied at all. Furthermore, in line with Hypothesis 3 and findings by (Hammond, 2010, Table
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Table 2: Selling Probabilities and Prices for Given Selling Mode.

(1) (2) (3) (4)

Dependent Variable Status (1=sold) Status (1=sold) Selling Price Selling Price

Selling mode Auctions only Posted Prices only Auctions only Auctions only

Status All Items All Items Sold Items only All Items

ln Start Price -0.6258*** -0.2455***

(0.0353) (0.0411)

Start Price 0.0767** -0.0163

(0.0297) (0.0266)

Days left to match 0.0400 -0.0367*** -0.1138 -0.1084

(0.0299) (0.0127) (0.0952) (0.0943)

Days left to match squared -0.0036 0.0022** 0.0040 0.0035

(0.0023) (0.0009) (0.0073) (0.0071)

Number of competing offers -0.0004 -0.0010*** -0.0053*** -0.0052***

(0.0002) (0.0003) (0.0011) (0.0011)

End of auction (dummies)

Saturday 0.0152 -0.0222 0.0978* 0.1017*

(0.0281) (0.0179) (0.0553) (0.0554)

Sunday -0.0194 -0.0480** -0.0627** -0.0631**

(0.0268) (0.0241) (0.0273) (0.0280)

Evening (6 to 10pm) -0.0577** -0.0069 -0.0459 -0.0585

(0.0250) (0.0068) (0.0353) (0.0360)

Ticket quality (base: top quality)

Medium quality 0.0454 0.0575*** 0.6071*** 0.5987***

(0.0431) (0.0173) (0.0947) (0.0930)

Regular seats 0.2870*** 0.1108*** 2.7241*** 2.7292***

(0.0326) (0.0184) (0.1564) (0.1536)

Number of offered tickets (base: 1)

2 tickets 0.0633 0.0551*** 0.6549*** 0.6528***

(0.0552) (0.0176) (0.1442) (0.1478)

3 or more tickets 0.0415 0.0322*** 0.4918*** 0.4842***

(0.0515) (0.0107) (0.1615) (0.1636)

Duration of posting (base: 3 days)

5 days 0.0837** 0.0210** 0.2845*** 0.2961***

(0.0366) (0.0099) (0.0904) (0.0936)

7 days 0.1009*** 0.0306*** 0.3552*** 0.3658***

(0.0345) (0.0110) (0.0908) (0.0917)

10 days 0.0562 0.0508*** 0.4615*** 0.4635***

(0.0488) (0.0147) (0.0793) (0.0818)

Intercept 2.5962*** 2.6108***

(0.1441) (0.1426)

Match Dummies Yes Yes Yes Yes

R2 (or Pseudo-R2) 0.7604 0.3194 0.6363 0.2427

Observations 10,565 1,600 10,409 10,715

Panels (1) and (2) of the table display marginal effects calculated at lnSi = 1 and at the mean of all other variables. Robust

standard errors, clustered at match level, in parentheses. *, ** and *** denote significance at 10-percent, 5-percent and

1-percent levels, respectively.
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6, Column (4)), most tickets offered in auctions are sold (97.1%), while only 54.6% of all posted

prices were successful. If items with posted prices are sold, however, selling prices are higher

with posted prices (see Hypothesis 5).

Next, we compare auctions and posted prices more formally using the control variables listed

in Table 1. We run a simple OLS regression for start prices (model 1), a binary probit for the

selling probability (model 2), and a censored normal regression for selling prices (model 3). All

regressions include match dummies.

Model 1 shows that the impression from the descriptive statistics extends to the multivariate

analysis, thereby confirming Hypothesis 4 that start prices in auctions are, on average, below

posted prices. Start prices are higher for tickets of inferior categories and for bundles of tickets,

and lower when there are more simultaneous auctions for the same match. Model 2 shows

that, in line with Hypothesis 3, the selling probability is about 40 percentage points higher for

auctions, decreasing in the time left to the match and in the number of simultaneously running

offers, and increasing in auction duration. Last, Model 3 supports Hypothesis 5 by showing that

the selling price is lower for auctions. As for the control variables, selling prices are higher if

there are fewer simultaneously running offers, quality is higher and tickets are sold in a bundle.

Summing up, Table 3 is consistent with the standard trade-off stressed in the literature that

posted-price items are sold at higher prices, but with a lower probability.15 However, start prices,

selling probabilities and selling prices are not independent from each other. We will empirically

explore these interdependencies in the following section.

3.3 A Closer Look at the Probability-Price Trade-Off

As start prices are considerably higher for posted prices, we disaggregate our comparison of

auctions and posted prices by intervals of start prices. For both selling modes, Table 4 shows

the expected clear inverse relation between the start price and the selling probability. With one

exception for posted prices, the selling probability is consistently decreasing from category to

category. For auctions, the selling probability is almost 100% for mark-ups below two, which

can be attributed to the fact that most auctions in this category entail the minimum start price

of one Euro only. Selling probabilities then decrease to less than 19% for mark-ups above six.

For posted prices, the impact of the start price is less pronounced as the selling probability is

still 40% even for start prices above six.

Table 5 is concerned with the impact of the start price on the comparison of final prices in

auctions and posted-price offers. The last column repeats model 3 from Table 3 and shows that,

when considering the whole data set and without controlling for start prices, auctions sell at

lower prices than posted-price offers do. However, when restricting the sample to the different

15Halcoussis and Mathews (2007), Hammond (2010), Hammond (2013), Bauner (2015).
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Table 3: Determinants of Start Prices, Selling Probabilities and Selling Prices.

(1) (2) (3)

Dep. Variable Start Price Sold (1 = yes) Selling Price

Estimation OLS Probit Censored Normal

Auction (1=yes) -5.2954*** 0.4091*** -0.4824***

(0.2239) (0.0182) (0.0520)

Days left to match 0.0094 -0.0071** -0.1151

(0.0283) (0.0034) (0.0907)

Days left to match squared -0.0021 0.0004 0.0038

(0.0023) (0.0003) (0.0068)

Number of competing offers -0.0008 -0.0002*** -0.0056***

(0.0007) (0.0001) (0.0011)

End of auction (dummies)

Saturday 0.0582 -0.0095 0.1075*

(0.0442) (0.0062) (0.0604)

Sunday -0.0114 -0.0102** -0.0758***

(0.0344) (0.0041) (0.0267)

Evening (6 to 10pm) -0.1534*** 0.0022 -0.0647**

(0.0384) (0.0046) (0.0309)

Ticket quality (base: top quality)

Medium quality 0.1870*** -0.0078 0.5853***

(0.0591) (0.0081) (0.0951)

Regular seats 0.6629*** -0.0041 2.7447***

(0.0746) (0.0036) (0.1562)

Number of offered tickets (base: 1)

2 tickets 0.1280* 0.0058 0.6794***

(0.0679) (0.0052) (0.1394)

3 or more tickets 0.2368** -0.0086 0.5197***

(0.0972) (0.0067) (0.1499)

Duration of posting (base: 3 days)

5 days -0.0236 0.0166** 0.2935***

(0.0581) (0.0066) (0.0957)

7 days -0.0161 0.0206*** 0.3799***

(0.0508) (0.0059) (0.0940)

10 days 0.0791 0.0159** 0.4928***

(0.0726) (0.0080) (0.0928)

Intercept 5.1128*** 2.9360***

(0.1805) (0.1268)

Match Dummies Yes Yes Yes

R2 (or Pseudo-R2) 0.5818 0.3380 0.2323

Observations 12,315 12,315 12,315

Robust standard errors, clustered at match level, in parentheses. *, ** and *** denote significance at 10-percent, 5-percent

and 1-percent levels, respectively. For model (2), marginal effects calculated at the mean of all variables are reported.
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categories of start prices introduced in Table 4, the auction dummy is significantly positive for

the two intervals with the lowest start prices, but insignificant for all other intervals. In other

words, Table 5 shows that our previous result that auctions sell at lower prices than posted-price

items is driven by lower start prices. To gain a better understanding on the actual impact of the

selling mode on selling probabilities and revenues, we thus need to control for the start price.

Table 6 reports the results of probit estimations on selling probabilities. For easier reference,

model 1 repeats model 2 of Table 3 and shows that auctions are more likely to sell than posted

prices when not controlling for the start price. However, when controlling for the logarithm of

the start price in model 2 we find the opposite result, that posted prices are more likely to sell

than auctions with a similar start price. This confirms Hypothesis 6 and is in line with our

assumption of lower hassle costs of posted-price transactions for some buyers.

Probit model 2, in which we control for the selling mode, is based on the strong assumption

that the impact of all regressors is independent of whether the item is offered in an auction or at

a posted price. As we will later need estimates for the impact of the logarithmic start price on

selling probabilities, models 3 and 4 of Table 6 estimate this effect within separate regressions

for auctions and posted price offers. We will later refer to the notation used in the following

formalization of the estimated selling probabilities for the respective subsamples:

pAi = Φ
(
β̂A0 + β̂AS lnSi + β̂Ax xi

)
= Φ(ŷAi ) (1)

pFi = Φ
(
β̂F0 + β̂FS lnSi + β̂Fx xi

)
= Φ(ŷFi ) (2)

where ŷki denotes the predicted argument of the probability function for the regression based

on the data for selling mode k. We find that the start price particularly matters for auctions:

increasing the logarithm of the relative start price by 1 reduces the selling probability for auctions

by 63 percentage points in auctions compared to 24 percentage points with posted prices.

Note carefully that, while (1) and (2) are estimated on the subsamples of either auctions or

posted price offers only, the regression results can be used to predict the arguments of the probit

functions, ŷAi and ŷFi , for the entire sample. For instance, in the case of an auctioned item, ŷFi

represents the predicted argument of the probit function in the hypothetical case that this same

item would have been offered at a posted price equal to the observed auction start price.

3.4 Selling Probabilities and the Ranking of Selling Modes

In our theory, the relationship between expected revenue if an item is sold and the selling

probability is represented by a (p,R)–plot for each selling mode. The main hypothesis derived

from the model is that there is a unique intersection of (p,R)–plots for auctions and posted prices,

so that posted prices are superior if and only if the selling probability is below some probability

p̂. The scatterplot in Figure 3 indicates that this relationship may also hold empirically: For
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Table 5: Estimations on Selling Prices by Start Price Categories.

S < 2 2 ≤ S < 3 3 ≤ S < 4 4 ≤ S < 5 5 ≤ S < 6 6 ≤ S All

Auction (1=yes) 1.1087*** 0.3205** 0.1354 0.1822 -0.1085 -1.0428 -0.4824***

(0.2170) (0.1597) (0.1473) (0.1293) (0.0863) (0.6572) (0.0520)

Days left to match -0.1045 0.0182 -0.0522 -0.1338 -0.1256*** -0.8242*** -0.1151

(0.0948) (0.0857) (0.0813) (0.1002) (0.0426) (0.1862) (0.0907)

Days left to match squared 0.0034 -0.0031 -0.0007 0.0078 0.0063** 0.0545*** 0.0038

(0.0073) (0.0086) (0.0050) (0.0076) (0.0025) (0.0160) (0.0068)

Number of competing offers -0.0051*** -0.0025 -0.0034* -0.0037** -0.0030*** -0.0205*** -0.0056***

(0.0011) (0.0016) (0.0018) (0.0017) (0.0010) (0.0032) (0.0011)

End of auction (dummies)

Saturday 0.0826 0.0728 0.1753 0.2309 0.0104 0.1973 0.1075*

(0.0603) (0.1685) (0.2673) (0.2099) (0.1059) (0.5166) (0.0604)

Sunday -0.0628** -0.0436 -0.0712 -0.0094 -0.1151 -0.6678 -0.0758***

(0.0281) (0.1036) (0.0973) (0.1243) (0.1128) (0.5248) (0.0267)

Evening (6 to 10pm) -0.0606* 0.1209 -0.0773 0.0732 0.0624 -0.5784* -0.0647**

(0.0340) (0.1005) (0.0824) (0.0787) (0.0949) (0.3252) (0.0309)

Ticket quality (base: top quality)

Medium quality 0.6052*** 0.1134 0.2681** 0.1933** 0.2358** 0.1234 0.5853***

(0.0956) (0.1406) (0.1320) (0.0850) (0.1126) (0.8277) (0.0951)

Regular seats 2.7382*** 1.4344*** 1.4105*** 0.8409*** 0.9959*** 2.7233*** 2.7447***

(0.1593) (0.3276) (0.2912) (0.2072) (0.1700) (0.6961) (0.1562)

Number of offered tickets (base: 1)

2 tickets 0.6547*** -0.0914 0.5014* 0.3880** 0.4773*** 1.3441** 0.6794***

(0.1399) (0.2407) (0.3022) (0.1671) (0.1159) (0.6346) (0.1394)

3 or more tickets 0.4792*** 0.0174 0.4790* 0.3343** 0.4107*** 0.6720 0.5197***

(0.1621) (0.2935) (0.2829) (0.1418) (0.0910) (0.6333) (0.1499)

Duration of posting (base: 3 days)

5 days 0.2820*** 0.4139*** 0.3988** 0.1178 0.3174* -0.5968 0.2935***

(0.0940) (0.1565) (0.2010) (0.1024) (0.1638) (0.4309) (0.0957)

7 days 0.3519*** 0.3571*** 0.0963 0.2560** 0.2709*** 0.1956 0.3799***

(0.0955) (0.1332) (0.1653) (0.1289) (0.0915) (0.5244) (0.0940)

10 days 0.4415*** 0.5989** 0.5327*** 0.1584 0.3830*** 0.4485 0.4928***

(0.0842) (0.2358) (0.1749) (0.1478) (0.0923) (0.3159) (0.0928)

Intercept 1.5135*** 2.4889*** 2.6176*** 3.4805*** 4.9319*** 4.0718*** 2.9360***

(0.2741) (0.1490) (0.5077) (0.2308) (0.1505) (1.0892) (0.1268)

Match Dummies Yes Yes Yes Yes Yes Yes Yes

Observations 10,106 434 433 347 302 693 12,315

The dependent variable is the selling price, and the estimations are censored normal. Robust standard errors, clustered at

match level, in parentheses. *, ** and *** denote significance at 10-percent, 5-percent and 1-percent levels, respectively.
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Table 6: Probit Estimations on Selling Probabilities (1=sold).

(1) (2) (3) (4) (5)

Dep. variable Sold (1 = yes) Sold (1 = yes) Sold (1 = yes) Sold (1 = yes) ESP

Selling mode All All Auctions only Posted Prices only Auctions only

Auction (1=yes) 0.4091*** -0.1169***

(0.0182) (0.0196)

ln Start Price -0.5735*** -0.6258*** -0.2455*** -0.4299***

(0.0284) (0.0353) (0.0411) (0.0228)

Days left to match -0.0071** -0.0427** 0.0400 -0.0367*** -0.0307

(0.0034) (0.0176) (0.0299) (0.0127) (0.0907)

Days left to match squared 0.0004 0.0023* -0.0036 0.0022** -0.0024

(0.0003) (0.0012) (0.0023) (0.0009) (0.0069)

Number of competing offers -0.0002*** -0.0016*** -0.0004 -0.0010*** -0.0039***

(0.0001) (0.0003) (0.0002) (0.0003) (0.0012)

End of auction (dummies)

Saturday -0.0095 -0.0207 0.0152 -0.0222 0.1329**

(0.0062) (0.0237) (0.0281) (0.0179) (0.0624)

Sunday -0.0102** -0.0588** -0.0194 -0.0480** -0.0465*

(0.0041) (0.0240) (0.0268) (0.0241) (0.0267)

Evening (6 to 10pm) (d) 0.0022 -0.0379*** -0.0577** -0.0069 -0.0901***

(0.0046) (0.0129) (0.0250) (0.0068) (0.0289)

Ticket quality (base: top quality)

Medium quality -0.0078 0.1036*** 0.0454 0.0575*** 0.6557***

(0.0081) (0.0306) (0.0431) (0.0173) (0.1012)

Regular seats -0.0041 0.2645*** 0.2870*** 0.1108*** 2.9657***

(0.0036) (0.0246) (0.0326) (0.0184) (0.1658)

Number of offered tickets (base: 1)

2 tickets 0.0058 0.1098*** 0.0633 0.0551*** 0.3048**

(0.0052) (0.0307) (0.0552) (0.0176) (0.1375)

3 or more tickets -0.0086 0.0586*** 0.0415 0.0322*** -0.0492

(0.0067) (0.0215) (0.0515) (0.0107) (0.1546)

Duration of posting (base: 3 days)

5 days 0.0166** 0.0625** 0.0837** 0.0210** 0.2989***

(0.0066) (0.0263) (0.0366) (0.0099) (0.0922)

7 days 0.0206*** 0.0974*** 0.1009*** 0.0306*** 0.3713***

(0.0059) (0.0267) (0.0345) (0.0110) (0.0947)

10 days 0.0159** 0.1000*** 0.0562 0.0508*** 0.4244***

(0.0080) (0.0304) (0.0488) (0.0147) (0.0851)

Match Dummies Yes Yes Yes Yes Yes

R2 (or Pseudo-R2) 0.3380 0.6774 0.7604 0.3194 0.6418

Observations 12,315 12,315 10,565 1,600 10,259

For the Probit estimations (models (1) – (4)), the table displays marginal effects calculated at lnSi = 1 and at the mean

of all other variables. Estimation of model (5) is OLS. Robust standard errors, clustered at match level, in parentheses. *,

** and *** denote significance at 10-percent, 5-percent and 1-percent levels, respectively.
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every observation in our dataset, we predicted the selling probability using model (3) (model (4))

of Table 6 for auctions (posted prices), and the final price conditional on sale for auctions using

model (3) of Table 2. The blue (red) dots in Figure 3 represent all auctions (posted prices) in

our dataset in this way. The respective fitted lines intersect, with posted prices yielding higher

predicted final prices than auctions for probabilities below the intersection.

However, the fitted lines in Figure 3 are no (p,R)–plots in the same sense as in the theoretical

model, as the predictions of selling probabilities and final prices were made based on different

items with different observable characteristics. By contrast, what a seller is interested in is a

prediction of the expected final price of the same item when using the counterfactual selling mode

with an identical selling probability. In order to obtain such a prediction, we first calculate, for

each item offered in an auction, the posted price that would have matched the auction’s selling

probability. Whenever an auction yields a higher revenue for the same selling probability than

a posted price does, then a seller would have been better off by choosing an auction rather

than a posted price (and vice versa). We then regress the difference between the actual auction

price and the estimated posted price on the auction’s start price, which serves as a proxy for

the selling probability. This difference can be interpreted as the vertical distance between the

(p,R)–plots for auctions and posted prices.

As a first step, we use the estimates from model 3 of Table 6, which only includes auctioned

items, to predict the argument ŷAi of the probability function in (1), and the estimates from

model 4 of Table 6 to predict the corresponding argument ŷFi of the probability function in (2)

for posted-price offers. Recall that, if i is an auctioned item, ŷFi is the predicted argument of

the probit function based on the estimates of model 4 in the hypothetical case in which i had

been offered at a posted price equal to the actual auction’s starting price Si in our data.

Next, we calculate the hypothetical posted price F ′i at which an auctioned item would have

had to be offered in order to sell with the same probability by equating the right-hand sides of

(1) and (2) and substituting for Si = Fi in (2):

Fi = e(β̂A
0 +β̂A

S lnSi+β̂
A
x xi−β̂F

0 −β̂F
x xi)/β̂

F
S = e(ŷAi −β̂F

0 −β̂F
x xi)/β̂

F
S

= e(ŷAi −ŷFi +β̂F
S lnSi)/β̂

F
S

The second and third equations are true since ŷAi and ŷFi are the predictions based on the actual

auction’s starting price. If Ri denotes the selling price of the auction, the excess selling price

ESPi of auction i over a hypothetical posted-price offer with the same selling probability is

ESPi = Ri − Fi = Ri − e(ŷAi −ŷFi +β̂F
S lnSi)/β̂

F
S . (3)

Model 5 of Table 6 estimates this excess selling price ESPi for all auctions in our dataset

by using the logarithmic start price as an independent variable along with the usual control

variables. Since (p,R)–plots refer to revenue conditional on sale, this regression includes only
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sold items, so that we use OLS to estimate the model, and the number of observations is reduced

to n = 10, 259. The significantly negative coefficient of the logarithmic start price shows that the

excess return of auctions compared to posted prices with the same selling probability decreases

in start prices. Thus, the lower the selling probability a seller is willing to accept by choosing

a higher start price, the better is the performance of posted prices compared to auctions. This

confirms our main Hypothesis 7 derived from the theoretical model.16

We have argued above that the difference between the actual revenue of an auction and

the hypothetical posted price that would have been sold with the same probability, can be

interpreted as the vertical distance between the (p,R)–plots of auctions and posted prices. The

negative sign of the coefficient for the start price in model 5 of Table 6 confirms the single

crossing result from the theoretical model. Another way of illustrating this is to directly look

at (p,R)–plots generated by our data.

For instance, suppose that selling probabilities for auctions and posted prices are given by

equations (1) and (2), respectively. Then, the (p,R)–plot for posted prices is immediately given

by the inverse of (2), as revenue conditional on sale is equal to the start price. As this will

typically not be the case for auctions, we first need to estimate the relationship between start

prices and revenue conditional on sale. The empirical model for this estimation is:17

Ri = α̂0 + α̂SSi + α̂xxi. (4)

Solving (4) for Si and substituting for Si in (1) yields the inverse of the (p,R)–plot for auctions.

Figure 4 displays the (p,R)–plots obtained in this way for the case where all continuous variables

are at their means and all categoric variables are at the reference category. Again, the single

crossing result is confirmed as the (p,R)–plot for auctions cuts that for posted prices from below.

4 Concluding Remarks

Our model of competing sellers’ choices of mechanism confirms the superiority of auctions in

the absence of hassle costs and demonstrates the single-crossing of optimal mechanisms in the

presence of hassle costs. We derive these results theoretically by assuming that competing

auctions retrieve market clearing prices, which has been shown to emerge as an equilibrium

of cross-bidding between auctions by Peters and Severinov (2006). In this sense, our model

gives a “better shot” at auctions than the literature that assumes a commitment to a particular

mechanism of a particular seller either before or after buyers learn their valuation (see McAfee

16One might object that, due to the high number of auctions without start prices, these auctions may drive the

results in a trivial way. However, applying the whole procedure set out in this subsection to a subsample that

excludes auctions without a start price yields qualitatively the same results, which are available upon request.
17The result of this estimation was given in Table 2 above.
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Figure 4: A (p,R)-plot derived from observed bidder behavior.
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(1993), Peters (1997), Virag (2010), Hammond (2013), or Bauner (2015)). We establish single

crossing of revenues for auctions and posted prices in such a setting. Hence, there exists a cutoff

valuation such that a seller prefers a posted price if her valuation is above this cutoff, and an

auction if it is below the cutoff.

This result is robust to different ways of modeling competition between auctions and posted

prices. As mentioned in the introduction, the same outcome emerges in a model where buyers

cross-bid over auctions as in Peters and Severinov (2006) and execute a posted price f if and

only if the standing bid at the auctions reaches f . Introducing hassle costs for auctions would

also lead to an increasing benefit of posted prices for sellers with higher valuations in the model

of Peters (1997) where buyers first select into a trade mechanism and then start competitive

bidding. Unlike in our model (and at odds with Hypotheses 2a) this model would, however,

predict that final auction prices depend on starting prices because starting prices influence the

sorting of buyers into different trade institutions.

Empirically, we have used ticket sales for the European football championship to test the

hypotheses drawn from our model. Our most important result is that auctions lead to higher

expected revenues if and only if selling probabilities are high. This confirms our main Hypothesis

7 from the theoretical model that the (P,R)–plot for auctions cuts that for posted prices from

below. From an applied perspective, this suggests that, given the selling probability a seller

wants to implement, she should either hold an auction with the optimal reserve price or choose

the posted price that is sold with the desired probability. While determining the optimal start

price requires a sound understanding of the market and the distribution the buyers’ and other

sellers’ valuations are drawn from, this result also proves useful as rule of thumb: sellers should

offer their item in an auction if and only if they put sufficiently high emphasis on the selling

probability compared to the revenue in case of sale.

To see the value added of our empirical strategy, recall that the literature reports that, on

average, posted prices yield larger revenues compared to auctions when the items are actually

sold, but at the expense of lower selling probabilities. Our theoretical model demonstrates that

controlling for selling probabilities is the appropriate way of making competing sellers’ revenues

from auctions and posted prices comparable. The empirical strategy follows the model which

identifies the selling mode that maximizes a seller’s revenues for her individually optimal selling

probability, depending on her reservation value.

Let us add some methodological remarks concerning the link between our model and the

empirical analysis. In our model, the reservation values determine uniquely the sellers’ choice

of the sales mechanism. For the empirical analysis, this means that the self-selection to sales

modes is driven by a variable that is unobservable to us, and for which we cannot think of a

good proxy or instrument. This raises two issues: First, we cannot directly test whether it

is reservation values that drive the mechanism choice. All we can say is that our empirical
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results strongly confirm the hypotheses derived from the theory. However, other papers using

inventories as proxies for reservation values (Hammond, 2010) do argue that self selection is

driven by reservation values, so that our theory helps understand this empirical result.

The second potential issue concerns our empirical comparison of the (P,R)–plots for the two

sales modes. Our main result is that a seller who wants to implement a high selling probabil-

ity gets higher expected revenue with auctions, while higher revenues are realized with posted

prices for low selling probabilities. If, as allowed by our model, sellers’ valuations are drawn from

different probability distributions, each seller faces a different distribution of rival sellers’ valua-

tions and, therefore, considers a different (P,R)–plot. In this sense, our estimation compares an

average seller’s (P,R)–plot for both modes of sale. For such an average seller, the (unobserved)

reservation value determines the optimal selling probability, but for a given selling probability,

a mechanism is superior regardless of the seller’s valuation, so that unobserved heterogeneity

of reservation values is no concern for our empirical strategy. However, a potential endogeneity

problem arises when these reservation values are correlated with other unobservable attributes

of sellers, and when those attributes influence revenue in the two sales modes in different ways

even for identical selling probabilities. Indeed, we cannot rule out that posted-price sellers would

choose different durations or end dates when using an auction. If the sellers’ attributes which

determine these other choices are correlated with the factors determining their desired selling

probabilities, then the revenue of a posted-price seller switching to an auction can be slightly

different from the average revenue estimated from our auction data, even after controlling for

the selling probability. Note, however, that the main attributes that buyers are interested in,

such as the category and the number of tickets, are observable to us, so that we can control for

them. Hence, the assumption that sellers face identical (P,R)–plots seems reasonable.
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